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Abstract. Optical flow (OF) methods are used to estimate dense motion information between consecutive
frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input
image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture
in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the
performance. An approach to avoid this negative effect is to use different camera settings when capturing the
individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed
frames. Information from multiple frames are combined into a total cost functional such that the lack of an active
data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera
settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow esti-
mates. When saturation of image data is significant, the proposed methods show superior performance in terms
of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide
some qualitative examples of how and when our method should be used. © 2015 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.OE.54.9.093103]
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1 Introduction
Optical flow (OF) estimation is the task of finding the pixel-
wise two-dimensional (2-D) planar flow between two con-
secutive frames in an image sequence.1–3 It provides dense,
nonrigid motion information which is crucial for several
applications. For driver assistance systems in vehicles, OF
and related methods provide useful low-level information
to help track the surrounding traffic scenario.4 For segmen-
tation of objects, such as vehicles and pedestrians, using the
estimated flow data instead of the image intensity data itself
has shown superior results.5 Estimated flow fields are also
commonly used for image registration directly, for example,
to register time-sequences of medical imaging data.6 In a
large survey of camera-based pedestrian detection systems,
lack of contrasts in the captured image data is identified as
a core reason for lack of quality in the object motion esti-
mates.7 Two issues, related to the camera sensor setup, con-
tribute to the undesired lack of contrasts between objects in
certain image regions. First, the dynamic range of the scene
may be higher than that of the camera sensor, which causes
saturation of the sensor in certain image regions of a given
frame.8,9 Second, different objects in the scene may funda-
mentally be poorly contrasted relative to each other in the
sensed spectral band. The negative effects of both issues
can be mitigated by alternating the exposure setting of the
camera system between successive frames. This paper
presents a novel framework to estimate flow data for sequen-
ces of differently exposed images. We make use of recent
advances to temporal regularization of OF and utilize
more than two images for each flow field estimate. The

framework allows any number of input images to be used.
For the experiments presented here, we use four images
with two different exposure settings that are used alternately
every other frame. Based on this setup, intended to address
the issue of saturation in the image data, a set of flow esti-
mation methods are proposed. In addition to the proposed
methods, a set of baseline methods that only use one expo-
sure setting for all the frames are discussed and included in
the experimental evaluation. Before we make connections to
related work and summarize the contributions of the paper,
some background on OF methods is presented.

1.1 Optical Flow Foundations

The success of OF estimation in general depends upon a set
of factors. A brief overview of the historical development of
OF methods helps to highlight these. For the moment,
consider all images to be equally exposed, which is the con-
ventional case. For each point in the reference image, the
objective is to estimate the corresponding flow vector which
describes the motion of the point to its new location at a later
time instance. This OF estimation problem is formulated as
finding the minimizer of a given cost expression. The mod-
eling of the cost expression is often based on the so called
brightness constancy assumption (BCA), which states that
the brightness intensity of any given point in an image is
unchanged at its later locations, or equivalently, along its
motion trajectory. Thus, a data penalty term is formulated
on the image intensity data to relate the points of two images
by a 2-D flow field that should be estimated. A good flow
field estimate naturally corresponds to a low data cost.
As long as deviations from the BCA are small between
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consecutive frames, this approach can result in robust flow
estimates.10 For complex illumination scenarios in which the
BCA is invalid, the temporal illumination variations either
need to be included in the model explicitly (in the simplest
example as a spatially invariant offset) or the data cost must
be based on transformed image data to an image function that
is robust to these variations.11,12

Since there are two unknown components (horizontal and
vertical) of the flow vector for each pixel, it is clear that
a pixelwise data cost in itself is insufficient to formulate
a problem with a unique solution if the pixel data is scalar-
valued. Furthermore, even multivalued pixel intensities, for
instance, three channel color images where the BCA is
applied to each channel individually, do not provide a stable
estimation problem due to the fact that certain image regions,
such as the interiors of homogenous objects, lack texture in
all channels simultaneously. There are two primary methods
to regularize the flow estimation problem and thus force the
existence of a unique solution. Both apply a condition on the
spatial distribution of the flow to enforce the solution to be
spatially (piecewise) smooth. This is based on the fact that
pixels on a specific object exhibit a similar flow as long as
the shape of the object is not deformed. One approach is to
formulate the spatial smoothness condition locally using
patches of pixels,13 whereas the other more common choice
is to globally formulate the condition.1,4 Mixtures of local
and global formulations are also possible.14 In the current,
state-of-the-art variational mathematical approaches to OF
estimation, the primary choice is to use a global regulariza-
tion term as part of a total cost functional to be minimized.3,15

That choice is adopted in our work.
For image sequences with relatively simple motion, i.e.,

without motion of a large magnitude or complex motion pat-
terns, and with minor illumination changes between the
images, traditional OF methods that consist of a pointwise
data term and a global spatial regularization term in combi-
nation with robust penalty functions provide competitive
results.10 This is the case for, e.g., the Middlebury bench-
mark,16 whose dataset only contains motion of small magni-
tudes as well as minor illumination variations due to the
controlled experimental setup. The recent advancement
of OF benchmark datasets has gone hand in hand with
sophisticated developments of OF methods. For instance, re-
evaluating existing OF methods that ranked high on the
classic Middlebury benchmark on the more challenging MPI
Sintel benchmark dataset17 showed that certain methods
that performed well on the former benchmark do not neces-
sarily perform well on the latter benchmark, highlighting
certain drawbacks of those methods. (The benchmark rank-
ings are available in Refs. 18 and 19.) MPI Sintel includes
several sequences with large and complex motions of
small-scale image structures, as well as challenging natural
illumination variations, all of which have been missing in the
Middlebury dataset. When large motion is present, a coarse-
to-fine multiresolution strategy is generally adopted to
avoid convergence to local minima, as well as to reduce
the computational complexity.20,21 The flow solution at a
coarse image resolution is used to initialize the estimation
problem at the next, finer scale in what is typically called
a warping scheme. However, if the magnitude of the motion
is larger than the size of the corresponding image structure,
multiresolution strategies fail.22 Error-propagation across

resolution scales occurs, resulting in failure to resolve
areas of fine details that tend to be over-smoothed by the
regularization. Therefore, recent works have taken into
account local image features in a novel fashion, which
have led to improved estimation results. Deviations from
sparse, prematched features are penalized in an additional
term of the total cost functional.15,23–26 For large motions,
this term helps to steer the flow estimate out of local optima.
For complex and small-scale motions, the extra feature
matching term helps by reducing the relative influence of
the spatial smoothness term, which does not hold for those
regions. As an alternative to multiresolution techniques alto-
gether, sparse-to-dense estimation techniques have shown
strong performance and in particular, they avoid error-propa-
gation across scales.27,28

1.2 Related Work

Just as the flow solution can be accurately assumed a priori to
be piecewise smooth, many image sequences contain scenar-
ios that exhibit temporally smooth flow. Attempts to exploit
this, by use of combined spatial and temporal regulariza-
tions, have shown improved performance compared to meth-
ods employing only spatial regularization.29–31 Recently, a
novel method for temporal regularization along motion tra-
jectories was introduced.31 The key insight implemented in
their paper is that temporal comparison of the flow should
not be made to the flow at the same pixel location in the
next frame, but rather at the new location to which the given
pixel has moved. To this end, a parametrization of the flow
components as flow increments relative to the pixel locations
of a reference frame was introduced. This concept is adopted
in the methods proposed here.

To address the issue of natural illumination variations
between consecutive images, a number of alternative data
terms that use transformed image data have been proposed.
A simple alternative is to formulate the data term based on
the assumption of constant image intensity gradients rather
than on the BCA.3 Another approach is to use structure-tex-
ture decomposition and supply texture-enhanced images or
pure texture-images as inputs.32 As a final example, the use
of census transformed images has been proposed to obtain an
illumination-robust data term.11,33 There are also promising
methods that explicitly model the illumination variations and
argue that it is, in fact, undesired to discard brightness and
contrast magnitudes which, e.g., the census transform does.12

However, none of the above address the issue of saturation in
the image data. In this context, there is some recent work on
using alternate exposure images for OF estimation. Sellent
et al.34 use two short-exposed images and an intermediate
long-exposed image and use information such as the direc-
tion of the motion blur to enhance the flow estimation per-
formance. However, no dynamic range aspects are treated in
their work. Hafner et al.35 on the contrary, present a method
that utilizes a sequence of images of different exposure dura-
tions which jointly estimates a high-dynamic range image
(HDR) as well as the OF. They are the first authors to publish
a method which provides dense flow field estimates within
the context of HDR image reconstruction,8,9 and show that
the joint approach benefits both the HDR image and flow
estimates. The estimation of the HDR image along with
the flow field allows image-driven, anisotropic spatial regu-
larization to be used in the flow estimation steps, however,
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it adds computational cost if the primary interest is motion
estimation.

