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ABSTRACT 
 

Manufacturing industries are always under constant pressure to improve the productivity. Many 

manufacturing companies started to capture the shop floor data to the time scale of seconds. 

Consequently, the challenge is to harness the value from the data and identify the ways in which the 

value extracted could improve the productivity.  

 

In this thesis, two sets of Manufacturing Execution Data (MES) data consisting of shop floor data 

were used to identify the productivity potentials. The first set of data had the MES information was 

derived from a common data source of 23 industries consisting of 884 machines. The second data 

set was more specific to one manufacturing line. The methodology to analyse both data sets 

includes data cleaning, data preparation and data modelling.  

 

The outcome of the analysis of the first data set was the impact of operator influenced loss times on 

Overall Equipment Efficiency (OEE). The outcomes of the analysis of the second data set were 

identification of static and momentary bottlenecks in the production line from the real time data 

and to develop algorithms for those. Also, the Key Performance Indicators (KPI) were modelled to 

determine the pattern and to predict their behaviour.  

 

Identifying the productivity potentials (operator influenced loss times, bottlenecks detection and 

predicting the behaviour of the KPI) from the real time data is very useful to make fact based 

decisions which reduces the value at risk of making these decisions which in turn helps to improve  

productivity. 

 

Keywords: Operator Influenced Loss Times, Bottleneck Detection, Data Driven Analytics, Big Data, 

OEE 
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1. Introduction 
In this chapter, the background of the problem is presented followed by the thesis aim and finally the 

research questions. 

1.1. Background 
The key factor which drives the improvement of the manufacturing industries today is the need for 

competitiveness and the ability to handle the threats and opportunities in a flexible manner. The 

manufacturers are always under constant pressure to make more efficient use of resources. Today 

they find it difficult to improve the productivity in industries which already have an efficient 

process(James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles 

Roxburgh, 2011). Though lean and six sigma techniques are deployed by the manufacturers to 

reduce the waste and variability of the production process, there are sometimes extreme swings in 

the variability. Moreover, the production systems could be complex in nature, multi-stepped with 

multiple loops with strong interrelationships and also consists of many activities that influence the 

productivity. In this scenario, the manufacturers need more granular approach in diagnosing and 

correcting the process flow and to reduce the variability. One of the methods that promise to deliver 

significant productivity gains and explains why the variability exists is the application of data 

analytics(Lechevalier, Narayanan, & Rachuri, 2014). Nowadays, with the advancements in the 

technology and systems integration, the capturing of the real time information of the manufacturing 

operations has reached a new dimension(Krumeich et al., 2014). Manufacturing is one of the largest 

data generators today(Data, Group, & Greenplum, n.d.). Real time data and information recorded by 

the Manufacturing Execution Systems (MES) are the primary assets of the manufacturing industries. 

For the companies to run smarter, more agile, the collected data should be transformed into 

meaningful information with the data driven discoveries e.g. analytics (Davenport, 2006). 

Big data is a growing torrent among the manufacturing industries. From this big data which are 

collected, in-depth insights into the production process can be drawn within and compare them with 

other similar production systems to identify the key improvement areas. Apart from finding 

improvement potentials, the big data, provides us with the insights that help the companies in day 

to day decision making process. According to McAfee and Brynjolfsson (2012),  

“..the more companies, characterised themselves as data-driven, the better they performed on 

objective measures of financial and operational results. In particular, the companies in the top third 

of their industry in the use of data driven decision making were, on average 5% more productive and 

6% more profitable than the competitors.” (p.64).  

The manufacturers collect the data and use them either for tracking purposes or to use them to 

improve and optimise the production processes. However, recent trend show that the use of big 

data in manufacturing is still in the primary phase when compared to the other types of industries 

like finance, service etc.(Yang & Nurtam, 2013). Advanced analytics over the big data can give the 

companies an explicit picture of the impact of different variables on the overall productivity of their 

operations. First, it delivers insights on the most efficient way to control the production systems 

given the system constraints (e.g. better management of bottlenecks in the production). Secondly, it 

highlights the largest opportunities to improve the performance by highlighting the key losses of the 

production system. Moreover, analytics explores the correlations to identify patterns and predicts
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the relationships among variables and also quantifies the applicability of the identified insights 

statistically. With the use of increasing availability of the data and the tools to analyse them, 

tremendous value could be captured from the new treasure trove and the facts from the data could 

fundamentally change the way that the management takes decisions. 

1.2. Overall Purpose 
The purpose of this thesis is to use the production data to achieve increased productivity of the 

production system. This is done by identifying the potentials through data analytics from the real 

time data.  

Two sets of big data are analysed in this thesis. Those are described below: 

 Data set I: It is derived from a common data source which records the MES information of 

machines of different industries.  

 Data set II: It is derived from a supervisory system that monitors, collects and stores the 

information of the automated assembly line at a factory.  

1.3. Background and Objectives of Data Set I 
Overall Equipment Efficiency (OEE) is a measure that quantifies how the well a manufacturing unit 

performs by comparing what the equipment produced to what the equipment could have 

potentially produced. Improving the OEE is an important factor in the different types of 

manufacturing industries today where shrinking margins, consolidation and fierce competition have 

driven the need to reduce cost and improve the efficiency. OEE is a valuable tool to unleash the 

hidden capacity (Muchiri & Pintelon, 2008). OEE accounts for the losses due to availability, 

performance and quality. This metric in-turn measures different types of production losses and 

indicate areas of potential improvement. The losses of the production system are calculated from 

one of the sources: real time manufacturing data collected by Manufacturing Execution System 

(MES) or similar resources which tracks and stores the real time production data, from the manual 

files that records the production details maintained by the production team. By eliminating the 

losses from the production system, the unplanned downtime of the machines are reduced, thus 

increasing the OEE. Though OEE is a popular measure of productivity, it can only be used to measure 

the performance of the individual machines(Muchiri & Pintelon, 2008).  

OEE was first introduced by Nakajima in 1988.Many researches and practitioners have argued about 

the use OEE since then in many different ways over the years. With the evolution of OEE, different 

modifications were done to OEE to fit a broader perspective as supposed important for the 

companies(Muchiri & Pintelon, 2008). Those are Overall Factory Effectiveness (OFE), Overall Plant 

Effectiveness (OPE), Overall Throughput Effectiveness (OTE), Production Equipment Effectiveness 

(PEE), Overall Asset Effectiveness (OAE) and Total Equipment Effectiveness Performance (TEEP) 

(Muchiri & Pintelon, 2008). While OEE measures the equipment’s efficiency against the scheduled 

time, TEEP measures the OEE against the calendar time. PEE gives a weight to the factors of OEE i.e. 

PEE doesn’t give equal importance to all the three factors of OEE. OFE, OPE and OAE raise the OEE 

measure to the factory level. However they are raised by synthesizing the subsystem level metrics 

and capturing their interconnectivity information(Huang & Keskar, 2007). To summarise, TEEP and 

PEE are measures of individual equipment’s performance whereas OAE, OFE and OPE are extended 

to the factory level.   
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The competitiveness of the manufacturing facilities not only depends on the utilization of the 

equipment but also depends on operator productivity(Chien, Zheng, & Lin, 2013). The human factor 

(operators) is the most important and a critical factor which influences the machine 

productivity(Dvořák, Malkovský, & MacKů, 2008). Research has showed that the interference 

problems (i.e. allowing one operator to operate or repair several machines) results in machine 

idleness reduces the production system performance .This interference time is the potential time 

lost in the total planned production time. 

The performance measurement metrics: OEE, TEEP, OFE, OPE, PEE, OAE measure only the 

equipment’s efficiency. But on the other hand, the utilisation of the operators affects the utilisation 

of the equipment and vice versa (Hedman, Sundkvist and Almstrom, 2014). But these equipment 

performance metrics doesn’t provide any information on the amount of manual work done by the 

operator or the machine interference time. As human decisions and actions also affect the overall 

performance of the production system(Bailey & Barley, 2005), it is necessary to analyse the amount 

of manual work or the operator influenced loss times (like machine interference time) in order to 

improve the overall productivity.  

To remain competitive, apart from increasing productivity, companies should compare themselves 

with the peers. This method, which is otherwise called as benchmarking, allows comparing the 

practices and process with peer companies which helps them to identify areas of competitive 

advantage and disadvantages (Boxwell & Robert, 1994). Also, this benchmarking helps analysing the 

underlying reasons behind the variations in performance. Moreover, it will strengthen the credibility 

and demonstrate the performance to the company’s stakeholders. On the other hand, the 

benchmarking exercise help researchers in order to assess and focus on the reasons for the 

performance gaps within or across the different industry groups which could underpin new wave for 

productivity potentials. 

This study is initiated by the researchers at Chalmers University after the findings from the master 

thesis at Aros electronics on “Increasing the productivity of a surface mounting line”(Bergstrom& 

Palmkvist, 2014) that the operator also influences the OEE. Good Solutions AB is a partner in this 

study and supported this study by providing the empirical data set. Good Solutions AB is a Swedish 

Software and Service company that has developed its own product called RS Production. They 

implemented this tool in many Swedish Industries. This tool is a used for practical improvements and 

real time visualisation of production status on the shop floor.  

1.3.1. Significance of the Study 

This study is intended to make to the advancement of knowledge to improve the productivity in 

Swedish manufacturing industries. The overall OEE of the 23 Swedish Industries could be used as 

base performance metric for the future research conducted in the area of productivity 

improvements. Also, the effect of the operator influence loss times is not explicitly shown by the 

OEE and other derived performance metrics of OEE. The results from this study are intended to 

show the proportion of the operator influenced loss times from the MES data and to show how 

those could be seen as improvement potential in order to increase the OEE.  

1.3.2. Purpose 

The purpose of the study is to identify the ways by which higher OEE of the machines can be 

achieved in a production system. 
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1.3.3. Objective 

The objective of the study is to determine the current OEE and to assess the impact of the operator 

influenced loss times on OEE.A set of research questions are formulated to specify the objective of 

the study and to maintain its scope. The research questions are formulated with the aim to answer 

them with the results got from this study. The following three research questions are stipulated: 

RQ:  How can the big data be used to determine the OEE and the loss levers of OEE? 

This research question is framed in order to find out the levers of the OEE by analysing the different 

losses from big data in order to find out the OEE. To be further specific, this research question is split 

into three research questions RQ1, RQ2 and RQ3.  

RQ 1 : What is the difference in OEE among the different industry groups? 

This research question is framed in order to get the overview of the performance of the 

companies in different industry groups. Also, the aim is to analyse which of the losses 

contribute to the OEE. This forms the basis for RQ 2. 

 

RQ 2 : What is the average overall OEE of the industries from the given MES big data? 

This research question is framed to evaluate the average overall performance of industries 

by combining the performance of the individual industry groups and to identify the losses 

contributing to the OEE.  

 

RQ 3 : How large is the operator disturbance portion of OEE? 

The third research question is stated in order to assess how much of the total loss time is 

operator influenced. This research question also involves the investigation on how the 

operator tasks could affect the OEE.  

1.3.4. Delimitations 

In order to limit the analysis of the study and ensure the adherence to the objectives, the following 

delimitations are made: 

 The MES data from Good Solutions AB is assumed to be reliable data and no further explicit 

validation will be done to validate the data 

 The basis of the selections of the machines in each company was not described. Due to this 

fact it was assumed that the data is given for all the machines under each company  

  Though the data file had the cycle time factor which was measured, this was not taken into 

the analysis as the cycle time was not measured for all machines. This was done to maintain 

the uniformity in the analysis. 

