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Aspects of historical data and health criteria for drinking water network replacement 

strategies 

ANNIKA MALM 

Department of Civil and Environmental Engineering 

Water Environment Technology 

Chalmers University of Technology 

ABSTRACT 
The drinking water distribution network represents a major proportion of the investments and 

capital assets of a water utility. Consequently, qualified insight into future replacement needs 

provides water utilities with a foundation for financial planning. This insight would allow 

responsible engineers to choose the right projects (pipes and pipe systems) for replacement. 

Currently, support for the correct project choice is through sophisticated methods and models. 

However, utilities (especially smaller) need simpler procedures as they often lack both input 

data and competence for advanced infrastructure asset management models, as well as the 

experience of using such models. The aim of this thesis has been to provide new knowledge 

and useful, simple and transparent tools for the assessment and evaluation of long-term needs 

and prioritization of drinking water pipe replacement.  

An assessment of the future long-term replacement needs for drinking water distribution 

networks can be made through a combination of lifetime distribution functions and current 

network age data. Reliable lifetime predictions are limited by a lack of understanding of 

deterioration processes for different pipe materials under varying conditions. However, in this 

thesis a method was applied to calculate national investment needs and the results provided a 

basis for estimates for Swedish utilities where there is a scarcity of data. An alternative 

approach, employed successfully in this thesis, was the use of real historical data for 

replacement over an extended time series. The verified data provided a good fit to commonly 

used lifetime distribution curves. Further, reasonable projections of replacement needs into an 

uncertain future could be made.  

CBA (Cost-benefit analysis) can be used to evaluate the replacement strategy for utilities’ 

water distribution networks. CBA was applied to evaluate how first, pipe failure data and 

second, leakage strategies, might be used in pipe prioritization strategies. CBA was applied to 

pipe failure data replacement priorities, and here the cost of replacement was compared to the 

benefits of fewer pipe failures. The method enabled the selection of prioritised pipe sections 

for replacement without the need for a range of parameters and advanced methods that are 

difficult to interpret. Scenario analysis showed that health aspects have a significant impact on 

the result, and a method for evaluating the health risk was developed. For the CBA 

application to leakage management, the benefits of leakage reduction were compared to the 

cost of alternative management options to determine which was the most cost-effective. In the 

case study distribution system it was demonstrated that it is significantly more cost-effective 

to reduce leakage volumes by reactively repairing broken pipes than to proactively replace 

them, despite large leakage losses. 
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ABBREVIATIONS AND DEFINITIONS 
AM  Asset Management 

CARL  Current annual real losses; leakage on transmission and/or 

distribution mains, at utility storage tanks and on service 

connections up to point of costumer metering 

CBA Cost-Benefit Analysis 

IAM  Infrastructure Asset Management 

ILI  Infrastructure leakage index, representing the ratio of CARL and 

UARL (Lambert et al. 1999) 

GI  Gastrointestinal 

HCC  Health Call Centre 

MCA  Multi-Criteria Analysis 

NPV  Net Present Value  

QMRA   Quantitative Microbial Risk Assessment 

SAM  Strategic Asset Management 

TAM  Tactical Asset Management 

UARL  Unavoidable annual real losses is the lowest technically achievable 

real losses and depend on service connection density, system 

pressure and the average length of the service connection pipes 

between the water mains and the consumer’s water meters. 

Pipe replacement   Substitution of a new pipe for an existing pipe when the latter is no 

longer used for its former objective. 

Pipe rehabilitation All methods for restoring or upgrading the performance of an 

existing pipeline system. 

Pipe renovation Methods of rehabilitation in which all or part of the original fabric 

of a pipeline are incorporated and its current performance 

improved. 

Pipe renewal Construction of a new pipe, on or off the line of an existing pipe. 

The basic function and capacity of the new pipe being similar to 

the original. 

Pipe break  A fault in a pipe section when the pipe is completely broken. 
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Pipe leak A fault in a pipe section causing leakage where the pipe may still 

be in function 

Pipe failure  Detected pipe breaks and pipe leaks in need of repair 
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1. INTRODUCTION 

1.1. Background 

An ageing drinking water distribution network implies a need for replacement strategies and 

prediction of asset lifetime. The drinking water distribution network represents a major 

proportion of the investments and capital assets of a water utility. Knowledge of future 

replacement needs can provide water utilities with a basis for financial planning.  

General estimates of replacement investments on a national level have been made for various 

countries. In Canada, the need for replacement of the drinking water infrastructure (including 

waterworks, reservoirs and pumping stations) that is below standard is CAD 2,082 (€1,500) 

per Canadian household (Canadian infrastructure, 2012). In the USA, the need for 

rehabilitation in the water and wastewater network, including to some extent new 

developments, is estimated at USD 10,000 million per year (about €28 per person per year) 

for the period 2007–2026 (EPA, 2009). The investment need in Canada and the USA was 

based on an extensive survey (questionnaire study) conducted among water and wastewater 

utilities. In Sweden, it is estimated that the rehabilitation rate for the wastewater network, 

currently corresponding to €100 million per year, needs to triple in the next 25 years, from 

about €10 to €31 per person per year. This estimate is based on an assumption of an increased 

need to rehabilitate the pipe network resulting from major investments which were made in 

the 1960s and 1970s (SWWA, 2007). No such estimate was made for the drinking water 

network. The assessments made in the USA, Canada and Sweden provide an estimate of 

future rehabilitation needs. However, while estimates based purely on the current situation 

can provide reasonable trends for the near future, long-term forecasts are more difficult.  

Good asset management implies that replacement investment needs should be estimated not 

only at a national level but also at a water utility level. The extent of the replacement needs 

provides an overall economic framework for a water utility although the right projects (pipes) 

need to be chosen. The choice of projects depends on utility goals, such as low frequency of 

consumer disruption, safe drinking water and minimization of traffic and environmental 

disruptions. Whilst there are sophisticated methods and models available that have been 

developed, some utilities lack the staff and knowledge to manage advanced infrastructure 

asset management (IAM) models and experience of using such models. Consequently, there is 

a need in many municipalities for simpler methods and tools to prioritize between 

replacement projects (Malm et al., 2009; Alegre, 2010).  