1.3 Contributions

In this work, the task is to estimate OF between a specific
reference frame and the next frame which is exposed using a
different camera setting. The use of alternating exposure
durations, commonly used, e.g., to capture the full dynamic
range in HDR scenarios, is one example of adjustable camera
settings. Another example, suitable for some applications, is
to use flash illumination every other frame. An advantage of
using flash instead of a long exposure duration in order to
capture low-intensity data is that the issue of motion blur
can be mitigated. On the other hand, for alternating exposure
durations, the mutually nonsaturated image regions can be
photometrically aligned simply by scaling the sensor data
with the inverse of the exposure duration, which can be use-
ful for the flow estimation. As an illustration of the negative
effects of saturation in the image data, consider the example
shown in Fig. 1. Due to clipping of the low-intensity data in
the input images, the resulting flow estimate fails to capture
the full extent of the moving person. Specifically, the flow
estimate is poor in the saturated lower image region.

We propose a formulation of the OF data term which
operates on pairs of frames that have been equally exposed,
but still provides flow estimates between consecutive image
pairs, thanks to enforcing temporal smoothness across the
incremental flow terms. All of the data from the image
sequence is thus merged into one estimation task to avoid
undesired situations where the effect of the regularization
terms dominate the flow solution. In summary, the contribu-
tions of the paper are:

• A solution method to the extended OF estimation prob-
lem that allows image sequences with differently
exposed frames to be used.

• Quantitative evaluation of flow estimates obtained
from a set of proposed OF data terms, including com-
parisons to conventional methods, on altered data from
public datasets.

• Qualitative examples on the performance degradation
of flow estimates caused by saturated image data.

1.4 Outline of the Paper

Different generative data models and their implications are
discussed in Sec. 2. The variational formulation of the OF
estimation problem is then presented in Sec. 3. A set of
baseline methods that use a single exposure setting for all
frames are presented in Sec. 4 and the proposed methods
that use image sequences with differently exposed frames
are described in Sec. 5. Experimental results are given in
Sec. 6 and Sec. 7 concludes the paper with a presentation
of directions for further research.

2 Generative Data Models
The formulation of the OF estimation problem should ideally
depend on how the input data, i.e., the image sequence, is
generated. To begin with, formulating a data cost term (as
part of the total cost functional to be minimized) between
two images taken with the same camera setting is straight-
forward and corresponds to the conventional OF case.
However, whether or not it is possible to include a data
term between image pairs taken with different camera set-
tings depends on if there is a reasonable model to relate
these image pairs. Consider that an image, Ĩf, is generated
according to the camera model

EQ-TARGET;temp:intralink-;e001;326;476 ĨfðxÞ ¼ CRFfΦf½RðxÞ þ NfðxÞ�g; (1)

where x ¼ ðx; yÞ ∈ Ω ⊂ R2 is the image domain, and RðxÞ is
the (filtered) illuminance incident on the sensor for the spe-
cific lightning condition of the imaged scene at the time
instance of the image Ĩf. The noise term NfðxÞ can, e.g.,
represent the quantization noise, and the function Φf models
the effect of the specific camera settings used to generate the
image. Finally, the camera response function (CRF) is a
pointwise function whose argument is the raw sensor data.
The CRF clips the light exposure Xf ≜ Φf½RðxÞ þ NfðxÞ�
outside of the operating interval of the sensor, limited by
its dynamic range.36 It also typically encodes the data using
a concave function, approximately a gamma power law
with a typical value of γ ≈ 1∕2.2,37,38 e.g., for image storage.
For such a case, CRFðXfÞ ¼ ½cðXfÞ�γ , where c is a clipping
function. In an HDR scenario, the dynamic range of Xf is
higher than that of the camera sensor.

Fig. 1 Effect of saturated regions in the image data on the resulting flow estimate. (a) A pair of consecu-
tive frames fromMPI Sintel17 and the flow estimate from a method of this paper. (b) The same two frames
with their low-intensity data clipped under a fixed threshold value and the flow estimate based on these
frames. Due to the lack of contrasts that arises in the lower regions of the frames, the flow estimates fail to
capture the full extent of the person that moves in the sequence.
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Under the BCA and considering nonoccluded regions,
another image, Ĩfþ1, of the same scene can be related to Ĩf
through

EQ-TARGET;temp:intralink-;e002;63;701 Ĩfþ1½xþ wfðxÞ� ¼ CRFfΦfþ1½RðxÞ þ Nfþ1ðxÞ�g; (2)

where wfðxÞ denotes the displacement, or flow, of point x in
Ĩf. If the images Ĩf, Ĩfþ1 are generated using the same cam-
era settings, then Φfþ1 ¼ Φf, which enables us to formulate
a data term between Ĩfþ1 and Ĩf in order to estimate the OF
field wf that relates those images. Next, consider an HDR
case where the full dynamic range is captured by the use
of different exposure durations. A long exposure duration
is used to capture low-intensity data which, however, also
results in overexposed, saturated high-intensity regions.
Similarly, a short exposure duration is used to capture
high-intensity data, which leads to clipping of underexposed
low-intensity data. Generally speaking, if the image pair Ĩf,
Ĩfþ1 are taken with different exposure durations δt1 and δt2
and all other camera settings are equal, then they can be
related through the imaged scene, characterized by RðxÞ,
according to the model
EQ-TARGET;temp:intralink-;e003;63;493

ĨfðxÞ ¼ CRF½δt1RðxÞ þ NfðxÞ�;
Ĩfþ1½xþ wfðxÞ� ¼ CRF½δt2RðxÞ þ Nfþ1ðxÞ�: (3)

The nonsaturated data can be photometrically aligned by
inverting the effect of the CRF and scaling with the inverse of
the respective exposure durations. Thus, this pair of differ-
ently exposed images can be used to formulate a data term
between the mutually nonsaturated image regions. On the
contrary, if the alternative camera setting is such that
there exists no model to relate the nonsaturated data in
Eqs. (1) and (2), photometric alignment is not possible. For
instance, if Ĩfþ1 is captured with a flash but Ĩf is not, the
flash will illuminate the scene in a spatially varying manner,
causing changes to RðxÞ that are difficult to model. It may
still be possible to implicitly align the images photometri-
cally by using transformed image functions, e.g., using the
census transform.11,33 Such an approach, however, is outside
the scope of this paper.

In the remainder of the paper, the notation without tilde,
If, is used for frames in image sequences. For image sequen-
ces with differently exposed frames, the use of this notation
implies that the given frames are photometrically aligned for
any sequence where there exists a mathematical model to
relate them.

3 Variational Optical Flow Estimation
In variational OF methods, input images are seen as time-
samples of a continuous image intensity function Iðx; tÞ. A
given frame, If ¼ Iðx; tfÞ, can be related to the next frame at
a later time instance, Ifþ1 ¼ Iðx; tfþ1Þ, e.g., under the BCA.
Without loss of generality, assume that tfþ1 ¼ tf þ 1. Then
the BCA can be stated mathematically as

EQ-TARGET;temp:intralink-;e004;63;123

Ifþ1½xþ wfðxÞ� − IfðxÞ ¼ 0; (4)

where wf ¼ wðx; tfÞ ¼ ½uðx; tfÞ; vðx; tfÞ� is a flow field
containing the horizontal and vertical unknown flow func-
tions at time tf. In particular, it describes the integrated
flow from the time instance of a given frame to the next.

Deviations from the BCA are small for nonoccluded areas
with approximately constant illumination properties at times
tf and tfþ1. When this holds, a good estimate of the flow
should likewise keep the magnitude of the left hand side of
Eq. (4) small. Thus, the equality of Eq. (4) is relaxed and
the left hand side is taken as the OF data cost.

A general form of the total cost functional that should be
minimized for our variational OF estimation is
EQ-TARGET;temp:intralink-;e005;326;646

EðfwfgÞ ¼ ED þ αSES þ αTET ¼

¼
Z
Ω
ðFD þ αSFS þ αTFTÞdx; (5)

where the data term is denoted by ED, the spatial and tem-
poral regularization terms on the flow are ES and ET with
respective weights αS, αT > 0, and fwfg is a set of flow var-
iables. The corresponding pointwise terms, FD, FS, and FT ,
are introduced to simplify the notation, and they are also cen-
tral in the derivation of the Euler–Lagrange (E–L) equations
that provide the necessary conditions for the flow fields
fwfg that minimize Eq. (5).39 Traditionally, OF is often esti-
mated without any temporal condition on the flow.1,2 Given a
sequence of image frames fIfg ¼ Iðx; t ¼ ftfgÞ, estimating
the flow between two consecutive frames then only involves
those particular frames in the data term. For example, con-
sider estimating the flow that relates I2 and I3, denoted
w2 ¼ ðu2; v2Þ. For nonoccluded image regions, under the
condition of brightness constancy, I3ðxþ w2Þ ¼ I2ðxÞ.
Thus, the data term

EQ-TARGET;temp:intralink-;e006;326;410FD ¼ Ψ½jI3ðxþ w2Þ − I2ðxÞj2�; (6)

is formulated in such a way as to minimize the pointwise
differences under some penalty function Ψ over the image
domain. In this work, Ψðz2Þ ¼ ðz2 þ ϵ2Þ1∕2, ϵ ¼ 10−3

is adopted to measure the data term deviations using a con-
vex, differentiable L1-norm approximation which is robust
to modeling errors, e.g., due to occluded objects in the
images.3,4,40,41

