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We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength reso-

nator. The fundamental resonance frequency is �1 GHz, but we use higher modes of the resonator

for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier.

We investigate and compare degenerate parametric amplification, involving a single mode, and

nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-

limited noise performance in both cases. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4933265]

I. INTRODUCTION

Due to the rapid advances in circuit quantum electrody-

namics (cQED), a promising architecture for quantum infor-

mation processing, there has been an increased interest in

quantum-limited microwave amplifiers in recent years.1,2

Amplifiers approaching this limit of minimally added noise

have been developed in a number of different superconduct-

ing technologies such as DC-SQUID (superconducting

quantum interference device) amplifiers,3,4 traveling-wave

parametric amplifiers,5–7 and resonator-based parametric

amplifiers.8–10 In particular, systems based on Josephson

junctions have been very successful and have found wide-

spread use. For instance, Josephson parametric amplifiers

have been used for the generation and measurement of non-

classical states of light,11 quantum-limited measurement of

nanomechanical oscillators,12 readout schemes for supercon-

ducting qubits,13–16 and quantum feedback.17

Quantum-limited performance in Josephson paramet-

ric amplifiers (JPA) has been reached in a number of con-

figurations, all based on the modulation of the nonlinear

inductance of a number of Josephson junctions. Often the

Josephson junctions are configured in a SQUID geometry,

or in an array of multiple SQUIDs. The junctions can be

embedded in a resonant environment consisting of either a

distributed circuit made up of one8,18–21 or multiple22,23

cavities, a lumped-element circuit,24–26 or a combination

of both.27

The Josephson inductance can be modulated in two dif-

ferent ways. The first option is by current pumping,18,24

where a strong tone at the signal input port modulates the

superconducting phase difference across the junctions. The

second way is to flux pump the Josephson inductance, using

an on-chip fast tuning line to modulate the flux through the

SQUID.8,28–30 The current pumping case has been explored

extensively in the context of parametric amplification by a

number of groups. The full nonlinear dynamics of the flux-

pumped system has been studied both theoretically and

experimentally.31–33 It has also been shown that flux-

pumping can lead to very broadband parametric downcon-

version even in the absence of a cavity.34

In this work, we present measurements of a JPA based

on a superconducting coplanar waveguide (CPW) resonator.

Usually, the fundamental mode of the system is used for

parametric amplification. However, our device is designed to

have a relatively low fundamental frequency (lower than the

cutoff of our measurement band). This allows us access to

multiple higher modes within our measurement band. For a

linear resonator, these modes would be equally spaced, but

the nonlinearity of the SQUID introduces an anharmonicity

in the mode spectrum. Using the higher modes, we explore

both degenerate, phase-insensitive parametric amplification

(single-mode pumping scheme), where the pump is resonant

with twice the mode frequency, and nondegenerate paramet-

ric amplification (multimode pumping scheme), where the

pump is resonant with the sum of the resonance frequencies

of two different modes. We make a comparison of these dif-

ferent operation schemes and study the gain, added noise,

gain-bandwidth product, and saturation power. We have cali-

brated our measurement setup with a shot-noise tunnel junc-

tion35,36 (SNTJ) and demonstrate that the amplifier reaches

quantum-limited performance in both operation schemes.

Compared to single-mode operation, the multimode

pumping scheme also gives us access to the full instantane-

ous bandwidth of one of the modes, without having to worry

about interference with the idler, as the idler occurs at a

well-separated frequency. Beyond parametric amplification,

the multimode pumping has other potential applications. For

instance, when amplifying an input vacuum state, the output

photons in the two modes should exhibit two-mode squeez-

ing, a form of continuous-variable entanglement.37 This

entanglement generation, together with previous results

showing coherent mode conversion in a similar setup,38 is a

promising candidate for continuous-variable quantum com-

puting using cluster states.39a)simoen@chalmers.se
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II. SAMPLE DESIGN AND MEASUREMENT SETUP

Our parametric amplifier consists of a superconducting

quarter-wavelength coplanar waveguide resonator termi-

nated to ground by means of a SQUID. We fabricate the cir-

cuit using electron-beam lithography and standard two-angle

evaporation of aluminum. We installed the amplifier in a

microwave reflectometry setup (see Fig. 1) and cooled it

down in a dilution refrigerator with a base temperature of

10 mK. The inductance of the SQUID, and thus the reso-

nance frequency of the circuit, can be tuned by applying a

magnetic flux through the SQUID loop.40 There is an exter-

nal coil mounted on the sample box which allows us to apply

a DC flux, UDC, and an on-chip CPW line for applying an

AC flux, UAC. To calibrate the measurement setup, we also

installed an SNTJ at the mixing chamber. The SNTJ is DC

biased with a bias-T, and the RF noise is combined with the

input signal by means of a directional coupler.