 The  level of performance at individual company level is not the focus of the study but rather 

the focus is on the general industry groups 

 Only the focus is on evaluating how the operator influences the OEE and not on other OEE 

factors 

 No recommendations based on the OEE of the industrial groups are made as the OEE 

represents the aggregated performance of the various machines. This is due to the fact that 

the production flows or bottleneck machines are not identifiable from the empirical data set 
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1.4. Background and Objectives of Data Set II 
To remain competitive most of the manufacturing companies should take steps to increase the 

productivity and also establish greater operational stability. The manufacturing companies should 

manage the production networks efficiently and this includes the key challenge of increasing the 

efficiency of the shop floor operations. There are many variables which affects the performance of 

the system. The throughput of the production system is affected by the capacity of the machines in 

the system(Sundkvist & Sundkvist, 2014). Depending on the nature of the production system, some 

machines disrupt the flow of products across the production system and affect the overall 

throughput. The limitations of the production system can be traced to limitations of one or two 

machines which are called as “bottlenecks”(Christoph Roser, 2001). To maximize the throughput 

from the production line, the throughput of the bottlenecks needs to be improved (Goldrat, 1992). 

Efforts and resources should therefore be focused on bottleneck machines to get an improved 

throughput from the line. The bottlenecks could be due to frequent failures of the machines, long 

setup times etc. Moreover, the other variables like incoming raw material fluctuations; product mix 

etc. can also shift the bottlenecks from one day to other day. Identification and management of the 

bottlenecks in the production system is a challenging task.  Another important component of the 

production system which has a direct impact on the improvement of the overall production 

performance is the maintenance. According to Mishra (2012) if the right kind of maintenance is not 

chosen then it may lead to over maintenance or under maintenance which might increase the cost 

and reduce the productivity. Therefore, the cost effective and right maintenance at right time will 

boost the productivity in a production system by reducing the total breakdown time and by reducing 

the frequency of breakdowns. 

The companies have grown remarkably in sophistication bristling with MES systems which monitor 

the machine activity almost every instant of the time. This results to the accumulation of the 

machine data. Figure 1, shows the average data rows collected per year from a machine in the shop 

floor of an automotive manufacturing company in Sweden. If 500 000 data rows are collected per 

machine, and if the production line has ten such machines, then the amount of data collected for the 

production system is 5 million data rows per year which is really big. 

 

Figure 1: Average data rows of data collected per machine 
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Tapping the valuable information from this vast troves of data which otherwise would go unused 

could help manufacturer to gain valuable insights and this leads to profitable operation. The 

analytics on the big data collected can help to identify the bottlenecks and the selection of the 

maintenance strategies. The analytics could be conducted on myriad of ways over the big data which 

could identify the correlations and hidden patterns, thus supporting the fact based decision making 

process in the production environment. Therefore, manufacturers must take the advantage of this 

real time data collected by MES to attack their biggest challenges and the most important objectives.  

This thesis is done as a part of the research project “StreaMod” within the Production Engineering 

Department at Chalmers University of Technology with the involvement of several industrial and 

academic partners.   

1.4.1. Significance of the study 

This study is intended to make to an advancement of knowledge to improve the productivity in 

Swedish manufacturing industries using real time production data collected from the shop floor. The 

algorithms for the bottleneck detection from the real time data could be used an alternative to 

simulation of production systems which demands much more skills and time. The traditional 

simulation studies takes from four weeks and more(“Application within : FFI , Hållbar 

produktionsteknik Streamlined Modeling and Decision Support for Fact-based Production 

Development,” 2013) and by using the data driven analysis will take much lesser time. Also, other 

useful insights on the key performance indicators of the production system derived from the real 

time analytics will serve as a base for decisions made to improve the production performance and 

thus making a data driven decision making process in manufacturing industries.  

1.4.2. Purpose 

The purpose of the study is to identify the ways in which productivity of the production line by 

controlling and managing the system constraints. The system constraints may be due to bottlenecks 

or frequent breakdowns of the machine etc. Before controlling and managing the system 

constraints, identifying the system constraints is important. By addressing and managing the system 

constraints the overall availability of the production line is increased. To support this analysis the 

real time data of an assembly line of an automotive manufacturing company in Sweden is derived 

from the company’s supervisory system that monitors, collects and stores the machine information 

and analyzed. 

1.4.3. Objectives 

The objective is to detect the bottlenecks and to predict the breakdown pattern of the machines 

from real time data.  A set of research questions was formulated to specify the objective of the study 

and to maintain its scope. The following three research questions were formulated, 

RQ 1 : How can the real time data be used to visualize bottlenecks and downtime 

parameters? 

The first research question is framed to try out the different bottleneck techniques and with 

the sample data set and visualize the results from the analysis to identify the bottlenecks. 

Also, an attempt is made to visualize the downtime parameters e.g. frequency of 

breakdowns, total down time etc. But identification of bottleneck machines itself is not 

enough to improve the overall performance of the system. Predicting the nature of the 
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behavior of the bottleneck machine and other machines of the production system are 

important. This leads to RQ 2. 

 

RQ 2 : How can predictive analytics deliver value for tactical decision making process? 

The second research question is stated in order to prove that the predictive analytics could 

also be done with the help of the real time data and the results from the predictive analytics 

could be used for fact based decision making process. 

 

1.4.4. Delimitations 

In order to limit the analysis of the study and ensure the adherence to the objectives, the following 

delimitations are made: 

 The basis of the selection of production line for analysis is not within the scope of the thesis. 

The selection was done by the industrial partners of the research project 

 The process of the data collection by the supervisory system  on the machines during the 

production run is not explained 

 The extraction process of the data from the supervisory system  which monitors and stores 

the machine data is not described 

 The thesis does not evaluate the different bottleneck analysis methods. Rather the focus is 

on how to use the different bottleneck analysis over the real time data 

1.3. Structure of the Report 
The structure of the report is as follows: 

 Data Set 1 

 Chapter I 1 describes the frame of reference with a special focus on OEE and operator 

influenced tasks in a production system 

 Chapter I 2 explains the systematic methodology adopted to carry out the data analysis 

 Chapter I 3 presents the results from the data analysis and quantifies the operator 

disturbance portion of the OEE and identifies the major contributors to OEE 

 Chapter I 4 discusses the results with respect to the frame of reference emphasizing on 

the effects of operator influenced tasks on OEE 

 Chapter I 5 provides the conclusions drawn from the study  

 Chapter I 6 presents the scope of future work 

 

 Data Set 2 

 Chapter II 1 describes the framework of reference with a focus on bottleneck detection, 

maintenance data modelling and predictive analytics 

 Chapter II 2 explains the systematic methodology adopted to carry out the data analysis 

 Chapter II 3 explains the experimental plan explaining the different bottleneck detection 

techniques, maintenance frequency and total down time and predictive analytics which 

are carried out on the real time data 

 Chapter II 4 presents the results from the data analysis with simple visualisation 

technique to identify the bottlenecks, data modelling of maintenance indicators and 

predictive analytics 



7 
 

 Chapter II 5 explains the creation of generalised algorithms for bottleneck detections 

discusses and  the results with respect to frame of reference 

 Chapter II 6 provides the conclusion drawn from the study and also presents the scope 

of the future work 

 Chapter II 7 presents the future work 

 

 Chapter 2 presents the reflections on two types of data analysis and overall conclusion 

emphasizing the importance of production data analytics to under pin new wave of productivity 

potentials 

The report also includes five appendices which supplements the information contained in the report 

 Appendix A: The losses description and the classification of the losses into the three levels of 

operator influence 

 Appendix B: Layout of AAA and BBB Line 
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I.1. Frame of Reference 
This chapter will present the frame of reference. Firstly, the fundamentals of Overall Equipment 

Effectiveness (OEE) are presented including the different methods to calculate the OEE. Thereafter, 

the theories of the operator influenced loss times are described successively. The existing 

benchmarking standards of OEE are finally reviewed.  

In order to gain the understanding of OEE and the operator influenced loss times on OEE, a literature 

review was conducted.  The literature were collected from the following scientific databases which 

are accessed through Chalmers Library 

 Science Direct (sciencedirect.com) 

 Google scholar (scholar.google.com) 

 Scopus(scopus.com) 

 ProQuest (proquest.com) 

 Books 24/7 (books24x7.com) 

To search for the relevant literature regarding the OEE and operator influence on OEE, the following 

key words are used, 

 Overall Equipment Effectiveness  Capacity 

 Disturbances  Resource utilisation 

 Machine interference  Operator utilisation 

 Lean tools  Performance measurement 

 Operator disturbance  

 Productivity  

Additional literature were given from the supervisors and based on the most cited references in 

literature. These literatures are used to gain deeper insights on OEE and operator influence on OEE 

which are used to discuss and validate the results. 

I.1.1. Overview of Overall Equipment Effectiveness (OEE) 
Today some manufacturing plants started to closely monitor the production performance through 

Manufacturing Execution Systems (MES).The measurement of the manufacturing resources 

utilization indicates the equipment performance(Costa & Lima, 2002). OEE is an useful indicator and 

is seen to be the fundamental way of measuring performance efficiency in a comprehensive 

way(Puvanasvaran, Kim, & Siang, 2012). OEE is basically the ratio of the actual time the machine is 

producing by achieving the quality and specifications criteria to the time the machine is scheduled 

for production(Costa & Lima, 2002). OEE is also a measure of equipment availability, performance 

and the efficiency losses as a result from rework and yield losses (Nakajima, 1988) as shown in 

Equation 1. 

OEE = Availability x Performance X Quality                                                                                  Equation 1 
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Hence, OEE could be viewed as a combination of operation, maintenance and management of 

manufacturing resources(Dal, Tugwell, & Greatbanks, 2000). On the other hand, there are some 

losses which reduce the performance of the equipment and it becomes important to study those 

losses. These losses are due to production disturbances. These production disturbances can be 

classified into two categories: Chronic and Sporadic disturbances as defined by Jonsson & 

Lesshammer, 2005. The former category is very difficult to identify as they are hidden in the 

production system. They are very small disturbances in the production system and they are seen in 

the normal state. The latter category is those which occur quickly and as a result there are large 

deviations from the current state. They occur irregularly and are much easier to detect than chronic 

disturbances. Comparing the chronic and sporadic disturbances, it is the chronic disturbance that 

leads to the lower utilisation of the machine.  

There are six major losses to be addressed in the production system in order to achieve a higher OEE 

as defined by Nakajima, 1988. Those are, 

 Equipment Failure : The losses are when the productivity is reduced and there is a volume 

loss due to repairing or replacement of machine parts to function 

 Setup and Adjustment : These losses occurs from end of the production of one product and 

a changeover and setup of new tools takes place and the machine is adjusted to meet the 

requirements of the new product. 

 Idling and Minor Stoppage: They occur when there is a temporary malfunction of the 

machine i.e. losses which could occur by the removal of abnormal work pieces etc. or when 

a machine is idling 

 Reduced Speed : It is the difference between the machine design speed and the actual 

operating speed) i.e. the time loss when the standard cycle time of the machine is at 50 

seconds and the actual operation takes 60 seconds, then the speed loss is 10 seconds. 

 Reduced Yield: It is the time loss from the machine start-up to stabilisation. For example, 

time losses after a repair in the machine, time losses after lunch breaks etc. 