To set the stage for OF estimation on sequences with dif-
ferently exposed frames, which is the ultimate goal here,
temporal regularization is now introduced to the same task
as the current example, i.e., to estimate w2. A total of F ¼ 4
frames are treated at once. In addition to I2, I3 themselves, I1
and I4 are used because they are closest in time. When deal-
ing with F > 2 frames, the most direct way to relate them
pairwise is according to
EQ-TARGET;temp:intralink-;e007;326;214

Ψf½I2ðxþ w̃1Þ − I1ðxÞ�2g;
Ψf½I3ðxþ w̃2Þ − I2ðxÞ�2g;
Ψf½I4ðxþ w̃3Þ − I3ðxÞ�2g: (7)

However, although w̃2 ¼ w2 is the desired flow, previous
results that are confirmed in our work show that this is
a poor parametrization on components.31 This is because
penalizing differences between w̃1, w̃2, and w̃3 correspond
to comparing flow at the same spatial location from one
time instance to the next, which does not make sense.
What is desired, rather, is to compare the flow of an object,
e.g., w̃2ðxÞ, to the flow of the same object at its new location
in the next frame, i.e., w̃2ðxÞ ≈ w̃3½xþ w̃2ðxÞ� and similarly
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w̃2ðxÞ ≈ w̃1½xþ w̃�
1ðxÞ� should hold, where w̃�

1 denotes
backward flow.30 To this end, an alternative, more suitable
parametrization is achieved by expressing the flow fields
as increments relative to specific locations in a reference
frame Ifref , here fref ¼ 2.31 Then the terms of the data cost
become
EQ-TARGET;temp:intralink-;e008;63;668

FD12 ¼ Ψf½I2ðxÞ − I1ðx − w1Þ�2g;
FD23 ¼ Ψf½I3ðxþ w2Þ − I2ðxÞ�2g;
FD34 ¼ Ψf½I4ðxþ w2 þ w3Þ − I3ðxþ w2Þ�2g: (8)

In the implementation of the numerical minimization that
follows, this parametrization ensures that all flow increments
are indexed relative to the reference pixel grid x of I2.
Noninteger arguments of I1, I3, I4 that result from subpixel
precision OF estimates are evaluated using bicubic interpo-
lation. The total data cost is

EQ-TARGET;temp:intralink-;e009;63;535FD ¼ θ12FD12 þ θ23FD23 þ θ34FD34; (9)

where θ12ðxÞ, θ23ðxÞ, θ34ðxÞ ≥ 0 are the scalar weight func-
tions that enable to weigh well exposed and poorly exposed
image regions differently. In particular, they are used here to
remove the influence of a given data cost term in image
regions where one image contains saturated data, but could
in addition be set according to the noise properties of a
specified camera setup with a related generative data model.
With the parametrization in Eq. (8), the temporal cost term
enforced along flow trajectories simply becomes

EQ-TARGET;temp:intralink-;e010;63;405FT ¼ Ψðkw2 − w1k2Þ þ Ψðkw3 − w2k2Þ; (10)

where k · k is the L2-norm. Finally, the spatial regularization
term is taken as
EQ-TARGET;temp:intralink-;e011;63;352

FS ¼ Ψðk∇u1k2 þ k∇v1k2þ
þ k∇u2k2 þ k∇v2k2þ
þ k∇u3k2 þ k∇v3k2Þ: (11)

The spatial term ES sums the pointwise contributions from
FS over the spatial domain according to the L1-approxima-
tion of Ψ as defined earlier. This means that it penalizes the
(approximated) total variation, due to the gradients of the
flow functions, across the image domain.3,40–42 Compared
to the L2-norm (over the spatial domain), it is efficient at
preserving flow edges. Alternative (global) spatial regulari-
zation methods are generalized total variation11 or aniso-
tropic methods that estimate edge orientations and aim to
only smooth the flow along edges but not across.43 Some
further design choices for the spatial and temporal regulari-
zation terms are also discussed in the original work on the
parametrization along flow trajectories.31

4 Baseline Optical Flow Methods
The focus of this work is to use alternating camera settings to
overcome the negative impact saturated image data have on
resulting flow estimates. Before describing the proposed
methods, in this section, we consider the use of a single,
fixed exposure settings for all frames in an HDR scenario,
for which the dynamic range of the scene exceeds the
dynamic range of the camera sensor. Thus, all input images

are taken either with exposure setting I or with exposure set-
ting II, such that one option leads to saturation in low-
intensity image regions and the other leads to saturation
in high-intensity image regions across the whole image
sequence. To limit the scope of methods to evaluate, we
exclude the plausible intermediate case which, to a lesser
extent, contains saturated regions in both low and high inten-
sity regions.

The objective here as well as for the proposed methods is
to estimate w2, the flow at the reference frame, by minimiz-
ing a total cost functional of the form in Eq. (5). The data
terms in Eqs. (6) and (9) are used to form four baseline
methods:
EQ-TARGET;temp:intralink-;sec4;326;591ðAÞExp:I θ23FD23; θ23 ¼ 1; ∀ x;

ðBÞExp:I θ12FD12 þ θ23FD23 þ θ34FD34;

θ12 ¼ θ23 ¼ θ34 ¼ 1; ∀ x;

EQ-TARGET;temp:intralink-;sec4;326;522ðAÞExp:II θ23FD23; θ23 ¼ 1; ∀ x;

ðBÞExp:II θ12FD12 þ θ23FD23 þ θ34FD34;

θ12 ¼ θ23 ¼ θ34 ¼ 1; ∀ x:

The superscripts of ðAÞExp:I and ðBÞExp:I state that the
input frames are all taken with exposure setting I, and analo-
gously for the superscripts of ðAÞExp:II and ðBÞExp:II. The
methods ðBÞExp:I and ðBÞExp:II contain the temporal and spa-
tial regularization terms Eqs. (10) and (11) in their total cost
functionals. The methods ðAÞExp:I and ðAÞExp:II contain only
one flow term, thus there is no temporal regularization, only
a spatial regularizer FS ¼ Ψðk∇u2k2 þ k∇v2k2Þ. Note that
all the data terms have weight one over the whole image
domain. By using only one camera setting, the same objects
are saturated in all images which effectively removes the in-
fluence of the data term for those regions even for a nonzero
weight. In fact, setting the weight to zero in saturated regions
seems to give slightly worse quantitative results than not
doing so, likely due to discarding the information of the
boundary between the saturated and nonsaturated areas.

From here on, we consider the proposed setup where
every other frame is exposed differently, i.e., the frames
I1, I3 are captured using exposure setting I and the frames
I2, I4 are captured using exposure setting II. In that case,
directly applying unweighted versions of either the data
term Eqs. (6) or (9) is out of the question. This is because
pairs of images that are differently exposed are compared
in these data terms. In particular, image regions that are satu-
rated in one image but not the other would then lead to
corrupted flow estimates. A sequence of differently exposed
images is exemplified in Fig. 2. Four frames from the
Middlebury sequence Grove2 are altered by clipping (satu-
rating) high-intensity data in I1, I3 and low-intensity data in
I2, I4, which is the same effect that would occur in an HDR
scenario. To adapt the data terms in Eqs. (6) and (9) to the
case of different exposure settings, what could be done is to
enforce them only in areas where neither image is saturated.
That is, Eq. (6) can be multiplied by a weight θ23 which is
zero in areas where I2 is saturated as well as in areas where I3
is saturated, and similarly for Eq. (9). We denote the nonsatu-
rated subsets of the image domain Ω for exposure setting
I and II, respectively, by ΩExp:I ⊂ Ω and ΩExp:II ⊂ Ω. The
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intersection ΩInt ¼ ΩExp:I ∩ ΩExp:II is the set of points that
are nonsaturated for both exposure settings. The following
two data costs are given as initial methods for OF estimation
on sequences with differently exposed frames:
EQ-TARGET;temp:intralink-;sec4;63;361ðAÞ θ23FD23; θ23 ¼ 1; x ∈ ΩInt;

ðBÞ θ12FD12 þ θ23FD23 þ θ34FD34;

θ12 ¼ θ23 ¼ θ34 ¼ 1; x ∈ ΩInt:

We use the convention that the weights are zero for points
where they are not explicitly specified. Note that, in method
(B), the weighting has the unfortunate effect of discarding
data correspondences in the same regions of all four frames,
even though two of the frames are properly exposed and
could provide valid information for the flow estimation pro-
cedure. The flow estimation performances of (A) and (B) are
clearly limited by the fact that they only utilize mutually non-
saturated image regions.

