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Abstract

Context

Mathematical models may help the analysis of biological systems by providing estimates of

otherwise un-measurable quantities such as concentrations and fluxes. The variability in

such systems makes it difficult to translate individual characteristics to group behavior.

Mixed effects models offer a tool to simultaneously assess individual and population behav-

ior from experimental data. Lipoproteins and plasma lipids are key mediators for cardiovas-

cular disease in metabolic disorders such as diabetes mellitus type 2. By the use of

mathematical models and tracer experiments fluxes and production rates of lipoproteins

may be estimated.

Results

We developed a mixed effects model to study lipoprotein kinetics in a data set of 15 healthy

individuals and 15 patients with type 2 diabetes. We compare the traditional and the mixed

effects approach in terms of group estimates at various sample and data set sizes.

Conclusion

We conclude that the mixed effects approach provided better estimates using the full data

set as well as with both sparse and truncated data sets. Sample size estimates showed that

to compare lipoprotein secretion the mixed effects approach needed almost half the sample

size as the traditional method.

Introduction
Complex traits (e.g. metabolic pathways and fluxes) may often only be quantified indirectly
using mathematical or statistical models. A common approach is to make a parameterized
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mathematical model describing the system on an individual level, and then use statistical meth-
ods to make inference from the estimated parameters on the population level. Thus, any uncer-
tainty in the individual estimate is affecting the population estimate. The analysis is further
complicated by the great variability seen in biological systems.

There are at least two conceptually different approaches to treat variability in mathematical
models of biological systems. In the standard two stage (STS) approach [1,2,3], each individual
is treated separately: measured data for an individual are used to estimate parameters that are
assumed to be truly specific for that individual (the first stage). The obtained individual param-
eters are then treated with traditional statistical methods (the second stage), such as correla-
tions with other covariates or comparison of parameters between groups.

Contrary to this, in amixed effects model one assumes that each parameter in the model is
either essentially the same for all individuals in the group, a function of some directly quanti-
fied individual-specific traits (covariates), or random with a probability distribution that is
determined by covariates and parameters that are common for the whole group. One can then
use all measured data to make parameter estimations for the groups.

An advantage of the STS approach is that it does not assume any a-priori information on
the distribution of the parameters and on treatment effects (i.e. which model parameters are
affected by treatment) or group effects (i.e. which model parameters are different between
groups). A disadvantage is that, to adequately estimate parameters for each individual, large
data sets are needed and to estimate treatment or group differences, large sets of individuals are
needed. In case of complex and costly experiments, a modeling approach that utilizes smaller
data sets is desirable to reach sufficient study power while minimizing the cost of the
experiment.

The mixed effects, including nonlinear mixed effects (NLME), approach is widely described
and used in the literature [3,4,5,6,7,8]. It has been shown that better estimates of population
characteristics are obtained for mixed effects models compared to STS models in many sys-
tems. Sheiner and Beal showed already in 1980 that the STS method can produce biased and
imprecise estimates of the variability between individuals [4]. The STS and mixed effects
approaches have been compared for many systems [2,9,10,11].

Abnormal concentrations of blood lipids and lipoproteins are key risk factors for cardiovas-
cular disease and are often observed in metabolic diseases such as diabetes mellitus type 2
(DM2) [12]. In DM2, the lipid abnormalities primarily include elevated plasma triglycerides
and decreased high density lipoprotein (HDL) cholesterol [12] and it is believed that these
changes are the cause of increased risk in cardiovascular disease in DM2 and related diseases
[12,13]. Many therapies are targeted to normalize blood lipid levels, and potentially decrease
the risk for developing cardiovascular disease.

The non-soluble lipids, such as cholesterol esters and triglycerides, are transported in the
core of specific vesicles called lipoproteins. On the surface of these particles different proteins
are attached. During fasting, these particles are synthesized in the liver and transport the lipids
to peripheral tissues. As the lipids are delivered the particles become smaller and denser as the
relative amount of protein (which is denser than the lipids) increases. The catabolic processes
are combinations of lipases (lipoprotein lipase and hepatic lipase), which remove triglycerides
from the core, and removal of whole particles due to specific uptake mechanisms. Thus, eleva-
tion of plasma triglyceride in disease states may be attributed to increased secretion, defined by
the secretion rate (SR), or increased clearance.