 Defect in the Process: This causes loss of time and losses in quality of the product caused by 

malfunctioning of the production equipment 

The term “losses” arise due to the chronic and sporadic disturbances which absorb these resources 

and hence contributing to the above six losses. The first two losses, the equipment failure and setup 

and adjustment are collectively known as downtime losses and are used to calculate the true 

availability of the machine. The losses, idling and minor stoppage and reduced speed, are used to 

calculate the performance efficiency of the machine. The last two losses, the reduced yield and the 

defect in process, are used to calculate the quality efficiency. The higher the number of defects the 

lower is the quality efficiency. Figure 2 is a representation of the detailed definition and calculation 

of OEE with all key losses which affects the final result.  
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Figure 2: OEE Computation and Procedure (Adapted from Nakajima, 1988) 

Though the definition of OEE remains the same, the calculation methodology of the factors: 

availability, performance and quality differs based on applications(Jonsson & Lesshammar, 2005). 

Table 1 shows the different calculations of OEE by two different authors Nakajima, 1998 and De 

Groote, 1995. 

Table 1: Comparison of different ways to calculate OEE 

 

 

 

Factors Nakajima, 1988 De Groote, 1995 

Availability (A) 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝐿𝑜𝑎𝑑𝑛𝑔 𝑡𝑖𝑚𝑒
 

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 −
𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝐷𝑜𝑤𝑛 𝑇𝑖𝑚𝑒

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

Performance (P) 
𝑁𝑒𝑡 𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 

Quality (Q) 
𝑉𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑁𝑒𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 −
𝑛𝑜𝑛 − 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡

𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡
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OEE is a good tool to calculate the utilisation of a machine for a given manufacturing process. 

However, the successful calculation of OEE is highly dependent on the input data(Jeong, Jeong, 

Phillips, & Phillips, 2001). The manufacturing process are unique and the nature of the machines in 

the different production systems are different and hence the method used to collect the data needs 

to be validated and justified in order to compute the OEE. The six big losses as shown in the Figure 2 

corresponds to the equipment state(Jeong et al., 2001). Furthermore, every company may define 

their own equipment states of the machine which is based on the company’s data collection ability 

and the level of accuracy needed. For example, capital intensive industries the losses can be 

classified into eleven categories(Jeong et al., 2001) as shown in Table 2. 

Table 2: Ten categories of OEE losses (Jeong et al., 2001) 

Serial 

number 

Categories Definition 

1 Non Scheduled time  Time duration of which the equipment is not scheduled to 

operate 

2 Scheduled maintenance 

time 

Time spent for preventive maintenance  

3 Unscheduled maintenance 

time 

Time spent for breakdown 

4 R&D time Time spent for the purpose of research and development 

5 Engineering Time spent for the purpose of improvement activity  

6 Setup and adjustment time Time spent for setup and adjustment for operation 

7 Engineering usage time Time spent for engineering check-up 

8 Work In Progress (WIP) 

starvation time 

Time for which equipment is operating when there is no 

WIP to process 

9 Idle time without operator Time for which WIP is ready, however there is no operator 

available 

10 Speed loss Time loss due to equipment that is operating under 

standard speed 

11 Quality loss Time for which equipment is operating for unqualified 

products 

 

Jenong et al. 2001 combines the ten categories of losses and used Nakajima, 1988 approach and 

proposed a new method to calculate the OEE as shown in Figure 3. The OEE has the factors time 

efficiency, speed efficiency and quality efficiency. The time efficiency includes non-scheduled 

maintenance, un- scheduled maintenance, R&D usage, Engineering time, setup and adjustment, WIP 
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starvation, idle time without the operator and other loss times. The speed efficiency includes the 

speed loss and the quality efficiency includes the quality loss. 

   

 

 

Figure 3: Calculation of OEE (Adapted from Jeong et al., 2001) 

The planned production time(De Groote, 1995) which is a part of the total time could be calculated 

in different ways by grouping the losses differently(Andersson & Bellgran, 2015). Figure 4 explains 

different ways of calculating the planned production time.  
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Figure 4: Different scenarios for classifying the losses to calculate planned production 
time  (Adapted from Andersson & Bellgran, 2015) 

From Figure 4, it could be inferred that the planned production time may include all the losses or it 

might exclude the losses which are due to the company policy, organisation losses etc. For example, 

breaks, cleaning and inspection, meetings, trainings and improvements etc. are planned production 

losses under the total time for production and these could be excluded for the calculation of 

planned production time. The other planned production losses may include waiting due to 

completion of current orders, Total Productive Maintenance (TPM), planned maintenance 

activities(Costa & Lima, 2002).  

There are many benefits in increasing the OEE by eliminating the losses and one important benefit is 

the increase in capacity without major investments (Konopka & Trybula, 1996). There is a strong link 

between the OEE and the financial ratios of the company (Hansen, 2001). An increase in OEE from 

60% to 66% of a company gave a 21% increase on Return of Assests (ROA), increased the capacity by 

10% and increased the operating income by 21 % (Hansen, 2001). 

I.1.2. Operator Influence on OEE 
Operators play a significant role in the production shop floor. However, the operators are assigned 

to multiple machines to increase the utilisation of them(Chien et al., 2013) e.g. one operator is 

responsible for operating several machines or one operator may be responsible for carrying out 

maintenance related activities in several machines. When a machine stops or breakdowns etc., it will 

not start to produce until the problem is fixed by the operator(Stecke & Aronson, 1985.). As one 

machine can be serviced at a time by an operator and if other machines in the same production line 

is down at the same time, then the remaining machines need to wait for the operator until the first 

machine is repaired to resume its production. This will offset the utilisation of machines. This waiting 

time of machines is termed as machine interference time (Stecke, 1982). If this interference time is 

large, it reduces the available capacity of the machines (Desruelle & Steudel, 1996) by affecting the 

machine efficiencies and production rates ( Stecke & Aronson, 1985).  

Planned 

production 

time 
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The machine interference problem in the production lines could be solved by assigning the correct 

number of machines to an operator( Stecke & Aronson, 1985.). However, when assigning too many 

machines to an operator to improve the operator utilisation, then the operator is overloaded with 

large number of machines. According to Stecke (1982), this will lead to operator fatigue which might 

slow the pace of working by the operator. If the operator tries to speed up the pace of working, it 

might lead to quality problems or defective output as a result of which the production could go 

down. On the other hand, assigning too few machines to the operator will lead to minimal efforts 

needed to keep the machines running which results in idleness of the operator and work standards 

also drops (Stecke, 1982).  

The machine interference time is highly influenced by the work tasks of the operator carried out 

during the interference time(Almström, Hansson, & Samuelsson, 2014). Apart from the direct causes 

of the OEE which are affected by the factors like breakdowns, setups etc. one important factor that 

affects the OEE is the operator work tasks(De Ron & Rooda, 2006). The operator work tasks during 

the disturbance however may not completely be influenced only by the nature of the disturbance 

like breakdown, setup etc. but also includes the activities outside the actual workflow like searching 

of tools, documents etc. (Hedman, Sundkvist and Almstrom, 2014). These activities interrupt the 

workflow during a activity. By reducing the time spent on activities like searching etc. the machine 

interference time could be reduced. The time periods for those specific work tasks of the operator 

can be seen as an improvement potential from work place design and standards point of view 

(Hedman, Sundkvist and Almstrom, 2014). Also, if the nature of work tasks which are completely 

influenced by the disturbance, for example setup time activities, are not standardised, then the time 

taken to perform those tasks will increase the interference time.  

In one example case study described by Hedman, Sundvikst and Almstrom (2014) in an automatic 

surface mount assembly, it is noted that the preparations of the setup was done when the machines 

were waiting for changeover. This could be seen as an improvement potential as some of the 

internal activities of setup could be converted into external activities. One established lean 

technique to reduce the setup time is using Single Minute Exchange of Dies (SMED) system. This 

technique is widely used by the industries in order to increase the OEE by reducing the changeover 

time i.e. reduce the time of the machine when the machine is down due to setup activities. Shingo, 

1985 divided the setup operations into two types: internal operations and external operations. 

Internal operations can be performed when the machine is stopped and the external operations are 

performed when the machine is operating.  But converting most of the internal setup operations to 

external, leads to less machine interference time as machine waiting time for the setup is reduced. 

This will also increase the utilisation of operators. On the other hand, the standardisation of the 

work activities during the actual setup time will result in lower downtime of the machine and hence 

less interference time. One more key finding by Bergstrom and Palmvkvist (2014) is that the majority 

of the losses can be related to the manual work and hence the development of work and time 

standards is more important to reduce the time spent on the disturbance handling. Apart from 

SMED, which is used to specific for the setup time, other lean tools like Andons, Kanbans (Liker, 

2014) etc. could be used in order to decrease the failure reporting time by the operators, material 

replacement time etc., which will reduce the machine downtime.   



17 
 

The machine interference time is the valuable time lost under the planned production time and 

hence leads to low OEE. Studying the operator influenced work activities becomes more important 

in order to minimise the machine interference time and maximise the OEE. 

I.1.3. OEE Benchmarks 
The benchmarking is defined as a systematic approach through which the organisations can measure 

the performances against the best in class organisations (Attiany, 2009). There are many different 

types of benchmarks according to Andersen  (1999). Those are internal benchmarking, competitive 

benchmarking, functional benchmarking, generic benchmarking, and performance benchmarking, 

process benchmarking.  

OEE can be used as a performance benchmark between the manufacturing industries for measuring 

the performance of manufacturing(Dal et al., 2000). There are different opinions regarding the 

acceptable OEE performance(Dal et al., 2000). An OEE measure greater than 50% is considered to be 

more realistic and an acceptable target for manufacturing industries (Kotze, 1993). The acceptable 

OEE performance can vary between 30% - 80% (Ericsson, 1997). Since there are varying norms 

across industries in capturing and accounting of the losses, it would be difficult to establish an 

optimal reference for OEE(Dal et al., 2000) and difficult when using OEE for external 

benchmarking(Jonsson & Lesshammar, 2005). Also, OEE aggregates to a larger extent and could be 

inappropriate for benchmarking (Liker, 2014).  

According to Nakajima (1988), under ideal conditions the organisations should have availability 

greater than 90%, performance greater than 95% and the quality rate greater than 99%. Thus the 

resulting OEE should be greater than 84% as shown in Equation 2 and is a good benchmark for a 

typical manufacturing capability.  

90%(Equipment Availability)x 95%(Performance efficiency)x 99% (Rate of quality) =
84.6 % OEE                                                                                                                                      Equation 2 

Also, under ideal conditions, a batch type production unit have a world class OEE greater than 85%, 

discrete process is greater than 90% and for continuous process have OEE greater than 95%(Hansen, 

2001). 
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I.2. Methodology  
The aim of the analysis is to find the current OEE of the 23 companies and the operator influence on 

OEE and this analysis was carried out on a data set representing the production losses given by the 

company Good Solutions AB. The production data of the machines was collected by Good Solutions 

AB in agreement with various Swedish Companies.  

 

Figure 5 : Phases of CRISP – DM Model (Adapted from Shearer, 2000) 

The CRISP-DM (Shearer, 2000) model as shown in Figure 5 was used as a reference model in this 

thesis. The six phases of the model which are business understanding, data understanding, data 

preparation, modelling, evaluation and deployment are explained below. 

a. Business Understanding 

The main objective of this data analytics is to determine the current OEE and to build a 

model to assess the impact of operator influenced loss times on OEE. The success of this can 

be measured by validating the models by comparing it with the previous research on the 

same topic and by getting the feedback from the participants of the research. The data 

quality was a constraint in this thesis. 