In IAM models, cost-benefit analysis (CBA) is often included. CBA used alone is also a 

useful tool for asset management of drinking water pipes. The CBA can include both the 

direct costs and the benefit to a water utility, as well as externalities such as social and 

environmental costs and benefits. As pipe breaks and leakages reflect the status of the 

drinking water network, these parameters should be included in a CBA since increasing 

rehabilitation of the most exposed pipes will lower the need for pipe failure repairs.  
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Safe drinking water is the main goal for a drinking water utility (WHO, 2011). Leakage can 

increase the risk of contamination, especially in systems with frequent and/or sudden pressure 

losses (Besner et al. 2011). Occasionally, the pressure in the pipes falls as low as, or even 

lower than, the pressure on the outside, which may lead to (possibly contaminated) soil water 

intrusion (Besner et al., 2011). Each pipe failure repair then constitutes a risk of soil water 

intrusion and thus a risk to consumers’ health. Depending on the size of the risk, the incentive 

to decrease the number of repairs will be affected. If the risk is significant, the cost of the risk 

should be included in asset management strategies. 

1.2. Aim and objectives 

The overall aim of this thesis is to provide new knowledge for replacement strategy providing 

guidance for water utilities through tools for the assessment and evaluation of long-term needs 

as well as prioritization of replacement of drinking water pipes.  

In addition to the overall aim, the thesis has the following research objectives: 

a. To develop a method for forecasting future strategic replacement needs using 

historical data. 

b. To show how limited local pipe data can predict future replacement needs for a whole 

water utility or region. 

c. To develop a transparent CBA method for decision support in pipe replacement 

prioritization using a limited amount of available data. 

d. To evaluate which criteria should be included in the CBA with a specific focus on pipe 

failures, leakage and health risks. 

e. To present a method for evaluating the health risk arising from pipe failure repairs. 

 

The aims and objectives are shown in Figure 1. 

 

Figure 1  Aims and objectives of this thesis, including both strategic asset management 

(SAM), and tactical asset management (TAM). 

1.3. Limitations 

This thesis provides input for a utility’s replacement strategies, although for a full strategy a 

multi-criteria analysis should be used, based on a variety of data and including the results 

from this thesis. 

Guidance for 
replacement 

strategy 

SAM by using 
historical data 

Performance 
(e.g. failures, 

leakage, health 
risk) 

TAM by using 
Cost-benefit 

analysis 
Paper I 

Paper II 

Paper V 

Papers III & IV 
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1.4. Overview of the thesis and included papers 

Sophisticated tools are not widely employed by Swedish drinking water providers (Malm et 

al. 2009). The main reasons that are normally voiced are lack of data, time and competence. 

Decisions are therefore usually based on recent pipe breaks, coordination with ongoing road 

construction and experiential knowledge (Malm et al. 2009). For the purpose of this thesis 

three alternative paths can be identified.  

1. Continue to base decisions on experiential knowledge of the drinking water 

system in question.  

2. Build up the competence and data required for the introduction of sophisticated 

tools.  

3. Make use of the knowledge that is the basis of the sophisticated tools and focus 

on the most critical factors for simpler models which can then be used to 

underpin decisions made on experiential knowledge. 

It is proposed that path 3 will be the best option for utilities with a pressing need to refine 

replacement strategies. Path 3 may also be a feasible step for utilities that wish to approach 

path 2.  

Pipe age itself does not have a decisive influence on the optimal point in time to renew a 

single pipe (Sægrov et al., 2005) but age or remaining asset lifetime is a useful criterion for 

strategic asset management when the intention is to predict the rehabilitation needs for an 

entire drinking water distribution network (Burn et al., 2010). Historical data was used to 

predict future pipe replacement needs for a water utility (Paper I).  

Local (historical) data is not always available, but reliable estimates can be made using 

societal development and recent replacement data. Data from other utilities with similar 

presumptions can also be used to predict future replacement needs. A prediction of this nature 

has been made for an entire nation, in this case Sweden, with reliable results (Paper II). 

When a water utility has established a framework for its overall replacement needs (Paper I), 

replacement must be prioritized. CBA is a useful tool to prioritize pipe sections (Papers III 

and IV). Leakage management is an important part of water distribution network management 

but is not an effective criterion for replacement prioritization (Paper III) although pipe failure 

is (Paper IV).  

A pipe failure always generates a risk of the intrusion of contaminants before, during and after 

pipe failure repair and health risk costs should therefore be included in the CBA (Papers IV 

and V). 
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2. THEORETICAL BACKGROUND 

2.1. Replacement predictions for drinking water networks 

The current water distribution system has been developed over a long period of time and 

construction decisions always need to take previous decisions into account when all the pipes 

are connected to the same system. When decisions are dependent on past decisions, they can 

be defined as path-dependent (Kaivo-oja et al., 2004). The impact of path dependence is 

reliant on the binding, limiting or postponing of alternative options (Kaivo-oja et al., 2004), 

see Figure 2. The postponing option is to do nothing at all. For the water industry, the binding 

decision to develop a drinking water distribution pipe system for the transport of water from 

source to tap is an example of strong path dependence. When the distribution system is in 

place and only small parts at a time are rehabilitated, the system remains unchallenged, 

despite concern about rehabilitation rates.  

Figure 2 Path dependence and related decision-making. The arrow indicates 

 the effect of a societal or water utility decision. If the past is known and well 

 described but the future is uncertain, the potential development paths 

 with required decisions can be anticipated based on historical experience and 

 data (figure adapted from Kaivo-oja et al., 2004 with permission). 

Fundamental change processes can occur in the sociotechnical drinking water distribution 

networks, which in turn affect rehabilitation needs. Three types of change processes in a 

sociotechnical system have been identified by Geels and Kemp (2007): reproduction, 

transformation and transition. Reproduction includes changes along defined paths, such as the 

use of new pipe materials. Transformation includes changes at the regime and landscape level, 

including changes to visions, goals or guiding principles. Transition is an expression of a 
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major shift in a sociotechnical system, an example being a change from individuals carrying 

water from an outdoor stand pipe to home water delivery through a pipe system. 

