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Abstract
The development within active safety and driver assistance systems is important
in order to reduce the number of traffic related deaths and injuries. For example,
collisions can be avoided through automatic steering or braking of the vehicle. The
driver can also be alerted about possible threats, e.g. via alarm systems or displays.
An important challenge within active safety is to correctly asses a situation in order
to intervene only when necessary. For instance, if the system frequently alerts the
driver in situations when it is not necessary, then the driver might turn it off. Some
active safety systems, such as collision mitigation by braking, use predicted paths
of other vehicles for assessing threats. Therefore, improving the accuracy of the
path predictions for other vehicles would improve the threat assessment for these
systems. One way of improving the path predictions is to consider how the vehicle
moves in relation to its surroundings. This thesis proposes an algorithm to predict
the paths of traffic participants, that takes the driver intention and road geometry
into account. The driver intention is estimated using support vector machines.
The predicted path is then generated by combining a motion model prediction and
a long term prediction in which the final lateral road placement depends on the
driver intention. The algorithm has been tested on object data and the results show
that including the driver intention can improve the path prediction in lane change
scenarios, but that there are still several challenges to overcome. These challenges
include the quality of the road structure information, handling misclassifications and
tuning of several parameters.

Keywords: Driver intention, Path prediction, Road structure information, Motion
models, Support vector machine.
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1
Introduction

1.1 Background

Road accidents around the world annually claim the lives of 1.24 million people
and injure 20-50 million people. Five pillars are considered to address this; road
safety management, safer infrastructure, increased vehicle safety, safer road users
and post-crash care [1]. Further, increased vehicle safety plays a significant role in
order to reduce the overall number of deaths on European roads [2]. Thus, improved
vehicle safety can help decreasing the number traffic related deaths and injuries, in
Europe as well as globally.

Vehicle safety systems are broadly classified into active and passive safety systems.
The latter deal with post-crash safety, such as airbags and seat belts, that mitigate
the consequences of a collision while the former deal with pre-crash safety, such as
collision avoidance systems and yaw/roll stability systems, which mitigate accidents
by predicting safety critical situations and intervene before a situation results in
an accident. The key ingredients of an active safety system are sensors, algorithms
and system response; the latter consists of either human-machine interface (HMI)
or automatic intervention. The sensors monitor the activity around the vehicle and
provide data to the processing unit. The algorithms deployed in the processing unit
process the sensor data and assess the risk of collision or other safety related issues.
The system responds either through the HMI, by providing information/warnings
that help the driver assess the situation, or via automatic actuation, such as steer-
ing/braking control [16].

One of the most important functions of an active safety system is the collision
avoidance system (CAS). The CAS considers three measures to obviate an immi-
nent collision; warning, braking and steering systems. Warning systems alert/warn
the driver about a possible collision via visual/auditory stimuli, such as heads up
displays or alarm modules, that help the driver take appropriate measures to avert
the collision. Braking and steering systems can override the manual control of the
vehicle in scenarios when the safety system detects an imminent collision or the vehi-
cle drifts away from the intended lane. Despite its potential functionality, there are
certain conditions and constraints about the performance of a CAS. For instance,
the braking system has restrictive constraints on the number of false interventions
which it should allow, and must intervene only when the situation lands up in an
imminent collision. Allowing too many false warnings makes the driver more likely
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1. Introduction

to disconnect the safety system.
The decision making for whether or not the CAS should intervene is done in the
threat assessment (TA) module. An important component of the TA module is the
collision mitigation by braking (CMbB) system. In [7], the CMbB functionality is
triggered only when the the road user cannot avoid a collision neither by applying
moderate steering nor by braking. However, waiting until the other road user cannot
perform a collision avoidance maneuver leads to that the CAS intervenes late, which
increases the risk of collision. Further, in [7], information about the road is excluded
in the treat assessment. The importance of including road structure information in
in the TA module can be understood from studying some special cases. Fig. 1.1
shows an oncoming vehicle that has a significant yaw rate. Since the predicted paths
intersect, the TA module in [7] would probably predict a collision. However, if the
situation in Fig. 1.1 is viewed in the context of Fig. 1.2a, then it is probable that
the blue vehicle has a high yaw rate because it is following the curved road. Further,
the red vehicle is likely to stop or slow down until the blue vehicle has passed. If
this is the case, then the situation would not be considered as a threat.
If the same situation is viewed in the context of Fig. 1.2b, then the blue vehicle
would be coming around the corner with a large yaw rate. Considering the shape of
the road, it is plausible that the vehicle’s yaw rate is high because it is following the
road. If the blue vehicle follows the road, then the vehicles’ paths do not intersect.
Hence, this scenario is not considered as a threat.
In summary, including road structure information allows estimating a driver’s in-
tention. Further, the driver intention provides vital information when it comes to
predicting the future trajectory of a vehicle. Therefore, path predictions based on
road structure information and driver intention can improve the TA module’s deci-
sion basis compared to predictions based on the method proposed in [7].

1.2 Problem Formulation
The problem is to develop an algorithm that predicts the future trajectory of road
users based on object data, road structure information and the intention of the
driver. Road structure data and estimated intentions of drivers will be used to
improve the accuracy of the predicted paths. The algorithm should also be scalable
such that it could be utilized for several scenarios such as roundabouts, intersections
etc.

1.3 Previous Work
There have been several research studies for prediction of vehicle trajectories. Ac-
cording to [26], path prediction can be broadly classified into three levels; physics
based, maneuver based and interaction aware motion models. Out of these, the first
two will be discussed in this thesis.

Physics based motion models predict trajectories by propagating the initial vehicle
state over time, using a predefined model. Physics based motion models are further
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1. Introduction

Figure 1.1: The blue vehicle is oncoming with a large yaw rate. This might cause
a false warning since the predicted trajectories intersect.

(a) Situation 1 (b) Situation 2

Figure 1.2: Two scenarios in which the inclusion of road structure information can
change the threat assessment. Note that the vehicles drive on the left side of the
road.

classified into dynamic and kinematic motion models. Dynamic motion models uti-
lize internal parameters of the vehicle that affect its motion, such as forces acting on
chassis or wheels, cornering forces etc. [26]. Several dynamic motion models can be
found in the works [11], [27], [23], [32]. Kinematic motion models utilize parameters
of motion, e.g. velocity and acceleration, but exclude forces acting on the vehicle.
Common kinematic motion models include constant velocity, constant acceleration,
constant yaw rate and acceleration. A comparative study between different models
is performed in [36] and several variants of kinematic motion models are found in
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1. Introduction

the works [33], [29], [22], [3]. There are several methods to estimate a trajectory
using motion models. According to [26], the trajectory could be a single trajectory
based on motion models, with or without uncertainty associated to it. Uncertainty
can be modeled using Gaussian distributions with methods such as Kalman filters.
Research work related to this method are found in the [20], [37], [24], [19].

Maneuver based motion models rely on the maneuver which the driver performs
or intends to perform. A maneuver is defined as a physical motion executed by the
driver with skill and care. Maneuver based motion models can be composed into
prototype trajectories, maneuver intention estimation and maneuver execution [26].
Prototype trajectory methods are based on motion patterns executed by different
drivers given the road topology. These patterns are then clustered and used to pre-
dict the future trajectory of the vehicle. This task is accomplished by comparing the
past trajectory of a vehicle with the motion patterns. There are several metrics to
measure the similarity such as average Euclidean distance [34],[40], longest common
sub sequence [13], quaternion rotation invariant longest common sub sequence [8].

Intention estimation methods are used to predict what the driver intends to do such
as take a left turn, right turn, change lane etc. These methods utilize several pa-
rameters such as road structure information or vehicle states and are predominantly
predicted using machine learning techniques. Some machine learning methods that
have been used for driver intention estimation are hidden Markov models [18], [38],
support vector machines [25], [4], [17], and relevance vector machines [4]. From the
determined intention, different probabilistic approaches for predicting the trajecto-
ries are proposed in the works [9], [10]. In [21], the maneuver intention is estimated
using statistical methods. Based upon the intention, the vehicle’s trajectory is then
predicted using polynomials in time.

1.4 Datasets

The measurements used in this thesis are provided by Volvo Cars. They are col-
lected with an average sampling time of 0.025 s., using gyro and accelerometer as
well as a forward looking camera and radar with detection ranges of 70 and 150
meters respectively. The data are then preprocessed to provide information, such
as position, velocity, acceleration, yaw rate and heading angle, about the host vehi-
cle and surrounding objects. Further information in the data sets is road structure
information containing lane width, lane marker estimates and the region of validity
of the estimates. Moreover, information about host vehicle lane changes is available
as the time instance and direction of the lane change. All measurements are repre-
sented in a moving coordinate system with origin in the center of the host vehicle’s
rear axis and coordinate axes in its forward and lateral directions. The data used
in the thesis are collected from two drivers during a three days long drive between
Paris and Barcelona.
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1. Introduction

1.5 Thesis Organization/Proposed Approach
The proposed approach is inspired from [21] which comprises of two stages; estima-
tion of driver intention and prediction of vehicle trajectory. In this thesis, the driver
intention is estimated using a support vector machine. The trajectory is predicted
by fusing a short term and a long term prediction. The former is predicted using
motion models while the latter is predicted using road structure information and
the estimated driver intention. The two predictions are then combined to obtain
the final prediction. The overall hierarchy of the approach is illustrated in Fig. 1.3.

1.6 Limitations
Several limitations are made due to the content of the used log data as well as to limit
the complexity of the work. First, as mentioned the log data contains information
about host vehicle lane changes. However, there is no corresponding information
about for other vehicles. Therefore, host vehicle data is used for training the support
vector machine. Second, the log data contains no additional information, beyond the
lane change information, that can be used for labelling. Therefore, the intentions
are limited to keep lane, left lane change and right lane change. However, it is
emphasized that the features should be useful also in case of a future extension of
the number of classes. Third, only consider cars and trucks are considered in the
evaluation of the algorithm. Fourth, inter vehicular dependencies are not considered.
Finally, only a subset of the log data are used, due to that the quality of the road
geometry information in the log data varies. A description of the log data selection
is provided in chapter 3.
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Figure 1.3: An illustration of the overall hierarchy of the proposed approach
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2
Theoretical Framework

This chapter gives an overview of the theory used in this thesis. First, some basic
machine learning concepts are introduced. Second, the support vector machine
is derived. Third, some methods to extend the SVM to multiclass problems are
discussed. Fourth, some motion models are introduced and finally, the basics about
road coordinate systems are presented.