 

b. Data Understanding 

The single MS Excel data file which had the data rows for the machines in each company was 

provided. This file had the losses description of each machine and also had the time lost for 

each loss. The time lost was in the form of elapsed time and not the event times. The data 

was provided for six months starting from October 2013 to March 2014. The data file had 

1339 data rows in total which had the information of 23 companies and 884 machines. The 

file had 29 columns of description recorded for each machine. 
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c. Data Preparation – Data Analysis 

As a first step, each data column was studied to understand their meaning. As a step 

towards cleaning the data, the data column named “not ok” in the data file indicated that 

there were few rows in the file which had junk data. These data rows were revisited and 

found that there were no data recorded in these data rows. As a result these data rows were 

deleted in order to ensure an error free qualified data is available for modelling.  As a second 

step, the months for which there is no data available was checked for each machine and 

found that there were no missing data for the month. Thirdly, the duplication of data rows 

were checked and found that there were no rows of data repeated. Finally, after performing 

these steps, a clean and qualified data was available for modelling. 

 

d. Modelling 

OEE representation model and the operator influenced tasks model was built from the clean 

and qualified data. The detailed steps in building the model are defined in the Results 

section. 

 

e. Evaluation – Validation 

OEE representation model and the operator influenced tasks model was built from the clean 

and qualified data. The clean data means that there are no junk values in the data set. 

Qualified data means there is no repetition of the data rows and no data rows have any 

missing value against each factor recorded. The detailed steps in building the model are 

defined in the Results section. 

 

f. Deployment 

From the outcomes of the model, recommendations could be made on how the OEE could 

be improved by better utilising the manufacturing resources. Additionally, the quantification 

of link between the Operator influenced loss times and the OEE is established emphasizing 

on the standardisation of the operator work tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

I.2. Results and Analysis 
In this chapter, the empirical findings from the data analysis are presented. In addition to the 

empirical findings from the data, OEE levers framework was developed from the theoretical study 

and the data file.  

I.2.1. Calculation of OEE 
The data collected from 884 machines of 23 companies are categorised into four industrial groups 

based on the nature of production system and the products they manufacture. 

 Food and Beverage  

 Mechanical Workshop 

 Other Automated Discrete Production 

 Polymeric (Rubber and Plastics) 

The number of companies and the number of machines under each industry group is presented in 

Table 4. 

Table 3: Number of companies and machines in each Industry Category 

Industry Food and 

Beverage 

Mechanical 

Workshop 

Other Automated 

Discrete Production 

Polymeric (Rubber and 

Plastics) 

Count 

Companies 

7 9 4 3 

Count 

Machines 

244 364 119 157 

 

From the data file, it can be observed that the performance rate recorded for 702 machines out 884 

machines has the value 100% and 796 out of 884 machines has a recorded value of 100% for quality 

rate.  

The distribution of performance in OEE across the various industrial groups as shown in Figure 6 

contains a deep set of rich data. It is to be noted that the OEE measures have been calculated in 

relation to the scheduled production time. Also, the average and the median OEE are calculated for 

all industry groups. The mean is simple the average whereas the median is the middle number of the 

series arranged in a rank order. From Figure 6, it could be seen that across industries, the OEE 

distribution is not symmetrical and using average will not reflect the true average as it is significantly 

influenced by the outliers. On the other hand, the median is also a form of average which gives a 

better idea of the central tendency of the data.  
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Figure 6: OEE comparison of different industry groups 

It could be inferred from Figure 6 that Food and Beverage Industry type has the highest median OEE 

of 74% with most of the companies performing above the median OEE. The lower quartile is tightly 

grouped. Mechanical Workshop Industry type has a median OEE of 68% which is the second highest 

among the four industry types. The lower quartile group is spread out indicating there is a room for 

potential improvement. Other Automated Discrete Production Industry type has the lowest median 

performance of 59% .Adding on; it has a broad distribution in performance indicating a higher 

variability and a less consistent performance. Polymeric (Rubber and plastic) Industry type has 65% 

as median OEE and top performance as 70%. Adding on, it has a tighter distribution compared to 

other industry types. Also, it has most of its performance well below the median indicating skewness 

in the performance and there are improvement potentials to increase the average performance up 

to the median level at 95% confidence level. 

Aggregating the OEE of all industry groups, the overall OEE of the population is determined. This is 

shown in the below Figure 7. 
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Figure 7: Overall OEE of 23 companies 

The overall median OEE of 23 companies is 70% whereas the average OEE is 65%, indicating a 

positively skewed performance with more spread in the lower quartile region. Also, it could be said 

that there are improvement potentials to raise the overall performance by arresting the various 

losses. 

I.2.2. Classification of Losses 
From the literature review, it is inferred that, the total production time could be divided into two 

categories: planned down time and planned production time as shown in Figure 8. The planned 

down time is the time loss due to the management policies or organisation policies. These includes 

non-scheduled time (e.g. weekends, days not scheduled due to lack of orders), scheduled 

maintenance (e.g. Planned maintenance activities, TPM, machine cleaning and operator 

maintenance), R&D usage(e.g new equipment installation and trials), engineering time(e.g. process 

improvement activities), breaks, meetings and operator trainings .  

The planned production time includes the time spent for producing good products and the time lost 

in unplanned downtimes. These unplanned downtimes include setup time, measurement and 

adjustment, equipment failure, idling and minor stoppage, scrap and rework. The setup and 

adjustment loss could be considered as unplanned downtime loss as these losses could also occur 

from poor production planning practices.  
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Figure 8: Classification of losses to calculate the OEE 

Furthermore, from the data file, the main categories of unplanned downtime time losses as shown 

in Figure 8 is further divided in sub-categories in order to get deeper insights on the specifics of the 

loss categories. This is shown in Figure 9. Also, the categories other down time losses and 

unclassified losses are included to capture the losses from the data file which cannot be classified 

under the loss categories as shown in Figure 8. 

 

 

Unplanned 

downtime 
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Figure 9: Classification of production losses 

In the Figure 9, the planned downtime, setup, measurement and adjustment, equipment failure, 

idling and minor stoppage, other down time losses, scrap/rework, unclassified are the losses derived 

from literature. The other sub categories of the main losses are the losses grouped from the data 

file. 

Figure 10 displays the components of OEE for the overall industrial groups showing key 

improvement opportunities. The planned downtime losses are excluded in the calculation as those 

are planned production losses and are influenced by the company management policies. The other 

seven categories are collectively called as unplanned production downtime. As stated, the OEE is 

calculated on the basis of planned production time. 

Losses derived from literature 

Grouped Losses from data file 
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Figure 10: Distribution of OEE levers as a percentage of scheduled production time in 
percentage 

About 19% of the loss times are not classified or are poorly described in words in the data file which 

makes the classification difficult. For example, the losses with description like “reason missing”, 

“other”, “uncategorized”, “not decoded stop”, “false stops”, “portal” etc.  The second major loss is 

the equipment failure which is 5% and other downtime losses which is also 5%. Moreover, 

combining the setup losses and measurement and adjustment losses which could be due to poor 

quality of setup activities constitutes 4.7% which is the third major loss.  

Combining the factors of OEE (Equipment failure (5%), other downtime loss (5%), set up loss (4%) 

and measurement and adjustment loss (0.7%)), the availability is calculated. The availability is 85.3%. 

The performance efficiency is calculated from the idling and minor stoppage (1%) and the 

unclassified losses (19%). The unclassified losses could be included in the performance efficiency 

calculation under the assumption that those losses occurs very frequently and the variety of the 

losses is more for them to be classified under the standardised losses. These performance losses in 

turn affect the machine performance. Then, the performance efficiency is 80%.  

The quality efficiency is calculated from scrap and reworks (0.1%) and is 99.9%.  
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I.2.3. Effects of Operator Influenced Loss Times on OEE 
The work tasks carried by the operator during the machine interference time have a direct effect on 

OEE. The work tasks of the operator not only depends on the nature of the disturbance like setup, 

breakdown etc. but also includes the other operator tasks like searching for tools during the 

disturbance etc. It is important to note that the operator themselves don’t cause the losses but 

when the losses occur, the operators is a crucial factor in influencing the loss time. The effects of 

operator influence loss times on OEE were determined by classifying the 499 production losses times 

which are described in the data file into three levels: operator influenced loss time, may be operator 

influenced loss time and not operator influenced loss times. The complete list of losses is found in 

Appendix A. 

 Operator influenced loss time are those tasks consisting of manual activities and operators 

has the power of causing an effect on that task in a direct or indirect way. For example, the 

loss ‘mechanical failure’ time is assumed to be captured by the company from the start 

instant of the failure till the time the machine is up again for production. This elapsed time 

between the start of the failure till the up time of machine is completely dependent on the 

tasks performed by the operator i.e. the time when the machine is waiting for operator to 

be repaired and the repair times are the aspects influenced by the operator as shown in 

Figure 11. Hence this activity is completely operator dependent. Some of the other operator 

influenced loss times are machine error, pneumatic error, search, order replacement with 

setup, product change, checking and adjusting. 

 

 

Figure 11: Representation of an equipment failure fixation in time instant 

 May be operator influenced loss time are those in which the operator may have the power 

of causing an effect on the tasks. For example, the loss window shortage could be due to 

two aspects i.e. the operator didn’t fill the pallet with windows for the production or no 

windows is available in the inventory to be refilled. Hence, with this type of loss where the 

loss time could be as a result of operator tasks is classified as May be Operator Influenced 

loss time. The other examples of may be operator influenced loss time description are stop 

previous shift, lacking input, fully in conveyor buffet, materials wait, waiting jobs, packaging 

machine – outlet, waiting for P4, internal materials, micro stop, return materials 

 

 Not operator influenced loss times are those losses description, from which it can be 

inferred for sure that the losses are completely external to the scope of the operator, then 

those losses are classified as Not Operator Influenced loss time. For example, the loss 

external material missing, is the loss time which is not within the scope of operator and is 
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due to the supplier issue. The other examples include lack of materials from supplier, 

purchased material, heating loss, start-up losses due to machine, external delivery. 

Classifying the tasks based on the operator influence and grouping them under each OEE component 

category is shown in Figure 12.  

 

Figure 12: Classification of loss time into level of operator influence 

Figure 12 show the operator influenced work tasks under the unplanned downtime losses: 

equipment failure, other downtime losses, setup loss, idling and minor stoppage, measurement and 

adjustment and scrap/rework. The unclassified losses are excluded as it lacks clear description of the 

loss in order to understand the cause of the loss. From Figure 12 it could be inferred that the 

operator influenced loss time are 90% of the scheduled production time. Adding on, the loss time 

which may be influenced by the operator corresponds to 9% of the scheduled production time. Only 

1% of the loss time is not influenced by the operator. Furthermore, the operator influenced and may 

be operator influenced is considered as one group in the further analysis because the latter category 

is very small compared to the former category.  

Visualising the overall operator influenced tasks time under each factor of OEE is shown in Figure 13. 

It could be inferred from Figure 13, that the operator influenced tasks times are more in equipment 

failure (35%), other downtime losses (27%) and setup loss (26%). The other three factors: Idling and 

minor stoppage (4%), measurement and adjustment (8%) and scrap/rework (0.7%) contains less 

number of operator influenced tasks compared to other factors.  However, it can be noted that the 

measurement and adjustment loss times could be due to poor setup. 
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Figure 13: Representation of operator influenced time of each OEE lever in percentage 

Taking the operator influenced loss times under each component of OEE and visualising it across the 

different industry types as shown in the Figure 14, shows the major operator influenced loss time 

under each industry type.  

The following are the inferences from Figure 14: 

Food and Beverage industry type has 46% of operator influenced production loss time as equipment 

failure. The second highest is the setup time which is 41%. The number of companies for which the 

data has been collected for this industry type is seven and all the companies has the changeover 

time data recorded. Five out of seven companies only monitor the breakdowns and maintenance, 

and other equipment error under the equipment failure category. Taking this aspect into account, it 

can be said that the OEE component of the operator influenced setup time is more significant loss 

time in this industry group.  