Asset condition is the most commonly used criterion for rehabilitation, whereas water losses, 

water quality and reliability are secondary causes (Sægrov, 2007, Malm et al, 2009). External 

factors such as change in water demand, large infrastructure projects and street or sewer pipe 

replacement, can significantly affect drinking water network rehabilitation (Malm et al., 2009; 

Sægrov, 2007; Torterotot et al., 2005).   

Future rehabilitation needs depend on asset lifetime for the present pipe networks. While most 

methods for determining asset lifetime require failure event data or the physical 

characteristics of the pipes, the statistical cohort survival approach uses present age and 

lifetime for cohorts of pipes to predict future rehabilitation needs (Burn et al., 2010). In the 

latter study, the cohorts were defined as groups of pipes with similar deterioration processes. 

Software based on the cohort survival approach, Long Term Planning (LTP), was developed 

within the Care-W project (Sægrov, 2005; Herz and Lipkow, 2003). This software is an 

extended version of the original KANEW software (Deb et al., 1998). Two disadvantages of 

the cohort survival approach, presented by Burn et al. (2010), are the need for homogeneous 

cohorts or groups of pipes and the fact that data are often not available. 

In Sweden, the water utilities are publicly owned and the majority (82%) are operated within 

the municipal administration system, where 35% of the utilities serve less than 10,000 

consumers (SWWA, 2013; SWWA, 2015). The present trend is to merge utilities into larger, 

inter-municipal cooperatives or multi-utility solutions (Thomasson, 2013), normally in urban 

areas (SWWA, 2015). Nevertheless, one-third of inter-municipal cooperative utilities are 

small, with less than 30,000 consumers (SWWA, 2013; SWWA, 2015). The smaller utilities 

often lack the staff and knowledge to handle advanced IAM models and they have no 

experience of using such models. There is therefore a need, especially within many smaller 

municipal authorities, for simpler methods and tools for prioritizing between replacement 

projects and for prioritizing replacement in the right projects (Malm et al., 2009; Alegre, 

2010). In Sweden, current prioritization of pipe replacement is not systematic and is based 

largely on experience from pipe failure data, professional judgement and coordination with 

ongoing road construction (Malm et al., 2009). International experience from 14 water 

utilities in eight European countries reveals that pipe failure data and road construction work 

are the main parameters when deciding which pipe sections to replace (Torterotot et al., 

2005). 

Strategic decision-making affects both the need for rehabilitation and the actual rehabilitation. 

This need is affected by the rehabilitation necessary in the light of external decision factors, 

such as major infrastructure projects, or internal decision factors, such as targets for 

acceptable failure rates. The actual rehabilitation can be affected by the economic preferences 

of the water utility, such as investment plans where less (or possibly more) money than 

required has been allocated. In an interview study of 18 Swedish water utilities, the limitation 

on rehabilitation was as much a lack of human resources as it was a restriction on economic 

resources (Malm et al., 2009).  
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Asset management or replacement strategies can be divided into a strategic asset management 

(SAM) level, a tactical asset management (TAM) level, and an operational and maintenance 

level (Marlow and Burn, 2008). The strategic level has a long-term view and should answer 

questions such as “How much?” or “What replacement rate is needed for a water distribution 

network as a whole?” The tactical level should provide the tools for prioritization and answer 

questions such as “Which criteria should we use to decide which pipe sections should be 

prioritized first?” The operational and maintenance level is the day-to-day work. 

Asset lifetime of drinking water pipes can be described as the breakpoint in time when it is no 

longer socially and/or economically acceptable to choose acute spot repair, the alternative 

being to rehabilitate the pipe using renovation or replacement techniques. Marlow et al. 

(2010) describe several approaches for modelling remaining asset lifetime, making a 

distinction between deterministic models, statistical models, physical probabilistic models and 

soft computing or artificial intelligence models. The statistical models are based on historical 

failure rate or service lifetime and sometimes condition data. One of the statistical models is a 

service lifetime approach where asset properties that influence ageing behaviour are the basis 

for dividing assets into groups. Age itself does not have a decisive influence on the optimal 

point in time to renew a single pipe. Pipe failure rate, which includes pipe breaks and leakage, 

is shown to be the best criterion for optimal individual pipe rehabilitation (Herz, 1998). 

However, age or remaining asset life is a useful criterion for strategic asset management 

(Burn et al., 2010) when the intention is to predict the rehabilitation needs of an entire 

drinking water distribution network.  

An interview study of 18 Swedish water utilities conducted by Malm et al. (2009) showed that 

there is a need for tools to assess the appropriate present and future replacement rate. The 

water utilities had replacement plans, but these were rarely developed systematically and in 

some cases they were not even recorded. The water utilities had a feeling that the replacement 

rate should be higher but they need tools to make a more well-founded prediction. Only some 

of the interviewed utilities had sufficient data to conclude that they should increase their 

replacement rate. Most of the interviewed utilities felt that their drinking water network is in 

good condition but they would nevertheless like to increase the replacement rate. For them, 

replacement management is based more on feeling than on real facts (Malm et al., 2009). 

2.2. Replacement strategies and prioritization using cost-benefit 

analysis 

CBA is intended to provide guidance for a water utility in asset management of drinking 

water pipes. The CBA can include both the direct costs and benefits for a water utility, such as 

leakage or failure repair costs versus replacement costs, but also externalities such as social 

and environmental costs (Marlow et al. 2011).  

CBA is used in several studies for pipe replacement prioritization. Davis et al. (2008) used 

CBA to evaluate the economic lifetime of asbestos pipes. Kleiner and Rajani (2004) used 

CBA to evaluate the effectiveness of cathodic corrosion protection of the pipe.  
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A large number of tools and methods have been developed to help utilities with replacement 

strategies, using software models such as Pirem, AWARE-P, PARMS, WILCO, I-WARP/D-

WARP and Siroco (Fuchs-Hanusch et al. 2008; Cardoso et al. 2012; Burn 2003; Engelhart et 

al. 2003; Kleiner et al. 2010; Renaud et al. 2007). Common to most of the models is that they 

are based on economic CBA and analysis of pipe failure (i.e. pipe break or leakage). These 

CBAs take into account failure repair costs, including future increasing failure rates, possible 

maintenance rates, replacements and pipe failure repair costs in a new pipe section, and in 

some cases externalities such as environmental and social costs, see Table 1.  

