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ALMA observations of α Centauri
First detection of main-sequence stars at 3 mm wavelength
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ABSTRACT

Context. The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other
stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the
permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. This feedback will probably also help identify stars
that potentially host planetary systems that are reminiscent of our own.
Aims. Earlier observations with Herschel and APEX have revealed the temperature minimum of αCen, but these were unable to spatially resolve
the binary into individual components. With the data reported in this Letter, we aim at remedying this shortcoming. Furthermore, these earlier data
were limited to the wavelength region between 100 and 870 µm. In the present context, we intend to extend the spectral mapping (SED) to longer
wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident.
Methods. The Atacama Large Millimeter/submillimeter Array (ALMA) is particularly suited to point sources, such as unresolved stars. ALMA
provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high
spatial resolving power of its adaptable interferometer for imaging close multiple stars.
Results. This is the first detection of main-sequence stars at a wavelength of 3 mm. Furthermore, the individual components of the binary αCen AB
are clearly detected and spatially well resolved at all ALMA wavelengths. The high signal-to-noise ratios of these data permit accurate determina-
tion of their relative flux ratios, i.e., S B

ν /S
A
ν = 0.54 ± 0.04 at 440 µm, =0.46 ± 0.01 at 870 µm, and =0.47 ± 0.006 at 3.1 mm, respectively.

Conclusions. The previously obtained flux ratio of 0.44 ± 0.18, which was based on measurements in the optical and at 70 µm, is consistent
with the present ALMA results, albeit with a large error bar. The observed 3.1 mm emission greatly exceeds what is predicted from the stellar
photospheres, and undoubtedly arises predominantly as free-free emission in the ionized chromospheric plasmas of both stars. Given the distinct
difference in their cyclic activity, the similarity of their submm SEDs appears surprising.

Key words. stars: chromospheres – stars: solar-type – stars: individual: α Centauri AB – submillimeter: stars – radio continuum: stars – binaries:
general

1. Introduction

About two thirds of the 133 FGK stars observed at wavelengths
of 100 µm and 160 µm by Herschel as part of the DUNES1

program have suggested that temperature minima are present in
their atmospheres (Eiroa et al. 2013). These stars are commonly
recognized as solar-type and the chromospheres and coronae
were expected on the basis of their known CaII H & K indices
and X-ray luminosities.

In the particular case of the nearby binary αCen A B (G2 V
and K1 V), the far-infrared (FIR) spectral evidence for the
phenomenon of a temperature minimum was quite convinc-
ing, although the pair was spatially unresolved by our long-
wavelength observations (Liseau et al. 2013; Wiegert et al.
2014). Furthermore, since adequate theoretical stellar model at-
mospheres longward of 40 µm were lacking, relative flux ra-
tios had to be deduced by extrapolation from data obtained at
shorter wavelengths. This could potentially lead to large errors,
since αCen B is known to be considerably more active than the

1 DUNES stands for DUst in NEarby Stars, a Herschel open time key
program, PI C. Eiroa.

primary αCen A (Ayres 2014), and one might therefore a pri-
ori not expect the scaling in the optical (photospheric flux) to
also apply to the FIR/submm regimes, where the radiation orig-
inates at higher atmospheric levels in the chromosphere. There,
the continuum opacity is controlled by free-free H− processes
and temperatures in these optically thick layers, which follows
the photospheric (negative) temperature gradient and samples
the temperature inversion in the lower chromosphere (tempera-
ture minimum). Thereafter, temperatures start to increase again.