To understand disease development and the role between the underlying metabolic defects
and blood lipids levels the dynamics of lipid and lipoproteins are studied using stable isotope
infusions and mathematical modeling [14]. Using such models, quantification of both the cata-
bolic processes and the productions is possible [14].
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Compartmental models are widely used to describe the synthesis, assembly and kinetics of
lipoproteins [14,15,16,17,18,19,20,21,22,23]. Time series data are generated by infusion of trac-
ers, typically either labeled glycerol [17,20,21,22], amino acids [18,19,23], or combinations of
both [15]. The amounts of the labeled and unlabeled tracers are then measured by gas chroma-
tography / mass spectroscopy (GC/MS).

The models allow for the quantification of the secretion rate (SR) of lipoproteins (either pro-
tein or triglyceride content) (mg/kg bw/day), the fractional clearance rate (FCR) representing
the total turnover of the lipoproteins (pools/day), the fractional transfer rate (FTR) represent-
ing the fractional conversion of large particles to smaller particles due to the action of lipases
(pools/day) and the fractional direct catabolic rate (FDCR) representing the direct catabolism/
removal of large particles (pools/day).

Data acquisition is labor intensive, in particular when the system is described by several
sub-fractions. Improved methods for data analysis may therefore allow for a reduction of either
the number of study subjects or the amount of data needed for each subject while maintaining
study power.

In this paper we compare the traditional STS approach and a new mixed effects model
approach. We use experimental data from fifteen healthy control subjects and fifteen DM2 sub-
jects. DM2 is typically associated with elevated plasma triglyceride, which is known to be
caused by increased production of lipoprotein particles from the liver [24,25,26,27]. The aim of
the study was to investigate if the mixed effects approach improved parameter estimation com-
pared to the STS approach for small sample sizes and for sparse data. We base the analysis on
the established model of lipoprotein kinetics [15,19,23].

We show that, when shrinking the sample size, group properties are preserved using the
mixed effects approach while the STS model fails to replicate significant differences between
the groups. Moreover, individual estimates are better when using the mixed effects approach
while using less data for each individual.

Results

The Model
In this paper we develop a mixed effects population model of the very low density lipoprotein
subclass (VLDL1 and VLDL2) kinetics. The model is based on our previous work on individual
compartmental models [15], see Fig 1. The details of the model are described in theMaterials
and Methods section.

We distinguish betweenmodel parameters (e.g. transfer rates in the model) and key parame-
ters (e.g. biologically relevant parameters, often composed of several model parameters).

The data set consists of 15 healthy control subjects and 15 patients with DM2, as character-
ized in S1 Table.

Estimated Parameters Using All Subjects
Three data sets are used. The full data set (all data) and two reduced data sets: the first 4 hours
(truncated data) and every second data point of the VLDL tracer data (reduced data).

The estimated key parameters using both the STS and the mixed effects approaches and the
three data sets are summarized in Table 1.

All data. Using the full dataset the mixed effects approach typically produced smaller vari-
ations within groups compared with the STS approach (Table 1). Both approaches confirmed
previous findings of greater secretion of VLDL1 particles (VLDL1 SR), resulting in a larger
VLDL1 pool, a greater flux from VLDL1 to VLDL2 (expressed as indirect secretion of VLDL2),
and a larger VLDL2 pool in the DM2 patients compared with the control subjects (Table 1).
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With both approaches the total VLDL1 FCR was lower in DM2 patients compared with control
subjects. However, the difference was not significant. In contrast to the STS approach, the
mixed effects model showed significantly higher VLDL1 FTR and lower VLDL1 FDCR in DM2
patients compared with the control subjects (Table 1).

Both approaches produced excellent fit to the data as seen in the residual plots (Fig 2A–2F).
The STS approach generally produced slightly better fit to the data when quantified using the
root mean square error (RMSE) of the residuals for all individuals.

Truncated data. The mixed effects model replicated all significant differences between the
DM2 patients and the control subjects compared with using the full data set (Table 1). Using
the truncated data, the STS model still showed higher VLDL1 SR in DM2 patients although
with lower significance, but did not detect a higher VLDL1 to VLDL2 transfer for DM2 patients
compared with control subjects (Table 1). In general the mixed effects model generated data
with smaller CV (Table 1), indicating a better coherence between the results using the mixed
effects approach.

Comparing the mixed effects model using all data with the truncated data showed signifi-
cantly lower VLDL1 FTR in both control subjects (p<0.05) and in DM2 patients (p<0.05)
using truncated data. In addition, the VLDL1 to VLDL2 transfer estimates were lower with
truncated data in DM2 patients (p<0.01) (Table 1).

Using truncated data, the STS estimates of VLDL1 SR were significantly higher (p<0.05)
and the VLDL2 FCR were significantly lower (p<0.05) in control subjects, compared with
using all data (Table 1).