5 Optical Flow Estimation on Sequences with
Differently Exposed Frames

In this section, we provide a generalization of the OF data
cost expression that is suitable for flow estimation on
image sequences with differently exposed frames. The pro-
posed methods are restricted to use up to four frames,
indexed f ¼ 1, 2, 3, 4. However, in general, there is no
fixed limit to how many frames that could be included,
except for the increased computational demand. As stated
previously, the objective is to estimate w2 by minimizing
a total cost functional of the form in Eq. (5). The expression
for the (pointwise) data term is generalized to

EQ-TARGET;temp:intralink-;e012;326;405

FD ¼
XN
n¼1

θpnqnFDpnqn ;

FDpnqn ¼ Ψf½IqnðxþWqnÞ − Ipn
ðxþWpn

Þ�2g: (12)

The subscripts pn and qn, n ¼ 1; : : : ; N, describe the image
pairs that are compared in the overall data term. Each data
term is weighted by a function θpnqnðxÞ ≥ 0. The upper case
flow fields Wqn ¼ ðUqn; VqnÞ and Wpn

¼ ðUpn
; Vpn

Þ are
cumulative flow fields, such that for some reference frame
fref ¼ r,

EQ-TARGET;temp:intralink-;e013;326;281

8<
:

Wf ¼ −wf − : : : − wr−1; f < r
Wr ¼ 0;
Wf ¼ wr þ : : : þ wf−1; f > r:

(13)

The general expression for the spatial regularizer is

EQ-TARGET;temp:intralink-;e014;326;210

FS ¼ Ψ
�P

f
k∇ufk2 þ k∇vfk2

�
; (14)

and the temporal regularization term is

EQ-TARGET;temp:intralink-;e015;326;157FT ¼
X
f

Ψðkwfþ1 − wfk2Þ; (15)

where the summations over f include all flow increments
from the first to the last frame included in the data term.
The minimizer of Eq. (5), and thus the estimate of w2, is
found iteratively by successive linearizations of the argument
of Ψ in the data term Eq. (12) (i.e., the BCA), and of the
nonlinear expression for Ψ.3 At each step, the update is
given by the solution to the corresponding E-L equations.39

Fig. 2 The image sequence Grove2 from the Middlebury dataset, with I1 in the leftmost column followed
by I2, I3 and I4 in order: (a) original images, (b) simulated high-dynamic range (HDR) sequence, used for
the experimental evaluation, and (c) masks that show saturated pixels in white.
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The derivation of the E-L equations as well as details on the
numerical implementation are given in Appendix A. What
differs between all the different methods to be presented
in this section is essentially the data term, specifically pn,
qn and the weights θpnqnðxÞ. The number of flow increment
terms in use and thus the summation limits of Eqs. (14) and
(15) depend on the choices of pn, qn. For all presented cases,
fref ¼ 2 is the reference frame. Furthermore, the weight
functions θpnqn are only explicitly specified for points x
where they are nonzero and θpnqn ¼ 0 holds otherwise.

When the frames I1, I3 are captured using exposure set-
ting I and the frames I2, I4 are captured using exposure set-
ting II, two OF cost expressions are given straightforwardly
using the following data terms:
EQ-TARGET;temp:intralink-;sec5;63;580ðCÞ θ13FD13; θ13 ¼ 1; ∀ x;

ðDÞ θ24FD24; θ24 ¼ 1; ∀ x:

Each of these by itself only uses the pair of similarly
exposed images among the total four frames to produces
a flow estimate. The data terms in (C) and (D) are both para-
meterized with respect to the reference frame I2. If (C) had
been taken with fref ¼ 1, it would correspond to the poor but
common parametrization of the sort in Eq. (7). By penalizing
in FT the difference between, e.g.,w2 andw3 in the data term
FD24 ¼ Ψf½I4ðxþ w2 þ w3Þ − I2ðxÞ�2g of (D), the total
flow between frames I2 and I4 is shared equally between
the two flow terms w2 and w3. The same is also true for
(C). Note that, e.g., in (D), a single flow component w2þ3 ¼
w2 þ w3 would be more natural and lead to a smaller dimen-
sionality of the problem, but the expressions are given as is
because then all presented cases are encompassed by the
same general formulation Eq. (12) and implementation.

5.1 Proposed Methods

Three methods are proposed in this section. Each of these
methods uses the information from all alternately exposed
images I1; : : : ; I4 in some way. There should clearly be a
benefit to the estimation performance if saturated image
regions in I1, I3 contain properly exposed image data in
those regions in I2, I4, and vice versa. To begin with, the
formulation of the flow as incremental terms in the data
costs for (C) and (D) allows us to directly form an additional
flow estimate, the weighted sum

EQ-TARGET;temp:intralink-;sec5.1;63;239ðEÞwðEÞ
2 ¼ cðxÞwðCÞ

2 þ dðxÞwðDÞ
2 ;

where wðCÞ
2 and wðDÞ

2 are the estimates of w2 from the meth-
ods (C) and (D), respectively. The weight terms cðxÞ, dðxÞ
are such that cðxÞ þ dðxÞ ¼ 1; ∀ x. For points x ∈= ΩExp:I,
cðxÞ ¼ 0, dðxÞ ¼ 1, and similarly saturated points in I2
result in dðxÞ ¼ 0, cðxÞ ¼ 1. Otherwise, for mutually non-
saturated points x ∈ ΩInt, a simply weighting is obtained
by setting cðxÞ ¼ dðxÞ ¼ 0.5. However, for a well defined
generative data model, these weight terms could additionally
take into account the signal-to-noise ratio of the different
exposure settings. There is a potential drawback related to
the fact that (E) is formed by a sum of flow data from
two separate estimation procedures. As there is no coupling
between w2 in (C) and w2 in (D), the respective estimates
wðCÞ

2 and wðDÞ
2 are formed using a lower frame-rate than,

e.g., the estimates (A) and (B). To overcome this issue,
the following data term is proposed:

EQ-TARGET;temp:intralink-;sec5.1;326;712ðFÞ θ13FD13 þ θ24FD24;

EQ-TARGET;temp:intralink-;sec5.1;326;680θ13 ¼ 1; θ24 ¼ 1; x ∈ ΩInt;

EQ-TARGET;temp:intralink-;sec5.1;326;653θ13 ¼ 2; θ24 ¼ 0 ; fx ∈ ΩExp:I and x ∈ ΩExp:IIg;

EQ-TARGET;temp:intralink-;sec5.1;326;625θ13 ¼ 0; θ24 ¼ 2; fx ∈ ΩExp:II and x ∈ ΩExp:Ig:
Similarly to method (E), there is one data term based on

the image pair I1, I3 taken with exposure setting I and
another one for the image pair I2, I4 taken with exposure
setting II. Here, however, the flow variable w2 is shared
by the two data terms and method (F) is, therefore, expected
to outperform (E). The choice of weights θ13, θ24 is not
obvious. Simulations show that, e.g., using weights θ13 ¼
θ24 ¼ 1; ∀ x, gives a slightly worse performance compared
to the specified weights. Bearing in mind that the regulari-
zation weights are spatially constant, it seems advantageous
to shift the weight for saturated regions in one image pair to
the other image pair that contains texture in those regions.
In general, θ13 ¼ θ24 for x ∈ ΩInt is merely a special case.
Just as for c, d in (E), any choice of weights can be made
based on the properties of the noise in a specified generative
model for a given image sequence. If ΩExp:I ∪ ΩExp:II ¼ Ω,
the method (F) ensures that at least one of its two data terms
is active in the whole image domain.

The third and final proposed method,

EQ-TARGET;temp:intralink-;sec5.1;326;390ðGÞ θ13FD13 þ θ24FD24 þ θ23FD23;

extends method (F) by including an additional data term
between mutually nonsaturated regions of the differently
exposed images I2, I3. The weights θ13, θ24 are set the
same way as in (F) and θ23 ¼ 1, x ∈ ΩInt. The method
(G) is meaningful in cases where the nonsaturated regions
can be photometrically aligned, as discussed in Sec. 2, either
as preprocessing or implicitly by using a transformed image
domain for the data terms. To conclude the section, an over-
view of the proposed methods described here, as well as of
the baseline methods, is given in Table 1. The presented flow
estimation methods are evaluated experimentally Sec. 6.

6 Experimental Results and Discussion
Two experimental setups are used to evaluate the presented
flow estimation cost functionals. Experiment 1, which is
separated into 1a and 1b due to similar experiments but
on different datasets, is performed on altered data from
the Middlebury18 and MPI Sintel19 training sets (using the
“Final” render pass for the MPI Sintel sequences17). Both
training sets consist of synthetic, animated data that is suit-
able for evaluation purposes since ground truth flow is avail-
able. Experiment 2 is performed on data from a prototype
camera setup which includes near-infrared spectral sensitiv-
ity and where every second frame is captured with flash illu-
mination and the remainder without. For Experiment 1, the
regularization weights are set to αT ¼ αS∕5 for all methods
that contain temporal regularization and the free parameter
αS is individually selected by a grid-search for each method,
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minimizing the pixelwise endpoint error of the estimated
flow wð·Þ

2 ðxÞ relative to the ground truth wgt
2 ðxÞ, EPE ¼

kwð·Þ
2 − wgt

2 k, averaged over all pixels and Sintel sequences
in Experiment 1b. For each respective method, the parameter
value selected by this procedure is used for the Middlebury
sequences in Experiment 1a as well.