Table 1  Tactical asset management tools and methods, what is included? CBA is cost-

benefit analysis, MCA is multi-criteria analysis (Y=yes, N=no, N/A= not 

available).  

 

A CBA can also be used to compare the cost of mitigating leakages with the variable cost of 

lost water (Lambert and Lalonde, 2005). The costs and effort of identifying leaks can 

preferably be balanced against the benefits with, including lower costs for treatment and 

delivery of water, avoidance of costly alternative water supplies in case of water scarcity, 

more stable water quality with lower risk of contamination, and reduced costs caused by 

sudden delivery interruptions. The latter affect consumer confidence and, when leaks have to 

be repaired outside normal working hours, generate extra costs. The greater the value of 

drinking water, and the higher the level of leakage, the more there is to gain from leakage 

mitigation. In Sweden, saving water is motivated by political rather than economic factors 

(Malm et al. 2009). Methods for implementing CBAs for a drinking water distribution system 

vary. Lambert and Lalonde (2005) suggest the application of a CBA for direct costs and 

benefits, including a rate of (future) leakage increase, if no action is taken. When more water 

has to be produced as a result of leakage, more chemicals are used for treatment and more 

energy is consumed, which means that not only the direct costs to the utility, but also the 

external, environmental and social, costs should be included, as suggested by e.g. Ofwat 

(2008), Ashton and Hope (2001) and Kanakoudis et al. (2011). 

Environmental costs include for example changes in ecosystems and carbon emission costs 

Ofwat (2008). Most of the environmental costs (such as recreation, biodiversity, fisheries) are 

due to impacts on the water cycle, which are close to zero when water is abundant. Social 

Programme Source CBA

Conseq

uence of 

failure

Environ

mental 

costs

Social 

cost

Increased 

failure 

rate over 

time Remark

Pirem Fuchs-Hanusch et al. 2008 Y N N/A N Y

Savings from roadwork coordination can be 

included. Social costs are specified (traffic jam).

AWARE-P

Cardoso et al. 2012; 

Coelho 2015 Y Y N N Y

MCA model. The environmental and social aspects 

can be included in the MCA.

PARMS

Burn 2003; Marlow et al. 

2011 Y Y Y Y Y Social and environmental costs are specified.

WILCO Engelhart et al. 2003 Y Y Y Y Y

Social and environmental costs can be included but 

are not specified.

I-WARP/D-

WARP Kleiner et al. 2010 Y N N Y Y

Savings from roadwork coordination and pipe 

replacement nearby can be included.

Siroco

Renaud et al. 2007; 

Renaud et al. 2012 Y Y N Y Y

MCA model. Specified social costs. Savings from 

roadwork coordination and pipe replacement 

nearby can be included.
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costs include for example disruption in delivery, traffic delays due to repair work and health 

costs caused by impaired water quality during repairs. A lower frequency of leaks may also 

reduce the cost of health risks, as each pipe failure repair may involve a risk. 

When external costs are included, it is often done in a general way because of difficulty 

acquiring adequate data. Marlow et al. (2011) have introduced a typology of urban 

externalities and suggested potential for significance. According to Marlow et al. (2011), the 

externalities that should be considered for water supply are pollution from greenhouse gas 

emissions, environmental impact due to disruption to heritage sites, public health and safety, 

social disruptions and non-compensated financial loss (e.g. opportunity cost of water). In 

conditions where water is abundant, the environmental impact and financial loss are low 

(Ofwat, 2008). 

An external cost is the benefit of lower social health risk cost due to a lower frequency of pipe 

failure repairs when pipes are replaced. During pipe failure repair, the water pressure is 

reduced or turned off completely and may lead to contaminant migration into the pipe (Besner 

et al. 2011).  

2.3. How do health risks affect replacement? 

Waterborne disease outbreaks due to microbial contamination of water supply systems are 

predominantly caused by quality impairment in the raw water and/or waterworks but can also 

be caused by quality impairment in the distribution networks (Craun et al., 2006; Risebro et 

al., 2007).  In the Nordic countries, 14 out of 59 outbreaks in municipal waterworks systems 

were found to be directly attributable to the distribution network (Guzman-Herrador et al., 

2015). Swedish municipalities are bound by the obligation to report quality impairment in 

water quality to the Swedish National Food Agency (SNFA). Quality impairment reported to 

the SNFA for the period 1980-2009 show that 44 (56%) of the 79 outbreaks were caused by 

quality impairment in the raw water and/or the treatment process, 27 (34%) were due to 

quality impairment in the distribution network and the remaining eight (10%) had unknown 

causes. For the number of people who became sick, 69% could be attributed to quality 

impairment in the raw water/treatment and 25% to the distribution network. Over the 30 

years, 1,800 people per year became ill, corresponding to a risk of 2.0 per 10,000 inhabitants 

per year for the whole drinking water system from source to tap (Lindberg and Lindqvist, 

2005; Malm et al., 2010). 

Outbreak data reported to the Swedish National Food Administration were compiled and 

analysed (with permission). The causes of contamination for the 27 registered outbreaks in 

Sweden during the period 1980-2009 that are attributable to quality impairment in the 

distribution network were compiled and divided according to cause, as shown in Figure 3. 

The most common cause is various types of cross-connections.  
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Figure 3 Subdivision of the outbreaks reported to the Swedish National Food 

Administration, 1980-2009. 