We designed the device with a fundamental resonance

frequency fm¼0(UDC¼ 0) close to 1 GHz, such that we have

access to several higher harmonics in the available measure-

ment band (4–8 GHz, see Fig. 3). The flux dependence of the

mode frequencies (m¼ 0, 1, 2,…) is described by the follow-

ing characteristic equation:33,41

pfm
2fr

tan
pfm
2fr

� �
¼
���� cos

pUDC

U0

� ����� Lr

Lsq

� pfm

2fr

� �2 Csq

Cr

; (1)

where Lsq and Csq denote the SQUID inductance (at UDC¼ 0)

and capacitance, respectively (see Fig. 2). Lr and Cr are the

inductance and capacitance of the CPW resonator. fr is the

fundamental mode of the bare resonator, neglecting the

SQUID (i.e., when the CPW is connected directly to ground)

and U0¼ h/(2e) is the magnetic flux quantum. We used

the higher modes m¼ 2, 3 for our measurements. The reso-

nance frequencies are then found at fm(0)� (2mþ 1) � f0(0)

and can be tuned down to fm(U0/2)� (2m)� f0(0) (see Fig.

3). In a separate uncalibrated wide-band setup, we have also

made measurements using mode 4 (results not shown).

From a normal-state resistance measurement of the

SQUID, we estimate its inductance Lsq to be approximately

200 pH with a critical current of 1.65 lA. Simultaneous nu-

merical fitting of the different modes (m¼ 2, 3) to the char-

acteristic equation, Eq. (1), results in a SQUID inductance

participation ratio c¼Lsq/Lr� 1.76%. The mutual induct-

ance between the pump line and the SQUID is measured to

be in the order of 10 pH. The SQUID capacitance participa-

tion ratio Csq/Cr was found to be much smaller than c, and

can therefore be neglected in the fits. The fitting also results

in a bare resonator frequency fr¼ 959 MHz. The flux-

dependent mode frequencies fm(UDC) for this sample, as well

as the fitting results, are shown in Fig. 3(a).

An interdigitated coupling capacitor, Cc, with a capaci-

tance of 53 fF is used to couple the resonator to the 50 X
measurement line, see Fig. 2. The device is strongly over-

coupled, meaning that the internal losses are significantly

smaller than the external ones due to the output coupling

(Qint� 3750). The resulting loaded quality factor (Qm) is

therefore limited by the external quality factor, which

FIG. 1. The parametric amplifier (green dashed rectangle) is installed in a

microwave reflectometry setup. The input signal is attenuated by 40 dB, dis-

tributed over the different temperature stages. At the mixing chamber, it is

combined with the output of the shot-noise tunnel junction (SNTJ) in a 20 dB

directional coupler. The reflected output tone is separated from the input tone

by means of two circulators, before being amplified with a cryogenic low-

noise HEMT amplifier, installed on the 3 K stage. The DC magnetic flux bias

is applied by means of an external coil, while an on-chip inductively coupled

tuning line, attenuated by 40 dB, is used for AC flux pumping. The micro-

graph shows the AC flux line (blue false color) and the SQUID (white dashed

circle). Calibration of the setup is performed with an SNTJ which is installed

on the mixing chamber and DC biased through a bias-T.

FIG. 2. Schematic overview of the resonator. The resonator is marked in

purple, with length d and total inductance and capacitance of Lr and Cr,

respectively. The resonator is connected to ground by means of a SQUID

(orange), which is threaded by an external flux U(t) using an on-chip tuning

line (blue). The SQUID inductance is Lsq and its capacitance is Csq. The res-

onator is coupled to the incoming transmission line by a coupling capacitor,

Cc (red), giving a mode-dependent coupling rate Cm for mode m.
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depends on the mode number. At zero flux, Qm is about 500

for mode 2 and 460 for mode 3.

III. THEORY

The setup as described above allows for both current-

and flux pumping, the latter of which is described below.