The Herschel photometry permitted the rough spectral cov-
erage of the temperature minimum up to about 500 µm, where
the measurements at the longest wavelengths were at the very
limit of the detection capability of the SPIRE instrument (Griffin
et al. 2010). In addition, the spatial resolution of the 3.5 m
Herschel single-dish telescope (Pilbratt et al. 2010) was inad-
equate for resolving the binary into its components. Both of
these shortcomings could be mitigated using the Atacama Large
Millimeter/submillimeter Array (ALMA), and in this Letter we
report our initial results of these observations. The ALMA ob-
servations and data reduction are described in Sect. 2, the results
are presented in Sect. 3, and their relevance discussed in Sect. 4.
Finally, Sect. 5 briefly lists our main conclusions.
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2. Observations and data reduction

The binary αCen A B was observed in three ALMA continuum
bands, with 7.5 GHz effective bandwidth spread over four spec-
tral windows in each of the bands. The observations in Band 3,
centered on 97.5 GHz (3.1 mm), were taken on 2014 July 3, and
they used 30 antennas and a total observing time of ∼50 min,
of which ∼30 min were spent on-source. The Band 7 obser-
vations, centered on 343.5 GHz (872.8 µm), were taken on
2014 July 7 using 32 antennas with ∼20 min of observing time
with ∼2 min on-source. Finally, the observations in Band 9, cen-
tered on 679 GHz (441.5 µm), were taken on 2014 July 18 using
31 antennas and ∼30 min total and ∼8 min on-source observ-
ing time.

Calibration was performed using the CASA package2 fol-
lowing standard procedures and using, for all data sets, the
quasar J1617−5848 as complex gain calibrator, which was
within 12◦ of αCen. The quasar J1427−4206, at 18.◦5 separa-
tion, served as bandpass calibrator. The secondary gain calibra-
tor J1508−4953 was observed in Band 9.

Flux calibration was done using Ceres in Bands 3 (97.5 GHz,
3075 µm) and 9 (679 GHz, 441.5 µm), when at 57◦ elevation,
while αCen was at 50◦. Titan was used for Band 7 (343.5 GHz,
872.8 µm), when it was at 59◦ elevation and αCen at 43◦.
Bootstrapping the fluxes of our calibrators yielded a flux for
J1617−5848 of 1.555 ± 0.002 Jy (Band 3), 0.520 ± 0.001 Jy
(Band 7), and 0.321 ± 0.003 Jy (Band 9). For J1427−4206, we
found 2.434 ± 0.004 Jy and 1.498 ± 0.005 Jy in Bands 7 and 9,
respectively, and for the secondary gain calibrator J1508−4953
in Band 9, we found 0.71 ± 0.03 Jy. Based on the flux values for
the calibrators that are provided by the observatory, we estimate
the absolute flux calibration to be accurate to within 5%, 7%,
and 15% for Bands 3, 7, and 9, respectively. These calibration
data are updated on a regular basis, within at most three weeks,
and no flux variations for the calibration sources that exceeded
the quoted errors were noticed.

Finally, imaging was performed using Briggs weighting in
Band 7 and natural weighting on Bands 3 and 9. In Band 9,
αCen A was strong enough to perform self-calibration, improv-
ing the rms noise. In the final, primary beam-corrected im-
ages, the rms noise per synthesized beam in the pointing center
was 0.02 mJy beam−1 (1.′′72 × 1.′′50, at PA = 19◦) in Band 3
(3.1 mm), 0.2 mJy beam−1 (0.′′42 × 0.′′28, 47◦) in Band 7
(872.8 µm), and 1.0 mJy beam−1 (0.′′22 × 0.′′16, 35◦) in Band 9
(441.5 µm). Because an error in the pointing position meant that
the binary was offset from the pointing center, the rms toward
αCen B is somewhat increased as is noticeable in Table 1.

3. Results

In all bands the binary was clearly detected at high signal-to-
noise ratio (S/N) and was well resolved into its individual com-
ponents. An example is shown in Fig. 1 for the ALMA obser-
vation at 872.8 µm (343.5 GHz, Band 7). The measured flux
densities are reported in Table 1 and also displayed graphically
in Fig. 2.