Far from all symptoms of waterborne gastrointestinal (GI) illness are reported officially or 

even discovered locally. To be classified as a waterborne outbreak, the people who become ill 

must seek medical care and the medical centre must recognize a link between the patients’ 

symptoms and the drinking water. Of course, not all persons with GI symptoms contact a 

physician, not all patients are tested, common waterborne contaminants are not normally 

analysed, and waterborne infections are not required to be reported by law (SMI, 2012). There 

is thus a lack of information in the national statistics. However, studies have shown that 

drinking water can cause GI symptoms in non-outbreak situations. A Canadian study showed 

that 14-35% of all GI symptoms were caused by drinking water outside an outbreak 

(Payment, 1991; 1997). On the other hand, studies in the US and Australia did not show any 

correlation between GI symptoms and drinking water quality (Colford et al., 2005; Hellard et 

al., 2001). An epidemiological study in Norway showed an increased risk of GI illness in 

areas with total loss of water pressure due to repair of pipe failures or maintenance work 

(Nygård et al., 2007). The risk of GI illness was significantly higher in the exposed 

households (RR 1.58), which means 4% of households suffered from GI illness during 

unpressurized incidents due to the event. A questionnaire survey in the UK showed that up to 

15% of self-reported diarrhoea was related to low water pressure in the drinking water 

distribution network (Hunter et al., 2005). One risk cost is the risk of waterborne disease 

outbreaks. Between 1981 and 2010 in the USA, 57 outbreaks were associated with 

distribution system faults, and about 31% of these were due to mains breaks, mains repairs 

and leaching (WHO, 2014).  

When estimating the extent of GI illness caused by insufficient drinking water quality, the 

frequency of contact with Health Call Centres (HCC) can be used. The HCC in Sweden is a 

national network where nurses evaluate, provide advice, inform and direct persons by 
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telephone (Wahlberg, 2004). The Swedish HCCs receive about 4.5 million calls each year 

(Inera, 2011). Specific information, such as cause, geographical information and age of the 

person concerned, are recorded for each call. An analysis of incoming phone calls to HCCs in 

Sweden over a one-week period showed that approximately 31% of the calls involved 

infection symptoms such as influenza and diarrhoea (Wahlberg and Wredling, 1999).  

Each pipe failure repair constitutes a risk of intrusion (Besner et al., 2011). Depending on the 

size of the risk, the incentive to decrease the number of repairs will be affected. If the risk is 

negligible, the health aspects can be excluded in the prioritization. No methods or models for 

including the health aspects in renewal planning have been found in the published literature. 
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3. METHODS 
In this chapter the methods used in this thesis are briefly summarized. For detailed 

descriptions reference has been made to the appended papers. 

3.1. Study area 

The case studies in this thesis were carried out in the city of Gothenburg in Sweden. The city 

has a population of 500,000 and is located in the Västra Götaland region of Western Sweden, 

which has a population of 1.5 million. The citizens of Gothenburg are supplied with drinking 

water from the Göta älv river via two waterworks and a 1,750 km distribution network, see 

Figure 4. The distribution network is connected. 

 

Figure 4  Study area. The distribution network is not included due to safety restrictions. 

The two waterworks, Alelyckan and Lackarebäck, have similar treatment processes, including 

chemical flocculation, sedimentation, filtration (granulated active carbon) and disinfection 

(ClO2/Cl2). The microbial barriers are the same. The free chlorine residual level in the 

network is low.  

The studied drinking water distribution network is dominated by three pipe materials: grey 

cast iron, ductile iron and polyethylene (PE). PE is the dominant material used for newly laid 

pipes and for replacement. Replacement of network pipes takes place continuously, 

prioritizing pipe sections with the highest failure rates. Over the past 10 years, the annual 

replacement rate in Gothenburg has averaged about 8 km or 0.5% per year of the total length. 

The replacement rate may sound low, however the average network age is still young (42 

years in 2014). According to the long-term plan for City of Gothenburg, replacement is 
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scheduled to increase steadily and to be double the present replacement rate in 20 years in 

order to maintain the pipe failure rate and robustness.  

The status of a water distribution network can be measured using pipe failure rate and leakage 

as performance indicators. In Gothenburg the pipe failure rate has been decreasing rapidly 

from the late 1960s to the mid 1970s and has thereafter slowly decreased. Present pipe failure 

rate is 0.16 failures per kilometre per year (mean value 2009-2013) and includes both leak and 

pipe failure repairs (SWW, 2014). In comparison with national data the failure rate in 

Gothenburg is in the worst 20% group (SWWA, 2010) but compared to international data the 

failure rate is low (Sægrov, 2005). Gothenburg has adopted a high-priority target reducing the 

total leakage from 770 L per service connection per day in 2012 to 520 L per service 

connection per day in 2024 (SWW, 2006). The current Infrastructure leakage index (ILI), 

representing the ratio of Current annual real losses (CARL) and Unavoidable annual real 

losses (UARL), (Lambert et al. 1999), is 9 and the leakage represents approximately 20 % of 

the drinking water produced. The ILI of 9 is defined as ‘very bad’ according to the World 

Bank Institute Banding system (Seago et al. 2005). 

3.2. Replacement predictions from historical data 

In effective planning of replacement of drinking water pipes, the first step is to determine the 

cost, financial framework and general needs. The method for calculating the need in the long 

term (SAM) must be transparent if it is to be reliable for a water utility. The data used must be 

accessible and relevant and output must be presented in a way that it can be easily understood. 

Methods based on data about present condition, age and material in the network, together with 

estimates of lifespan for different cohorts of pipes, are often transparent and use the relevant 

data. 

Once the strategic needs are established, the pipes that would be the most effective to replace 

first must be chosen (TAM). The method should also be transparent, not complicated for 

water utility staff to understand or require data that are often missing at a water utility. An 

effective method often requires some form of multi-criteria analysis (MCA) (not included 

here), where part of the MCA consists of a CBA. A knowledge gap in the CBA is that the 

health risk costs of a disruption in water delivery are not included. 