2.1 Machine Learning

The goal of machine learning is to make conclusions about new data based on pre-
vious knowledge [15]. Machine learning problems are broadly classified into three
categories; supervised, unsupervised, and reinforced learning [6]. In machine learn-
ing, the input data are represented by vectors X = (x1, x2, ...xn). These are often
termed feature vectors, input vectors, samples, examples, or pattern vectors. The
components of feature vectors are often called features, attributes, components or
input variables, and can contain discrete or real valued numbers. In supervised
learning, the input vectors are each associated with an output value, which is typi-
cally called class, decision, category or label. The learning algorithm, which is often
called classifier, categorizer or recognizer then tries to fit the examples to the la-
bels. Another way of mapping attributes to categories is unsupervised learning. In
contrast to supervised learning, unsupervised learning algorithms find patterns in
the data without given labels [31]. The third category is known as reinforcement
learning. The goal of reinforcement learning is to find actions that maximise the
reward in a given situation [6].

2.1.1 Cross Validation

When training a classifier there are often several parameters to tune. The optimal
parameters are the ones that give the best classification accuracy on new data. A
common way to estimate this accuracy is to use k-fold cross-validation. In k-fold
cross-validation, the data is split into k groups. Then k-1 groups are used for training
the classifier and the last group is used for validation. The estimated performance
is then the mean value of the k tests. Usually, k is set to 5 or 10 [39].
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2.2 Support Vector Machines
A support vector machine (SVM) is a classifier for supervised learning. When train-
ing SVMs, a hyperplane that separates the input data in accordance with their
labels is created. New feature vectors are then classified according to which side of
the hyperplane they belong to. The usefulness of support vector machines is greatly
enhanced by the possibility to employ kernel functions. They provide a tool for
efficiently mapping the input vectors to a higher dimensional space where nonlinear
feature dependencies can be evaluated. The support vector machine will be derived
in two steps based on lecture notes from Andrew Ng [30]. First, an optimization
problem for linear maximum margin separation of data will be derived. Second,
the problem is reformulated the allow the utilization of kernel functions. The two
problems are denoted as the primal and the dual problem.

2.2.1 The Primal Optimization Problem
The equation of a hyperplane is

ωTx+ b = 0 (2.1)
where ω is a vector that is orthogonal to the hyperplane and b is the bias of the
hyperplane. Any sample x for which this equation is satisfied, describes a point
on the hyperplane. For samples not on the hyperplane, the output of Eq. (2.1)
has either positive or negative sign depending on which side of the hyperplane the
sample is. The classifier relies on this and is expressed as

h(x) = g(ωTx+ b) = g(z) (2.2)

where

g(z) =

1, if z ≥ 0
−1, otherwise

(2.3)

As can be seen in Fig. 2.1, two sets of feature vectors can be separated in different
ways and therefore a method to decide the optimal separating hyperplane is needed.
This is achieved by finding parameters ω and b, such that the minimum Euclidean
distance between the hyperplane and any point in the training set is maximized.
This distance is called the geometric margin and is denoted γ. An expression for
the geometric margin can be obtained as follows: Consider an input vector xi (yi is
disregarded for now) and its projection p on the hyperplane. Since ω/‖ω‖ is a unit
vector normal to the hyperplane, then p can be found as

p = x(i) − γ(i) ω

‖ω‖
(2.4)

Since p is on the hyperplane, it can be inserted in in Eq. (2.1). This yields

ωT
(
x(i) − γ(i) ω

‖ω‖

)
+ b = 0 (2.5)

Solving for the geometric margin gives
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x
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Class -1

Support Vectors

Decision Boundary

(a) A decision boundary with maxi-
mum margin

x
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Class -1

Decision Boundary

(b) Some possible decision bound-
aries with non-maximum margin

Figure 2.1: The separating hyperplane can be created in several different ways

γ(i) =
(
ω

‖ω‖

)T
x(i) + b

‖ω‖
(2.6)

More generally, i.e. considering that x(i) can be located on both sides of the hyper-
plane, the geometric margin can be written as

γ(i) = y(i)

( ω

‖ω‖

)T
x(i) + b

‖ω‖

 (2.7)

The idea now is to find the hyperplane that separates pattern vectors according to
their label, and at the same time maximizes the geometric margin. This can be set
up into the following optimisation problem

max
γ,ω,b

γ

s.t. y(i)(ωTx(i) + b) ≥ γ
‖ω‖ = 1

(2.8)

Even though solving this optimisation problem would give the optimal hyperplane,
the constraint on ω makes the problem non convex. This can be solved by instead
maximizing γ̂/‖ω‖ while constraining γ̂ to be equal to 1. Since maximizing γ̂/‖ω‖
is equivalent to minimizing ‖ω‖, then a new optimization problem, still giving the
optimal hyperplane, can be set up as

min 1
2‖ω‖

2

s.t. y(i)(ωTx(i) + b) ≥ 1 (2.9)

where the factor 1/2 is included for mathematical convenience. This gives a convex
optimization problem which can be solved efficiently.

The above problem is called the primal optimization problem. It can be trans-
formed into a dual problem by using Lagrange multipliers. For the dual problem, it
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is possible to write the solution in terms of dot products between the feature vectors,
which in turn allows the utilization of kernel functions.

2.2.2 The Dual Optimization Problem
Since the derivation of the dual optimization problem relies on the usage of La-
grange multipliers, this section starts with providing a brief description of Lagrange
multipliers and how they connect the primal and the dual optimization problems.
After that follows the derivation of the dual optimization problem.

An optimization problem that has the form

min f(x)
s.t. gi(x) ≤ 0, i ∈ {1, ...,m}
s.t. hi(x) = 0, i ∈ {1, ..., n}

(2.10)

where g and h represent equality and inequality constraints respectively can, using
Lagrange multipliers, be rewritten as

max f(x) +
m∑
i=1

αigi(ω) +
n∑
i=1

βihi(ω)
s.t. gi(x) ≤ 0, i ∈ {1, ...,m}

hi(x) = 0, i ∈ {1, ..., n}
αi ≥ 0, i ∈ {1, ...,m}

(2.11)

where α and β are Lagrange multipliers and the objective function is called the
Lagrangian or L. If the constraints are fulfilled, then the solution to this problem
will be the same as the solution to the original problem. Thus, with the same
constraints, the primal problem can be written as

min
ω

max
α,β:αi≥0

L(ω, b, α) (2.12)

The dual problem is then obtained by altering the order of the minimization and
maximization and hence has the form

max
α,β:αi≥0

min
ω
L(ω, b, α) (2.13)

The solution of the dual problem will always be smaller or equal to the solution of the
primal problem. The two problems have identical solutions if the KKT conditions
are fulfilled. They are as follows:

∂

∂ωi
L(ω∗, α∗, β∗) = 0, i = 1, ..., n (2.14)

∂

∂βi
L(ω∗, α∗, β∗) = 0, i = 1, ..., l (2.15)

α∗i gi(ω∗) = 0, i = 1, ..., k (2.16)
gi(ω∗) ≤ 0, i = 1, ..., k (2.17)

α∗ ≥ 0, i = 1, ..., k (2.18)

10
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where ω∗ is the optimal solution to the primal problem and α∗, β∗ provide the op-
timal solution to the dual problem.

Employing this on the optimization problem for support vector machines, the La-
grangian can be written according to

L(ω, b, α) = 1
2‖ω‖

2 −
m∑
i=1

αi[y(i)(ωTx(i) + b)− 1] (2.19)

In order write the problem in its dual form, L(ω, b, α) is differentiated w.r.t. ω and
b according to

∂L(ω, b, α)
∂ω

= ω −
m∑
i=1

αiy
(i)x(i) = 0 (2.20)

⇒ ω =
m∑
i=1

αiy
(i)x(i) (2.21)

∂L(ω, b, α)
∂b

=
m∑
i=1

αiy
(i) = 0 (2.22)

By inserting Eq. (2.21) into Eq. (2.19) and simplifying, the following expression is
obtained

L(ω, b, α) =
m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjy
(i)y(j)(x(i))Tx(j) − b

m∑
i=1

α
(i)
i (2.23)

Since Eq. (2.22) states that the last term must be zero the dual optimization problem
can be written as

max
α

m∑
i=1

αi − 1
2

m∑
i=1

m∑
j=1

y(i)y(j)αiαj(x(i))Tx(j)

s.t. ∑m
i=1 αiy

(i) = 0, i ∈ {1, ...,m}
αi ≥ 0, i ∈ {1, ..., n}

(2.24)

Once the dual optimization problem is solved, ω can be obtained from Eq. (2.21).
The bias b can then be calculated from the support vectors as

b =
−maxi:y(i)=−1ω

∗Tx(i) +mini:y(i)=1ω
∗Tx(i)

2 (2.25)

New data can then be evaluated according to

ωTx+ b =
 m∑
i=1

αiy
(i)x(i)

T x+ b =
m∑
i=1

αiy
(i)(x(i))Tx+ b (2.26)

This shows that only the support vectors are needed to evaluate new data. This
can also be seen in Fig. 2.1a. Furthermore, the dot product can be replaced with a
kernel function. The benefit of that will be shown in the next section.
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2.2.3 Kernel Functions
Kernel functions can be used whenever there is a dot product between two vectors x
and z. Instead of directly evaluating the dot product, the kernel function evaluates
the dot product between φ(x) and φ(z), which are functions mapping the original
vectors to a higher dimensional space.

As an example the kernel function K(x, z) = (xT z)2 can be considered. In the
case of two dimensional vectors this yields

K (x, z) = (x1z1 + x2z2)2 = x2
1x

2
2 + 2x1z1x2z2 + x2

2z
2
2 (2.27)

Expressed in terms of the vector mappings this becomes

(
x2

1,
√

2x1x2, x
2
2

) z2
1√

2z1z2
z2

2

 = φ(x)Tφ(z) (2.28)

For higher vector dimensions the corresponding calculation becomes

K(x, z) = (x1z1, ..., xnzn)2 =
 n∑
i=1

xizi

 n∑
j=1

xjzj

 =
n∑
i=1

n∑
j=1

xixjzizj (2.29)

where n is the vector dimension. In this case the mapping of the feature vector x
becomes

φ(x) = (x1x1...x1xn...xnx1...xnxn)T (2.30)
This means that calculating the mapped feature vectors has the complexity O(n2),
while evaluating the kernel function only has the complexity O(n).

As seen above, calculating the mappings can be costly for high vector dimensionality.
However, the kernel function can be evaluated without calculating φ(x) and φ(z).
This gives the advantage of the high dimensionality, i.e. to be able to (sometimes)
separate feature vectors that are not separable in the original space, without having
to pay the full cost in terms of calculational complexity [30].