Mechanical Workshop industry type has 47% of the operator influenced production loss time as set 

up time and 38 % under the equipment failure. Eight out nine companies monitor changeover time 

and hence changeover is the major component in this Industry type. On the other hand, under the 

equipment failure component of OEE, six out of nine companies have breakdowns and maintenance 

time recorded and eight out of nine companies have the loss other equipment error loss. So taking 

this aspect into consideration, along with change over time, other equipment error aspect under 

equipment failure are the most significant loss times in this industry group.  

Other Automated Discrete Production industry type has 38% of the operator influenced production 

loss time as set up component of OEE.  The second highest is the equipment failure which 
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constitutes 28%. The data has been collected from four companies under this Industry type.  All four 

companies have the data for the changeover times. But under the equipment failure component 

only two companies monitor the breakdowns and maintenance. Also, it could be noted that, the 

other downtime losses accounts for 24% and this is due to the lack of operator time which is 

recorded as a loss time by all the companies. So the significant loss time in this industry group is the 

operator influenced set up time, breakdowns and maintenance and lack of operators.  

Polymer (Rubber and Plastic) industry type, 65 % of the operator influenced production loss time as 

equipment failure. The second major, OEE component of operator influenced time is other down 

time. This is different compared to other industry groups. Out the total of three companies, all the 

three companies record the time lost due to breakdowns and maintenance. On the other hand, all 

the three companies have the lost time due to lack of operators and lack of internal materials. 

Hence, breakdowns and maintenance and planning losses which includes manpower and materials 

are the significant operator influenced loss categories across this industry type. 

 

Figure 14: Classification of operator influenced loss times grouped into OEE components 
across industry groups 
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I.4. Discussion 
In this section the results from the empirical data analysis of OEE are discussed in relation to 

literature. This is done in order to explain the findings and validate them.   

I.4.1. OEE calculation 
According to (Muchiri & Pintelon, 2008), “the OEE is a measure of total equipment performance, that 

is the degree to which the equipment is doing what is supposed to do”. OEE is a result of equipment 

availability efficiency, performance efficiency and quality efficiency.  

The availability is a measure of the machine uptime against the planned production time. The 

machine uptime is the difference between the planned production time and the unplanned 

downtime (De Groote, 1995). From the empirical data, the loss times: breaks, education and 

training, operator meetings, planned shutdowns, preventive maintenance, R&D and engineering 

time, shift changeover and shutdown due to no demand are excluded in the calculation of the 

planned production time. These loss times are excluded in the analysis under the assumption that all 

these losses are due to organisational or company policy influenced and these loss intervals are 

usually paid for the operators. However, the explicit information about the paid and unpaid time 

intervals cannot be interpreted from the empirical data set. On the other hand, capturing some of 

the above mentioned loss times under planned production time will expose the opportunities for 

improvement. For example, it could be possible to schedule the production line using relief 

operators during the breaks, operator meetings or the machine could be loaded with enough 

material through the breaks, operator meetings, and shift changeover so that the machine keeps on 

working for that short time interval. These improvements will increase the OEE. Furthermore, the 

setup loss is regarded as loss but not as productive time. This is because the total setup time is a 

factor of number of setups and the average time per setup. The number of setups depends on the 

batch size; the average setup time depends on nature and the skill level of operator’s work tasks 

which is a potential improvement factor in order to reduce the average setup time.  

The performance efficiency depends upon the standard cycle time of an operation and the actual 

cycle time of the operation. It could also be defined as the ratio of actual amount of production by 

planned production (De Groote, 1995). The empirical data set didn’t have any information on the 

actual production from the machines or the actual cycle time data. Also, there was no information 

on standard cycle time. Hence it wasn’t possible to calculate the performance losses. Moreover, the 

empirical dataset had the performance rate defined for each machine. The values for this particular 

factor were recorded as 100% for 702 machines out of 884 machines which is 80%. This means 

either the machines perform at its theoretical maximum speed or the companies do not measure 

the cycle time or the production speed and the default value recorded was 100% or the speed was 

measured with the most skilled operator working on the machine.  If the production speed is 100%, 

then also the performance factor could be improved by increasing the speed of the process as stated 

by Nakajima (1988) that “if speed loss is 100%, then bring actual operation speed up to design speed; 

then make improvement to surpass design speed”.    However, if the process could be made faster, 

then the standard cycle time should be proportionally reduced. Lunjberg (1998) reported that many 

companies are not aware and does not focus on performance loss which is identical from the 

inference made from the data set in this study.  
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The Quality efficiency is defined as the accepted amount of production to the actual amount of 

production (De Groote, 1995).  The empirical data set didn’t have any information on the scrap or 

the total amount of production recorded for each machine. Thus the quality efficiency calculation as 

defined by De Groote cannot be applied. Moreover, the empirical data set had quality efficiency 

values defined for each machine.  796 out of 884 machines had values 100% which means either the 

all the machines produced acceptable products and hence there is no scrap or the quality factor was 

not measured for the machines and the default value recorded was 100%.  

If the OEE is calculated as per Nakajima (1988) with the performance and quality rates as 100% then, 

the resulting OEE is only a true measure of availability. On the other hand, the empirical data file had 

the losses description and those losses could be classified in to the main loss categories as described 

by (Jeong et al., 2001) and (Nakajima, 1988) to calculate the availability, performance efficiency and 

the quality efficiency. The availability is calculated from the losses: equipment failure, set up loss, 

measurement and adjustment and unscheduled maintenance time(Jeong et al., 2001). The 

performance efficiency is calculated from the losses idling and minor stoppage, reduced 

speed(Nakajima, 1988) and the quality efficiency is calculated from the time spent on  producing the 

scrap or rework(Jeong et al., 2001). Hence it could be inferred that for the given empirical data set, 

the standalone methods: Nakajima (1988), De Groote (199)5 and Jeong et al. (2001) method of 

calculating OEE could not be directly applied but with a combination of these methods the OEE could 

be calculated. 

The average OEE of 884 machines of 23 companies is 65%.  The top loss contributors to the OEE are 

the unclassified losses which are 19%. The unclassified losses are those loss descriptions which are 

poorly described and are difficult to classify. This indicates that the companies need to pay more 

attention to capture the losses in a standardised manner. The calculation of the losses and the 

collection of them seem to be easy as described by the theory. Though MES is a very good tool to 

collect the data of a machine, if the descriptions of the losses are not clear, then it becomes hard to 

interpret the underlying reasons for the losses. Though the MES tracks the length of the stoppage 

time, the reason for the stop as interpreted from the loss descriptions in the empirical data set 

reveals that the operator records the reasons for the losses in the MES. Ljunberg (1998) described 

that the computerised systems capture both the frequency and the length of the different stoppage 

times and the reason for the stoppage is described by the operator. It could be inferred that this 

trend remains the same over the past decade. In order to capture the reasons for the losses 

precisely, standardised losses descriptions should be incorporated into MES. This facilitates not only 

easy interpretation of losses in a big data but also enables to benchmark the production system 

within and across similar production systems of different companies. Also, this unclassified loss 

distorts the exact impact of other OEE factors. Hence, companies should start capturing the losses in 

standardised manner to precisely measure the OEE. 

Yet another important point to note is that the empirical data collected from different companies 

was only for a period of six months. However, this has an impact on the final OEE measure. As found 

in the results, the OEE of the 23 companies is 65 % and this measure is got only by collecting the 

data for six months. These six months could be the best months where the demand was very high 

for the company. So, in order to cover the demand pattern, at least one year data needs to be 

collected to absorb the seasonal variations in the demand. Moreover, the OEE calculated from the 

empirical data set is a result of aggregation of various machines in one company. This according to 
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Liker (2014) is the not the appropriate method of calculating OEE. But as neither the production flow 

nor the bottleneck machines are indicated in the empirical data set, this method of aggregating the 

individual machines data to represent the OEE of the company was made. 

I.4.2. Effects of Operator Influenced Loss Times 
The losses from the empirical data were classified into operator influenced loss times, may be 

operator influenced loss times and not operator influenced loss times based on their meaning. It can 

be seen that 90% of the total loss time is operator influenced, may be operator influenced tasks are 

9% and not operator influenced tasks are 1% in relation to the planned production time, and not 

including the unclassified losses.  From this it could be inferred that, the operators could influence 

the loss times by working in a non-systematic way which leads to increase in the total downtime. 

However, the operator influenced loss times, which contains the operator response time to the 

disturbance and the actual operator time addressing the disturbance, are not distinguished explicitly 

from the empirical data. One more interesting inference which could be drawn when comparing 

among the operated influenced loss times among different industry groups is that, the operator 

influenced loss time is more in setup across industries. Higher setup time, could be argued for higher 

number of setups. On the other hand, it could be explained that the average setup time per 

changeover could be high and this could be due to the operator influenced tasks. The other OEE 

lever which is high across industry groups is equipment failure. Though the nature of the 

breakdowns determines the time required to repair the machine, the failure reporting process and 

nature of the operator tasks during the repair time could be influenced by the operator.  Overall, the 

operator influenced loss times could be completely related to the operator work tasks. Also, one key 

note is that the OEE is an aggregated measure and does not explain the operator influenced loss 

times separately.  

These findings raises the question regarding to what extent the current operator tasks are 

standardised. Also, these results show an indication that there are chunks of unproductive time 

which is wasted within the planned production time. Thus there is a significant improvement 

potential in decreasing the machine interference time by developing the work standards for the 

tasks like setup, equipment failure etc. The importance of developing the work standards is that the 

variations in the time taken by the operators during setups, equipment failure etc. are reduced.   

(Hedman, Sundkvist and Almstom, 2014). In case of setup times, though the number of changeovers 

is not under the production department control, the average time per setup could be decreased by 

applying SMED technique which also involves creating standardised tasks for setup activities (Shingo, 

1985). For example, many machines in Food and Beverage industries may not designed for easy 

changeover (as it is a process industry and may require a lot of cleaning between the products 

changeover) and may involve complex setup techniques which could be operator influenced. In this 

case SMED could be applied to simplify the setup process and to reduce the setup time.  In case of 

equipment failure, the failure reporting process which is an operator influenced task could be made 

faster for example by pulling the Andon cord (Liker, 2004).   

Certain loss times like search time, replenishment time are present in all industry groups. These also 

could be viewed as unproductive times under the planned production time.  These times are 

completely dependent on operator. Implementation of 5S and Kanban system to reduce the search 

time and the material replenishment time respectively (Liker, 2004) could eliminate these operator 

influenced loss times.  
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One more key observation from the results is that, the equipment downtime time and the operator 

influenced loss times are proportional. These results are in line with the previous research 

conducted by Hedman, Sundkvist and Almstom (2014). Though, the results of the research are based 

on work sampling method of a particular machine in one company, the results from this study of 

empirical data of 884 machines also points towards the same pattern of the findings between the 

operator dependent tasks times and the machine down times. As the results from the empirical data 

also signify the same, it cross validates the findings. 

Addressing the above mentioned aspects would improve the operator influenced tasks and thereby 

decreasing the machine interference time and thus improving the OEE. By improving the OEE, the 

real capacity could be increased (Hansen, 2001). 

I.4.3 OEE Benchmarks 
The OEE of the 23 Swedish companies was around 65% against the world class benchmark under 

ideal conditions of 85% (Smith & Hawkins, 2004). Though there are many different types of 

benchmarking as explained by Andersen, 1999, the performance benchmarking was the only type 

that could be done with the empirical data set.  