6.1 Experiment 1—Data Generation

To generate synthetic HDR sequences based on the
Middlebury and Sintel datasets, we first generate down-
sampled and grayscale-converted images IfðxÞ ∈ ½0;1� that
we consider to be our original images. To simulate a HDR
scenario, the pixel values of I1, I3 are thresholded such that
all pixels where I1ðxÞ > 0.6, I3ðxÞ > 0.6 are set to 0.6
(exposure setting I). Similarly, I2, I4 are thresholded by set-
ting the pixels where I2ðxÞ < 0.3, I4ðxÞ < 0.3 to 0.3 (expo-
sure setting II). Thus, the thresholded I1, I3 are saturated in
high-intensity image regions, similarly to images taken with
a long exposure setting, and are thus thought of as I

δtLong
1 ,

I
δtLong
3 . Likewise, I2, I4 become IδtShort2 , IδtShort4 . The described
thresholding scheme results in sequences that contain pho-
tometrically aligned images. It is a more direct way to
achieve essentially the same outcome as that of specifying
some fictive raw illuminance data and exposure durations
δtLong, δtShort for the Middlebury and Sintel frames and pho-
tometrically aligning the exposure data. The nonsaturated
domain ΩExp:II is determined by the nonsaturated pixels in
the reference image I2, whereas ΩExp:I is determined by the
points that are nonsaturated in I3. Since the weights θpnqnðxÞ
are expressed in reference coordinates, for methods (F) and
(G), the points in ΩExp:I are warped to their position in the
reference frame I2 during the estimation process using the
current flow estimates. For (E), the weight cðxÞ is determined
using the final flow estimate wðCÞ

2 .

6.2 Experiment 1a—Middlebury

The first experiment is performed on the four sequences of
Middlebury that contain more than two frames as well as
ground truth flow data, named Grove2, Grove3, Urban2,
and Urban3. Frames 9 to 12 are taken from each sequence
as I1; : : : ; I4 here. The frames from the Grove2 sequence are
shown in Fig. 2. (a) shows the original images with pixel
resolution 120 × 160. The simulated HDR sequence, gener-
ated according to Sec. 6.1 and that contains differently
exposed frames, is shown in (b) and the corresponding white
masks that illustrate which pixel locations are saturated in the
respective frames are shown in (c). Even though a larger
range of intensities, [0.6,1], are saturated in frames I1, I3
than the range [0,0.3] in I2, I4, a significantly larger number
of pixels are saturated in the latter frames, since the image
sequence contains predominantly low-intensity pixel values.
This property is even stronger for the two Urban sequences,
as can be seen for the example of Urban2 in Fig. 3, particu-
larly by observing the vast number of saturated pixels in I2
and I4. All of the data costs (E), (F), (G) proposed in Sec. 5.1
use image sequences according to the alternating exposure
settings described in Sec. 6.1, as depicted in Figs. 2(b)
and 3(b). The methods ðAÞExp:I and ðBÞExp:I, on the contrary,
use input frames that are all generated according to exposure
setting I, corresponding to the long exposure duration with
clipped high intensity data. Similarly, the methods ðAÞExp:II
and ðBÞExp:II only use input frames generated according to
exposure setting II, corresponding to a short exposure dura-
tion with clipped low intensity data.

Color coded flow estimate results for the sequences
Grove2 and Urban2 are displayed in Fig. 4. The text chart
shows the order in which the flow estimates for the various
data costs are presented and the circular color chart shows the
color encoding scheme for the flow vectors in each pixel.
The flow magnitude corresponding to the radius of the circle
differs for each sequence, and corresponds to 1.2 times the
maximum flow magnitude of the ground truth flow of a
particular sequence. The maximum flow magnitudes for
the Middlebury sequences used are 1.283 (Grove2), 4.812
(Grove3), 5.567 (Urban2), and 4.398 (Urban3). The average
endpoint error (AEPE) over all pixels and sequences are
given in Table 2, along with the value for αS used for each
method and the average angular errors (AEE)16, as well as
the AEPE obtained by employing each method on the origi-
nal data (in the sense that is described in Sec. 6.1) with
all weights θpnqn ¼ 1; ∀ x. The AEPE for each sequence
is given in Table 3. The two pixels closest to the exterior
of the image domain are excluded in the calculation of the
AEPE and AEE scores. The flow estimates ðAÞExp:II and
ðBÞExp:II are very poor for the Urban sequences, due to
only images taken with exposure setting II (such as I2 and
I4 in Fig. 3) that contain large saturated image regions. On
the contrary, because the images taken with exposure setting
I in Urban 2 contain very few saturated pixels, the methods
ðAÞExp:I and ðBÞExp:I perform very well. In fact, they have an
advantage over the methods that use alternately exposed
image sequences due to a higher frame rate at their disposal
which shows in their lower AEPE for Urban2. The method
(G) is limited to exploiting the higher frame rate only for
mutually nonsaturated regions. A temporal aspect of the pro-
posed methods is that (F) and (G) use data from the time-
span it takes to capture four images, similar to the temporally

Table 1 Summary of the baseline methods, ðAÞExp:I, ðAÞExp:I, ðBÞExp:II,
ðBÞExp:II, and the proposed methods (E), (F), and (G).

Case Description

ðAÞExp:I∕ðAÞExp:II The flow estimation uses two frames, I2, I3, both
captured using exposure setting I/II.

ðBÞExp:I∕ðBÞExp:II The flow estimation uses four frames, I1; : : : ; I4,
all captured using exposure setting I/II.

(E) The flow estimate is given by a weighted sum of
two estimates from separate methods, (C) and
(D), that each uses a single pair of equally
exposed frames, I1, I3 and I2, I4, respectively.
For (E) and the other proposed methods, as
opposed to the baseline methods, I1, I3 are
captured using exposure setting I and I2, I4 are
captured using exposure setting II.

(F) Two data cost terms, based on the image pairs
I1, I3 and I2, I4, respectively, are combined into
one cost expression in order to achieve a
coupled estimation of the desired flow field w2.

(G) This method extends method (F) by including
an additional data cost based on the mutually
nonsaturated regions of I2, I3.
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regularized baseline methods ðBÞExp:I and ðBÞExp:II. Since
each of the estimates used for (E) only makes use of data
from the time-span that it takes to capture three images, it is
conceptually closer to the methods ðAÞExp:I and ðAÞExp:II than
(F) and (G) are, in the respect that less temporal regulariza-
tion is included. With that reasoning, one could expect (E) to
perform well and (F), (G) to perform worse, relatively speak-
ing, for sequences where (A) performs better than (B), but
such a trend is not obvious from the data in Experiment
1a. In fact, the weighted sum operation in (E) can be seen
as a sort of temporal regularization itself.

6.3 Experiment 1b—MPI Sintel

Experiment 1b is similar to the previous Experiment 1a but is
performed on the dataset of MPI Sintel, particularly on
frames 11 to 14 of each sequence. An example sequence,
Alley2, is shown in Fig. 5. The original (in the sense of
Sec. 6.1) Alley2 frames are shown in (a). Their pixel reso-
lution is 109 × 256. The differently exposed input image
sequence as well as the corresponding saturation masks
are shown in the Figs. 5(b) and 5(c). The estimated flow
fields are given in (d) and (e). The AEPE and AEE over
all pixels and all 23 sequences in the dataset are summarized
in Table 4. The AEPE for each sequence are presented sep-
arately in Table 5. For the Alley2 sequence in Fig. 5, num-
bered here as sequence 2, the methods ðAÞExp:II and ðBÞExp:II
that only use exposure setting II fail to capture the full extent
of the moving person due to the saturated low-intensity
data, primarily in the lower image regions. Method (E),
which actually has the best AEPE for the sequence, also
fails to properly estimate the motion of the moving person.
In the case of method (E), the failure is due to suboptimal

regularization weights for that particular sequence, unlike
the case for ðAÞExp:II and ðBÞExp:II. The moving person is
much better captured by the estimates ðAÞExp:I and ðBÞExp:I,
showing that only one of the two exposure settings was suf-
ficient for this sequence. That is, the combined dynamic
range of the foreground objects (only one moving person
in this sequence) did not actually demand the use of multiple
exposure settings.