The mixed effects model produced better fit to the data even when extrapolating the model
curves to the excluded data (S1A–S1F Fig). This indicates that, in at least some individuals, the
information about the trajectories is captured by the information in the first 4 hour data and
that the mixed effects approach shares this information to provide better fit for all individuals.

Reduced data. After reduction of data by removing every second data point both methods
still reproduced the major findings of study, however with higher significance for the mixed
effects model compared with the STS model (Table 1). Using the reduced data sets no estimate

Fig 1. Model structure of compartmental model. The same structural model was used for all individuals and in both the mixed effects and the STS model.
Model constraints, k2,1 = k1,2, k3,4 = 0.1 k4,3, k9,8 = k7,5 and k0,9 = k0,7 were used. Compartment 1 represents the free leucine in the plasma, compartments 3
and 4 represents leucine recycling in non-hepatic tissue and compartment 2 is the intrahepatic leucine that feeds the apoB synthesis compartment
represented as a delay (D1-D7). Newly synthesized apoB enters the plasma as VLDL1 (large particles, compartment 5) or VLDL2 (small particles,
compartment 8). VLDL2 may also be produced through conversion of VLDL1 via compartment 6. Particles may leave the system through compartments 6, 7,
9 or 10.

doi:10.1371/journal.pone.0138538.g001
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were significantly different using neither the mixed effects model nor the STS model (Table 1).
The fit to the curves were similar for the two methods (S2A–S2F Fig).

Reduced Study Sample Size
As the mixed effects model produced smaller variations we next tested how this affected the
sample size needed to detect a difference between the groups. The (log-transformed) means
and variances estimated using the full data set were used to calculate the sample size needed to
detect a difference between the means with a power of 80%. To further test this we also used a
resampling approach to resample the study population into smaller group sizes of 4, 6, 8, 10,
and 12 subjects from each group. Both the mixed effects model and the STS model were applied
to the re-sampled subgroups and the p-values for the comparison between the control subjects
and the DM2 patients were recorded for 30 different re-sampled groups for each group size.

The estimated sample sizes were generally smaller for the mixed effects approach compared
with the STS approach, both using the sample size calculation and the resampling approach
(Table 2).

Using the mixed effects approach the increased VLDL1 secretion in DM2 patients were cor-
rectly identified in all 30 resampled iterations using the mixed effects model for a study group
size of 12 and 10. The difference was correctly identified in more than 80% of the iterations
down to a group size of 6 subjects. In contrast the STS approach reached an 80% correct identi-
fication rate at a group size of 10. This indicates that to have an estimated study power of 80%
in detection of the difference in VLDL1 SR it is sufficient to have only 6 subjects from each
group using the mixed effects approach but 10 using the STS approach (Table 2). Similar

Fig 2. Residual plots of enrichment data using all data. The residuals (model fit minus measurement data) for the three enrichment data sets (A and B,
plasma leucine; C and D, VLDL1; E and F VLDL2) were plotted for the two methods (STS and NLME) and the two groups (A, C and E, Control; B, D and F,
type 2 diabetes mellitus (DM2)). Both methods produced good fits to the data. The NLME approach used a sequential procedure; the plasma leucine were
fitted first and the VLDL1 and VLDL2 curves were fitted using the leucine results. This may explain the worse fit for the plasma leucine in the STS approach.
Lines, mean of mixed effects approach (red) and STS approach (black); Areas, mean ± SD for mixed effects approach (red) and STS approach (black).

doi:10.1371/journal.pone.0138538.g002

Table 2. Sample size analysis.

Parameter VLDL1

FCR
VLDL1
FTR

VLDL1

FDCR
VLDL1

SR
VLDL1
pool

VLDL2

IndSR
VLDL2

FCR
VLDL2

DSR
VLDL2
pool

Delay

NLME

p-value using all data 0.178 0.0498 0.0804 <0.0001 0.0004 0 0.0171 0.2819 0.0081 0.0279

Estimated sample size 33 17 20 5 6 5 12 51 10 10

Estimate of sample
size (resampled)

NA NA NA 6 8 8 NA NA 12 NA

STS

p-value using all data 0.0686 0.2346 0.1566 0.0068 0.0006 0.0027 0.573 0.8952 0.0065 0.0425

Estimated sample size 19 42 30 9 7 8 183 3334 9 16

Estimate of sample
size (resampled)

NA NA NA 10 8 10 NA NA 12 NA

P-values for the difference between the groups were first calculated using all data, significant differences and the means and variances were considered

as true. Desired sample sizes with study power of 80% were first estimated directly, using the estimated means and variances. The comparisons between

healthy control subjects and DM2 patients were also repeated with both the mixed effects model and the STS model in re-sampled groups of 4, 6, 8, 10

and 12 subjects. For each group size the analysis was repeated 30 times. The minimum number of individuals needed to correctly identify a true

difference at least 80% was considered as the minimal sample size. FCR, fractional catabolic rate; FTR, fractional transfer rate; FDCR, fractional direct

catabolic rate; SR, secretion rate; indSR, in-direct secretion rate (ie flux from VLDL1), DSR, direct secretion rate.

doi:10.1371/journal.pone.0138538.t002
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results were achieved for the VLDL1 to VLDL2 transfer and VLDL1 pool (Table 2). The sample
size was also estimated directly using power calculations (Table 2) with comparable results.