As the empirical data doesn’t contain the details of bottleneck machines or the production flow, the 

benchmarking calculation is done by aggregating the measures of the individual machines in a 

company.  This benchmarking sets the foundation for the performance improvement when 

compared to the other companies of the same industry type and hence enhances the 

competiveness.  Also, these benchmarking questions the survival of the business if the company’s 

performance is low when compared to the other companies in the same industry type and also 

exposes the gap between the top performer and the current state.  

While these benchmarking is helpful on a high level, on the other side they might also obscure 

deeper insights that would rise if a company compares the performance of individual steps in the 

production process. For example, one company in Food and Beverage industry type may have the 

packaging process as more efficient and also have other inefficient machines which will offset the 

aggregated OEE values. Also, as OEE benchmarks are only a mere comparison of the performance, 

they don’t reveal anything about the circumstances based on which the companies performed. 

Though there are down sides of this way of benchmarking, the performance benchmarking of OEE is 

still useful to visualise the performance gap among the different companies of each industry group 

and to see the overall improvement potentials (Boxwell & Robert, 1994).  

However, data collection for more number of companies under each Industry group is required to 

improve the quality of the results and to comment on the overall performance of each industry type. 

Any new company’s performance under a particular industry group could be compared with the 

results got in thesis against the median as well as top quartile performance of the OEE.  

One more key understanding from the data analysis is that, OEE is quite difficult to benchmark as 

different companies’ measure the losses differently and also more the true insights could be drawn 

only if the bottleneck machines are analysed and compared among the industries. As pointed out by 

Hansen (2001), the OEE benchmarking is useful when the OEE of the bottleneck machines are 

considered.  
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I.4.4. Summarising the results discussion 
In order to calculate the availability factor of OEE, the losses need to be captured in a standardised 

manner in the MES. And if the losses are captured in the standardised manner across industries, 

then the quality of the benchmarking will improve. Also, a standardised form should also be used 

when calculating the availability especially when it comes to including the company policy influenced 

loss times.  The insights from the empirical data raises question to what extent the MES captures the 

performance and quality efficiencies as it is observed that majority of the companies monitor these 

two factors at 100%.   The companies need to start monitoring the actual cycle time and the 

deviation with respect to the standard cycle time in MES in order to calculate the performance 

factor of OEE. Adding on, the quality efficiency should also be precisely monitored by the MES. Also, 

Nakajima (1988) and De Groote (1995) standalone methods of calculating the OEE cannot be directly 

applied to the empirical data set. This is due to fact that factors captured in the data set don’t 

correspond to the factors described in these methods.  

The results in the analysis have shown that majority of the loss times are influenced by the operator. 

Standardisation of the operator tasks and implementation of lean tools to reduce the operator tasks 

outside the normal work flow is highly effective in order to decrease the machine interference time 

and to improve the OEE. As a supporting fact, this study has shown improvement potential across 

industry types in reducing the operator influenced loss times.  Also, it could be inferred that the OEE 

measure is a highly aggregated measure and doesn’t explicitly gives information on operator 

influenced loss times.   

Finally, the benchmarking of the aggregated OEE analysis reveals the overall performance gaps 

across companies.  Though this benchmarking cannot reveal more insights within a company, it is a 

good indicator to compare the performance across the companies. Also, from the overall big data 

analysis, it is found that the OEE is much difficult to benchmark when the bottleneck machine or the 

production flow is not known and also due to the fact that the companies monitor losses in different 

ways.  
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I.5. Conclusion 
In this chapter, the conclusions drawn from the study are presented. This is done by answering the 

stipulated research questions. 

RQ:  How can the big data be used to determine the OEE and the loss levers of OEE? 

The losses which are described in the empirical data set are grouped and a framework was made to 

calculate the OEE. Then, the OEE calculations are made with respect to the loss framework.   

RQ 1 : What is the difference in OEE among the different industry groups? 

It has been found that the among the four industry groups: Food and Beverage, Mechanical 

workshop, other automated discrete production and Polymeric, the Food and Beverage 

Industry has the highest median OEE of 74%. The second performer being the mechanical 

workshop followed by the polymeric and lastly is the other automated discrete production.  

 

There are however, clearly contextual factors that influence the OEE calculations, especially 

when it comes to the accounting the planned losses in availability (in this study the planned 

production losses are excluded from the calculations). Adding on, the performance and 

quality efficiencies are calculated from the loss descriptions due to the lack of availability of 

the necessary data. Also, this OEE value is calculated by aggregating the values of the 

individual machines and assuming that all the companies under one industry group have 

same type of production system. 

 

RQ 2 : What is the average overall OEE of the industries from the given MES big data? 

The average OEE of the 23 Swedish companies is 65% and the median OEE is 70% indicating 

that, there is a significant potential to improve the OEE to the median level.  

 

Also, the major loss to the OEE is the unclassified loss which is 19%. This indicates that the 

loss definitions needs to be standardised and should be classified in a standardised manner.   

 

RQ 3 : How large is the operator disturbance portion of OEE? 

This study shows that, around 90% of the loss time of OEE could be categorised as operator 

influenced. Also, it is proved that, the impact of the operators on the loss times is not 

explicitly captured by the equipment performance metrics like OEE. 

 

This shows an enormous amount of potential regarding the standardisation of the operator 

tasks and elimination of the manual work by the operators outside the normal workflow.  

In addition to the findings, benchmarking was made by comparing the OEE factors: Availability, 

performance and quality which are calculated for the 23 companies with the world class OEE values. 

This shows that there is significant potential improvement in the performance factor of the OEE. The 

starting point for the companies to improve on performance efficiency is to compute the actual cycle 

time of the process and the standard cycle time of the process.  
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As a final note, the hope is that the outcomes of this study can stress the importance of the 

capturing the losses in the standardised way and to uncover the fact that, apart from improving the 

equipment downtime, improving the operator influenced loss times could also improve the OEE. 
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I.7. Suggestions for Future Research 
As there is huge variation in the way the companies are monitoring the losses, a standardised 

methodology is to be created in order to classify the losses. Further research could be conducted on 

the standardisation of the losses and the procedure to implement in the industries. This will not 

make the data analyst easy to interpret but also would help to benchmark the performance with 

their competitors to the level of the exact loss.  

Despite the fact that the operator influenced loss times effects the OEE, a mathematical expression 

for the OEE could be derived which includes this factor along with the availability, performance and 

quality. This will be helpful for the companies to see quantitatively how much was the exact lost 

time under the planned production time due to operator.  
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II.1. Frames of Reference 
This chapter presents the theoretical study of different theories used in order to identify the 

bottlenecks in the production system. This chapter starts with the general description of the 

production system with more focus on the bottlenecks. Thereafter, more detailed explanation of 

bottleneck detection approaches are described in detail. Furthermore, predictive modelling 

importance and approaches are explained in detail. 

In order to gain the understanding of the different bottleneck techniques and the downtime 

parameters and to gain knowledge on the statistical analytics a literature review was conducted.  

The literature were collected from the following scientific databases which are accessed through 

Chalmers Library 

 Science Direct (sciencedirect.com) 

 Google scholar (scholar.google.com) 

 Scopus(scopus.com) 

 ProQuest (proquest.com) 

 Books 24/7 (books24x7.com) 

To search for the relevant literature regarding the OEE and operator influence on OEE, the following 

key words are used, 

 Bottlenecks in production  Capacity 

 Bottleneck methods  Predictive analytics 

 Disturbances  Reliability analytics 

 Real time data analytics  Monte carlo methods 

 Maintenance parameters  Algorithms 

 Productivity  Flowcharts 

 

Additional literature were given from the supervisors and based on the most cited references in 

literature. This literature is used to gain deeper insights on bottleneck detection techniques and 

downtime parameters which are used to discuss and validate the results. 

II.1.1. Bottlenecks in Production System 
The raw material is converted into a finished product by undergoing value added activities in 

production line (Boysen, Fliedner, & Scholl, 2007). There are many challenges faced by the 

production industry in today’s competitive environment. One of the challenges is to manage the 

product flow in the production line which is often disrupted .These disruptions in any machine will 

result in the blocking or starving of the upstream or downstream process in the production system. 

The disruptions in the production system are due to breakdowns, setup, operator failure, lack of 

material supply etc. If these disruptions takes place frequently in a machine of the production 

system, then that machine is the bottleneck for the entire production line as it disturbs other 
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machines and hence the production system performance. To improve the performance of the 

production system, the key is to mitigate the bottlenecks. The system production rate is only 60-70% 

of the system capacity and this is due to the bottlenecks (S.-Y. Chiang, Kuo, & Meerkov, 1999). In 

order to improve the system performance rate, the throughput rate in the bottlenecks of the 

production system should be improved(Goldrat & Cox, 2004). Therefore, the bottleneck 

identification is the most important critical first step in order to mitigate and manage the 

bottlenecks. 

There are a variety of definitions found in the literature regarding the bottlenecks. The bottlenecks 

could be classified into simple bottlenecks, multiple bottlenecks and shifting bottlenecks. In a fixed 

interval of time, if there is only one machine which is the bottleneck in the entire production system, 

then it is called simple bottleneck (Grosfeld-Nir, 1995). If two or more machines are the bottlenecks 

in a fixed interval of time, then it is called multiple bottlenecks (Aneja & Punnen, 1999). The 

bottlenecks in the production line will be shifting at different run times from one machine to 

another machine. This is termed as shifting bottlenecks (C. Roser, Nakano, & Tanaka, 2003). The 

bottlenecks could also be classified based on the durations of the bottleneck machines. Those are 

long term bottlenecks and short term bottlenecks. The machines which affects the performance of 

the system for a short time interval is termed as short term bottlenecks while on the other hand, the 

machine which affects the performance of the system for a longer interval of time is called as long 

term bottlenecks. Also, Roser, Nakano and Tanka (2001) distinguish the bottlenecks between 

primary, secondary and non-bottlenecks. Primary bottlenecks are the machines which have the 

largest effect on the system and the secondary bottlenecks are those which limit the performance 

but to a small extent, while the non-bottlenecks do not have any influence on the production system 

performance. Also, defined are the static and dynamic bottlenecks(Chwif, 2008). Static bottlenecks 

influence the system all the time whereas the dynamic bottlenecks influence the production system 

over a specific time frame. Yet another type of bottleneck is momentary and average 

bottleneck(Christoph Roser, 2002). Bottleneck at a specific time are called momentary bottlenecks 

whereas the average bottleneck is related to all momentary bottlenecks and considers the most 

significant machine as the primary factor to improve the system performance.  

There are many method proposed in the literature to identify the bottlenecks.  Those methods are 

summarised below: 

 Queue length (Lawrence and Buss, 1994): The machine with the largest queue length before 

the machine is the bottleneck machine.  The queue length is expressed as numbers. 

 Lowest production rate (Kuo, Lim and Meerkov, 1996): The machine whose production rate 

is low when compared to other machines in the production system is the bottleneck 

machine as it controls the line throughput. The production rate is expressed as numbers per 

unit time. 

 Sum of blockage and starvation times (S. Y. Chiang, Kuo, & Meerkov, 1998): The machine 

which has the lowest sum of blockage and starvation time in a production line is the 

bottleneck machine. The blockage and starvation time are measured in time units. 

 Utilization (Law and Kelton, 2000): The machine which has the highest utilization in a 

production line is the bottleneck machine. The utilization is measured in percentages. 
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 Waiting time before the machine (C. Roser et al., 2003): The machine which has the longest 

waiting time of the product in queue before the machine is the bottleneck machine. It is 

measured in time units. 