Applying an AC flux-pumping tone can be done in two dif-

ferent ways: degenerate pumping, where the pump frequency

is close to twice the mode frequency (fp� 2� fm), and non-

degenerate pumping, where the pump frequency is resonant

with the sum of two different modes (fp� fmþ fn). In the

degenerate case, any signal that falls within the linewidth of

the pumped mode of the resonator gets amplified, and the

idler is generated in the same mode. In the special narrow-

band case when the signal frequency is exactly half the

pump frequency, signal and idler frequencies are equal

(fs¼ fi). This is phase-sensitive degenerate amplification,

where signal and idler interfere to provide quadrature-

dependent gain. In this operation scheme, the amplifier can,

in principle, operate without adding noise.1

However, when there is a small offset between fp/2 and

fs, e.g., where jfs � fp=2j is smaller than the linewidth of the

pumped mode, the idler is generated symmetrically around

fp/2 with respect to the signal, but still falls within the same

mode (fs� fi� fm). This is phase-insensitive degenerate

amplification and is referred to as the single-mode pumping

scheme (see Fig. 3(b)). The gain is now quadrature inde-

pendent and the minimal noise added by the amplifier is

given by the standard quantum limit, i.e., equal to 0.5 pho-

tons, for an amplifier with infinite gain.1,42,43

Another option is to apply an AC flux-pumping tone

which is resonant with the sum of two different modes

(fp� fmþ fn). In this case, any signal falling within the line-

width of one of the two different modes is amplified, generat-

ing the idler symmetrically around fp/2 with respect to the

signal. The idler is thus generated in the other mode, (fs� fm
and fi� fn). This is nondegenerate amplification and we refer to

this as the multimode pumping scheme (see Fig. 3(c)). As this

pumping scheme is inherently phase insensitive (fs 6¼ fi and sig-

nal and idler can thus never interfere), the minimal noise added

by the amplifier is also here the standard quantum limit.1,42,43

The single-mode pumping scheme is theoretically

described in the derivation of Wustmann and Shumeiko,33

where the behavior of the circuit is analyzed in the case of

a harmonic flux drive around a DC flux bias, UðtÞ ¼ UDC

þUAC cosð2pfptÞ. We can extend this description and

show that the full flux-pumped circuit behaves as a set

of harmonic oscillators, one for each mode, that are

coupled through a time-dependent, nonlinear potential.

The system exhibits a wide variety of interesting dynami-

cal features. In particular, it exhibits a number of charac-

teristic “resonances” when the parametric pump frequency

fp is equal to the sum or difference of two mode frequen-

cies, i.e., when fp� fm 6 fn. In the case where fp� fm – fn,

we expect to see intermode conversion with a “beam

splitter” type interaction.38 When fp� fmþ fn, we expect to

see parametric amplification and oscillations.

Following the method outlined in Wustmann and

Shumeiko33 and extending it to the multimode case, we

derive the equation for the multimode gain, Gmn,

Gmn ¼ dmnþ
4�2CmCn

D2�D2
0þ �2� �2

th

� �2

þ CmþCnð Þ2 D�D0ð Þ2
:

(2)

Here, dmn is the Kronecker delta, � is the effective pump

strength,

�¼ pUAC

U0

sin p
UDC

U0

� �

2c

ffiffiffiffiffiffiffiffiffiffi
2pfm

p
cos kmdð Þffiffiffiffiffiffiffi

Mm

p
kmdð Þ

ffiffiffiffiffiffiffiffiffi
2pfn
p

cos kndð Þffiffiffiffiffiffi
Mn

p
kndð Þ

; (3)

and Cm¼pfm/Qm is the coupling rate of mode m to the trans-

mission line (see Fig. 2) such that 2Cm is the linewidth of the

resonator, given by33

FIG. 3. (a) Measured resonance frequencies of the different modes (m¼ 2, 3)