3.2.1. Lifetime curves 

The survival rate of the distribution network can be the residual pipe length for each year, 

expressed as a percentage. Residual pipe length is the percentage of the original pipe length 

for a certain year that remains at a later (present) time period. During the first few years after 

the pipes are laid all pipes in the group survive, but with time an increasing number of pipes 

need replacement or renovation. The residual pipe length is calculated using the present 

residual pipe length and the annual pipe length laid for each year or decade. Since pipe 

lifetime can be more than one hundred years, one decade is assumed in this context to be a 

sufficient level of detail for expressing the ageing process. 
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Survival functions are used to determine the percentage of a group of pipes reaching a 

particular age (Sægrov, 2005). These functions are described in more detail in Paper I and are 

used to model the time until the pipes are replaced.  

3.2.2. Predictions for the future 

The historical replacement data was used to predict future replacement rates. In Paper I, 

predictions for the future were made for two alternatives: (1) Predictions from the calculated 

survival function based on an extended time series of historical data; (2) Predictions from the 

calculated survival function based on the replacement rate during the period 1991-2005.  

Future replacement needs are discussed in the context of path-dependence theory. Strategic 

decisions in the future can affect both the need for replacement and actual replacement. 

Furthermore, fundamental changes in the sociotechnical sphere may affect renovation and 

replacement. 

In Paper II, a case study of the whole of Sweden was carried out using the live time curve 

method to see if it was possible to make a prediction of future needs based on the present 

condition and not on historical data. In the study, current network age and material 

distribution were provided via a questionnaire sent to Swedish water and wastewater utilities 

and the data provided were extrapolated to cover the whole of Sweden. The material 

distribution was compared to previously reported data (SWWA, 1999). The data was then 

combined with lifetime distribution functions to provide predictions. 

3.3. Cost-benefit analysis as a tool for prioritization 

CBA can be used to evaluate the replacement strategy for utilities’ water distribution 

networks. In Papers III and IV, CBA is used to evaluate how pipe failure data and leakage 

strategies should be used in pipe prioritization strategies. CBA measures both utility costs and 

benefits but can also include external costs and benefits. By discounting costs and benefits, 

the net present value can be calculated for a management option and a positive net present 

value (NPV) shows that the alternative is worth implementing. Moreover, the options with a 

positive NPV can be compared to find the most effective option. This study uses an objective 

function (Equation 1) that maximizes the present value of a stream of benefits minus costs 

over time, t, for each alternative, i, (see Hanley and Barbier 2009): 
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where Φi = net present value, Bit = the benefit of leakage reduction (expressed as a function), 

Cit = the costs for leakage reduction measures (expressed as a function), r = discount rate and 

T = time horizon in years. 

When CBA is used for prioritizing replacement, the cost of replacement is compared to the 

benefits of having fewer pipe failures. The cost of replacement investment is expected to be 

safest by using data for a number of real replacement works and the unit costs for each cost 

driver. If this data are not available, a fixed unit price can be used. The benefit of having 

fewer pipe failure repairs depends on the average cost of pipe failure repair, which often 
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depends on the pipe size and the location of the failure. Additional benefits are lower costs for 

water leakage. The volume of leaking water depends on the size of the leak and on how long 

the leak has existed before it is detected. The marginal cost to produce and pump the leaking 

water is made up of the chemical cost and the energy cost for the treatment process and 

pumping. In addition, some of the leaking water finds its way into sewers and consequently a 

marginal cost of wastewater treatment and management should also be included. 

When CBA is used for leakage management, the costs and effort of identifying leaks must be 

balanced by the benefits. The costs for methods for locating leaks can include acoustic 

monitoring, inline inspection, gas injection or manual listening stick as well as district flow 

metering or pressure analysis. The benefits can include lower costs for treatment and delivery 

of water, avoidance of costly alternative water supplies in the event of water scarcity, more 

stable water quality with a lower contamination risk, and reduced cost due to sudden delivery 

disruptions. The latter affects consumer confidence and, when leaks need to be repaired in the 

middle of the night, it gives rise to extra costs. The greater the value of the drinking water and 

the higher the level of leakage, the higher the revenue resulting from leak mitigation. 

3.4. Evaluation of health risk during leak repair 

To estimate the extent of GI illness caused by insufficient drinking water quality, the 

frequency of contact with Health Call Centres (HCC) was used. By studying the number of 

persons seeking care and/or medical information regarding GI symptoms at HCCs, changes in 

the incidence of illness were evaluated.  

For the pipe failure repair part of the study, information from the HCC was compared to pipe 

failure data (Paper V). All pipe failure repairs in Gothenburg over a three-year period were 

recorded. The included pipe failures were geocoded on the ‘small sub-area’ level. A 

comparison was then made by comparing the number of contacts before and after a leak repair  

in the specific small sub-area. The pipe failures were stratified into two types. Type A are 

easily repaired pipe failures, where the pipe break or leakage can be repaired by using a repair 

clamp fastened around the pipe and with the water pressure retained while the work is being 

carried out, Figure 5. Type B are pipe failures that are more difficult to repair, where a piece 

of new piping needs to be inserted and the pressure cannot be retained, Figure 6. 

In addition to the analyses on the ‘sub-area’ level, a number of Type B pipe failures were 

assigned to the property level. The study was carried out using a quality analysis in a 

hydraulic modelling tool where the model indicated which properties would be affected by 

intrusion. 
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Figure 5 Grey cast iron pipe failure Type A (left), easily repaired with a repair clamp 

(right). Photo Annika Malm. 

 

Figure 6 PVC pipe failure Type B (left), with a new piece of pipe installed (right). Photo 

Jonas Wall. 
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4. RESULTS AND DISCUSSION 
In this Chapter, the results for long-term overall needs are presented, including prioritization 

of the most cost-effective replacement strategy for a water utility. 

4.1. Long-term replacement predictions 

The results in Paper I show that historical data provide a reliable prediction of future 

replacement needs on a water distribution network level. The method described is applicable 

and the crucial limitation is lack of data.  

Documentation of data is important for strategic decisions affecting the future. If data about 

replaced pipes are archived, then data for predicting the future can be improved continuously. 

The method could increase the eagerness of water utilities to archive data and make use of the 

data they already have. The results in Paper I show that using the described method, the data 

requirements are: 

• Annual or decade-based data related to pipe length laid 

• Present pipe length for each year/decade 

• Reasons for replacement (condition-based or non-condition-based) 

• Replacement rate for a period of approximately 10 years (optional) 

• Pipe failure statistics (optional) 

• Future potential decision drivers (optional). 