 Active period method (C. Roser et al., 2003): The machine which has the longest active 

period in a production line is the bottleneck machine. The active period is expressed here as 

percentage of time or in time units.  This method is also suitable for dynamic bottleneck 

detections.  

 Shifting bottlenecks (C. Roser et al., 2003): The machine which has the highest sum of 

duration of sole active state (without any interruptions during that time interval) is the 

bottleneck. It is expressed in percentage of time. This method is also suitable for dynamic 

bottleneck detection methods. 

All the previous methods were either built on mathematical models or by using simulation as 

support tool as shown in Figure 15. None of the previous research had been done in using these 

techniques over the real time data measured on the factory floor. The data driven bottleneck 

detection of manufacturing systems was introduced by Li et al. (2009) using the turning point 

method i.e. the machine with the smallest sum of blockage and starvation times is the bottleneck 

machine. However, the author doesn’t describe the background of the data collection process. As a 

result, the author assumes that all the companies collect the blockage and starvation times explicitly 

for every machine. Though the generalised algorithm is created for this turning point method, the 

same algorithm cannot be used in all scenarios. For example, when the production system has 

parallel machines, then this method application will be questionable.  

 

Figure 15: Timeline of bottleneck approaches 

Though there are several ways to detect the bottlenecks, the results got from these applications of 

methods differ with respect to the types of the production system. The bottlenecks are not that 

easily identified by using conventional approaches (Chwif, 2008). Since the production systems are 

highly dynamic in nature, the constraints could also be highly time dependent (C. Roser et al., 

2003).With the various detection techniques available, the situations where the various techniques 

could be used is shown in Table 5.  
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Table 4: Situation dependent bottlenecks detection recommendation (Chwif, 2008) 

Method  

Situation 

Queue length Utilization Waiting time Active time 

period 

Shifting 

bottleneck 

method 

Low mix; Lower 

number of 

station; Low 

fluctuation 

Recommended 

but queue size 

should be 

infinite 

Recommended Recommended 

but queue size 

should be 

infinite 

Recommended Recommended 

if other 

methods are 

not applicable 

High mix; Lower 

number of 

station; Low 

fluctuation 

Recommended 

but queue size 

should be 

infinite 

Recommended Recommended 

but queue size 

should be 

infinite 

Recommended Recommended 

if other 

methods are 

not applicable 

Low mix; Lower 

number of 

station; High 

fluctuation 

Low 

recommended 

(especially if 

queues are not 

infinite) 

Low 

recommended 

Low 

recommended 

(especially if 

queues are not 

infinite) 

Low 

recommended 

Recommended 

High mix; High 

number of 

station; High 

fluctuation 

Non 

recommended 

Low 

recommended 

Non 

recommended 

Low 

recommended 

Recommended 

 

Table 5 shows that shifting bottlenecks could be applied in almost all scenarios. On the other hand, 

the queue length method and the waiting time method becomes inefficient when there is no buffer 

in between the machines. Furthermore, the utilisation and active period method could also be used 

in all scenarios even though it is not highly recommended for high mix and high demand fluctuation 

scenarios. Moreover, the active period method encompasses the utilisation method as in utilisation 

method only the working state is considered for the analysis, whereas in the active period method, 

in addition to producing state, the other conditions of the machines are considered like breakdowns 

etc as shown in Table 6. 

The two mostly recommended methods: active time period, shifting bottlenecks are described in 

detail.  

II.1.1.1. Active time period Methods 

Each machine in the production line has only two states, active and not active. Table 6 shows the 

active state categories and the inactive states categories. 
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Table 5 : Active – Inactive states of different machines (Christoph Roser, 2001) 

Machine Active Inactive 

Processing machine Working, in repair, changing 

tools, serviced 

Waiting for part, waiting for 

service, blocked 

AGV Moving to a pick up location, 

moving to a drop off location, 

recharging, being repaired 

Waiting, moving to a waiting 

area 

Human worker Working, recovering Waiting 

Supply Obtaining new part Blocked 

Output Removing a part from the 

system 

Waiting 

 

Active Period Percentage Method 

The sum of the active durations of the machines over the time interval yields percentage active time 

of the machine. The machine with the highest active percentage duration is the bottleneck machine. 

This method can only identify the long term bottlenecks and primary bottlenecks but it cannot 

identify the secondary and the non-bottlenecks. Also, this method cannot detect short term 

bottlenecks. An example active period utilisation graph for eight machines arranged in a sequential 

manner with a buffer size three in between the machines is shown in Figure 16.  

 

 

Figure 16: Active period percentages of machines (Adapted from Christoph Roser, 2001) 

From Figure 16, it can be inferred that M4 machine has a workload of 99% which is the highest 

among all the machines. M2 machine has the second highest workload percentage of 97%. On the 

other hand, their confidence limits overlap with each other. Therefore, the bottleneck identification 

between these two machines cannot be determined with certainty(Christoph Roser, 2001).  
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Mean Active Period Method 

An improved version of this method is the mean active period method (Christoph Roser, 2001). The 

active durations of the machines are collected in a specific interval of time and then the average of 

those active durations is computed. Since the active durations of the machines could be widely 

distributed, the standard deviation of those values is calculated. In addition to this, a confidence 

interval of 95% is calculated. Due to this, the results of the bottleneck detection have high 

confidence level and the bottleneck is detected with higher accuracy compared to the percentage 

active duration method. Moreover, this method could be applied to the historical data (Christoph 

Roser, 2001). Figure 17 show the graphs of mean active period and confidence intervals of the same 

production setup as described in active period percentage method section. 

 

Figure 17: Mean duration of bottlenecks (Adapted from Christoph Roser, 2001) 

From Figure 17 it can be inferred that M4 has the longest mean active period of 14885.2 seconds 

among all the machines. This indicates that M4 is the most probable bottleneck machines when 

compared to other machines. 

Sole and Shifting bottlenecks 

Sole Bottlenecks 

The machine with the longest un interrupted active period is termed as the sole bottleneck and the 

system is constrained by this machine (C. Roser et al., 2003). Sole bottleneck detection are useful as 

additional resources could be allocated to the sole bottleneck in order to improve the overall 

performance of the system (Christoph Roser, 2000). For example, the active period of two machines 

over time is shown in Figure 18.  
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Figure 18: Sole and Shifting Bottlenecks Illustration (Adapted fromChristoph Roser, 
2000) 

The present time is the time at which the bottlenecks are determined. It could be from Figure 18 

that at the present time the machine M2 is the current bottleneck as it has the longest 

uninterrupted active period when compared to machine 1.  

Shifting Bottlenecks 

On the other hand, when the active period of one bottleneck machine overlaps with the active 

period of the next bottleneck machine is termed as shifting bottlenecks (C. Roser et al., 2003). The 

difference between the sole and shifting bottleneck is that, the sole bottlenecks are those which do 

not overlap with the previous bottlenecks (Christoph Roser, 2000). From Figure 19, it can be inferred 

that M1 was the shifting bottleneck during the third active period of M2 and once the M1 becomes 

inactive, then M2 becomes the sole bottleneck.  

 

 

 

Figure 19: Sole and Shifting percentages of machine (Adapted from Christoph Roser, 
2000) 
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The machine which has the largest sum of the sole and shifting bottleneck percentages is the 

primary bottleneck. Generalising it, the larger the percentages, the larger is the effect of respective 

machine slowing down or stopping the system(Christoph Roser, 2000).  

Roser et al. (2003) compared the methods: active period percentage method and shifting bottleneck 

approach as described in Table 7. From Table 7, it could be understood that the shifting bottleneck is 

more superior to the active period percentage method. 

Table 6: Bottleneck detection methods comparison (Roser et al. (2003)) 

Method Active period percentage Shifting bottlenecks 

Accuracy Medium  Excellent 

Understand ability Medium Excellent 

Required Data size Large Small 

Long term Bottleneck Yes Yes 

Medium term Bottleneck No  Yes 

Short term Bottleneck No  Yes 

Primary Bottleneck Yes Yes 

Secondary Bottleneck No  Yes 

Non – Bottleneck No  Yes 

Implementation Very Easy Medium 

System Limitations Moderate Few 

 

Bottleneck Detection using Cycle time 

Weindahl and Hagenscheidt (2002) the cycle time of the every individual station do have an effect 

on the entire system utilisation. In other words, the cycle time is also a useful parameter in order to 

detect the bottlenecks in the production line. The machine with the highest cycle time is the 

bottleneck.  

II.1.2. Failure data modelling 
Maintenance is a support group function which is important to support the production related 

processes. The breakdowns in the machines of the production line affect the throughput. The usage 

of maintenance differs among the companies. Maintenance are of three categories : preventive, 

corrective and predictive maintenance (Dhillon & Liu, 2006). The definitions of the three categories 

according to Dhilon & Liu (2006) are: 
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 The maintenance activities which are well planned and is carried out on a periodic basis in 

order to maintain the working condition of the machine.  

 Corrective maintenance is done after the breakdown has happened in the machine. It is a 

reactive maintenance strategy.  

 Predictive maintenance is to continuously monitor and diagnose the machine condition 

during the operation. 

Yet another definition of predictive maintenance is the process of collecting the past information on 

the various breakdowns of the machine and also about the state of the machine (Niebel, 1994). This 

collected information is used to predict the breakdown pattern and accordingly plan and schedule 

the maintenance activities.  

One of the important strategies to carry out an effective and efficient maintenance is forecasting the 

breakdown patterns of the machines. The two important aspects of the maintenance capacity are 

the number of people involved in the maintenance and the skill set of those people to carry out the 

maintenance activities (M.Ben –Daya, et al.2009). The breakdowns are highly uncertain in nature 

and hence the corrective maintenance load and higher repair time and due to this uncertainty the 

forecasting of the breakdown of the machines are important (M.Ben –Daya, et al.2009).. There are 

two approaches on which the forecasting is based on. One is quantitative data and the other one is 

qualitative data. Qualitative data is collected in the form of interviews and expert personnel opinion 

and this is done when the historical data on breakdowns cannot be collected for the machine. On 

the other hand, the quantitative data approach is used when this historical data on the machines are 

available. The forecasting model could be built by using this quantitative data. The following steps 

are suggested when developing a quantitative forecasting model (M.Ben –Daya, et al.2009): 

 Define the variables and identify the causality 

 Collect and validate the data 

 Search for major trends and seasonality 

 Propose different forecasting models 

 Validate the models and select the best one 

 Improve the performance of it 

Preventive maintenance could also be called as periodic maintenance. The basic idea of both the 

terms is that certain maintenance activities are done at periodic intervals before the machine 

breakdown. In this preventive maintenance strategy the failure characteristics of the machine plays 

an important role. Mean Time Between failure (MTBF) is one of the common failure characteristic 

used in forecasting modelling. MTBF is described as the sum of Mean Time to Repair (MTTR) and 

Mean Time to Failure (MTTF) for repairable systems. MTTR is the average time taken to bring up the 

machine after the failure and MTTF is the average time the machine is working after the machine 

has been brought up from the failure till the next failure occurs. Therefore, MTBF is the time elapsed 

between two consecutive equipment failures i.e. the time between the start of the failure to the 

start of the next failure.  This failure characteristic is calculated and analysed from the failure times 

recorded and stored in the maintenance database (Ahmad & Kamaruddin, 2012). In certain 

companies the maintenance database is linked to the Manufacturing Execution Systems (MES) which 

captures all the production losses. Another definition of MTBF is that MTBF is the reciprocal value of 

failure rate (Troyer, 2009) and is shown in Equation 3 . 
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𝑀𝑇𝐵𝐹 =  
1

𝐹𝑎𝑖𝑙𝑢𝑟𝑒
=  

𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                            Equation 3                      

There are two methods to determine the value of MTBF (Rahman & Kadirgama, 2009): 

1. Estimate MTBF: The value of MTBF could be found from the historical data. 

2. Predict MTBF: This method is used when the historical data is not available. The value of 

MTBF is found out based on the reliability design of the system   

The statistical distributions like Weibull distribution, normal distribution, lognormal distribution, 

exponential distributions etc. are used to analyse and predict the failure characteristics of the 

machines. After the MTBF data is modelled and the machine breakdown trends are found, the 

maintenance strategy could be formulated. 