as a function of DC magnetic flux UDC (red circles). At zero DC flux bias, the

resonance frequencies of modes 2 and 3 are, respectively, 4.713 GHz and

6.588 GHz. The blue line is a fit to the mode resonance frequencies fm(UDC).

The resonances were fit simultaneously by numerically solving the character-

istic Equation (1). Our Josephson parametric amplifier is operated by mag-

netic flux-pumping. This is achieved by applying an AC tone to the on-chip

flux line, while keeping the DC flux constant at a fixed nonzero value. Our

measurements are performed around a DC flux of �–0.44U0, denoted by the

green dashed line. The unpumped mode frequencies are 4.420 GHz and

6.219 GHz for modes 2 and 3, respectively. (b) Schematic of relevant frequen-

cies for fp¼ 2� f2 where the signal tone fs falls within the linewidth of mode

2. The idler tone fi is created such that fsþ fi¼ fp, i.e., symmetric around fp/2.

(c) Schematic of relevant frequencies for fp¼ f2þ f3 where the signal fs falls

within the linewidth of mode 2. The idler is now again created symmetrically

around fp/2 with respect to the signal and thus ends up in mode 3. Note that

the linewidths in panels (b) and (c) are not to scale. The gray marked regions

are outside of the available measurement band of our setup (4–8 GHz).
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Cm ¼ 2pfm
Cc

Cr

� �2 kmd

Mm
; (4)

where Cc is the coupling capacitance and Cr is the cavity ca-

pacitance. In these equations, the quantity Mm is given by the

equation33

Mm ¼ 1þ sin 2kmdð Þ
2kmd

þ 2Csq

Cr

cos2 kmdð Þ; (5)

where c is the SQUID inductance participation ratio, d is the

cavity length and km is the wavenumber. For our low c, kmd
�p(1/2þm). �2

th ¼ CmCn þ d2 � D2
0 is the parametric oscil-

lation threshold. The pump frequency detuning is denoted

by d¼ 2p(fp/2� (fmþ fn)/2). Finally, we also introduced an

asymmetry parameter D0, taking into account the different

coupling rates Cm and Cn for the different modes

D0 ¼ d
Cn � Cm

Cn þ Cm
: (6)

In Eq. (2), the signal detuning D is referenced to the

mode frequency plus the pump detuning as follows:

D ¼ 2pfs � ð2pfm þ dÞ: (7)

Note that the idler is found at a frequency 2pfi ¼ (2pfnþ d) –

D, such that fs and fi are located symmetrically around fp/2.

In general, the gain peaks are not Lorentzian. Moreover,

for a nonzero pump detuning d, the gain exhibits two reso-

nance peaks in the parameter region far from the parametric

oscillation threshold (i.e., when �� �th), similar to the degen-

erate case.33 These peaks are, however, asymmetric in posi-

tion and height. While approaching the threshold, the peaks

merge into a single peak, which is shifted from fmþ d by D0

near the threshold. For d¼ 0, we always have a single peak

when pumping below the threshold.

For pump strengths � close to the threshold, �th, the sin-

gle resonance gain peak can be approximated as a

Lorentzian

Gmn Dð Þ � dmn þ
4�2

thvCmCn

D� D0 þ 2vD0 �2 � �2
th

� 	
 �2 þ v2 Cm þ Cnð Þ2 �2 � �2
th

� 	2
; (8)

with v ¼ ½4D2
0 þ ðCm þ CnÞ2��1

. In this approximation, we

can unambiguously define the bandwidth

BW ¼ 2vðCm þ CnÞ �2
th � �2

� 	
: (9)

The amplitude gain is then
ffiffiffiffi
G
p
¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vCmCn

p
=ðBW=2Þ. We

can make a zeroth order estimate of the gain-bandwidth

product by replacing � with �th which gives

ffiffiffiffi
G
p
� BW ¼ 4�th

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vCmCn

p
: (10)

In the single-mode case, with Cn¼Cm¼C and v¼ 1/4C2,

this becomes

ffiffiffiffi
G
p
� BW ¼ 2�th ¼ 2C : (11)

IV. RESULTS

A. Single-mode pumping

We first analyze the single-mode pumping scheme for

mode m¼ 2. The mode frequency, f2¼ 4.420 GHz, is deter-

mined by the applied DC flux, which in our measurements

was UDC� –0.44U0. When we flux pump the SQUID in

order to study parametric amplification, there is a nonlinear

pump-induced frequency shift of the resonance to a slightly

lower frequency.33,44 As this frequency shift depends on the

pump strength, we have to sweep the pump over an appropri-

ate frequency range in order to find the resonance for each

pump power.