Computational Power
Amajor concern with mixed effects modeling is the extended computational time needed to esti-
mate the likelihood function. For each calculation of the likelihood function, the individual
parameters need to be estimated. Some steps can therefore be parallelized. Using our implemen-
tation in Matlab, a mixed effects model with 8 DM2 and 8 control subjects could still not be run
on a traditional PC. On an 8 core cluster the computational time was between 24h and 42h in the
30 repeated sample size estimates, compared to less than 10 minutes for the STS model.

Discussion
The main result in this study is the novel application of mixed effects models to experimental
data from human lipoprotein kinetic studies, comparing the lipid metabolism in healthy con-
trol subjects and DM2 patients. Compared to the traditional STS approach our mixed effects
approach provided stronger results using the full data sets. The results also provide a basis for
the use of smaller sample sizes when data are analyzed with the mixed effects approach.

The mixed effects approach produced estimates with less variation which translated into the
possibility to use fewer subjects with sustained study power as shown by direct calculations as
well as simulations using resampled populations. Furthermore we show that significant results
may be obtained using smaller experimental datasets, as given either by either shorter sampling
times or less frequent sampling.

Studies of lipoprotein kinetics are labor intensive and require generation of large sets of data
for each individual in order to obtain good parameter estimates. Often subjects are studied for
several different tracers simultaneously which adds to the complexity. It is therefore of great
interest to derive novel techniques that enables better estimates of kinetic parameters.

Many metabolic diseases are linked to disturbances in lipid metabolism. The traditional analy-
sis of plasma concentrations cannot answer which underlying mechanism that is responsible for
the observed disturbance [14]. In contrast lipoprotein kinetic studies allows for decomposition of
the concentration into several components including secretion and clearance. In the case of type
2 diabetes, there is a large body of evidence that the major defect resulting in elevated plasma tri-
glycerides is an increased secretion of triglyceride rich lipoproteins ([24,25,26,27,28]). The rate of
clearance, however, is usually lower in type 2 diabetic patients but the results are inconsistent
with studies showing either non-significant (although with a trend) [24,26,28] or significant [25]
differences. Our results confirm these results and may further contribute the analysis by provid-
ing better estimates of variability of the clearance parameters.

We tested the effectiveness of the mixed effects model using two different approaches to
reduce data. First we reduced the data by either truncating the time series or by removing every
second data point. Truncating the data results in loss of information about the tail shape of the
curves, which usually lead to poorer estimates. The mixed effects model provided better predic-
tions of the excluded data on an individual basis. Both the mixed effects approach and the STS
approach showed significant differences in the estimated means compared to the full data sets
(Table 1) for some parameters indicating that the absolute quantifications were poorer using
the truncated data. However both approaches consistently recreated the significant differences
between the DM2 patients and the control subjects as observed with all data, with p-values
being smaller using the mixed effects approach. When data were instead reduced by 50% by
removing every second data point, the absolute quantifications were not different compared
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with those obtained using all data. The mixed effects approach provided smaller p-values for
the significant differences between the two groups.

The second approach to compare the two methods was to perform a power calculation and
to estimate the sample size needed to detect differences with a power of 80%. The mixed effects
approach needed smaller sample size compared with the STS approach, both when the sample
size were calculated directly or when estimated using resampling.

An interesting observation was that when truncating the data at 4 hours, the mixed effects
approach predicted the measurements between 4 and 8 hour much better than the STS
approach. Typically subjects with normal plasma triglycerides does not present a “tail” of
enrichment in VLDL1 but subjects high plasma triglycerides do [19]. To account for these
slowly turning over lipoproteins the compartments 7 and 10 are added to the model. It appears
as the mixed effects model may capture this behavior in some individuals already before 4
hours and share this among all individuals.

This is consistent with the fact that the STS approach estimates both the VLDL1 SR and
VLDL1 FCR higher when truncated data is used, suggesting an inability to capture a slowly
turning over pool.

We tested the mixed effects approach on an observational study. For interventional studies
the statistical models for the parameters in the population model needs to be defined according
to the study design.