The decomposition of the relative contributions to the fluxes
of the unresolved binary components in the FIR was previously
based on the comparison of observed photometric measurements
with theoretical model atmospheres in the optical and infrared
spectral regions. In addition, one observation at 70 µm with
Herschel-PACS (Molinari et al. 2010; Wiegert et al. 2014) nearly

2 CASA is an acronym for Common Astronomy Software Application.

Fig. 1. ALMA observation of αCen A and B at 870 µm (∼344 GHz) on
7 July 2014. At 1.35 pc distance, this binary is nearest to the Sun. The
primary has spectral type G2 V, and the secondary is a K1 V dwarf. The
stellar disks are unresolved, so that the synthesized beam is defined by
the point-like stars and beam sizes, are given in Sect. 2. Intensity units
are Jy beam−1. North is up and east to the left.

resolved the binary, which permitted individual fluxes to be mea-
sured. Over the wavelength range 0.09−70 µm, the ratio was
S B
ν /S

A
ν = 0.44 ± 0.18, which was then also applied to the analy-

sis of the temperature minima of the stars.
With ALMA, the high S/Ns of the resolved data allow ac-

curate determination of their flux ratios, i.e., S B
ν /S

A
ν = 0.54 ±

0.04 at 440 µm, =0.46 ± 0.01 at 870 µm, and =0.47 ± 0.006 at
3.1 mm. In Fig. 3, the SEDs are presented for both stars in terms
of brightness temperature3 versus wavelength. Also shown are
the levels of the respective photospheres, revealing both the de-
ficiencies (70 < λ <∼ 400 µm) and excesses (λ > 400 µm) of the
observed emission. Especially at the longest wavelength, i.e. at
3.1 mm, the chromospheres of both stars are clearly detected
well above their photospheric values (and at high S/N, ≥100).

Leaving aside the Sun for a moment, this ALMA mea-
surement constitutes the first detection of main-sequence stars
at 3.1 mm.

4. Discussion

In the Rayleigh-Jeans regime (RJ), optically thick free-free
emission (or Bremsstrahlung) will behave as Sν ∝ ν2, so that
the spectral index, α = ∆log Sν/∆log ν = 2. For optically thin
emission, αff is distinctly different and slightly negative, i.e., es-
sentially zero (see, e.g., Wright & Barlow 1975). In Fig. 2, we
present the flux densities Sν of αCen A B that were measured
with ALMA at three frequencies, and in Table 1 we also present
the observed values of α. In the figure, the dashes connecting the
data points are meant to guide the eye and can be compared to
the dotted line that shows the spectral shape of optically thick
free-free emission. Deviations may be introduced by different
depth views at different frequencies along the temperature gra-
dient (down to τν ∼ 1), since the dependence of Sν on T is linear

3 TB(ν) = 2 π ~ ν
k

[
ln

(
4 π2 (Rstar+h)2 ~ ν3

D2 c2 Sν
+ 1

)]−1
(see, e.g., Liseau et al.

2013).
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Table 1. ALMA data for αCen.

Flux density, Sν (mJy) ∆log Sν/∆log ν
679 GHz 343.5 GHz 97.5 GHz

Star Band 9 (441.5 µm) Band 7 (872.8 µm) Band 3 (3075 µm) α9, 7 α7, 3

18 July, 2014 [S/N] 7 July, 2014 [S/N] 3 July, 2014 [S/N]
αCen A 107.2 ± 1.5 [71] 26.06 ± 0.19 [137] 3.373 ± 0.011 [307] 2.08 1.62
αCen B 57.6 ± 4.5 [13] 12.04 ± 0.23 [52] 1.585 ± 0.016 [99] 2.30 1.61

Fig. 2. ALMA measurements of the flux density of αCen A (blue cir-
cles) and of αCen B (red squares), with error bars inside the symbols.
For comparison, the black dotted line shows the run of optically thick
free-free emission in the Rayleigh-Jeans regime, i.e., S ν ∝ ν2 (see the
text).

in the optically thick RJ-regime. The measurements seem to in-
dicate changing opacities. However, a more conclusive statement
would require a tighter spectral sampling, including the interme-
diate ALMA bands.

One can use observations on either side of the turnover fre-
quency ν1, i.e., where the free-free spectrum turns from optically
thick to thin, to construct an empirical model chromosphere. For
αCen A and B, empirical chromosphere models based on opti-
cal line data (Ca II K) have been presented by Ayres et al. (1976),
with chromospheric temperatures not exceeding 5700 K.