To map out the region in which we observe gain, we

scanned the pump both in power and in frequency. A small

signal tone was applied with an offset of D¼ 100 kHz com-

pared to half the pump frequency, fs¼ fp/2þ 100 kHz, to oper-

ate the device nondegenerately (such that the gain does not

depend on the pump phase). We extracted the gain by compar-

ing the reflected signal power with the pump on and off (see

Fig. 5). We also measured the increase of the noise floor at the

signal frequency with the pump on compared to off. The gain

and the increase in the noise floor allow us to calculate the

improvement in signal-to-noise ratio (DSNR, see Fig. 5(b))

provided by the parametric amplifier, DSNR ¼ SNRH;J=
SNRH. SNRH denotes the SNR with only the HEMT amplifier

on, and SNRH,J is the SNR when we also turn on the paramet-

ric amplifier. Note that this ratio is taken in linear units. The

amplifier performance is optimal when DSNR is maximized.

We find a maximal DSNR of 10.5 dB for a pump strength of

�52 dBm and a pump frequency of 8.828 GHz. Note that the

uncertainty in the pump power is 62 dBm, due to an uncer-

tainty in the attenuation of the pump line.

The noise performance of amplifiers is often quantified

by the amount of noise that they add, referred to their input.

There exists, however, a quantum limit which puts a lower

limit on the amount of noise added. For a nondegenerate am-

plifier (which amplifies both quadratures equally), the quan-

tum limit of added noise (NQL) depends on the power gain of

the amplifier (G) in the following way:1,42,43

NQL ¼
1

2

����1� 1

G

����: (12)

Note that the quantum limit tends to 0.5 added photons when

the gain of the amplifier goes to infinity. However, for

finite gain the added number of photons can become less
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than 0.5 photons. Note that this does not imply that one can

obtain a system noise less than the standard quantum limit

by cascading low-gain amplifiers.

To calculate the amount of noise added by our paramet-

ric amplifier (as referred to its input), we need to calibrate

the noise of the measurement chain without the parametric

amplifier (see Fig. 4). For this purpose, we installed an SNTJ

at the mixing chamber of our cryostat. The SNTJ acts as a

controllable noise source, allowing us to calibrate the total

noise as referred to the SNTJ (NSNTJ), over the frequency

range of interest. During the calibration, the pump is turned

off and the resonator is tuned away from the band of interest.

Then, the measurement chain was found to add �24.5 pho-

tons for a total noise NSNTJ � 25 photons. In order to calcu-

late the added noise by the parametric amplifier itself, we

convert this number to the input of the parametric amplifier.

To do this we need to take the insertion loss of the compo-

nents between the SNTJ and the parametric amplifier into

account (a bias-T, directional coupler, circulator, and 8 GHz

low-pass filter). Assuming that these components are at the

same temperature as the SNTJ, this is done as follows:

NSYS ¼
NSNTJ

AIL

� Nin; (13)

where NSYS is the noise of the measurement chain, referred to

the input of the parametric amplifier, AIL is the total insertion

loss of the components in the path between the SNTJ and the

parametric amplifier, and Nin is the number of noise photons

of the field in the input line, which is calibrated at the SNTJ

to be very close to vacuum noise, 0.5 photons. With an inser-

tions loss AIL¼ 1.75 6 0.4 dB, verified in a separate measure-

ment, we obtain NSYS �16:2þ1:6
�1:5 photons, which corresponds

to a noise temperature of �3.4 K. The factory-measured noise

temperature of our HEMT amplifier is �2 K. This means that

the NSYS corresponds to a loss of �2 dB between the para-

metric amplifier and the HEMT, which is reasonable.

As we now know the noise added by our measurement

chain, the gain of the parametric amplifier, and the improvement

in SNR, we can rewrite DSNR as a function of the amount of

noise, NJ, added by the parametric amplifier as follows:

DSNR ¼

GSYS GJ S

GSYS NSYS þ GJ NJ þ Ninð Þð Þ
GSYS S

GSYS NSYS þ Ninð Þ

¼ NSYS þ Nin

NSYS

GJ

þ NJ þ Nin

:

(14)

Here, NJ and GJ are the number of noise photons added by the

parametric amplifier and its power gain, respectively. GSYS is

the gain of the measurement chain from the output of the para-

metric amplifier onwards. We solve Eq. (14) to express NJ as

NJ ¼ NSYS

1

DSNR
� 1

GJ

� �
þ Nin

1

DSNR
� 1

� �
: (15)

Using Eq. (15), we can calculate the added number of

noise photons, NJ from GJ and DSNR. In Fig. 5(c), we show

NJ for all points where the gain was larger than 3 dB. To see

how close we get to the quantum limit, we present the data

in an alternative way in Fig. 5(d). We combine Figs. 5(a)

and 5(c), in a plot of the added noise versus the gain.