Our mixed effects model was implemented in MATLAB. The computational time for the mixed
effects approach is several magnitudes slower compared to the STS approach. This may be attrib-
uted to the fact that in each calculation of the maximum likelihood function individual parameters
needs to be estimated for each individual. It is therefore not today feasible to run this on a tradi-
tional workstation PC. However as the estimation of the individual parameters are independent,
the calculations may be done in parallel threads and may therefore be optimized for cluster or mul-
tiple processor workstations. However, the additional costs in computation are likely minor com-
pared to the possible savings in study population size, study power and/or laboratory work.

In conclusion, we shown that mixed effects modeling is an effective tool to estimate kinetic
parameters in human lipoprotein kinetic studies. Either sample size or the amount of data may
be greatly reduced while retaining study power.

Materials and Methods

Study Population
Data used in this study are previously published [15,24,29]. In this study, we randomly selected
15 healthy control subjects and 15 patients with type 2 diabetes with similar age and BMI (S1
Table) from our study cohorts. The diagnosis of DM2 was based on glucose tolerance test
results in the diabetic range according to World Health Organization (1999) criteria or on the
use of oral diabetes medication. The original study designs were approved by the Helsinki Uni-
versity Central Hospital ethics committee, and each subject gave written, informed consent as
described in the original publications [15,24,29]. All samples were collected in accordance with
the Helsinki Declaration.

Data
The details of the experimental protocol, sample analysis etcetera are explained elsewhere
[15,24]. In short, NC = 15 healthy control subjects and ND = 15 patients with type 2 diabetes
with similar age and BMI were studied (S1 Table). Following an overnight fast a bolus infusion
of [2H3]-leucine was infused. Blood was collected and the amounts of labeled and unlabeled
leucine were measured as free in plasma and in the major protein component, apolipoprotein
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B-100 (apoB), in VLDL1 and VLDL2 by GC/MS. The tracer-to-tracee ratio (i.e. labeled-to-unla-
beled leucine) was calculated for free leucine in plasma (sampled at 2, 4, 6, 8, 10, 12, 15, 20, 30,
and 45 minutes and 1, 2, 3, 4, 6, and 8 hours after the injection) and as leucine in VLDL1 and
VLDL2 (sampled at 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 7, and 8 hours). Pool sizes of VLDL1
and VLDL2 are also measured at 0, 4, and 8 hours after the injection, and recalculated to leu-
cine levels in apoB in VLDL1 and VLDL2 as explained in [15].

Three data sets are used. The full data set and two reduced data sets: the first 4 hours (trun-
cated data) and every second data point (reduced data). Furthermore reduced group sizes (i.e.
12, 10, 8, 6 and 4 subjects) are tested.

The full data set is available as an online supplement in file S1 File Data.csv with data for-
mat given in S2 File Data Format.docx.

The Individual Model
The individual model is based on the compartmental model formulation developed by Demant
and Packard [19,23]. The model has been used to determine the kinetics of apoB-100 in the
VLDL1 and VLDL2 subclasses in individuals with a wide range of conditions (e.g.
[15,18,19,23,24,29]). The model has a 4 compartment catenary chain that models the free leu-
cine in plasma and the intra-hepatic leucine pool before entering the synthesis module consist-
ing of a seven compartment delay. Each sub-system of VLDL1 and VLDL2 have three
compartments (5, 6 and 7 for VLDL1 and 8, 9 and 10 for VLDL2, Fig 1), two compartments are
representing a delipidation chain (5 and 6, and 8 and 10 respectively) resulting in transfer to
denser particles and one compartment (7 and 9 respectively) represents particles being cleared
from the circulation by other mechanisms as summarized in Fig 1.

We denote the mass of the tracer (labeled leucine) for an individual i, in a compartment j, at
time t by qijðtÞ and the constant mass of tracee (unlabeled leucine) by Qi

j. Thus, free leucine is

denoted by qi1ðtÞ and Qi
1, VLDL1 leucine in apoB is denoted by qiV1

ðtÞ ¼ qi5ðtÞ þ qi6ðtÞ þ qi7ðtÞ
and Qi

V1
ðtÞ ¼ Qi

5ðtÞ þ Qi
6ðtÞ þ Qi

7ðtÞ, and VLDL2 leucine in apoB is denoted by qiV2
ðtÞ ¼

qi8ðtÞ þ qi9ðtÞ þ qi10ðtÞ and Qi
V2
ðtÞ ¼ Qi

8ðtÞ þ Qi
9ðtÞ þ Qi

10ðtÞ.
To have comparable results we use the samemodel of error and method of parameter estima-