In the optically thick case, the measured brightness temper-
ature, TB, corresponds to the actual temperature of the emitting
gas, and once the temperature is known, the density can be de-
rived from the optically thin observations, since Sν ∝ EM ×
T−1/2, and where EM =

∫
ne ni dh is the emission measure. In

the Sun, the height of the chromosphere
∫

dh corresponds to
about 0.1% of its radius. It is reasonable to assume that this will
not be very different in the αCen stars4. Models of the chromo-
spheres of these stars will be presented in a forthcoming paper.

To obtain data in the optically thin regime would require ob-
servations of the stars at longer wavelengths (lower frequencies).

4 For the stellar radii, we use the data compiled in Table 4 of Wiegert
et al. (2014), i.e. RA = 1.224 ± 0.003 R� and RB = 0.863 ± 0.003 R�.

However, to the best of our knowledge, such data are not avail-
able for αCen A and B. Observations of this kind have, however,
recently been reported for three other solar-type main-sequence
stars by Villadsen et al. (2014). That demonstrates that this type
of observation has now become feasible with large telescope ar-
rays operating at microwave wavelengths, and they should also
be attempted for the αCentauri binary. With declinations south
of −60◦, the Australia Telescope Compact Array (ATCA) could
be an option.

Observations and/or models of the quiet Sun have been pub-
lished by, for example, Vernazza et al. (1981); Loukitcheva et al.
(2004); Fontenla et al. (2007); Avrett & Loeser (2008), and
De la Luz et al. (2014). Evidence is, however, mounting that
the heating of the solar chromosphere and corona is dominated
by active, magnetically controlled, processes (Carlsson & Stein
1995), and it remains to be seen what quiet stellar chromosphere
models could add to the more complete understanding of the
physics of the Sun and other stars. However, the Sun is consid-
ered to be a relatively inactive star and in this context, it could
also be interesting to note that the αCen stars show very different
levels of activity, with αCen A being much quieter even than the
Sun, whereas αCen B is considerably more active (e.g., Ayres
2014). The great similarity in their submm SEDs is therefore
quite astounding. Finding the solution to this enigma may also
provide valuable feedback for understanding the Sun-as-a-star.

5. Conclusions

The nearby solar-type star αCen has been clearly detected by
ALMA at three wavelengths between 0.4 to 3.1 millimeters. In
particular, the spectacular detection of both stars at 3.1 mm is
the first ever of its kind. Also, these observations conform to
our earlier data, which was obtained by the DUNES team with
Herschel, and confirm the existence of the temperature minima
in the atmospheres of the binary components αCen A and B.

Below, we briefly summarize our main conclusions:

• At FIR/submm wavelengths, the binary was not spatially
resolved by the Herschel Telescope; however, the 4′′ bi-
nary separation in 2014 is easily resolved by the present
ALMA observations.

• The new ALMA data have provided accurate flux ratios that
agree with our previously estimated value.

• The measured spectral indices are consistent with emis-
sion that is dominated by optically thick free-free processes
(Bremsstrahlung).

• The long-wave emission (ALMA-Band 3 at 97.5 GHz) is un-
doubtedly of chromospheric origin, and originates in mate-
rial at temperatures in excess of 8000 K.

• The chromospheres of the αCen stars seem similar in ap-
pearance to empirical models of the quiet Sun. However, the
ALMA data hint at the possibility that the less active pri-
mary αCen A, and the more active companion B, both heat
their chromospheres to higher temperatures.
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Fig. 3. Far-infrared to submm/mm SEDs of αCen A (left) and αCen B (right), where blue and red symbols identify the respective ALMA mea-
surements. Observational rms-errors are given by solid bars and maximum absolute uncertainties of the ALMA data as dots, where relative values
are ≤15% for Band 9, ≤7% for Band 7, and ≤5% for Band 3. With the exception of the point at 70 µm, the data shown by black symbols are
based on unresolved single-dish observations (see the text). The extrapolations longward of 45 µm of the PHOENIX model atmospheres (Brott &
Hauschildt 2005) are indicated by the dashed lines.
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