2.2.4 Common SVM Kernels
Some kernels that are often used in support vector machines are the

Linear kernel: xT z

Polynomial kernel: (xT z + c)d.

Radial basis kernel: e(−γ‖x−z‖)

Sigmoid kernel: tanh(xtixj + r)

If the data are linearly separable, then the linear kernel is a good choice because
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the training can be done quickly with good performance. The other kernels can be
good choices if the relation between the feature vectors and the classes is nonlinear
[12].

2.2.5 Soft Margin SVM
Although employing kernel functions can help separating data that are not linearly
separable in the original feature space, separation of all data is sometimes not pos-
sible. For example, this can be the case if there are outliers. If the data are not
linearly separable even after employing kernel functions, then the SVM formulation
as stated in Eq. (2.24) cannot be applied. However, this becomes possible by modi-
fying the SVM formulation to a soft margin SVM. The soft margin SVM is obtained
by introducing slack variables and is derived similarly to the original SVM. The
resulting problem is formulated as follows:

min ‖ω‖2 + C
m∑
i=1

ξi

s.t. y(i)(ωTx(i) + b) ≥ 1− ξi
ξi > 0

(2.31)

where ξ is either the geometric margin of a misclassified feature vector and C is a
cost parameter. The dual problem, which is derived similar to before, then has the
form

max
α

m∑
i=1

αi − 1
2

m∑
i=1

m∑
j=1

y(i)y(j)αiαj(x(i))Tx(j)

s.t. ∑m
i=1 αiy

(i) = 0, i ∈ {1, ...,m}
0 ≤ αi ≤ C, i ∈ {1, ..., n}

(2.32)

The only difference from Eq. (2.24) is that αi must also be smaller or equal to C.

2.2.6 Extension to multiple classes
Although support vector machine were originally created for binary classification
problems, several methods have been suggested for treating multiclass problems.
Three methods that commonly occur in the literature are one-versus-all, one-versus-
one and DAG-SVM. In the one-versus-all approach k SVMs are created, which is
equally many as the number of classes. Each SVM compares the data from one class
to the data from all other classes. A drawback of this method is the possibility that
one data vector is associated with several classes. In that case the distance to the
hyperplane can be used to make a decision. However, this might be problematic if
the the distances to the different hyperplanes do not have the same scale. This might
be the case since the classifiers were not trained for the same task. Another problem
with the one-versus-rest approach is that the training sets are unbalanced, i.e. there
are several more samples of one class. This might cause the decision boundary to
be biased toward the class with more examples.
A method that is also commonly used is to create k(k − 1)/2 classifiers, each sepa-
rating two classes. The output from each classifier counts as a vote, and the class
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Figure 2.2: Transitions between some rectilinear and curvilinear motion models

with highest number of votes is chosen. A drawback of this method is the possibil-
ity that several classes get equally many votes. Furthermore, the time needed for
classification and training is large, compared to other methods, if there are many
classes.
The DAG-SVM is another multi-SVM approach. It organises k(k − 1)/2 classifiers
into a graph such that only k − 1 classifiers need to be evaluated for testing new
data [6].

2.3 Motion Models
Motion models are mathematical frameworks, which can be used to predict the
future state of a vehicle using the current state [36]. Motion models accurately
explain the evolution of the vehicle trajectory for a short time due to the inertia of
the vehicle [21]. It is possible to construct different motion models depending upon
the set of observed measurements and whether the state update is linear or non
linear. Roughly, motion models can be divided into models that consider rotation
(curvilinear motion models) and models which do not consider rotation (rectilinear
motion models). Two examples of models that belong to the former group are the
constant turn rate and velocity (CTRV) and the constant turn rate and acceleration
(CTRA) models while two models which belong to the latter group are the constant
velocity (CV) and constant acceleration (CA) models. The relation between these
models is graphically illustrated in Fig. 2.2. These four models will now be described
shortly.
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2.3.1 Constant Velocity Model
The constant velocity (CV) model is a linear and rectilinear motion model which
considers a constant velocity for the motion of the vehicle. The state vector for
the CV model is given as X(k) =

[
x vx y vy

]T
and the state update equation is

given as

X(k + 1) =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

X(k) (2.33)

where
x is the longitudinal position of the vehicle,
vx is the longitudinal velocity of the vehicle,
y is the lateral position of the vehicle,
vy is the lateral velocity of the vehicle and
∆T is the sample time.

2.3.2 Constant Acceleration Model
The constant acceleration (CA) model is a linear and rectilinear model, like the con-
stant velocity model, which considers a constant acceleration for the motion of the
vehicle. The state vector for the CAmodel is given asX(k) =

[
x vx ax y vy ay

]T
and the state update equation is given as

X(k + 1) =



1 ∆T ∆T 2/2 0 0 0
0 1 ∆T 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆T ∆T 2/2
0 0 0 0 1 ∆T
0 0 0 0 0 1


X(k) (2.34)

where
x is the longitudinal position of the vehicle,
vx is the longitudinal velocity of the vehicle,
ax is the longitudinal acceleration of the vehicle,
y is the lateral position of the vehicle,
vy is the lateral velocity of the vehicle,
ay is the lateral acceleration of the vehicle and
∆T is the sample time.

2.3.3 Constant Turn Rate and Velocity Model
The constant turn rate and velocity (CTRV) model is a nonlinear and curvilinear
motion model. The state vector for the CTRV model is X(k) =

[
x y θ v ω

]T
15
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and the state update equation is given as

X(k + 1) =



v

ω
sin(ω∆T + θ)− v

ω
sin(θ) + x(k)

− v
ω
cos(ω∆T + θ) + v

ω
sin(θ) + y(k)

ω∆T + θ
v
ω


(2.35)

where
x is the longitudinal position of the vehicle,
y is the lateral position of the vehicle,
θ is the heading angle of the vehicle,
v is the velocity of the vehicle,
ω is the yaw rate of the vehicle and
∆T is the sample time.

2.3.4 Constant Turn Rate and Acceleration Model
The constant turn rate and acceleration model (CTRA), also known as constant yaw
rate and acceleration (CYRA), is a nonlinear and curvilinear motion model which
involves linear variation of the curvature [36]. The state vector for the CTRA model
is X(k) =

[
x y θ v a ω

]T
and the state update equation is given as

X(k + 1) =



x(k + 1)
y(k + 1)
θ(k + 1)
v(k + 1)

a
ω


= X(k) +



∆x(∆T )
∆y(∆T )
ω∆T
a∆T

0
0


(2.36)

with

∆x(∆T ) = 1
ω2 [(v(k)ω + aω∆T ) sin(θ(k) + ω∆T )

+a cos(θ(k) + ω∆T )− v(k)ω sin θ(k)− a cos θ(k)]

and

∆y(∆T ) = 1
ω2 [(−v(k)ω − aω∆T ) cos(θ(k) + ω∆T )

+a sin(θ(k) + ω∆T ) + v(k)ω cos θ(k)− a sin θ(k)]

where
x is the longitudinal position of the vehicle,
y is the lateral position of the vehicle,
θ is the heading angle of the vehicle,
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Figure 2.3: Object moving in a 2D curve

v is the velocity of the vehicle,
a is the acceleration of the vehicle,
ω is the yaw rate of the vehicle and
∆T is the sample time.

2.4 Normal-Tangent Coordinate System
The normal-tangent (N-T) coordinate system is a curvilinear coordinate system,
which is used when an object moves along a predefined path or profile [14]. The
coordinate system is described by two orthogonal unit vectors; the normal vector
~N and the tangent vector ~T . The origin of the coordinate system always coincides
with the location of the object on the profile. An example of an N-T coordinate
system for an object, X, moving along a curve is found in Fig. 2.3. The object has
traversed an arc distance s(t) along the profile from the point O. The tangent vector
~T is tangential to the curve at X and the normal vector ~N is perpendicular to ~T ,
with direction towards the center of curvature O′ . In addition, the corresponding
coordinate system in three dimensions is known as tangent-normal-binormal (TNB)
or Frenet-Serret frame.

2.4.1 Equations of Motion in the N-T Coordinate System
Since the object moves along the profile, the object traverses along a curved distance
which is a function of time expressed as s(t). The velocity of the object always
remains tangential to the profile and the magnitude of the velocity is given as

v = v ~T , where (2.37)
v = ṡ(t) (2.38)
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Figure 2.4: Infinitesimal travel distance ds of object in time dt

The acceleration of the object in the N-T coordinate system is determined by the
time derivative of the velocity, which is

a = v̇ = v̇ ~T + v ~̇T (2.39)

where ~̇T is the rate of change of the tangent vector along the profile and is determined
from the assumption that the object travels an infinitesimal arc length ds in time
dt. As the direction of ~T changes over time, the magnitude is unity at all times(∣∣∣~T ∣∣∣ =

∣∣∣∣ ~T ′ ∣∣∣∣ = 1
)
~̇T .

From figure 2.4, resolving the vectors ~T ′ = ~T + ~dT , where ~dT = dθ ~N . Taking the
derivative with respect to time,

~̇T = θ̇ ~N = v

r
~N (2.40)

substituting the normal and tangential components, the acceleration of the object
is given as,

a = at ~T + an ~N (2.41)

where at = v̇, an = v2

r
and the magnitude is given as a =

√
a2
n + a2

t . If the path is
described as y = f(x), then the radius of curvature is given as

r = [1 + (dy/dx)2]3/2∣∣d2y/dx2
∣∣ (2.42)

2.4.2 Special Cases
There are two important cases of motion in an N-T coordinate system [14].
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1. If the object moves on a linear profile, then the curvature is zero. This means
that the radius r → ∞ and therefore an = 0. Therefore, only the tangential
component of the acceleration exists, which is at = v̇.

2. If the object moves on a curved profile with constant speed, then the tangen-
tial component of acceleration is at = v̇ = 0 and the normal component of
acceleration is an = v2

r
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3
Implementation

This chapter describes the implementation aspects of the work. First, it is described
how the features are calculated. Second, an overview of how the feature vectors are
extracted from the log data and labelled is provided. Third, a detailed explanation
of the proposed path prediction is given and finally, it is explained how the predicted
paths are evaluated.

3.1 Features
As described in the theory chapter, any real valued or discrete number can be used
as a feature. However, it is important to choose features that are correlated with the
actual intention in order for the support vector machine to make accurate classifi-
cations. Some examples of possible features in lane change classification are vehicle
states, such as velocity and acceleration, road structure data, like road curvature
and lane marker estimates, or combinations of several measurements. From [35],
it is evident that the lateral position, lateral velocity and the longitudinal velocity
relative to the preceding vehicles possess the maximum predictive power. Also in
[25], [28], a similar feature space is utilised as input to the SVM. In this thesis,
the features include the lateral position with respect to the lane center, as well as
a new feature called similarity feature. The choice of features was made such that
the features should not only be correlated with lane change intentions, but also be
applicable to an extended number of classes. The chosen features are described
below.