tion for both the mixed effects model (below) and the individual model. The output variables are
assumed to be log-normally distributed as this result in relative errors. Therefore the data are log
transformed before analysis and the output variables for each sample time point tk are defined by
the logarithm of the corresponding variables with the added normally distributed error term as:

yi1ðtkÞ ¼ logð qi1ðtkÞ
qi1ðtkÞ þ Qi

1

Þ þ ei1ðtkÞ; ei1ðtkÞ � N 0; ½sileu�2Þ
�

yiV1

ðtkÞ ¼ logð qi
V1
ðtkÞ

qV
1

1 iðtkÞþQi
V1

Þ þ eiV1

ðtkÞ; eiV1

ðtkÞ � N 0; ½siV1

ðtkÞ�2Þ
�

-

yiV2

ðtkÞ ¼ logð qi
V2
ðtkÞ

qV
2

2 iðtkÞþQi
V2

Þ þ eiV2

ðtkÞ; eiV2

ðtkÞ � N 0; ½siV2

ðtkÞ�2Þ
�

-

YiV1

ðtkÞ ¼ logðQiV1

Þ þ EiV1

ðtkÞ; EiV1

ðtkÞ � Nð0; ½SiV1

�2Þ-
YiV2

ðtkÞ ¼ logðQiV2

Þ þ EiV2

ðtkÞ; EiV2

ðtkÞ � Nð0; ½SiV2

�2Þ
We assume that the errors are of the same magnitude for VLDL1 and VLDL2, i.e. siV1

ðtkÞ ¼
siV2

ðtkÞ≔siðtkÞ and SiV1
ðtkÞ ¼ SiV2

ðtkÞ≔SiðtkÞ. Since only a small amount of tracer material have

been incorporated into the lipoproteins at 0.5 hours (the time point for the first measurement
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of tracer kinetics of VLDL1 and VLDL2), the uncertainty is larger for measurements taken after
only half an hour. Therefore, we assume that

siðtkÞ ¼
(
�isi tk ¼ 0:5

si tk 6¼ 0:5

for a parameter ϕi � 1. In principle, separate values of si(tk) could be used for each k. The state
variables are given by solving the following system

dqi

dt
¼ Kiqi

0 ¼ KiQi þ Ui

: ð1Þ

where qi and Qi are state vectors for the tracer- and tracee system respectively, Ui is the inflow
vector of tracee material into the system (which is only through compartment 1 for this
model), and Ki is the compartmental matrix of the model (see, e.g., [30,31]). The steady-state
assumption implies that the left hand side in Eq (1) is zero. The unknown model parameters to
estimate for each individual are ki0;1; k

i
1;2; k

i
1;3; k

i
3;1; k

i
4;3;Q

i
1; p

i
1 (the fraction of leucine in the

VLDL synthesis machinery that comes from free leucine in plasma),

kiL;2; k
i
D; d

i
1; k

i
6;5; k

i
8;6; k

i
7;5; k

i
0;7; k

i
10;8; k

i
0;10;and also s

i
leu; �

i; si; and Si. Ui
1and Q

i
j; j 6¼ 1 can be derived

from Eq (1) if Ki and Qi
1 are known.

The Population Model
For the STS approach each parameter in the model is estimated individually (except ϕi, which is
set to 10). Key variables are then derived from the model parameters as is explained below. For
the mixed effects approach the model parameters for all individuals are estimated simultaneously
by assuming that the individual model parameters are members of probability distributions
determined by the whole population. For this mixed effects model we separate the leucine model
to the rest and first estimate the parameters in the leucine model as carefully explained in [32].
For the VLDL kinetics part of the model the individual model parameters are

pi1 ¼ ð1iCpC1 þ 1iDp
D
1 ÞexpðZi

p1
Þ;

kid ¼ ð1iCpCd þ 1iDp
D
d ÞexpðZidÞ;

ki6;5 ¼ ð1iCkC6;5 þ 1i
Dk

D
6;5ÞexpðZi

6;5Þ;
ki7;5 ¼ ð1iCkC7;5 þ 1i

Dk
D
7;5ÞexpðZi

7;5Þ;
ki0;6 ¼ Zi0;6;

ki0;10 ¼ ð1iCkC0;10 þ 1i
Dk

D
0;10ÞexpðZi0;10Þ;

ki0;9 ¼ ki0;7;

kiL;2 ¼ ð1i
Ck

C
L;2 þ 1iDk

D
L;2ÞexpðZiL;2Þ;

di
1 ¼ ð1i

Cd
C
1 þ 1iDd

D
1 ÞexpðZid1Þ;

ki8;6 ¼ ð1iCkC8;6 þ 1i
Dk

D
8;6ÞexpðZi

8;6Þ;
ki0;7 ¼ ð1iCkC0;7 þ 1i

Dk
D
0;7ÞexpðZi

0;7Þ;
ki10;8 ¼ 1iCk

C
0;10 þ 1i

Dk
D
0;10;

ki9;8 ¼ ki7;5;

si ¼ s; �i ¼ �; Si ¼ S;