It is recommended that failure statistics are collected to provide a robust prediction of future 

replacement. Failure statistics provide an understanding of whether the speed of the pipe 

deterioration process is increasing or decreasing. 

The results in Paper II show that, even though the data are incomplete, a reliable prognosis for 

the future rehabilitation rate can be produced. The method described has been applied to 

Swedish conditions, although the method can be used for all infrastructures irrespective of 

country. Expansive utilities, where new urban constructions are a significant part of the total 

pipe length, must take into account the decreasing effect the new network lengths have on the 

rehabilitation rate. The difference in the rehabilitation rate between expansive water utilities 

and utilities with few new urban constructions can be major even though the total pipe lengths 

in need of rehabilitation are the same. 

In Sweden, replacement needs of water and wastewater networks equal approximately 300 

million € (about 31 € per person and year) annually for the next 30 years, and thereafter 

slightly increase (Paper II). The estimate is lower than earlier estimates from SWWA (2007) 

but in the same range as estimates for the USA of about €28 per person per year (EPA, 2009). 

In Canada, the average household consist of 2.5 persons (Statistic Canada, 2015). If the 

Canadian needs of €1,500 per household (Canadian infrastructure, 2012) are calculated per 

person, the estimate can be expressed as €30 per person per year over 20 years.  
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Furthermore, consumer preferences, health aspects, change of pipe material, climate change 

and strategic decisions affect the rehabilitation needs (Paper I). The potential decision drivers 

described in Table 1 (Paper I) will increase the needs, although a change of pipe materials and 

consumer preferences can also decrease the needs due to better pipe material or if more 

delivery disruptions can be accepted.  

4.2. Replacement strategies and prioritization through cost-benefit 

analysis 

The results in Papers III and IV show that CBA is a useful tool in replacement strategies and 

when designing leakage control programmes for WDSs. A CBA can compare all the costs and 

benefits of different measures over the long term. 

Generally, the cost to a utility for replacement has decreased since trenchless technologies 

have increased in use, at least in Sweden. At the same time, the costs for spot repair of failures 

have increased in line with the increase in the cost of labour. This means that nowadays more 

pipe sections can be replaced with a positive CBA. When it is mostly trenchless technologies 

that are used, the benefits of coordination with road construction work have less impact on the 

CBA. On the contrary, a good IAM method can better position the utility to decide which pipe 

sections to replace, and not follow road construction work. 

In the case study scenarios, the parameters that affect the outcome the most are the health 

effect costs, the discount rate and future pipe failure rate predictions. Studies dealing with the 

health effects are still very few. The discount rate is not easy to predict, but most water 

utilities use a standard rate. The effect of the pipe failure rate is mostly based on an increased 

failure rate for the grey cast iron pipes. When the failure rate is that important, it should be 

investigated even more to ensure the right results are obtained. 

4.3. Does a risk to health affect replacement strategies and 

prioritization? 

The technique of using geocoded HCC data together with geocoded records of quality 

impairment in the drinking water network was found to be feasible for health risk evaluation 

(Paper V). For analysis on a small sub-area level there were no significant differences in GI 

contacts between the two-week periods before and after pipe failures, or for all pipe failures 

or Type B pipe failures. In the study on the single-property level there were slightly more 

frequent GI contacts with the HCCs after pipe failures but the difference was not statistically 

significant. However, the study on the single-property level was small, and more events need 

to be studied. The results from the method used can easily be included in the CBA model for 

pipe prioritization (Paper IV).   

4.4. Driving forces for future replacement 

A replacement strategy for a DWS is path-dependent and in the reproduction state the driving 

forces for replacement are as seen today. Pipe failure repair, the consequences of failure and 

utility goals (e.g. consumer preferences) are the driving forces for condition-based reasons as 

well as societal development and changes in demand for other reasons. Leakage is found to be 

more effective for spot repair and should not be a driving force for replacement. 
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Replacement needs are increasing in Sweden and in many other countries. It is important that 

the pipes in the worst condition are largely replaced, otherwise the replacement needs will be 

even higher. In reality, pipes are to some extent replaced too early according to their condition 

when this is done in conjunction with road construction work or based on human decisions. If 

prioritization for these reasons is found to be significant, the lifetime expectations for pipes 

should be shortened to correspond to the real lifetime.  

As shown in Table 1, in Paper I, potential decision drivers can change the replacement needs. 

A transformation that is seen is inclusion of the health risk in the driving forces for 

replacement. Even if the results in this thesis did not identify a health risk, other studies have 

and the CBA in this thesis found that the health risk affects prioritization. If the health effects 

are significant, more pipes are cost-effective to replace; possibly more pipes than are 

calculated in the strategic replacement needs. The strategic needs can then be forecast with a 

cost-effective management effect for the utility.   

A major transition is migration due to climate change. Southern Europe, for example, suffers 

from warmer drier summers with less opportunity to live a comfortable life. This can be a 

driving force behind migration and changes in water demand and the need for replacement for 

reasons other than pipe condition. Moreover, migration and the fact that people travel more 

nowadays affect the risk of infectious agents spreading via water. Climate change can also 

lead to a higher risk of drinking water-related outbreaks due to lower-quality raw drinking 

water and unadjusted waterworks. The increased risk can affect consumer trust and 

confidence if more outbreaks and other incidents occur in the future, which may lead to less 

use of tap water as drinking water. Consequently, there are fewer replacement needs when 

people are less affected by disruptions. If you always have drinking water at home in bottles 

or tanks, it is acceptable not to be able to take a shower for a couple of hours (see Figure 7). 

 

Figure 7 The potential outcomes of a transformation change in a sociotechnical system: 

climate change (Paper I). 

4.5 Alternative paths for replacement strategies 

A review on water pipe condition, deterioration and failure rate prediction models concludes 

that there is a multitude of parameters that influence the condition and performance of water 
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pipe infrastructure and a lack of data collection (St. Clair and Sinha, 2012). One path is to 

make use of the knowledge that is the basis of the sophisticated tools and focus on the most 

critical factors which can then be used to underpin decisions made on experiential knowledge 

(path 3, section 1.4). 