3.1.1 Lateral Position
The lateral position is equal to the signed Euclidean distance between the object
and the lane center as displayed in Fig. 3.1. It is calculated as follows:
The object’s position with respect to the host vehicle is given as (xobj, yobj) and the
lane center is described by a third order polynomial according to

f(x) = a3x
3 + a2x

2 + a1x+ a0 (3.1)
If (x, y) represents any position on the lane center, then the squared distance between
the object and the lane center curve can be expressed as

D2 = (x− xobj)2 + (y − yobj)2 (3.2)
Substituting f(x) in the above equation yields
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Figure 3.1: Lateral position feature of the object with respect to the lane center

D2 = b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0 (3.3)

where the coefficients bi|i=0...6 are given as

b6 = a2
3

b5 = 2a2a3

b4 = 2a1a3 + a2
2

b3 = 2a1a3 + 2a1a3 − 2a3yobj

b2 = a2
1 + 2a0a2 − 2a2yobj + 1

b1 = 2a0a1 − 2a1yobj − 2xobj
b0 = a2

0 − 2a0yobj + x2
obj + y2

obj

(3.4)

From minimizing the squared distance (D2), the x-coordinate of the object’s projec-
tion on the lane center is obtained as

xroad = min
x
D2 (3.5)

The y-coordinate of the projection can then be obtained from Eq. (3.1) according
to

yroad = f(xroad) (3.6)
Next, the shortest distance between the object and the lane center is computed as

D = ±
√

(xroad − xobj)2 + (yroad − yobj)2 (3.7)
In order to determine on which side of the lane center the object is, D is considered
to be negative if the object is to the right of the lane center.
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Figure 3.2: Constructed grid space in each lane on the road

3.1.2 Similarity Feature
The similarity feature is a novel feature introduced in this thesis. It describes the
similarity between a motion model prediction and multiple hypothesis paths con-
necting the object’s current state with possible future states. As stated in section
2.3, motion model predictions accurately describe the motion of a vehicle during a
short time due to the inertia of the vehicle. There are several measures to determine
the similarity between two trajectories [42]. In this thesis the root mean square
(RMS) error is utilized. A more detailed description of how the feature is calculated
follows below.

The initial state vector of the object is given as

Xinit =
[
x0 y0 θ0 v0 a0 ω0

]T
(3.8)

The distance that the object will have travelled in a near future, assuming constant
acceleration, is calculated using the kinematic equation

Stravel = v0ttravel + 1
2a0t

2
travel (3.9)

In the implementation ttravel is assumed to be 2 s. The future coordinates of the
object are determined based on the assumptions

xroad = x0 + Stravel (3.10)
yroad = f(xroad) (3.11)
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where f is expressed in Eq. (3.1). The point (xroad, yroad) constitutes a basis to
generate the grid space, which is a set of equally spaced points on the road that
describe the final positions of the hypothesis paths. The grid space is described for
each of the classes; in this case the lanes of the road are considered. The grid length,
(GL), is the number of grid points along the longitudinal axis and the grid breadth,
(GB), is the number of grid points along the lateral axis. The grid dimension for
each lane is given by the product between (GL) and (GB). The horizontal spacing
∆x between the grid points is assumed to be constant. In the implementation, ∆x
is assumed to be 5 m and (GL) as well as (GB) are set as 3. Further, the vertical
spacing is constrained to be within the boundaries of the lane width of the individual
lanes. An example of the grid space implementation is seen in Fig. 3.2.

So far, the final positions of the grid space have been determined. However, in
order to construct the hypothesis path trajectories, the initial and final states are
required. The initial vehicle state is given is Eq. (3.8) and the derivation of the final
states follows. The fundamental assumptions to deduce the final state vector is that
the object follows the road profile and maintains the same acceleration. From these
assumptions, the end state vector for each grid point is computed as shown below.

Let the classes be represented by C ∈ {Left, Right, Center}, i represent the index
of the grid length and j represent the index of the grid breadth. The coordinates of
grid point (i, j) for the Cth class is denoted as (xC(i, j), yC(i, j)). Each variable of
the final state vector will now be calculated separately.

The assumption that the object follows the road implies that the object’s final
heading angle is the same as the road tangent at that position. This is expressed as

θC(i, j) =

π − tan
−1
(
f
′(x)|xC(i,j)

)
, if the vehicle is oncoming

tan−1
(
f
′(x)|xC(i,j)

)
, otherwise

(3.12)

The distance from the object’s initial position to its final position is given as

DC(i, j) =
√

(xC(i, j)− x0)2 + (yC(i, j)− y0)2 (3.13)

The final velocity is then determined according to

vC(i, j) = ±
√
v2

0 + 2a0DC(i, j) (3.14)

The final yaw-rate of the object is determined from the equation

ωC(i, j) =
(afiny vfinx − afinx vfiny )

(vfinx )2 + (vfiny )2
(3.15)

where
vfinx = v0 cos(θC(i, j)) is the final velocity along the longitudinal axis,
vfiny = v0 sin(θC(i, j)) is the final velocity along the lateral axis,
afinx = a0 cos(θC(i, j)) is the final acceleration along the longitudinal axis and
afiny = a0 sin(θC(i, j)) is the final acceleration along the lateral axis.
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Thus, the final state vector is given as

XC
fin(i, j) =



xC(i, j)
yC(i, j)
θC(i, j)
vC(i, j)
aC(i, j)
ωC(i, j)


(3.16)

When both the initial and final state vectors are calculated, the consecutive step is
to generate trajectories that connect them. The longitudinal and lateral trajectories
are each modeled as a quintic time polynomial; this gives a unique solution and a
jerk continuous trajectory [41], [21]. The longitudinal trajectory and its derivatives
are given as


x(t) = cx0 + cx1t+ cx2t

2 + cx3t
3 + cx4t

4 + cx5t
5

ẋ(t) = cx1 + 2cx2t+ 3cx3t2 + 4cx4t3 + 5cx5t4

ẍ(t) = 2cx2 + 6cx3t+ 12cx4t2 + 20cx5t3
(3.17)

The lateral trajectory and its derivatives are given as
y(t) = cy0 + cy1t+ cy2t

2 + cy3t
3 + cy4t

4 + cy5t
5

ẏ(t) = cy1 + 2cy2t+ 3cy3t2 + 4cy4t3 + 5cy5t4

ÿ(t) = 2cy2 + 6cy3t+ 12cy4t2 + 20cy5t3
(3.18)

The trajectory is modeled with polynomials in time and the time for the object to
reach the final state is computed from the relation

TC(i, j) =



∣∣∣∣∣ |vC(i, j)|+ |v0|
a0

∣∣∣∣∣ , if a0 6= 0

∣∣∣∣∣DC(i, j)
v0

∣∣∣∣∣ , if a0 = 0

(3.19)

Next, the polynomial coefficients need to be determined. In order to determine the
polynomial coefficients, the initial and final state vectors are transformed to lateral
and longitudinal position, velocity and acceleration according to



xs
ys
θs
vs
as
ωs


7−→



y
ẏ
ÿ
x
ẋ
ẍ


(3.20)
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Figure 3.3: Trajectories from the initial to the final states

where the transformation relation is given as

y = ys

ẏ = vs sin(θs)
ÿ = as sin(θs) + vsωscos(θs)
x = xs

ẋ = vs cos(θs)
ẍ = as cos(θs)− vsωssin(θs)

(3.21)

By substituting the initial and final conditions, the coefficients of the polynomial are
calculated and the longitudinal and lateral trajectories are determined. An example
of multiple hypothesis trajectories generated in this way is seen in Fig. 3.3.
As mentioned, the similarity between the hypothesis paths and a motion model
prediction of the vehicle’s path is calculated using the RMS error. In this thesis the
CA-model is used for predicting the vehicle’s motion for a time period Ts = 1 s.
If the length of the CA prediction is M and the length of the generated trajectory
N , then the similarity measure is computed according to

dC(i, j) =

√√√√(XCA −XC
Traj(i, j)

)T(
XCA −XC

Traj(i, j)
)

L
(3.22)

where L = min{M,N} and the trajectories are represented asXCA = {(x1, y1), (x2, y2)...(xM , yM)}
and XC

Traj(i, j) = {(x1, y1), (x2, y2)...(xN , yN)}. For each considered lane, the simi-
larity that best fits the vehicle motion is selected as

SimC = min
i∈GL

(
min
j∈GB

(
dC(i, j)

))
(3.23)

The similarity feature is then normalized such that ∑C Sim
C = 1. This ensures

that the feature is scaled between 0 and 1.
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Figure 3.4: Example of a sequence of the features for a right lane change.
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Figure 3.5: Example of a sequence of the features for a left lane change.

3.2 Training the Support Vector Machine

In order to be able to train the SVM, the features have to be organized as feature
vectors and furthermore, each feature vector needs a label. How that was done is
described in this section.
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3.2.1 Data Selection
The possibility to calculate the features depends on the data. In order to calculate
the lateral position feature, the lane width is needed. Further, when calculating
the similarity features, the ability to place the grid points correctly depends on
the accuracy of the lane marker estimates. However, the log data does not always
contain lane marker estimates. Moreover, even if lane marker estimates do exist,
their accuracy is most of the time not sufficient for calculating the similarity features.
Another factor that was considered in the data selection is that the considered
objects should be moving.
In order to find suitable data, the log files were searched for data fulfilling certain
constraints. First, the lane marker estimates should be accurate enough until the
longitudinal position reached 2 seconds into the future, assuming constant acceler-
ation. This was decided using predefined accuracy measures in the log data. Even
though the final position is often placed further away than that, it was found that
a higher threshold did not leave much data to analyze. Second, the speed of an
object should be greater than 30 km/h. Finally, the data for a considered object
should be available consecutively during at least 3 s. This constraint assures that
the predictions can be compared with how the vehicle actually moved.
From the data fulfilling the above constraints, sequences of data containing lane
changes were selected. These sequences consisted of host vehicle data, since the log
data only contained information regarding lane changes for the host vehicle. The
selected data sequences were then used to calculate the features. Two examples of
features calculated based on these sequences are seen in Fig.3.4 and 3.5. In both
examples, the lateral position feature changes significantly before the lane change,
suggesting that there is a strong correlation between the feature and an actual lane
change. In the same way, the similarity features show that the error of keeping
the current lane is the lowest in both examples until shortly before the actual lane
change. After that, the errors for making a lane change to the right and left lanes
respectively become the lowest. Thus, also the similarity features appear to be
correlated to actual lane changes. An analysis regarding the features’ prediction
accuracies is given in the following chapter.