ð2Þ
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where each Zix � Nð0;o2
xÞ, except Zi0;6 which is allowed to vary uniformly between 0 and 5, since

we could not obtain good fits to the data for all individuals with a normally distributed Zi0;6. The

indicator functions 1i
C and 1

i
D are used to indicate if individual i belongs to the control- or DM2

group. Observe that we assume that all ωx are group independent. The reason for using fixed
population parameters for k10,8 is that this parameter is hard to estimate when only VLDL1 and
VLDL2 data are available. Better fits to the data were not obtained for individual-specific k10,8
(for the STS models the parameters for each subject were re-estimated with k10,8 fixed to the
group values obtained from the mixed effects model). In fact, ω10,8 tended to zero when it was
included in the mixed effects model. The variability parameters in the residuals are assumed to
be identical for all individuals, Eq (2). A final remark is that we assume that the covariance matrix
O of Zi ¼ ½Zi

p1
; . . . ; Zi0;10� is diagonal to keep a reasonable dimension of the parameter space.

Geometric Mean and Coefficient of Variation of a Log-Normal
Distribution
Here we explain how the population values of the parameters in the tables and figures are com-
puted. Let θi, i = 1,. . .,N be the estimated values for a parameter for the subjects in one of the
groups. Almost all key parameters are skewed over the population (for both the STS- and
mixed effects models). Therefore, we assume that they are log-normally distributed and com-
pute the sample geometric mean

ð
YN
i¼1

yiÞ1
N ð3Þ

which is the maximum likelihood estimator for the median of a log-normal distribution [33].
The coefficient of variation (in percent) is given by

100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðô2Þ � 1

p
;

where ô2 is the unbiased estimate of the sample variance of the logarithm of the θi‘s. When sta-
tistical tests are performed we compare logarithms of the parameters and use the conventional
t-test theory. This can be done since the logarithm of the geometric mean in Eq (3) is
1
N

PN
i¼1 logðyiÞ.

Parameter Estimation
For parameter estimation of the mixed effects model, we apply the maximum likelihood frame-
work. Here we quickly present how the likelihood function of the population parameters is
approximated. For a more thorough analysis and further references we refer to [32,34]. The
population likelihood function is a marginal likelihood function, where the vector Zi 2 <r of all
individual-specific parameters (r = 9 for the VLDL model) are integrated out. Let θ be the vec-
tor of population parameters and let Y = [Y1,. . .,YN] the complete set of measurement data for
the N individuals. Assuming that the subjects are picked independently in the population the
population likelihood function takes the form

Lðy;YÞ ¼
YN
i¼1

Z
<r

expðliÞdZi; ð4Þ

where li = li(ηi) = li(ηi;Yi,θ) is the log-likelihood function for subject i. Let the residuals at time

tk be denoted εik and let R
i
k be its covariance matrix, hence Ri

k ¼ diagðsðtkÞ2; sðtkÞ2; S2; S2Þ for
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the VLDL model. The individual log-likelihood function is given by

li ¼ � 1

2
ð
Xd1
k¼1

½εik
T
Ri
k

�1

εik þ logjRi
kj þmlogð2pÞ� þ Zi

T
O�1Zi þ logjOj þ rlogð2pÞÞ; ð5Þ

wherem is the number of outputs (thus,m = 1 for the free leucine model andm = 4 for the
VLDL model). The integrand, exp(li), in Eq (4) is hard or impossible to integrate exactly and
must therefore be approximated. The Laplace approximation method is based on a second
order truncation of the Taylor expansion of li around a stationary point Ẑ i (see, e.g., [32,34] for
the derivations). Eq (4) becomes

Lðy;YÞ � Q
expðliðẐ iÞÞ HZðliðẐiÞÞ

ð2pÞr

����
����
�1

2 ;=

whereHZðliðẐ iÞÞ is the Hessian matrix of li with respect to ηi. In the first order methods second

order derivatives are disregarded. In the model considered in this paper the covariance matrix
Ri
k does not depend on ηi and the Hessian becomes

HZðliðẐ iÞÞ � �
Xdi
k¼1

rεikR
i
k

�1rεik � O�1:

In the first order conditional estimation (FOCE) method the mode of the individual log-
likelihood function is used for Ẑ i, hence

Ẑ i ¼ argminZif�liðZi;Y jyÞg;

in contrast to the first order (FO) method that uses Ẑ i ¼ 0.
For the STS model, the individual log-likelihood function in Eq (5) with the last three terms

removed is maximized for each subject. In that case the uncertainty parameters si and Si are
estimated separately for each individual and ϕi is set to 10. It should be noted that k10,8 is indi-
vidual-specific for both models. To find the minima of the negative log-likelihood functions
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization method is used (see [35]).