For some of the sequences, the flow field estimates are
really poor for all methods. Due to this, the total AEPE is
bloated. With that said, even the highest ranking OF methods
on the MPI Sintel ranking list fails just as badly on some of
the test image sequences (that are as challenging as the train-
ing images). On average, the methods ðAÞExp:I and ðBÞExp:I
that only use one exposure setting perform the best in this
experiment. This is due to the fact that, just as for the
Urban2 sequence discussed in Experiment 1a, many of these
sequences are relatively unaffected by the clipping of high-
intensity data. Most often only the background regions are
affected and, more so than for foreground objects, these
regions are handled rather well by the regularization
terms. At the bottom row of Table 5, the AEPE is presented
for the case where the seven sequences whose best flow esti-
mate has an AEPE above 1.000 are excluded. If these hard
sequences are left out of the evaluation, other methods catch
up in performance, indicating that the sequences where all
methods more or less fail impact the AEPE of the various
methods differently. To isolate some factors that influence
the flow estimate results, we can first compare the results
of ðAÞExp:I to (C) whose AEPE over all sequences is
2.241. Both methods use only two input images taken with
exposure setting I. The difference is that ðAÞExp:I uses IExp:I2

and IExp:I3 , whereas (C) uses IExp:I1 and IExp:I3 . The superior

Fig. 3 The image sequence Urban2 from the Middlebury dataset: (a) original images, (b) simulated HDR
sequence, used for the experimental evaluation, and (c) masks that show saturated pixels in white.
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AEPE of ðAÞExp:I is likely due to its higher frame-rate. What
can be said about the proposed methods? If, e.g., (F) is com-
pared to (C) and (D) (the latter has an AEPE of 2.696), meth-
ods that use the same frame-rate in each individual data term,
(F) along with the other proposed methods show an advanta-
geous performance. Among the set of proposed methods,
there is a small benefit in performance for methods (F)
and (G) that consist of minimizing a single cost functional
relative to the weighted sum of (E), as well as a small benefit

for (G) over (F) due to adding a data term between mutually
nonsaturated regions in I2, I3. It is worth noting that, due to
keeping αT fixed in the parameter-selection, (B), (F), and (G)
were given a slight disadvantage compared to (A) and (E),
for which the value of αT does not impact the estimation
result. Furthermore, it seems that methods (B), (F), (G)
more often than the other methods suffer from poor flow esti-
mates at the edge of the image domain due to appearing or
disappearing objects, which then somewhat impacts the

Fig. 4 Color coded flow field estimates for the various methods, encoded as shown by the circular chart.
The ground truth flow is denoted “gt” in the legend. The results correspond to (a) Grove2 sequence and
(b) Urban2 sequence.
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Table 3 AEPE per image sequence for Experiment 1a. Abbreviations ðAÞI, ðBÞI, ðAÞII, ðBÞII are used for ðAÞExp:I and so on.

Seq. ðAÞI ðBÞI ðAÞII ðBÞII (E) (F) (G)

Grove2 0.111 0.124 0.133 0.109 0.087 0.088 0.086

Grove3 0.264 0.287 0.282 0.268 0.251 0.262 0.248

Urban2 0.198 0.209 1.097 0.700 0.293 0.273 0.294

Urban3 0.352 0.305 1.310 1.314 0.324 0.297 0.302

Total 0.231 0.231 0.706 0.598 0.239 0.230 0.233

Note: bold values indicate the best method.

Fig. 5 (a)–(c) The image data from the MPI Sintel sequence Alley2 (Seq. # 2); (d) from left to right, flow
estimates ðAÞExp:I, ðBÞExp:I, ðAÞExp:II, ðBÞExp:II; and (e) ground truth flow, flow estimates (E), (F), and (G).

Table 2 Summarized results for Experiment 1a, averaged over all
image sequences. For method (E), the values of αS are. 02 for (C)
and. 045 for (D).

Case AEPE AAE αS AEPE original

ðAÞExp:I 0.231 6.86° 0.03 0.224

ðBÞExp:I 0.231 6.70° 0.025 0.225

ðAÞExp:II 0.706 19.27° 0.02 0.234

ðBÞExp:II 0.598 15.92° 0.035 0.226

(E) 0.239 6.88° 0.02∕0.045 0.228

(F) 0.230 6.64° 0.03 0.217

(G) 0.233 6.64° 0.06 0.213

Note: Bold values indicate the best method.

Table 4 Summarized results for Experiment 1b.

Case AEPE AEE αS AEPE original

ðAÞExp:I 1.801 15.78° 0.03 1.740

ðBÞExp:I 1.854 16.13° 0.025 1.815

ðAÞExp:II 2.331 24.07° 0.02 1.750

ðBÞExp:II 2.414 23.98° 0.035 1.817

(E) 2.185 19.03° 0.02∕0.045 2.163

(F) 2.157 18.90° 0.03 2.284

(G) 2.130 17.83° 0.06 2.105

Note: bold values indicate the best method

Optical Engineering 093103-11 September 2015 • Vol. 54(9)

Bengtsson, McKelvey, and Lindström: Optical flow estimation on image sequences with differently exposed frames



AEPE scores. If two additional data terms, θ12FD12 and
θ34FD34, are added to method (G), where θ12 ¼ θ34 ¼ θ23
and αS is reoptimized to 0.035, the total AEPE is decreased
to 2.101. However, the improvement is due to a somewhat
less bad performance on the hard sequences, as its AEPE
on the best 16 sequences is 0.482, worse than all of (E),
(F), and (G). If, for a change, method (F) is weighted by
θ13 ¼ θ24 ¼ 1, ∀ x, its AEPE with re-optimized αS ¼ 0.025
becomes 2.243, worse than all of the proposed methods.
Overall, the results of Experiment 1b show that a method
that uses alternately exposed images is not to be used as
a default configuration. However, for certain imaged scenes
where the dynamic range limitation is significant, a camera-
mode that alternates between different exposure settings
does have merit.

6.4 Experiment 2—on Data from our Prototype
Camera

The image data in the second experimental setup comes from
a camera prototype for traffic monitoring in a vehicle. Every
other frame is captured with flash illumination, including
light in the near-infrared spectrum, from the headlights of
the car. The pixel elements of the sensor grid have two
different spectral sensitivities. One quarter of the pixels are
sensitive to visual light (corresponding to the typical RGB
spectral bands) and the remaining pixels have a wider spec-
tral sensitivity that includes light in the near-IR region in
addition to the visual sensitivity. At each time instance,
there are two image channels produced after demosaicing
the sensor data. However, to conduct this experiment, a

Table 5 AEPE per image sequence for Experiment 1b. The total AEPE for all 23 sequences as well as for the 16 sequences with the lowest
respective AEPE are given at the bottom.

Sequence no ðAÞI ðBÞI ðAÞII ðBÞII (E) (F) (G)

1 0.185 0.245 0.319 0.318 0.188 0.185 0.166

2 0.179 0.183 0.308 0.271 0.167 0.199 0.170

3 9.320 8.761 9.921 9.444 8.956 8.923 8.949

4 6.523 6.565 6.217 6.253 6.976 6.975 6.781

5 1.065 1.060 1.236 1.271 0.989 0.986 1.114

6 5.126 6.120 5.076 5.450 6.808 6.381 5.896

7 0.892 0.905 1.677 1.647 1.118 1.167 1.039

8 0.149 0.169 0.192 0.168 0.137 0.154 0.138

9 0.194 0.216 0.205 0.197 0.211 0.226 0.193

10 0.518 0.521 0.639 0.607 0.546 0.550 0.531

11 0.277 0.300 0.406 0.411 0.317 0.318 0.301

12 1.488 1.705 7.008 7.019 3.960 3.925 5.241

13 1.535 1.370 3.135 3.183 1.972 1.939 1.934

14 0.589 0.601 0.614 0.586 0.690 0.744 0.701

15 7.312 7.916 8.685 10.753 10.239 9.929 9.436

16 2.904 3.059 3.867 3.892 3.775 3.937 3.444

17 0.799 0.826 0.660 0.666 0.783 0.795 0.728

18 0.085 0.087 0.299 0.304 0.114 0.114 0.114

19 0.275 0.267 0.570 0.563 0.288 0.285 0.274

20 0.093 0.101 0.224 0.210 0.079 0.073 0.072

21 0.063 0.057 0.184 0.151 0.045 0.048 0.047

22 0.673 0.661 1.154 1.113 0.873 0.733 0.703

23 1.177 0.948 1.029 1.049 1.019 1.031 1.013

Total 1.801 1.854 2.331 2.414 2.185 2.157 2.130

Best16 0.451 0.447 0.607 0.596 0.473 0.476 0.456

Note: bold values indicate the best method.
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single image channel is retained per time instance to stick
with scalar valued frames in this work. Thus, data from
the wideband pixels is selected. The original pixel resolution
of the sensor is 720 × 1280. As data input I1; : : : ; I4 to the
flow estimate methods, a region of size 150 × 250 pixels is
cut out from the right part of the road in front of the vehicle
on which the camera is mounted. The four input frames are
displayed in Fig. 6(a). Flash illumination was used to capture
I1, I3 while I2, I4 were captured without flash. In this experi-
ment, the sampling intervals of the frames are nonuniform.
For the dataset presently discussed, t3 − t2 ¼ 3ðt2 − t1Þ ¼
3ðt4 − t3Þ. To cope with this, a minor adjustment to the regu-
larization terms Eqs. (14) and (15) is necessary. Each flow
component uf, vf needs to be multiplied with a constant τf
which is inversely proportional to the time to the next sam-
pling instance, here taken as τ1 ¼ 1, τ2 ¼ 1∕3, τ3 ¼ 1. This
is left out of the cost functional expressions as it is a straight-
forward extension.