3.2.2 Feature Vector Extraction
The features calculated from the selected feature vectors were used to construct
feature vectors. Each feature vector consisted of a window of previous lateral posi-
tion features concatenated with the similarity features for the right, left and current
lanes. The window of lateral position features was chosen as the 40 most recent
samples., while only the most recent similarity features were used. Multiple feature
vectors were then created by moving the most recent sample in the feature vector
with steps of 4 samples.

3.2.3 Labelling
As described in chapter 2, the SVM training requires labelled feature vectors. In
previous work on lane change detection [25], the data vectors were labelled using a
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labelling horizon as follows: If the time difference between the most recent sample
in the feature vector and the next lane change is less than the horizon, then the
feature vector is labelled with the corresponding lane change. The same approach
was employed in this thesis. The labelling horizon was chosen as 1.8 s.

3.2.4 Deciding Kernel and Parameters
The radial basis kernel was chosen, following the advice of kernel choice in [12].
Further, this kernel has previously been employed on driver intention estimation
problems with good results in [25]. The parameters were chosen as

C = 1 (3.24)
γ = 1.2 (3.25)

3.2.5 Normalisation
According to [5], SVMs perform better if the input data are normalized. The lateral
position features were therefore centered around their means and divided by their
standard deviations. Since the similarity features were already scaled between 0 and
1, no further normalization was made to them.

3.2.6 Unbalanced Classes
As mentioned in the theory chapter, unbalanced classes can give decision biased
boundaries. If for instance 95% of the training examples are from the same class,
then always assuming that new data belong to that class gives a prediction accuracy
of 95%. However, such a classifier would not be able to make proper classifications
on new input vectors. This problem is discussed in [5] where it is suggested that the
penalty variable C is adapted to account for the differences in number of training
examples for the respective classes. This adaption is done according to

C1n1 = C2n2 (3.26)

where C1, C2 are the rescaled penalty variables and n1, n2 are the number of training
examples of the respective classes. This is a valid assumption if the number of
classification errors are proportional to the class size. In the implementation the
rescaling was done according to

C1 = n1 + n2

2n1
(3.27)

C2 = n1 + n2

2n2
(3.28)

It can easily be verified that this satisfies Eq. (3.26).
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3.3 Proposed Path Prediction
In [21], the future path of the vehicle is predicted by combining a short term and a
long term prediction. The short term prediction is chosen as a CA model prediction
and the long term prediction is an optimal path which depends on the road geometry
and driver intention. The final trajectory is obtained by making a combination of
the long term and short term trajectories using a sigmoid function. A more detailed
explanation of the path prediction follows below.

3.3.1 Long Term Prediction
The long term prediction is based upon the intention of the driver and road geom-
etry. The trajectories are initially constructed in the road coordinate system and
then transformed back to the Cartesian coordinate system. This ensures that the
trajectory remains intact with the road geometry. The trajectory is divided along
the tangential, s(t), and normal, d(t), axes. These components are constructed us-
ing quintic time polynomials. The following steps explain the construction of the
trajectories.

1. Initial and Final States in N-T Coordinate System

The state vector of the considered object is given as

X(k) =
[
x0 y0 θ0 v0 a0 ω0

]T
(3.29)

In order to generate the trajectory in the N-T coordinate system, the states
must be transformed with respect to the lane center, which is expressed as a
cubic polynomial. The initial conditions in the N-T coordinate system at the
initial time t0 are

Iinit =



d0 = y0
lat

ḋ0 = v0sin(θ0 − θ ~T0
)

d̈0 =
√
a2

0 + v2
0
r
sin(θ0 − θ ~T0

)

s0 = 0
ṡ0 = v0cos(θ0 − θ ~T0

)

s̈0 =
√
a2

0 + v2
0
r
cos(θ0 − θ ~T0

)

(3.30)

where y0
lat is the lateral distance between the object’s position and its per-

pendicular projection on the lane center. The tangent vector θ ~T0
is calculated

as

~T ∗ =
 1√

1 + f ′(x)2
,

f
′(x)√

1 + f ′(x)2

∣∣∣∣∣∣
x=x∗

(3.31)
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where x∗ is the abscissa of the projection of the object on the lane center.
The final conditions are determined from the driver intention and the assump-
tions that the object travels with constant longitudinal acceleration and lateral
position. These assumptions yield the final conditions shown below.

Ifin =



dfin = yfinlat
ḋfin = 0
d̈fin = 0
ṡfin = v0 + a0T̂end

s̈fin = a0

(3.32)

The final lateral position is given by the relation

yfinlat = Dlwlintent (3.33)

where lintent ∈ [−1, 0, 1] is a numerical representation of the right, current and
left lanes viewed from the object’s lane and Dlw represents the lane width.
In the definition of the final conditions, the variable sfin is assumed to be a
free variable considering that the final longitudinal position depends on the
time for a lane change. According to [21], a lane change is performed within
6 seconds. It is therefore assumed that the lane change time T̂end belongs to
the interval

T̂end ∈ [0, 6] (3.34)

In cases where the intention is keep lane, T̂end is assumed to be 3 s.

2. Lateral and Longitudinal trajectories
The lateral and longitudinal trajectories d(t) and s(t) are computed as poly-
nomials of time, and are given by the relations

 d(t) = ad0 + ad1t+ ad2t
2 + ad3t

3 + ad4t
4 + ad5t

5

s(t) = as0 + as1t+ as2t
2 + as3t

3 + as4t
4 (3.35)

The lateral coefficients adi|i=0,2..5 are obtained as



t50 t40 t30 t20 t0 1
T̂ 5
end T̂ 4

end T̂ 3
end T̂ 2

end T̂end 1
5t40 4t30 3t20 2t0 1 0

5T̂ 4
end 4T̂ 3

end 3T̂ 2
end 2T̂end 1 0

20t30 12t20 6t0 2 0 0
20T̂ 3

end 12T̂ 2
end 6T̂end 2 0 0





ad5
ad4
ad3
ad2
ad1
ad0


=



d0
dfin
ḋ0
ḋfin
d̈0
d̈fin


(3.36)

The longitudinal coefficients asi|i=0,2..4 are obtained as
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Figure 3.6: Selection of the optimal trajectory from a set of constructed trajectories
for a left lane change



t40 t30 t20 t0 1
4t30 3t20 2t0 1 0

4T̂ 3
end 3T̂ 2

end 2T̂end 1 0
120t20 6t0 2 0 0
12T̂ 3

end 6T̂ 2
end 2T̂end 0 0





as4
as3
as2
as1
as0

 =



s0
ṡ0
ṡfin
s̈0
s̈fin

 (3.37)

T̂end is then determined from minimizing the cost function described below.

3. Optimal Trajectory Extraction
During a lane change maneuver, a driver focuses on three factors; safety, time
and comfort [41]. Therefore, the optimization function is designed to take these
factors into account. The safety and comfort criteria are met by minimizing the
maximum normal acceleration during the lane change maneuver. This assures
that the trajectory does not involve overshooting and quick turns. The time
criterion is considered by penalizing the time of a lane change maneuver. This
is formulated into the following optimization problem

τoptimal = arg min
(
max(|aj|j=1,2..N

N (t)|) + αT̂
j|j=1,2..N
end

)
(3.38)

where τoptimal is the chosen trajectory, j represents the trajectory index and
and α is the time penalization variable. The normal acceleration for a given
trajectory j is computed as
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Figure 3.7: Optimization function to determine the optimal time for lane change
at a given instance

a
(j)
N (t) = |ṡ

(j)(t)d̈(j)(t)− ḋ(j)(t)s̈(j)(t)|√
ṡ(j)2 + ḋ(j)2

(3.39)

Fig. 3.7 illustrates the optimization function for α = 0.02. The optimal lane
change for the considered situation is T̂end = 3.5s. In Fig. 3.6 an example of
the chosen trajectory along with the considered trajectories is seen.

4. Transformation of Trajectory to Cartesian Coordinate System
When the trajectories s(t) and d(t) have been generated they are transformed
back to the Cartesian coordinate system. The arc length is computed as

s(t) =
∫ x∗

x0

√
1 + (f ′(x))2dx (3.40)

where s(t) represents the arc distance travelled at a given time t in the N-T
coordinate system and x∗, f(x∗) represent the abscissa and ordinate for the
arc length s(t) on the lane center in the Cartesian coordinate system. The
upper limit x∗ is computed by numerical integration.

The following procedure explains how the generated trajectory is translated
from the road coordinate to the the Cartesian coordinate system. From Fig.
3.8, consider the object’s position to be

~OX =
[
x(t) y(t)

]T
(3.41)

at time t.
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Figure 3.8: Transformation of the trajectory from N-T coordinates to Cartesian
coordinates

The projection of the considered object’s position on the lane center is ex-
pressed as

~OA =
[
x∗ f(x∗)

]T
(3.42)

Thus the point ~OX with respect to the origin is given as

~OX = ~OA+ d(t) ~N (3.43)

where d(t) is the computed lateral trajectory at time t and ~N is the unit
normal vector at the given point on the lane center. As ~N ⊥ ~T , the normal
vector components are given as

~N∗ =
 1√

1 + 1/f ′(x)2
,
−1/f ′(x)√
1 + 1/f ′(x)2

∣∣∣∣∣∣
x=x∗

(3.44)

This procedure is repeated for every point along the trajectory in the N-T
coordinate system.

3.3.2 Combined Prediction
The final prediction is implemented by combining the short and long term predic-
tions, using weights obtained from a modified sigmoid function. This gives a smooth
transition between the two trajectories. The weight function is

w(t) = 1− 1
1 + e−a(t−b) (3.45)
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The combined trajectory is then calculated from the relation

Xcomb = (1− w(t))Xlong + w(t)Xshort (3.46)

where Xlong is the long term prediction, Xshort is the short term prediction and
Xcomb is the combined prediction. The values for a and b were empirically chosen as
5 and T̂end/3. This ensures that the short term prediction is weighted more in the
beginning of the trajectory and the long term prediction is weighted more towards
the end of the trajectory.

3.4 Evaluation
In this section, two important concepts used for evaluating the predicted paths are
presented; the ground truth and the object lane change flag.