However, we retain only the points with the lowest NJ for

each bin, which is a 0.1 dB wide range of gain in Fig. 5(d).

These points are grouped within the white contours of

Fig. 5(c). We see that NJ follows the quantum limit nicely,

even where the quantum limit is significantly smaller than

0.5 photons. The error bars reflect the uncertainty in the

insertion loss of the components installed between the SNTJ

and the parametric amplifier as described above. We also

plot the maximum DSNR for each pump power as a function

of the power gain at that point.

The noise performance is not the only point of interest

in an amplifier. The bandwidth and its dependence on the

gain are also important. To measure the bandwidth of the

amplifier, we need to record the gain as a function of signal

frequency for each pump power and frequency. We do this

by sweeping the signal tone in a range around f2. We record

the change in reflection coefficient of the amplifier when the

pump was turned from off to on. The bandwidth, BW, is

then extracted (by fitting a Lorentzian) as the full width at

half maximum of the power gain peak. The peak power gain,

Gpeak, is also extracted (see Fig. 6(b)). For each pump power,

we find the pump frequency which shows the largest gain

(where the pump is closest to twice the resonance fre-

quency). Note that the resonance frequency tends to shift

down with increasing pump strength as discussed above. We

calculate the gain-bandwidth product for the optimal pump

frequency as GBWP ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gpeak

p
BW. Gpeak, BW, and GBWP

are shown as a function of pump power at the sample in

Fig. 6(a). The GBWP shows a plateau at 12 MHz. When the

gain surpasses 20 dB, the GBWP starts to fall off. The drop

in Gpeak and GBWP are likely caused by the transition into

the parametric oscillation regime.

FIG. 4. (a) Schematic of the measurement chain with the JPA turned off and

tuned out of the measurement band. NSNTJ is the total noise power referred

to the SNTJ. It includes the input noise Nin from the thermal field and the

noise added by the whole measurement chain (including the insertion loss

AIL), referred to the SNTJ. Note that Nin is unchanged after passing AIL as

AIL is assumed to be at the same temperature as the SNTJ. NSYS is the added

noise of the measurement chain from the JPA onwards, referred to the input

of the JPA. GSYS is the total gain of the measurement chain from the JPA

onwards. (b) Schematic of the measurement chain when the JPA is turned

on. In this case GJ denotes the gain of the JPA and NJ denotes the added

noise of the JPA referred to its input.
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A last figure of merit is the saturation power of the am-

plifier. This is defined as the signal power at which the gain

is decreased by 1 dB. We extracted the saturation power at a

single pump power and frequency, where the gain was

10.5 dB. This value allows for a comparison between the dif-

ferent pumping schemes. In this measurement, we fix the

pump and sweep the signal frequency again around fp/2. We

record the peak gain, Gpeak as a function of increasing signal

power. The saturation power was found to be �133.5 dBm.

B. Multimode pumping

We are not limited to pumping of a single mode, but we

can also pump with a frequency fp¼ fmþ fn, with m 6¼ n. In

this case, we expect that any signal tone with a frequency

close to that of a pumped mode is amplified. In the available

measurement bandwidth of our setup, and with the DC flux

bias UDC¼ –0.44U0, we used two of the available modes, f2
and f3, with unpumped resonance frequencies 4.420 GHz

and 6.219 GHz, respectively.

To map out the region in which we see gain, the pump

was scanned both in power and in frequency. A small signal

tone was applied at fs¼ fp/2 6 899 MHz. In this way, the sig-

nal falls within mode 2 or 3. Note that D¼6500 kHz is now

larger than in the single-mode pumping scheme. The gain is

shown in Figs. 7(a) and 7(b). We also calculated the

improvement in SNR (not shown) in a similar fashion as

above, and the optimal point of operation showed a maximal

SNR improvement of 9.5 dB and 10.5 dB for modes 2 and 3,

respectively.