Only the methods (C), (D), (E), and (F) are considered for
this image sequence. The methods that use a single exposure
setting are not applicable to the available data sequences in
this experiment, and the method (G) requires photometric
alignment of nonsaturated regions of the differently exposed
frames I2, I3 for which there exists no generative data model.
To achieve the best possible estimates (according to manual
inspection as no ground truth data is available) for the respec-
tive methods required some adjustment of the parameters.
For cases (C) and (F), αS ¼ 0.5 was used, whereas for
method (D), αS ¼ 0.1. For all cases, αT ¼ 0.01. Bear in mind
that the input data follow a different generative process than
that of Experiment 1, discussed in Sec. 6.1. Here, linear
intensity (i.e., not gamma encoded) raw sensor data with
a bit depth of 12 is used. The weight functions for (E)
and (F), respectively, are simply set to c ¼ d ¼ 0.5
and θ13 ¼ θ24 ¼ 1, ∀ x, in this experiment. Flow field esti-
mates for Experiment 2 are shown Fig. 6(b). The dominant
flow is caused by the motion of the ego vehicle in which the
camera is mounted as it moves forward along the road. The

flow at pixels in the right part of the image domain have a
direction downward and to the right. The further left in the
image domain, the more the flow direction points straight
downward (while interpreting these results, remember that
the used data is cropped from an originally larger image
domain). A lone leg movement by one of the deer depicted
in the image sequence is clearly captured by the estimated
flow except for method (D). Some movement of the head
of another deer stands out as well. As an additional illustra-
tion, quiver plots of the flow field estimates from cases (C)

Fig. 6 Image data sequence from our prototype camera system and the flow estimates for a set of data
terms.

Fig. 7 (a) and (b) Quiver plots for methods (C) and (F). The magni-
tude of the flow vectors are scaled by a factor of 10.
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and (F) are shown in Fig. 7. Estimated flow vectors are
shown for every 20th pixel, with the flow magnitude scaled
by a factor of 10 for clearer visualization. As can be seen, the
direction and magnitude of the flow differ significantly
between the two cases, particularly in the lower left corner,
in which the road surface is mostly saturated in I1, I3. The
improvement gained by including nonflash data I2, I4 in (F)
compared to (C) is clear, as determined by manually inspect-
ing the movement of the road texture between the reference
frame I2 and I4. To round off the section, we remark that an
issue with spatial regularization in OF in general is that it
only measures spatial proximity in the 2-D projected
image domain. In reality, objects that are closer to the camera
have a larger projected motion compared to objects further
away. This effect could be taken into account if depth infor-
mation is available from the sensor system.

7 Conclusions and Future Work
In this work, we have considered OF estimation on image
sequences with differently exposed frames. A suitable appli-
cation is the case of HDR scenes where, due to the dynamic
range limitation of camera sensors, each respective image
inherently contains saturated regions. To address this issue,
a set of data terms have been designed. These proposed
methods are evaluated on synthetic datasets as well as on
preliminary data from our own camera prototype. Not sur-
prisingly, the quality of flow estimates depends directly on
the quality of the input data. For example, in Experiments 1a
and 1b, the methods that only use images from exposure set-
ting II, ðAÞExp:II and ðBÞExp:II, where low-intensity data are
clipped generally suffer performance-wise. The proposed
data terms are not designed for general image sequences,
but specifically for scenarios with significant saturation in
the image data for both exposure settings. As shown by
the strong overall performance of ðAÞExp:I and ðBÞExp:I, expo-
sure setting I was relatively unaffected by the clipping
of high-intensity data. Thus, it remains to further test our
approach on real-world scenarios. No conclusive answer
has been given as to which proposed method, (E), (F) or (G),
is best in general. Similarly to the choice between the meth-
ods (A) and (B), which is about whether or not to use tem-
poral regularization in the conventional OF case, the choice
among the proposed methods is, to some degree, data-
dependent. However, for cases where (G) is applicable, it is
favorable over (F) due to its inclusion of data terms between
mutually nonsaturated regions of pairs of consecutive
images. Also, the presented experiments support the claim
that, on average, it is favorable to use the respective data con-
straints in a coupled estimation approach, which is the case
for (F) and (G) but not for (E). As future work, a database
of HDR image sequences from, e.g., scenes that contain
moving objects in both indoor and outdoor environments
simultaneously is highly desired. For such a case, each
respective exposure setting typically leads to significant
saturation in the image regions for which it was not
tuned. Additional future work includes using spatially
varying weights θpnqn based on a specified generative data
model, as well as the inclusion of feature matches and mod-
eling of illumination-variations in the context of differently
exposed image sequences.

Appendix A: Cost Functional, Corresponding
Euler–Lagrange Equations and
Implementation Details
In order to estimate a given flow field, the objective is to find
the horizontal and vertical flow functions of wf ¼ ðuf; vfÞ,
∀ f ∈ f1; : : : ;F − 1g that minimize the cost functional E in
Eq. (5). The flow field of interest is wfref , where fref ¼ 2
throughout the paper. A necessary condition for a minimizer
is that the first variation of E with respect to each of its argu-
ments is equal to zero.39 An equivalent condition is given by

EQ-TARGET;temp:intralink-;e016;326;617

δE
δuf0

¼ 0 ⇔
∂F
∂uf0

−
∂
∂x

∂F
∂uf0x

−
∂
∂y

∂F
∂uf0y

¼ 0; ∀ f0; (16)

EQ-TARGET;temp:intralink-;e017;326;562

δE
δvf0

¼ 0 ⇔
∂F
∂vf0

−
∂
∂x

∂F
∂vf0x

−
∂
∂y

∂F
∂vf0y

¼ 0; ∀ f0; (17)

where the left hand sides are the first variations of the func-
tional E with respect to uf0 and vf0 , f0 ∈ f1; : : : ;F − 1g,
and the right hand sides are the (strong form) E–L partial
differential equations, for which each of the terms uf0 ,
uf0x, uf0y, vf0 , vf0x, vf0y are treated as independent variables.
Due to the equivalences in Eq. (16), the flow that minimizes
the total cost functional is obtained by the solution to the E–L
equations. With F ¼ FD þ αSFS þ αTFT , we make use of
the linearity of the derivative operator to evaluate the respec-
tive terms
EQ-TARGET;temp:intralink-;e018;326;412

FD ¼
XN
n¼1

θpnqnFDpnqn ;

FDpnqn ¼ Ψf½IqnðxþWqnÞ − Ipn
ðxþWpn

Þ�2g; (18)

EQ-TARGET;temp:intralink-;e019;326;344FS ¼ Ψ

2
4XF−1

f¼1

ðu2fx þ u2fy þ v2fx þ v2fyÞ
3
5; (19)

EQ-TARGET;temp:intralink-;e020;326;292FT ¼
XF−2

f¼1

Ψ½ðufþ1 − ufÞ2 þ ðvfþ1 − vfÞ2�; (20)

part by part for F in Eq. (16) in the following sections of the
appendix. The contributions are added together at the end.
Note that FS only depends on the derivatives of uf0, vf0 and
that FD, FT only depend on uf0, vf0 themselves. Thus, for
each of FD, FS, FT , some of the terms in Eq. (16) vanish
directly, simplifying the respective evaluations. All the der-
ivations are given for Eq. (16), with respect to uf0 (for a spe-
cific f0). The derivation of the E–L equations in (17) with
respect to vf0 is analogous. Due to the general choices
allowed for pn, qn, and fref , and the fact that the expression
is nonlinear in the unknown flow, the evaluation of the FD
part is somewhat cumbersome. The regularization terms are
relatively straightforward to treat, and are, therefore, given
first. If the interval between the sampling instances is not
1, or particularly if the sampling intervals are nonuniform
which is the case for the camera prototype setup in
Experiment 2, a scale factor is necessary for each flow
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increment. While it is included in our implementation, it is
left out of the derivation as it is a straightforward extension.

A.1 Spatial Regularization Term

The contribution from the spatial term Eq. (19) to the E–L
equations of (16) is given by

EQ-TARGET;temp:intralink-;e021;63;655−
∂
∂x

∂FS

∂uf0x
−

∂
∂y

∂FS

∂uf0y
¼ −2 divðΨ 0

S∇uf0Þ;

Ψ 0
S ≜ Ψ 0

2
4XF−1

f¼1

ðu2fx þ u2fy þ v2fx þ v2fyÞ
3
5;

(21)

where Ψ 0ðz2Þ ¼ ð1∕2Þðz2 þ ϵ2Þ−1∕2, due to

EQ-TARGET;temp:intralink-;e022;63;559

∂FS

∂uf0
¼ 0;

∂
∂x

∂FS

∂uf0x
¼ ∂

∂x
ðΨ 0

S2uf0xÞ;

∂
∂y

∂FS

∂uf0y
¼ ∂

∂y
ðΨ 0

S2uf0xÞ:
(22)

Although short notation is used, the reader is reminded that
uf0x and uf0y are the functions of ðx; yÞ. An interesting obser-
vation is that the contribution Eq. (21) of the spatial term to
the E–L equations has the form of a nonlinear (due to the
dependence of Ψ 0

S on the unknown parameters) diffusion,
commonly used for edge-preserving image denoising.44,45

Here, however, this term is balanced against the other
included terms.