3.4.1 Ground Truth
Calculating the ground truth, i.e. the path that an object actually followed, makes
it possible to evaluate the accuracy of the predicted paths. Since all measurements
are made from the host vehicle, the coordinate system changes between every mea-
surement when the host vehicle moves. In order to calculate the ground truth,
the measurements are therefore transformed to the coordinate system in which the
prediction was made. This is illustrated in Fig. 3.9, where an object’s position is
measured in the coordinate system (x, y). As the host vehicle moves, Fig. 3.10
displays that the coordinate system in which the measurements are made changes
to (x′, y′). In order to calculate the object’s position in (x, y), a coordinate trans-
formation is done as [

Ox

Oy

]
=
[
cosα −sinα
sinα cosα

] [
Ox′

Oy
′

]
+
[
Hx

Hy

]
(3.47)

where
[
Ox Oy

]T
is the object’s position in (x, y),

[
Ox′ Oy′

]T
is the object’s position

in (x′, y′) and
[
Hx Hy

]T
is the future host vehicle’s position in (x, y).

The ground truth is then used to calculate RMS errors between the predicted path
and the path that an object actually followed. These results are presented in chapter
4.

3.5 Object Lane Change Flag
The proposed algorithm is specialised in detecting lane changes and thus, it is de-
sirable to evaluate its performance during lane change maneuvers. Therefore, a
function that post processes the log data to find approximate time instances for
object lane changes, as well as their direction, was created. The function detects a
lane change if the object crosses the lane markers with a predefined margin.
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Figure 3.9: An object’s position is measured from the host vehicle.

Figure 3.10: The host vehicle has moved and hence, the object’s position is mea-
sured in another coordinate system.
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4
Results and Discussion

In this chapter the classification accuracy based on the training data (host vehicle)
is reviewed. Next, the algorithm’s performance on object data is studied. Finally,
some implementation aspects are discussed.

4.1 Prediction Accuracy on Training Data

To estimate the classification accuracy, 5 fold cross-validation was performed. The
data used in the cross-validation consisted of 44668 feature vectors, out of which
2285 were labelled as right lane changes, 1529 as left lane changes and 40854 as keep
lane. Three classifiers were trained; the first using similarity features, the second
using lateral position features and the third using both lateral position and similarity
features.
From Tab. 4.1 it is seen that using only the similarity features gives an accuracy of
90.8% when the intention is keep lane and more than 94% for lane change intentions.
Further, it can be seen that the percentage of misclassifications between right and
left lane changes is low.
In the corresponding contingency table for the lateral position features, displayed
in Tab. 4.2, it is seen that all classes are predicted with more than 97% accuracy.
Further, there are no classification errors between right and left lane changes.
In Tab. 4.3 it is seen that using both similarity features and lateral position features
improves the prediction accuracy between all pairs of classes, although the improve-
ment is small. This means that the lateral position features represent most of the
ability to predict lane changes. Overall, it seems like the classifications are correct
in most cases.

GT: Keep GT: Left GT: Right
P: Keep 0.9080 0.0571 0.0533
P: Left 0.0410 0.9423 0.0022
P: Right 0.0510 0.0007 0.9445

Table 4.1: Contingency table for similarity features. P is the predicted intention
and GT stands for ground truth, or the actual intention.

37



4. Results and Discussion

GT: Keep GT: Left GT: Right
P: Keep 0.9746 0.0157 0.0091
P: Left 0.0096 0.9843 0.0000
P: Right 0.0158 0.0000 0.9909

Table 4.2: Contingency table for lateral position features. P is the predicted
intention and GT stands for ground truth, or the actual intention.

GT: Keep GT: Left GT: Right
P: Keep 0.9763 0.0131 0.0087
P: Left 0.0088 0.9869 0.0000
P: Right 0.0149 0.0000 0.9913

Table 4.3: Contingency table for lateral position and similarity features. P is the
predicted intention and GT stands for ground truth, or the actual intention.

4.2 Performance on Object Data
This section starts with presenting some cumulative error distributions of lateral
and longitudinal RMS errors, calculated between the ground truth and the predicted
paths. Next, the predictions are studied during two lane change scenarios, followed
by a selection of typical cases that yield large prediction errors. Finally, the error
distributions are discussed again, this time taking into account the insights gained
from studying the special cases.

4.2.1 Cumulative Error Distributions
Studying cumulative error distributions helps analyzing the overall performance of
a path prediction algorithm. Further, the performance can be compared to that of
other models. In order compare the performance of the proposed model with other
models, the error distributions of three additional models will also be shown. These
models are the CA model, the LC model and the CLP model. The CA model is a
kinematic motion model assuming constant acceleration, as described in chapter 2.
The LC model and the CLP model are both similar to the proposed model, except
for that they do not consider the driver intention. Therefore, the final position will
always be in the object’s current lane. While the LC model assumes the final lateral
position to be in the lane center, the CLP model assumes that the final lateral posi-
tion is equal to the initial lateral position. The error distributions shown are based
on the lateral and longitudinal errors between the ground truth and the actual path.

From Fig. 4.1a it is seen that the longitudinal errors, considering all data, are
almost identical for the compared prediction algorithms. This can be expected since
they all assume constant longitudinal acceleration.

When comparing the lateral errors, as displayed in Fig. 4.1b, it can be seen that the
models using road structure information on average yield more accurate predictions
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than the CA model. Moreover, it is seen that the CLP model is slightly better than
the LC model, which in turn is slightly better than the proposed model.

Fig. 4.1c displays the lateral error distributions when the models are compared
within a time window of 6 s. centered around approximate object lane changes.
It can be seen that the CA model yields the most large errors, but also that the
difference between the CA model, the LC model and the proposed model is smaller
than in Fig. 4.1b. Further, the proposed model performs slightly better than the
LC model, but slightly worse than the CLP model.

If the same time window is studied, but only for cases when the intention is to
change lane, Fig. 4.1d shows that the proposed model improves on the LC model
for small errors, but that it also has more large errors. Furthermore it is seen that
the CA model makes the most accurate predictions for small errors but that the LC
model has fewer large errors.

In order to better understand the error distributions, two lane change scenarios
as well as a few cases of misclassifications will be analysed.

4.2.2 Predictions During Two Actual Lane Changes

For each of the lane changes, two
photos are displayed, showing the ac-
tual scenario before and after the lane
change. The course of events is then
analyzed by viewing plots of the pre-
dictions. All predictions are displayed
in relation to the lane marker esti-
mates. A legend for the algorithms
displayed in the lane change scenarios
is found in Fig. 4.2. This legend is
also valid for the scenarios discussed
in section 4.2.3.

Constant acceleration

Constant lateral position

Lane center

Proposed model

Ground truth

Figure 4.2: Legend for the path pre-
diction algorithms

4.2.2.1 Left Lane Change

The first lane change scenario, as perceived by the on board camera, can be seen in
Fig. 4.3a and 4.3b. In Fig. 4.4a it can be seen that the lane change is predicted 2.3
s. before the the lane markers are crossed. The intention, however, switches back
to keep lane again 2 s. before the lane change, as seen in Fig. 4.4b. Just before
the lane change is detected again, Fig. 4.4c displays how the algorithms using road
structure information generate paths that follow the road geometry, while the CA
model predicts a path following the actual path. When the lane change is detected
the proposed algorithm predicts a path closely following the ground truth, as seen
in Fig. 4.4d. As the vehicle changes lane the proposed model’s prediction becomes
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(a) Cumulative error distribu-
tion of mean longitudinal errors
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(b) Cumulative error distribu-
tion of mean lateral errors
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(c) Cumulative error distribu-
tion of mean lateral errors when
the starting time of the predic-
tion is either within 3 s. before
or after a lane change
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(d) Cumulative error distribu-
tion of mean lateral errors when
the starting time of the predic-
tion is either within 3 s. before
or after a lane change and the
estimated intention is to change
lane

Figure 4.1: Cumulative error distributions.

equal to that of the LC model. Fig. 4.4f displays that as the object approaches the
lane center, the lateral acceleration decreases causing the CA model to predict that
the object continues towards the next lane. The decreasing lateral acceleration also
makes the CLP model’s prediction less inaccurate. Furthermore, the lane marker
estimates indicate a large road curvature, although it can be seen from the camera
images that this is not the case. This negatively affects the accuracy of the path
generation of the models utilizing road structure information, by providing a final
lateral position that is not in the center of the actual road.

4.2.2.2 Right Lane Change

The second lane change scenario can be seen in Fig. 4.5a and 4.5b. Before the
estimated intention is to change lane the same behavior as for the first lane change
is seen, namely that the road structure based models assume that the vehicle will
follow the road geometry while the CA model assumes a straight path, as can be
seen in Fig. 4.5c. When the intention becomes correctly estimated, as shown in
Fig. 4.5d, the proposed algorithm yields a more accurate path prediction. This lane
change has however a slower lateral motion than the one shown in Fig. 4.4 and
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(a) The intention is estimated
as left lane change 1.8 s. be-
fore the vehicle changes lane.
The vehicle that is changing
lane is the second closest one.

(b) The vehicle has changed
lane.

Figure 4.3: A left lane change seen from the camera.

because of the tuning of the path generation the path is not as accurately described
in this case. The instance before the vehicle crosses over into the new lane, Fig.
4.5e reveals that the model assuming the lane center as final position is the least
accurate, followed by assuming constant lateral position. Also in this case the lane
marker estimates show an incorrectly curved road, but in contrast to the other lane
change it improves the prediction. However, this kind of improvement can not be
trusted to generalize well.

4.2.3 Typical Scenarios That Give Large Prediction Errors
Although the proposed algorithm does indeed improve on the LC model in the lane
change scenarios shown above, this is not mirrored in the error distributions. There-
fore, it is of interest to find the sources of the large errors during lane changes. To
do that some typical cases are shown and discussed. The actual scenario is shown
as a series of images and a legend for the algorithms is found in Fig. 4.2.