Parameters
We distinguish betweenmodel parameters (e.g. transfer rates in the model) and key parameters
(e.g. biological relevant parameters, often composed of several model parameters). The calcula-
tion of the key parameters VLDL1 secretion rate (SR), VLDL2 direct secretion rate (DSR),
VLDL2 indirect secretion rate (IndSR) (i.e. the transfer from VLDL1 to VLDL2), VLDL1 and
VLDL2 fractional clearance rate (FCR), VLDL1 fractional direct catabolic rate (FDCR), VLDL1

(4b)
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fractional transfer rate (FTR) is defined as

VLDL1 SR
i ¼ Qi

2k
i
L;2d

i
1;

VLDL1 FTR
i ¼ Qi

6k
i
8;6

Qi
5 þ Qi

6 þ Qi
7

;

VLDL1 FDCR
i ¼ Qi

6k
i
0;6 þ Qi

7k
i
0;7

Qi
5 þ Qi

6 þ Qi
7

;

VLDL1 FDCR
i ¼ Qi

6k
i
8;6 þ Qi

6k
i
0;6 þ Qi

7k
i
0;7

Qi
5 þ Qi

6 þ Qi
7

;

VLDL2 DSR
i ¼ Qi

2k
i
L;2ð1� di

1Þ;
VLDL2 IndSR

i ¼ Qi
6k

i
8;6;

VLDL2 FCR
i ¼ Qi

9k
i
0;9 þ Qi

10k
i
10;7

Qi
8 þ Qi

9 þ Qi
10

;

The VLDL1 and VLDL2 pool sizes are defined as Qi
V1
and Qi

V2
.

Although the mixed effects approach produces direct estimates of the distribution of model
parameters, the key parameters are evaluated for each individual separately.

Implementation
Both the mixed effects model and the STS model were implemented in MATLAB (The Math-
Works Inc., Natick, MA).

Statistical Analysis
Log-normally distributed variables are presented as geometric mean and coefficient of varia-
tion and were log-transformed before being compared using t-tests assuming equal variance.
MannWhitney test was used if the transformed data were not normally distributed. A p-value
below 0.05 was considered significant. For power analyses a desired study power of 80% was
used to calculate sample size.

Supporting Information
S1 Fig. Residual plot of enrichment data using reduced data. The residuals (model fit minus
measurement data) for the three enrichment data sets (plasma leucine, VLDL1 and VLDL2)
were plotted for the two methods (STS and NLME) and the two groups (Control and type 2
diabetes mellitus (DM2)). Both methods produced good fits to the data. Lines, mean of mixed
effects approach (red) and STS approach (black); Areas, mean ± SD for mixed effects approach
(red) and STS approach (black).
(DOCX)

S2 Fig. Residual plot of enrichment data using truncated data. The residuals (model fit
minus measurement data) for the three enrichment data sets (plasma leucine, VLDL1 and
VLDL2) were plotted for the two methods (STS and NLME) and the two groups (Control and
type 2 diabetes mellitus (DM2)). The NLME produced good fit to the data, even when extrapo-
lating the curves between 4 and 8 hours. The STS approach in the other hand fails to produce a
good fit for the extrapolated data. Lines, mean of mixed effects approach (red) and STS
approach (black); Areas, mean ± SD for mixed effects approach (red) and STS approach
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(black).
(DOCX)

S1 File. Data for 15 healthy individuals and 15 DM2 subjects.
(CSV)

S2 File. File format description for S1 File Data.csv file.
(DOCX)

S1 Table. Basic subject characteristics. Data from 15 healthy control subjects and 15 type 2
diabetes (DM2) patients were used in the study. As expected DM2 patients had higher plasma
glucose and insulin concentrations and showed a typical dyslipidemia with elevated plasma tri-
glycerides (TG), low high-density lipoprotein (HDL) cholesterol and smaller low-dense lipo-
protein (LDL). Data is mean ± SD unless otherwise stated. a median (IQR); �, p<0.05 vs
Control; ��, p<0.01 vs Control; ���, p<0.001 vs Control.
(DOC)
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