A.2 Temporal Regularization Term

Because the temporal regularization term Eq. (20) does not
contain any partial derivatives of the flow functions in its
expression, the contribution to Eq. (16) is given directly as

EQ-TARGET;temp:intralink-;e023;63;336

∂FT

∂uf0
¼

8>><
>>:

Ψ 0
TI · 2ðu2 − u1Þ · ð−1Þ; f0 ¼ 1;

Ψ 0
TII · 2ðuf0 − uf0−1Þ · ðþ1Þþ

þΨ 0
TI · 2ðuf0þ1 − uf0Þ · ð−1Þ; 1 < f0 < F − 1;

Ψ 0
TII · 2ðuF−1 − uF−2Þ · ðþ1Þ; f0 ¼ F − 1;

Ψ 0
TI ≜ Ψ 0½ðuf0þ1 − uf0Þ2 þ ðvf0þ1 − vf0Þ2�;

Ψ 0
TII ≜ Ψ 0½ðuf0 − uf0−1Þ2 þ ðvf0 − vf0−1Þ2�:

(23)

A.3 Data Term

Similarly to the temporal regularization term, the data term
Eq. (18) does not contain any partial derivatives of the flow
in its expression, thus its contribution to Eq. (16) is

EQ-TARGET;temp:intralink-;e024;63;158

∂FD
∂uf0

¼ P
N
n¼1 θpnqn

∂FDpnqn
∂uf0

; (24)

where for each specific n,

EQ-TARGET;temp:intralink-;e025;63;109

∂FDpnqn

∂uf0
¼ Ψ 0½ðIpnqnÞ2� · 2Ipnqn ·

∂Ipnqn

∂uf0
(25)

and where Ipnqn ≜ IqnðxþWqnÞ − Ipn
ðxþWpn

Þ. To further
evaluate Eq. (25), which is nonlinear in the flow functions

uf0 and vf0 contained in Wqn and Wpn
, successive lineari-

zations about the current flow estimates are employed in an
iterative scheme. This is what is referred to as a warping
scheme in the papers cited in the introduction of the original
paper.3 The warping scheme typically relies on a coarse-to-
fine multiresolution strategy to avoid local minima, with
implications discussed in the introduction. The flow func-
tions are separated into the current estimate at iteration (k)
and a flow update term, according to

EQ-TARGET;temp:intralink-;e026;326;635 wf → wðkþ1Þ
f ¼ wðkÞ

f þ dwðkÞ
f ; (26)

such that

EQ-TARGET;temp:intralink-;e027;326;589IqnðxþWqnÞ → IqnðxþWðkþ1Þ
qn Þ ≈

≈ IqnðxþWðkÞ
qn Þ þ IðkÞqnxdU

ðkÞ
qn þ IðkÞqnydV

ðkÞ
qn ;

Ipn
ðxþWpn

Þ → Ipn
ðxþWðkþ1Þ

pn Þ ≈
≈ Ipn

ðxþWðkÞ
pn Þ þ IðkÞpnxdU

ðkÞ
pn þ IðkÞpnydV

ðkÞ
pn ;

(27)

where

EQ-TARGET;temp:intralink-;e028;326;489 IðkÞqnx ¼ ∂
∂x ½IqnðxþWðkÞ

qn Þ�; IðkÞqny ¼ ∂
∂y ½IqnðxþWðkÞ

qn Þ�;
(28)

and similarly for IðkÞpnx, I
ðkÞ
pny. Expressions of the type Iqnðxþ

WðkÞ
qn Þ are computed by means of bicubic interpolation.

Using the substitution in Eq. (27), we get for Eq. (25) that

EQ-TARGET;temp:intralink-;e029;326;411

∂IðkÞpnqn
∂uf0

¼

8>>>>>><
>>>>>>:

IðkÞqnx − IðkÞpnx; f0 ≥ r; qn > f0; pn > f0;

IðkÞqnx; f0 ≥ r; qn > f0; pn ≤ f0;

IðkÞpnx − IðkÞqnx; f0 < r; pn ≤ f0; qn ≤ f0;

IðkÞpnx; f0 < r; pn ≤ f0; qn > f0;
0; else;

(29)

where qn > pn; ∀ n, by construction. For ∂IðkÞpnqn∕∂vf0 in the
E–L Eq. (17) with respect to. vf0 , all partial derivatives of
Eq. (29) are with respect to y instead of x.

A.4 Pseudoalgorithm for the Minimization Procedure

The full E–L equations stated in Eq. (16) are given by sum-
ming the contributions Eqs. (21), (23), and (25) together
(using the weights αS, αT). The flow terms in all expressions
are replaced, for the sake of the iterative solution scheme, by
a current estimate and an update term according to Eq. (26),
as shown for the data term in the previous section. However,
there still remains a nonlinearity in the E–L equations, due to
the expression of Ψ 0, that should be dealt with. In order to
obtain a linear expression of the E–L equations, an inner iter-
ation loop over iteration index l is added in which the
Ψ 0-terms in Eqs. (21), (23), and (25) lag behind the flow
update terms dwðk;lþ1Þ

f ¼ ðduðk;lþ1Þ
f ; dvðk;lþ1Þ

f Þ. The notation
Ψ 0f·gðk;lÞ is thus introduced to refer to any of the Ψ 0-terms
with the flow update terms in its argument taken from the
previous iteration (l), i.e., ½duðk;lÞf ; dvðk;lÞf �. Several papers
take a similar iterative approach, with an outer and an
inner loop to successively linearize the problem. We refrain
from typing out the full linearized E–L equations, and
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suggest a study of other publications where the final expres-
sions are not as involved, e.g., by Brox et al.3 At a given
iteration, ðk; lÞ, a set of linear equations that interconnects
all E–L equations is formed and solved numerically on the
pixel grid of the reference image to yield discrete approxi-

mations of ½duðk;lþ1Þ
f ; dvðk;lþ1Þ

f �; ∀ f. The pseudoalgorithm
for the full iterative scheme is given in Table 6.

A coarse-to-fine estimation strategy is used in the experi-
ments, with S ¼ 10 scale levels and a re-sampling factor
of 0.85. The first scale s ¼ 1 is resampled by a factor
0.85ð10−1Þ ≈ 0.23, which represents the coarsest resolution.
For each scale, the algorithm in Table 6 is run, although
for s > 1, uð0Þ, vð0Þ are assigned values corresponding to the
re-scaled solution from the previous scale. The number of
outer and inner iterations used are K ¼ 5 and L ¼ 5, respec-
tively, verified to be sufficient for convergence. The flow
updates at each step ðk; lÞ are computed in closed-form in
the experiments, but would also demand an iterative
approach (e.g., Gauss–Seidel type methods are used by other
authors) for larger image resolutions. The boldface vectors

uðkÞ¼½ðuðkÞ1 ÞT;: : :; ðuðkÞF−1Þ�T and vðkÞ¼½ðvðkÞ1 ÞT; : : : ; ðvðkÞF−1Þ�T
in Table 6 contain all flow increments uf and vf, each of size
M × 1, that in turn contain flow data from the discretized
image domain in vectorized form. Thus, the dimension of
the equation system that results from numerically imple-
menting the E–L equations on the pixel grid of the reference
frame is 2ðF − 1Þ · M, where M is the number of pixels per
frame. The update terms duðk;lþ1Þ, dvðk;lþ1Þ are formed sim-
ilarly. All the first order derivatives are implemented with the
discrete convolution kernels ½0.5; 0;−0.5� and ½0.5; 0;−0.5�T
for the horizontal and vertical cases, respectively. No prior
low-pass filtering of the image at the given resolution
scale is performed for the discrete derivative approximations.
A reservation is made for the implementation of the diver-
gence of the scaled gradient in Eq. (21), which has the form

EQ-TARGET;temp:intralink-;e030;326;734divðΨ 0
S∇uf0Þ ¼

∂
∂x

�
Ψ 0

S

∂uf0
∂x

�
þ ∂

∂y

�
Ψ 0

S

∂uf0
∂y

�
(30)

and is implemented with convolution kernels ½1;−1� and
½1;−1�T for the respective partial derivatives. This choice
coincides with a previously proposed implementation from
a similar OF method with a nonvariational formulation,
where the term corresponding to the expression in Eq. (30)
is referred to as a generalized Laplacian.46 The discretization
leads to the following approximation

EQ-TARGET;temp:intralink-;e031;326;621

∂
∂x

�
g
∂u
∂x

�����
i;j
≈ gi;jðui;jþ1 − ui;jÞ − gi;j−1ðui;j − ui;j−1Þ;

(31)

about a pixel ði; jÞ of a flow vector u, where g is seen to be
evaluated asymmetrically, yet gives convincing results in
empirical tests against other discrete operators for the given
experiments. The formulation in Eq. (31) allows for compari-
son with the rich research results on numerics of nonlinear
diffusion, to which the interested reader is referred for a more
thorough study.47
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