Fig. 4.6a shows a vehicle that is moving close to the lane marker estimates. The
SVM predicts this as a lane change, but since the object does not follow a lane change
trajectory the prediction goes wrong. By looking at the camera images shown in
Fig 4.6b and 4.6c it is seen that the object is in fact keeping the lane and that the
reality does not look like the plot.
Fig. 4.7a displays the path of an object that changes lane. However, it suddenly
changes direction and drives back again, after which it closely follows the lane mark-
ers. By examining the actual course of events shown in Fig. 4.7b - 4.7d, it is seen
that the object is overtaken by the host vehicle. However, it is in fact making a lane
change. This means that the prediction is correct, but not the ground truth.
Fig. 4.8a displays an object making a lane change before quickly changing its lateral
velocity. The camera images in Fig. 4.8b - 4.8d reveal that the object is making a
lane change and is then overtaken by the host vehicle, similar to the case shown in
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Fig. 4.7.
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(a) The lane change is detected
2.3 s. before the vehicle crosses
the lane markers
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(b) The intention changes back
again 2 s. before the lane
change
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(c) Just before the intention
changes
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(d) The intention is again es-
timated as left lane change 1.8
s. before the lane markers are
crossed
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(e) Right after the vehicle has
changed lane
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(f) The lane marker estimates
cause the final position to be er-
roneously biased

Figure 4.4: A left lane change
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(a) Just before the lane change
is detected

(b) The lane change is detected
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(c) Just before the lane change
is detected
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(d) The lane change is detected
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(e) Right before the lane mark-
ers are crossed
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(f) The lane markers are crossed

Figure 4.5: A right lane change

4.2.4 Error Distributions Revisited
The paths shown in Fig. 4.6 - 4.8 can be understood by considering that the sensors
used to make the measurements of the objects, namely the radar and the camera,
do not have a 180◦ view of the surroundings. Instead, they both look forward at
different angles. In all the shown cases with poor ground truth, it seems to be the
case that the object’s rear end disappears from the camera view. The rear end of the
object is used to identify the position of the object, which means that in these cases
only the radar sees the object. Hence less information can be used to estimate the
state of the object, which in turn means that the quality of the object information
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Figure 4.6: A case where the object is not behaving according to the ground truth
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Figure 4.7: An object makes a lane change and is then overtaken by the host
vehicle
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(a) A seemingly strange object
maneuver

(b) The prediction starts

(c) The object is changing lane (d) The host vehicle is catching
up on the object

Figure 4.8: An object makes a lane change and is then overtaken by the host
vehicle

decreases. In cases when the camera initially sees the rear end, then the predictions
might be accurate but not the ground truth, as seen in Fig. 4.8, due to that the
state information is initially accurate. Since it is often the case that vehicles pass
close to the host vehicle, and thus are not seen by the camera, many of the errors are
caused by improper ground truth and/or measurements, which means that the error
distributions do not properly describe the performance of the predictions. Thus, in
order to properly evaluate the performance of the algorithm, the evaluation proce-
dure should be run again, using only cases when both the camera and the radar
can see the object. However, there was not time to rerun the evaluation within the
scope of the thesis since this was discovered late.

It is however possible to say a few things regarding the error distributions. In cases
when the ground truth states that the vehicle is driving on the lane markers, such as
shown in Fig. 4.6a, the CLP model can accurately describe the ground truth, while
at the same time all the other compared models yield large errors. This means that
in the error distributions of object lane changes shown in Fig. 4.1d, the CLP model
appears to be better than it is due to that it is able to describe the cases with noisy
sensor data more accurately than the other models. Both the CLP model and the
LC model yield small errors when a vehicle is following the lane center but the CLP
model also gives small errors when a vehicle is following a path with constant offset
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from the lane center. This can explain why the CLP model is the best model on
average. Possibly, there are cases with poor state estimations also here. Further, it
can be said that the largest errors of the CLP model are due to a bug in the code
which occasionally places the final lateral position on the wrong side of the lane, as
seen in Fig 4.8a.

Although the performance of the proposed model can not be properly analysed
from the shown error distributions, it seems to be the case that the proposed model
improves on the LC model, based on the displayed lane change scenarios. Also, Fig.
4.1d shows that the proposed model clearly improves on the LC model for small
errors. Regarding the large errors, although they are probably sometimes caused by
misclassifications, these cases are hidden among the cases with noisy data. Exam-
ples similar to the one shown in Fig. 4.6a could explain why the distribution of the
LC model gives more accurate predictions than the proposed model in such cases.

4.3 Parameters

It is possible to tune several of the parameters of the implementation in a better
way. A discussion regarding this follows.

4.3.1 SVM Parameters

The classification accuracy of the SVM depends on the features as well as the pa-
rameters C and γ. Since these parameters have been tuned empirically, it is likely
possible to improve the tuning. In [12], an approach to find suitable parameter val-
ues for C and γ is to perform grid searches where different parameter combinations
are evaluated, and cross-validation is employed for each combination.

4.3.2 Window Size

Including past measurements in the feature vector helps the SVM detect temporal
patterns in the data, such as a decrease or increase in the lateral position. As an
example, utilizing only the latest measurement of the lateral position as a feature
can be considered. Then the SVM could only find threshold values to use for the
classification. This would lead to high noise sensitivity, since a single outlier could
cause the threshold value to be passed. Bearing in mind the same line of argument,
it could be advisable to use windows also for the similarity features. In Tab. 4.1
- In Tab. 4.3 it is seen that the similarity features are not able to predict lane
changes with as high accuracy as the lateral position features. Furthermore, they
only slightly improve the prediction accuracy when used together with the lateral
position features. However, a windowed version of the similarity features would
be able to resist outliers and find patterns in the data which might enhance the
classification ability further.
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4.3.3 Down Sampling
The measurements were on average updated every 0.025 s. Since the motion of
road vehicles does not change much in such a short time, it might be possible
to use only a subset of all measurements without loosing accuracy. This would
mean shorter feature vectors and hence also shorter time needed for training and
evaluation. Shorter training time is especially useful when searching for the optimal
parameters.

4.3.4 Labelling Horizon
It is not obvious why to decide the labels with a fixed time threshold since lane
changes obviously do not take equally long time. Reasons behind this method are
that it is easy to implement and that it has been used for lane change detection with
good results in [25]. From studying the features in Fig. 3.4 and 3.5 an intuition
can be gained, namely that a shorter labelling horizon gives a higher prediction
accuracy at the cost of making the classifications regarding lane changes later, while
a longer horizon can make it hard to find enough patterns in the data to be able
so accurately make classifications. Thus the fixed threshold has to be a trade off
between classification accuracy and making early predictions. The threshold value
of 1.8 seconds was chosen empirically, but a more thorough approach could be to
examine how different labelling horizons affect the prediction accuracy. Alternatives
to using a fixed labelling horizon would be to manually label the data or to use an
algorithm, e.g. an unsupervised learning algorithm, that finds a pattern to put the
labels. However, manually labelling the data is time consuming for large amounts
of data, and furthermore does not guarantee that the labels will be set accurately.
As of using an unsupervised learning algorithm, that would be another project.

4.3.5 Similarity Features
Although the similarity features prove to be able to predict lane changes in the
training data, they could be varied in several ways, including the placement of the
grid points and the motion model.

4.3.6 Path Generation
The time penalization parameter, α, that is used to generate paths has to be tuned
to estimate trajectories accurately. A problem in tuning α is that lane change tra-
jectories can differ depending on several factors, such as the driver and the scenario.
Possibly, probabilistic methods could be utilized to tune the parameter and express
the uncertainty of the trajectory.

In the combined prediction, the weights are obtained from a sigmoid function, due
to its monotonous and continuity properties. However, the parameters a and b need
to be tuned to obtain the best combined trajectory. Statistical methods can be
utilized to tune the parameters depending upon the uncertainty between the road
structure information and the object data.
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4.4 Road Structure Information
The proposed algorithm depends on road structure information in several ways.
First, when calculating the lateral position feature. Second, the similarity features
use road structure information for placing the grid points and third, road structure
information is used to decide the final lateral position. Therefore, inaccurate road
structure information will decrease the accuracy of the features as well as the gen-
erated path. Since most of the data in the used data sets does not contain accurate
road structure information up until the point where the final position is placed, the
constraints on which data to use were softened to get data to evaluate the algorithm
on. However, this means that most of the time, the predictions are not as accurate
as they could be. Further, it means that the proposed algorithm would benefit from
using additional information, such as electronic horizon data, to improve the the
perception of the world.

4.5 Motion Models
The CA model, which is used both in the similarity features and in the path genera-
tion, was chosen for its simplicity. Furthermore, even though the data sets that were
used contain mixed road types, the constraints used to select data for evaluation
resulted in that the data that was actually used is mostly from highways or larger
roads where the curvature is low. This means that the CA model is suitable. How-
ever in curved roads a more advanced motion model, such as the CYRA model, or
even a mixture of different models for different scenarios, might be a better choice.
A problem with using more advanced motion models on object data could be that
the yaw rate and curvature estimations are not as accurate as for the host vehicle.
This problem could be tackled by using a measure of confidence for the state esti-
mation parameters of the objects to be able to use these measurements when they
can be trusted.

4.6 Choice of Multiclass Method
As mentioned the choice of multiclass extension for the support vector machine is
the one-versus-one classifier. Although a thorough comparison has not been made
between different approaches, this choice has resulted in high classification accuracy
on the host data. Furthermore, it can be said that the drawback of long training
and execution times does not provide a problem since only a few classes are used.

4.7 Flipping Intention
As seen in 4.4 the intention estimation can be uncertain prior to a lane change.
This might be explained by that the feature vectors for keep lane and lane change
intentions are similar in a certain region before a lane change. Furthermore, the
SVM always makes a classification even if the feature vector is really close to the
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decision boundary. There are, however, several approaches towards giving the SVM
a probabilistic output. Doing so might be helpful in order to find out when the
intention estimation is uncertain.

4.8 More Intentions
The currently used intentions can not describe all object behaviors. For instance
vehicles sometimes choose connecting roads, stop or cut corners. If the set of inten-
tions in enlarged, then the proposed features can be applied to intentions such as
choosing a connecting road since they provide comparisons between objects’ state
and the road geometry. However, in order to extend the number of classes, feature
vectors belonging to the additional classes must be identified and labelled. Since
the only such information contained in the current data set is lane change flags,
increasing the number of classes requires either a more sophisticated method of la-
belling or more flags marking interesting events. Another challenge is that the road
structure information in the used data set is accurate enough mostly in highway
scenarios. More accurate road structure information, not only during highway sce-
narios, would allow making predictions in a larger variety of scenarios. One way
of achieving this is to use electronic horizon data. Electric horizon data would also
simplify the labelling.
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5
Conclusions and Future Work

In this thesis a framework for predicting the paths of road participants has been
presented. The driver intention is estimated with support vector machines, that
combine information about the vehicle’s lateral position and motion in relation to
the road, and is then included in the path prediction. The path prediction consists
of a combination of a constant acceleration (CA) model prediction and a long term
prediction that assumes that the vehicle follows the road, where the final lane is
determined from the driver intention. These predictions are combined using a sig-
moid function, such that the CA model prediction is trusted more in the beginning
of the trajectory and the long term prediction more towards the end of the trajectory.