FIG. 5. Single-mode pumping. (a) Power gain, (b) improvement in SNR

(DSNR) and (c) number of added noise photons (NJ) observed at fs¼ fp/

2þ 100 kHz as a function of pump power at the sample, Pp, and signal fre-

quency, fs. The range of panel (c) is marked by the blue dashed rectangle in

panel (a). The optimal point of operation, where we get the highest SNR

improvement, is at fs¼ 4.4141 GHz and Pp¼ –52 dBm, and shows

DSNR¼ 10.5 dB. Whenever the gain exceeded 3 dB, we extracted the noise

added by the parametric amplifier. The maximum DSNR for each pump power

is marked with the black line in panel (b). Panel (d) shows the minimum added

noise as a function of gain (in 0.1 dB wide bins). The error bars reflect the

uncertainty in the insertion loss of the components installed between the SNTJ

and the parametric amplifier (1.75 6 0.4 dB). The blue line marks the quantum

limit as a function of gain (Eq. (12)). All the points of added noise in panel (d)

fall within the white dashed contours in panel (c). The orange line shows the

DSNR as a function of gain taken along the black line in panel (b).

FIG. 6. Single-mode pumping. (a) Peak power gain (GPeak), 3 dB bandwidth

(BW), and gain-bandwidth product (GBWP) as a function of pump power at

the sample (and for the pump frequency where the gain was maximum). The

bandwidth was extracted as the FWHM of the gain peak and is shown in

blue. The maximum of the gain peak is shown in red. The GBWP is then

defined as
ffiffiffiffiffiffiffiffiffiffiffi
GPeak

p
BW and was found to have a plateau at 12 MHz. At higher

pump powers, it starts to drop off. (b) Power gain as a function of signal fre-

quency for several pump powers marked by the colored circles in panel (a).

We also present the Lorentzian fit of each gain with the solid lines.
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The noise performance of the multimode pumping

scheme is evaluated by calculating NJ in a similar fashion

as in the single-mode pumping case (see Figs. 7(c) and 7(d)).

The calibration of the measurement chain gives NSYS

�16:2þ1:6
�1:5 photons in mode 2 and NSYS � 13:8þ1:4

�1:3 photons

in mode 3 (with AIL¼ 1.75 6 0.4 dB for mode 2 and

AIL¼ 2.25 6 0.4 dB for mode 3). As this operation scheme is

also nondegenerate, the noise added by the parametric

amplifier is bounded by the same quantum limit as the

single-mode pumping, NJ 	 1
2
j1� 1

GJ
j. We also present the

added noise data and the maximum DSNR for each pump

power as a function of the power gain in Figs. 7(e) and 7(f)

in the same way as for the single-mode case.

Gain, BW, and the GBWP are measured in a similar

way as before. The GPeak, BW, and GBWP are shown, as a

function of pump power at the sample in Figs. 8(a) and 8(b).

FIG. 7. Multimode pumping. (a) and (b) Power gain and (c) and (d) number of added noise photons (NJ) observed at fs¼ fp/2 – 899 MHz (mode 2, left column)

and at fs¼ fp/2þ 899 MHz (mode 3, right column), as a function of pump power at the sample, Pp, and signal frequency, fs. Maximum gains of 17 dB and

22 dB are found for modes 2 and 3, respectively. The optimal point of operation shows a maximal DSNR (not shown) of 9.5 dB and 10.5 dB for modes 2 and 3,

respectively. Whenever the gain exceeded 3 dB, we extracted the noise added by the parametric amplifier. Panels (e) and (f) show the minimum added noise as

a function of gain (in 0.1 dB wide bins) for modes 2 and 3, respectively. Error bars reflect the uncertainty in the insertion loss of the components installed

between the SNTJ and the parametric amplifier (1.75 6 0.4 dB for mode 2 and 2.25 6 0.4 dB for mode 3). The blue line marks the quantum limit as a function

of gain (Eq. (12)). The orange lines in panels (e) and (f) show the DSNR as a function of gain taken along the black lines in panels (a) and (b), respectively.
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The GBWP shows a plateau at 17.5 MHz, for both modes.

When the gain surpasses �18 dB, the GBWP starts to drop

off. We also show the power gain as a function of fs for a

number of pump powers in Figs. 8(c) and 8(d).

Lastly, we also measured the saturation power of the para-

metric amplifier with 11 dB of gain, similar to the gain for which

the saturation powers in the single-mode case were extracted.

The saturation power for modes 2 and 3 were found to be�133

dBm and�131 dBm, respectively. We present this data and the

data from the single-mode pumping scheme in Table I.