The age and material distribution presented in this study can be scaled down to a local water 

and wastewater utility when no local data are available for them to facilitate calculation of 

their own long-term rehabilitation needs. 

The results from the CBA studies in this thesis can be used as a start for a utility with poorer 

data quality. However, accurate pipe failure data is essential.  
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5. CONCLUSIONS 
The conclusions are presented in relation to the objectives and the overall aim of the thesis 

(as presented in section 1.2). 

Objective a): To develop a method for forecasting future strategic replacement needs using 

historical data. 

Replacement needs are strongly path-dependent and influenced by the reasons for 

replacement (condition based or non condition-based), postponing factors and decision drivers 

such as major reconstructions in the city and a (longer) expected lifetime of present pipe 

material. Historical data provide a reliable prediction, although the survival curve fits the data 

best when the reason for replacement is condition-based only. This thesis shows that a service 

life approach can be reliable when data is scarce. (Paper I) 

Objective b): To show how limited local pipe data can predict future replacement needs for a 

whole water utility or region. 

The results from the comprehensive questionnaire sent to Swedish municipalities show that 

even though the data are incomplete, a reliable prognosis for the future rehabilitation rate can 

be produced. The method described has been applied to Swedish conditions although the 

method can be used for all infrastructures irrespective of country. (Paper II) 

Objective c): To develop a transparent CBA method for decision support in pipe replacement 

prioritization using a limited amount of available data. 

Pipe failures are a good measure of management status and can be used as a force for 

replacement. By not looking purely at the pipe failure rate, but prioritizing actions based on 

CBA, economic efficiency increased significantly (Paper III and IV). To be complete, the 

CBA should also include external costs and risk costs. 

Objective d): To evaluate which criteria should be included in the CBA with a specific focus 

on pipe failures, leakage and health risks. 

To be complete, the CBA should also include external costs and risk costs. Health risk costs, 

for example, should be included as they affect the results. The case study in this thesis showed 

that health risk costs are low (Paper V), but when the results from other studies were included 

in the CBA used in this study, the health risk costs affected the results (Paper IV).  

In the case study of the Gothenburg municipal water distribution system, reactively 

performing local repairs of water pipe leaks was significantly more economical to reduce 

leakage volumes than proactively replacing old pipes, despite a high overall leakage rate and 

abundant water resources (Paper III). However, CBA is a useful tool for comparing measures 

when designing leakage control programmes for water distribution systems.  

Objective e): To present a method for evaluating the health risk arising from pipe failure 

repairs. 
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A novel method using geocoded HCC data on contacts together with geocoded records of 

disruptions was considered feasible and even if no statistically significant health risks were 

found in Gothenburg (Paper V), it should be included as it affects the result (Paper IV). 

Conclusion of the overall aim: The overall aim of this thesis is to provide new knowledge for 

replacement strategy providing guidance for water utilities by tools for assessment and 

evaluation of the long-term needs as well as prioritization of replacement of drinking water 

pipes.  

This thesis has provided some pieces in the puzzle of determining how to manage a drinking 

water network strategically. We have created a simple, transparent and easy to use approach 

for pipe replacement assessment where no specific software is needed. 
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6. FUTURE RESEARCH 
There is a need to incorporate the CBA method used here into a Multi-Criteria Analysis. Pipe 

failure data in a CBA provides valuable input, but for total asset management of the drinking 

water network, risk aspects and effects for consumers must be included, and for that a MCA 

can be used. There are useful tools available, but more research is needed to transform the 

research into basic recommendations and to allow utilities with less data available to be better 

at asset management. The method used in this thesis enable this work. In a MCA, the order of 

priority is not strictly based on economic criteria. Instead, priority is given to aspects such as 

high-risk pipe sections and consumer preference. The utility can then reach a decision based 

on aims and goals, serious consequences, a positive NPV and/or high probability pipes with 

many consumers affected.  

Moreover, if water utilities improve their IAM with the above mentioned basic 

recommendation, the implementation and the chance for improvement in effectiveness of the 

utilities can be studied. There is a need for research regarding health aspects. Studies in more 

cities and countries are needed which link drinking water treatment and distribution network 

quality impairment with Health Call Centre contacts for gastrointestinal illness symptoms. 

A hypothesis worth testing is that the risk of intrusion during pipe failure repair depends on 

whether the pipe is laid bare (Type B, Figure 6) or not (Type A, Figure 5). When the pipe 

failure is small (Type A), the pipe can be repaired using a repair clamp that is fastened around 

the pipe and the pipe does not need to be opened. The points at which groundwater can 

intrude are potential leakiness on the unpressurized pipe section. Consequently, not very 

much contaminated groundwater can intrude during a normal unpressurized event as the 

number of small holes is too small and the difference in pressure from outside the pipe due to 

the groundwater level is also small (Malm et al., 2015). The risk of intrusion during 

unpressurized events is mainly at the repair spot. The risk is small if no sewerage occurs but it 

is significant if sewerage is present (Blokker et al., 2014). In the HCC study, there is an 

indication that Type B pipe events could represent a greater health risk, and during all these 

events the pipe was opened. The HCC offers potential for many future studies although it 

would require a certain size of area to obtain relevant data as well as model runs for each pipe 

break even though the focus should be on the broken pipe at the point at which the pipe is 

exposed. 

Estimates of public health risks associated with intrusion are currently based on several 

untested assumptions. These risks have begun to be addressed in relation to epidemiological 

data from general public calls to the HCC and other sources but require validation with further 

sites studied over longer periods of time. Other risks, e.g. lack of backflow prevention 

devices, have never been studied from an epidemiological point of view. Calculation of 

microbial and chemical risks in the distribution network, combining data from surveys, 

interviews and hydraulic models as well as disease prevalence data, need to be carried out. 

The size of these risks (we know that there are risks from outbreak data) should be evaluated 

in order to make a quantitative microbial risk assessment (QMRA) for the entire drinking 

water system from source to tap. 
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