The algorithm has been tested in lane change scenarios and the test results show
that the algorithm can correctly predict lane changes and further, that the path
prediction is improved by the driver intention in lane change scenarios. However,
the overall evaluation of the framework does not reflect the actual performance since
the evaluation data contain several cases of inaccurate state estimations due to that
the vehicle was not in range of the sensors. Therefore, a new evaluation, excluding
these cases, should be performed in order to understand the actual performance of
the system. Future work on the algorithm could also include using more advanced
motion models than the CA model in cases when the road has large curvature.

There are several challenges in improving the proposed algorithm. First, it has
been observed that the driver intention can alternate between two states. This be-
havior was observed shortly before the changes. A possible explanation is that the
feature vectors in these cases are close to the decision boundary. This means that the
predictions are uncertain. Therefore, an estimate of the confidence of the intention
estimation could be helpful when addressing this problem. Such a measure could
be helpful also for detecting and handling misclassifications. Second, the quality of
the road structure information is most of the time not high enough for the proposed
algorithm. Therefore, the framework would benefit from using electronic horizon
data. Third, there are several parameters to tune in the SVM, when creating the
features and for generating the path prediction. The parameter tuning in this thesis
has been done empirically and it is therefore likely that the tuning can be improved.
Finally, more intentions could be included to handle cases that can not be described
by lane changes, e.g. when the vehicle stops or drives onto a connecting road. The
current limitation for this is to find cases in the log data that can be used for train-
ing. Utilizing electronic horizon data would be a great help in finding scenarios
containing different types of intentions.

51



5. Conclusions and Future Work

52



Bibliography

[1] Global plan for the decade of action for road safety 2011-2020.

[2] European new car assessment programme 2020 roadmap. March 2015.

[3] Polychronopoulos A, Tsogas M, Amditis AJ, and Andreone L. Sensor fusion for
predicting vehicles’ path for collision avoidance systems. IEEE Trans on Intell
Transportation Syst, page 8(3):549–562, 2007.

[4] Morris B, Doshi A, and Trivedi M. Lane change intent prediction for driver
assistance: on-road design and evaluation. Proc. IEEE Intelligent Vehicles
Symposium, page pp 895–901, 2011.

[5] C. Ben-Hur and J. Weston. A user’s guide to support vector machines. Technical
report, Colorado State University and NEC Labs America.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Springer.

[7] Mattias Brännström. Decision-making in automotive collision avoidance sys-
tems. Chalmers University of Technology, ISBN: 978-91-7385-618-8.- 146 pp.
[Doctoral thesis], 2011.

[8] Hermes C, Wohler C, Schenk K, and Kummert F. Long-term vehicle motion
prediction. Proc. IEEE intelligent vehicles symposium, page pp 652–657, 2009.

[9] Laugier C, Paromtchik I, Perrollaz M, Yong M, Yoder JD, Tay C, Mekhnacha
K, and Negre A. Probabilistic analysis of dynamic scenes and collision risks
assessment to improve driving safety. IEEE Intell Transportation Syst Mag,
page 3(4):4–19, 2011.

[10] Tay C. Analysis of dynamic scenes: application to driving assistance. PhD
thesis, Institut National Polytechnique de Grenoble, France, 2009.

[11] Lin C-F, Ulsoy AG, and LeBlanc DJ. Vehicle dynamics and external distur-
bance estimation for vehicle path prediction. IEEE Trans on Control System
Technology, page 8(3):508–518, 2000.

[12] C.-C. Chang C.-W. Hsu and C.-J. Lin. A practical guide to support vector
classification. Technical report, National Taiwan University.

53



Bibliography

[13] Buzan D, Sclaroff S, and Kollios G. Extraction and clustering of motion tra-
jectories in video. Proc. international conference on pattern recognition, pages
vol. 2, pp 521–524, 2004.

[14] P. Datseris. Mce 263 lecture notes: Normal - tangential. University Lecture
notes, 2015.

[15] P. Domingos. A few useful things to know about machine learning. Techni-
cal report, University of Washington, Department of Computer Science and
Engineering.

[16] Marco Dozza. Lecture notes-active safety: Introduction. Chalmers University
of Techology, Sweden, 2014.

[17] Aoude GS, Luders BD, Lee KKH, Levine DS, and How JP. Threat assessment
design for driver assistance system at intersections. Proc. IEEE intelligent
transportation systems conference, page pp 25–30, 2010.

[18] Berndt H, Emmert J, and Dietmayer K. Continuous driver intention recognition
with hidden markov models. Proc. IEEE intelligent transportation systems
conference, page pp 1189–1194, 2008.

[19] Veeraraghavan H, Papanikolopoulos N, and Schrater P. Deterministic sampling-
based switching kalman filtering for vehicle tracking. Proc. IEEE intelligent
transportation systems conference, page pp 1340–1345, 2006.

[20] Tan H-S and Huang J. Dgps-based vehicle-to-vehicle cooperative collision warn-
ing: engineering feasibility viewpoints. IEEE Trans on Intell Transportation
Syst, page 7(4):415–428, 2006.

[21] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao. Vehicle trajectory pre-
diction based on motion model and maneuver recognition. Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013.

[22] Hillenbrand J, Spieker AM, and Kroschel K. A multilevel collision mitigation
approach: situation assessment, decision making, and performance tradeoffs.
IEEE Trans on Intell Transportation Syst, page 7(4):528–540, 2006.

[23] Huang J and Tan H-S. Vehicle future trajectory prediction with a dgps/ins-
based positioning system. Proc. American control conference, page pp
5831–5836, 2006.

[24] Murphy KP. Dynamic bayesian networks: representation, inference and learn-
ing. PhD thesis, University of California at Berkeley, USA, 2002.

[25] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier. Learning-based approach
for online lane change intention prediction. IEEE Intelligent Vehicles Sympo-
sium, Gold Coast, Australia, 2013.

[26] S. Lefevre, D. Vasquez, and C. Laugier. “a survey on motion prediction and risk
assessment for intelligent vehicles. Robomech Journal, pages 1(1),1–14, 2014.

54



Bibliography

[27] Brännström M, Coelingh E, and Sjöberg J. Model-based threat assessment for
avoiding arbitrary vehicle collisions. IEEE Trans on Intelligence Transportation
Systems, page 11(3):658–669, 2010.

[28] H. M. Mandalia and D. D. Salvucci. Using support vector machines for lane-
change detection. Hum. Factors and Ergonomics Soc. 49th Annu. Meeting,
Orlando, FL, 2005.

[29] Kaempchen N, Weiss K, Schaefer M, and Dietmayer KCJ. Imm object tracking
for high dynamic driving maneuvers. Proc. IEEE intelligent vehicles sympo-
sium, page pp 825–830, 2004.

[30] A. Ng. Cs229 lecture notes: Support vector machines. University Lecture notes,
Nov 2012.

[31] N. J. Nilsson. Introduction to machine learning. 1998.

[32] Pepy R, Lambert A, and Mounier H. Reducing navigation errors by planning
with realistic vehicle model. IEEE intelligent vehicles symposium, page pp
300–307, 2006.

[33] Ammoun S and Nashashibi F. Real time trajectory prediction for collision risk
estimation between vehicles. Proc. IEEE intelligent computer communication
and processing, page pp 417–422, 2009.

[34] Atev S, Miller G, and Papanikolopoulos NP. Clustering of vehicle trajectories.
IEEE Trans on Intell Transportation Syst, page 11(3):647–657, 2010.

[35] J. Schlechtriemen, A Wedel, J. Hillenbrand, G. Breuel, and K.D.Kuhnert. A
lane change detection approach using feature ranking with maximized predictive
power. Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages 108–114,
2014.

[36] R. Schubert, E. Richter, and G. Wanielik. Comparison and evaluation of ad-
vanced motion models for vehicle tracking. International Conference on Infor-
mation Fusion, Cologne, Germany, Jul 2008.

[37] Batz T, Watson K, and Beyerer J. Recognition of dangerous situations within a
cooperative group of vehicles. Proc. IEEE intelligent vehicles symposium, page
pp 907–912, 2009.

[38] Streubel T and Hoffmann KH. Prediction of driver intended path at intersec-
tions. Proc. IEEE Intelligent Vehicles Symposium, page pp 134–139, 2014.

[39] Jerome Friedman T. Hastie, Robert Tibshirani. The Elements of Statistical
Learning. Springer.

[40] Hu W, Xiao X, Fu Z, Xie D, Tan T, and Maybank S. A system for learning
statistical motion patterns. IEEE Trans on Pattern Anal Mach Intell, page
28(9):1450–1464, 2006.

55



Bibliography

[41] W. Yao, H. Zhao, F. Davoine, and H. Zha. Learning lane change trajectories
from on-road driving data. IEEE Intelligent Vehicles Symposium, Alcala de
Henares, Spain, June 2012.

[42] Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures for trajec-
tory clustering in outdoor surveillance scenes. Proc. IEEE Intell Conf. Pattern
Recognition, 2006.

56


	List of Figures
	List of Tables
	Introduction
	Background
	Problem Formulation
	Previous Work
	Datasets
	Thesis Organization/Proposed Approach
	Limitations

	Theoretical Framework
	Machine Learning
	Cross Validation

	Support Vector Machines
	The Primal Optimization Problem
	The Dual Optimization Problem
	Kernel Functions
	Common SVM Kernels
	Soft Margin SVM
	Extension to multiple classes

	Motion Models
	Constant Velocity Model
	Constant Acceleration Model
	Constant Turn Rate and Velocity Model
	Constant Turn Rate and Acceleration Model

	Normal-Tangent Coordinate System
	Equations of Motion in the N-T Coordinate System
	Special Cases


	Implementation
	Features
	Lateral Position
	Similarity Feature

	Training the Support Vector Machine
	Data Selection
	Feature Vector Extraction
	Labelling
	Deciding Kernel and Parameters
	Normalisation
	Unbalanced Classes

	Proposed Path Prediction
	Long Term Prediction
	Combined Prediction

	Evaluation
	Ground Truth

	Object Lane Change Flag

	Results and Discussion
	Prediction Accuracy on Training Data
	Performance on Object Data
	Cumulative Error Distributions
	Predictions During Two Actual Lane Changes
	Left Lane Change
	Right Lane Change

	Typical Scenarios That Give Large Prediction Errors
	Error Distributions Revisited

	Parameters
	SVM Parameters
	Window Size
	Down Sampling
	Labelling Horizon
	Similarity Features
	Path Generation

	Road Structure Information
	Motion Models
	Choice of Multiclass Method
	Flipping Intention
	More Intentions

	Conclusions and Future Work