V. DISCUSSION AND SUMMARY

Having characterized the different pumping schemes,

we can now make a comparison. Within the investigated

pump parameter space, we achieved quantum-limited per-

formance for both single- and multimode pumping. In both

cases, the amount of noise added by the parametric amplifier

is gain dependent.

The optimal point of operation is where the improve-

ment in SNR, DSNR, is maximized. For the single-mode

case, the maximal DSNR was 10.5 dB with NJ¼ 0.7 photons.

At this point, the total noise of the measurement setup

referred to the input of the JPA (including the JPA itself) is

0.86 photons. The total added noise of the whole setup,

referred to the SNTJ and including the insertion loss, is then

1.54 photons. For the multimode case, the optimum values

gave a DSNR of 9.5 dB (NJ¼ 0.98 photons and the total

added noise, referred to the JPA, of 1.57 photons) and

10.5 dB (NJ¼ 0.7 photons and the total added noise, referred

to the JPA, of 0.83 photons) for modes 2 and 3, respectively.

The total added noise, referred to the SNTJ, is then 2.59 pho-

tons and 1.73 photons for modes 2 and 3, respectively.

We also analyzed the bandwidth of the amplifier in both

schemes. The GBWP was then presented as a function of

pump strength, and for the pump frequency which showed

maximum gain. By doing this, we can assume that the effec-

tive pump detuning, taking into account pump-induced fre-

quency shift, is close to zero. Using Equations (10) and (11)

to calculate the theoretical value of the GBWP, we expect

13.8 MHz and 19.4 MHz for the single- and multimode

pumping schemes, respectively. In the experiment, the

GBWP as a function of pump strength is indeed fairly con-

stant at a level of 12 MHz and 17.5 MHz for the single- and

multimode pumping scheme, respectively. These values are

relatively close to the theoretically expected values. For gain

values larger than 20 dB, the GBWP starts to fall off. This

likely indicates that we have crossed the threshold for para-

metric oscillations. The drop in GBWP is more significant

for the single-mode pumping scheme compared to the multi-

mode pumping scheme.

The multimode pumping scheme has similarities to the

previous work with a so called Josephson parametric con-

verter.14,22,23,45 That device separates the signal and idler

modes at two different frequencies into two physically dis-

tinct cavities which are then connected by a network of

Josephson junctions that requires multilayer fabrication with

crossover wiring. The design aims to eliminate the higher-

order nonlinearities from the Josephson junctions. However,

separation of the signal and idler in different cavities is not

always necessary. Our design is less intricate and also allows

FIG. 8. Multimode pumping. Peak power gain (GPeak), 3 dB bandwidth

(BW), and gain-bandwidth product (GBWP) as a function of pump power at

the sample (and for the pump frequency where the gain was maximum), for

mode 2 (a) and 3 (b). The bandwidth was extracted as the FWHM of the

gain peak and is shown in blue. The maximum of the gain peak is shown in

red. The GBWP is then defined as
ffiffiffiffiffiffiffiffiffiffiffi
GPeak

p
BW and was found to have a pla-

teau at 17.5 MHz, for both modes. At higher pump powers, it starts to drop

off. Power gain for mode 2 (c) and 3 (d) as a function of signal frequency

for several pump powers marked by the colored circles in panels (a) and (b).

We also present the Lorentzian fits of the gain with the solid lines.

TABLE I. Gain, saturation power, PSat, and GBWP for modes 2 and 3 for

multimode pumping, and a comparison with the single-mode pumping case.

Pumping

scheme [-]

Mode number

[-]

Gain

[dB]

PSat

[dBm]

GBWP

[MHz]

Single-mode 2 10.5 �133.5 12

Multimode 2 11 �133 17.5

Multimode 3 11 �131 17.5
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us to separate signal and idler over different modes of the

same resonator.

In summary, we measured a Josephson parametric am-

plifier where we compared two different pumping schemes.

The amplifier closely approached quantum-limited noise per-

formance for both the single-mode pumping scheme and

the multimode pumping scheme. In accordance with theory,

we also observed that the added noise can be less than 0.5

photons for relatively low gain. The multimode pumping

scheme, where we pump different pairs of modes of the

same resonator, is a way of generating nondegenerate para-

metric amplification. Note that, in this case, we can achieve

amplification in frequency bands which are separated by sev-

eral GHz. In contrast to the single-mode pumping schemes,

we can use the whole bandwidth of the amplifier, as the idler

occurs at a well-separated frequency.
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