The accuracy of the model depends upon the sample size and the amount of the failure data 

considered (Antony, 2008). For instance, when there is no enough data are available there will be a 

high uncertainty associated with the output from the model.  

II.1.3. Monte Carlo Simulation Technique 
The analog – simulation tools with statistical capabilities is a very useful tool for engineers(Johnson, 

2011). One such method is Monte Carlo method which provides a large amount of useful and crucial 

information on how the system will operate. This method works by performing multiple 

simulations(Johnson, 2011). In the problems of combinatorial analysis and the theory of 

probabilities, an analogous situation exists(Metropolis & Ulam, 1949). In the game of solitaire, the 

probability of a successful outcome is an intractable task( Metropolis & Ulam, 1949). In this case, the 

probability of success could be determined by producing a large number of examples and from this, 

relative portion of success could be determined ( Metropolis & Ulam, 1949). In other words, this 

method could be described as a method to solve statistical problems in combination with virtual 

representation of the problem using simulation.  Monte Carlo method can be used to identify the 

outcomes of different scenarios by performing multiple simulations. During this process, the 

variable’s parameters are varied with respect to their statistical distributions. The outcomes are a 

simple representation of the way the system will operate over a number of design builds(Johnson, 

2011). From these outcomes of the simulations and interpreting it various decisions could be made.  

The outcome of the Monte carlo analysis are probabilistic results which explains how likely each 

outcome would be and this is determined without any approximation. Yet another advantage is that, 

the outcomes are based on all the possibilities that have already happened i.e. the monte carlo 

method have the ability to factor in a range of values for various inputs. This method is widely used 

in manufacturing and production environments in order to determine the tolerances for operations 

and also used to make strategic decisions. 
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II.2. Methodology 
In this chapter the methods used in this thesis are discussed. First the overview of the approach in 

this thesis is presented followed by the reliability and the validity of the findings is discussed. 

II.2.1. Overall Methodology 
The CRISP-DM (Cross Industry Standard Process for Data Mining) approach was followed in this 

thesis, which is the industry standard methodology for data mining and predictive analytics. The 

advantages of this methodology is that it makes the data mining much faster, reliable, manageable 

and cheaper (Shearer, 2000).  

 

 

Figure 20: Phases of CRISP – DM model (Adapted from Shearer, 2000) 

There are six phases of the CRISP – DM model as shown in the Figure 20. Those are business 

understanding, data understanding, data preparation, modelling, evaluation, deployment. These 

phases help to guide a data analytic project. The detailed explanation of how these phases are used 

in this thesis is given below (Shearer, 2000): 

a. Business Understanding 

The main objective of this thesis is to detect the bottlenecks and to predict the breakdown 

pattern of the machines. The success of this thesis can be measured by validating the 

bottleneck detection and failure prediction model which increases the machine availability. 

Also, in order to develop the model, large number of qualified data is collected from a 

leading automotive manufacturing company’s Manufacturing Execution System (MES) 

database. The data quality was a significant constraint for this thesis. 
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b. Data Understanding 

The event log files of all the machines from in the production line were provided. This event 

log file consists of the condition data which includes the states of the machines and the 

event data which records the time events of these states. The data was structured and the 

structure was uniform across the machines. 

Two months data were provided for 18 machines in the AAA line and 14 machines in the BBB 

line, for the months September 2014 and October 2014, respectively. Two months data 

were given in a single MS Excel file for each machine. Each file had 17 columns of 

description. The total number of data rows in the Excel files is 1.38 million.  These Excel files 

have the condition data as well as the event data. In addition to these data files, the layout 

of the production facility was also given by the company as shown in Appendix B. 

 

c. Data Preparation – Data Anlaysis 

Error free and high quality data is required to generate a strong decision support model. 

Though the data taken from MES is precise which monitors the machines condition and 

records the events for all time, errors and outliers will still occur. The aim of this step is to 

get an error free qualified data for the modelling. 

Firstly the data for all machines for the two months period is checked to identify the missing 

days in these two months for which the data is not captured. For the AAA line, 15 days data 

in the two month period were missing and for BBB line it is 13 days. The missing pattern of 

data was uniform across the machines in AAA lines and BBB lines. Secondly, the duplication 

of data rows in the data file of every machine is removed and checked whether all data rows 

have the events and the conditions recorded which are crucial for the analysis. But there 

were no missing data. Thereafter the average scheduled production hours were checked for 

all days in the two month period for all machines and the most frequent scheduled time of 

the lines across the days was calculated. After the exact time interval for production is 

calculated, the data rows outside this time interval were excluded and were not taken into 

the analysis.  

After these steps, the cleaned qualified data is made available for modelling and further 

analysis. 

 

d. Modelling 

Various bottleneck detection and maintenance forecasting methods have been used to 

develop models .The cleaned and qualified data as a result of data preparation is used to 

develop bottleneck modelling and maintenance forecasting which are further explained in 

the Results Sections.  

 

e. Evaluation - Validation  

The results got from the model are validated using the face validation technique(Sargent, 

2010). The expert from the Industry who has the full knowledge about the production 

system was asked to verify outcomes of the bottleneck detection, maintenance and 

throughput predicting models. Specifically to the throughput predicting model, internal 

validity technique was used by running the model several times to determine the 

variability(Sargent, 2010). 

 



54 
 

 

f. Deployment 

 

In this step, the algorithms and flowcharts for bottleneck detection methods and the failure 

data models are created. The algorithms are designed as per the specifications explained by 

Bruno & Steiglitz (1972). The algorithms contain the inputs and the outputs and describe the 

step by step procedure to solve the problem. 

The algorithms, after necessary coding, could be integrated with the MES as an add on 

option. Furthermore, the decision support model which is the integration of insights and 

knowledge gained from bottleneck prediction and failure prediction models are created. 

II.2.2. Bottleneck Detections Model 
The active period percentage, mean active period, median cycle time and sole and shifting 

bottlenecks are carried out using MS Excel 2010. It is to be noted that no additional software was 

used to model these methods. 

II.2.3. Failure Data Modelling 
The step to build the failure data model is shown in the Figure 21.  The failure time data set is 

extracted from the real time data using MS Excel 2010. The Statistical Fit of the failure time data set 

was found out using Minitab 17 statistical software.  

 

Figure 21: Steps in Failure data modelling(Adapted from Ahmad & Kamaruddin, 2012) 
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II.2.4. Monte Carlo Method 
A step by step procedure of Monte Carlo method is described in the Figure 22. The statistical 

distribution of the data set is found by using Minitab 17 software. The estimation model was built in 

MS Excel 2010 and the simulation was also carried out using MS Excel 2010.  

 
Figure 22: Monte Carlo Simulation Steps(Adapted from Johnson, 2011) 
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II.3. Experimental Plan 
Table 8 shows the bottleneck detection methods, frequency and total downtime of the breakdowns 

and the predictive analytics which are carried out on the real time data. The states of the machine 

are divided into two categories: active and not active. The active states of the machine from the 

event log files of the machine includes producing, part changing, comlink down , comlink up, 

error.The not active states of the machine include waiting and not active. 

Table 7: Experimental plan of the bottleneck detection methods and predictive analytics 

Theme Method Description 

Bottleneck detection Active period percentage The active period percentages are 
compared between the machines.  

Mean active period The mean of the all the active 
periods of the machine are 
compared with other machines 

Median cycle time method The median of the different 
processing times of the machine are 
compared with other machines  

Shifting bottlenecks The sole and the shifting 
bottleneck, called collectively as 
momentary bottlenecks are 
computed at a particular instant by 
plotting the active period of 
different machine 

Frequency and total down 
time 

Frequency of breakdowns The number of breakdown 
occurrences of  a machine during a 
particular interval of time is 
calculated and compared with other 
machines 

Total down time The total down time due to the 
breakdown of the machine during a 
particular interval of time is 
calculated and compared with 
different machines 

Predictive modelling MTBF data modelling The MTBF is calculated from the 
real time data and the statistical 
distribution of the data is found out. 
Thereafter, the trend of the MTBF 
data is plotted for the shift using 
probability distribution function 

Breakdown as a percentage of 
scheduled hours 

The breakdowns as a percentage of 
scheduled hours are plotted on a 
daily basis in order to identify the 
trend  

Confidence level of the 
throughput estimator 

The confidence level of the 
expected throughput against the 
demand is calculated to better plan 
the production scheduling  

 

The order of the Results chapter is in the same order as the experimental plan. 
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II.4. Results 
In this chapter the results from the data are presented. The chapter starts with the results from the 

static bottleneck detections from the real time data, followed by dynamic bottleneck detection. In 

addition to those, the predictive modelling of the maintenance and the production KPI is also 

presented. 

II.4.1. Bottleneck Detection from Real Time Data 
The static and dynamic bottlenecks methods which were presented in literature study were tried out 

on the real time data.  The bottlenecks are determined using the machines states as described in the 

data file. All the machines in the sample production line have eight states. Those are producing, part 

changing, and error, comlink down, comlink up, waiting, and not active, empty run. The producing 

state of the machine is the state where the machine is engaged in producing the product. The part 

changing state of the machine is the state where there is a setup time due different product in that 

machine or the changeover between the tools in that particular machine. The error state, comlink 

down and comlink up is the assigned when the machine is down due to a maintenance action.. The 

waiting state is when the machine is waiting for the product to be produced or the machine is 

blocked from producing due to problems with the downstream process. Not active state of the 

machine is when the machine stops apart from the other above mentioned reasons. Empty run state 

is assigned to a machine when the new products or trial products are processed in that machine. 

The production line of 32 machines is decoupled into two lines (AAA line and BBB line) as there is a 

huge difference between the cycle times of the machines between the two lines and as a result 

there is a huge buffer between the two lines in the stored in a conveyor. The AAA line is scheduled 

for 44 days in a two month period and the BBB line is scheduled for 47 days in a two month period. 

Also, the scheduled start time of the two lines on each day is at 06:30:00 and the ends at 

23:30:00.This corresponds to total scheduled time of 748 hours for AAA line and 799 hours for BBB 

line in a two month period. 

II.4.1.1. Static Bottlenecks 

Three different static bottleneck approaches were tried out over the real time data. Those are Active 

Period Percentage Method, Mean Active Period Method, and Cycle Time method. Each one of the 

methods and the results are described further. 

II.4.1.1.1. Active period method Percentage Method 

Applying the active period percentage method for the machines in the AAA line and BBB line, the 

percentage active period of each machine is got as shown in the Figure 23 and Figure 24 

respectively. 
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Figure 23: Percentage Active period of AAA line machines 

 

 

 

Figure 24: Percentage Active period of BBB Line machines 

Machines 

Machines 
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From Figure 23, it can be inferred that machines M1 and M2 are the bottlenecks as they are active 

82% of the time. But on the other hand, it cannot be said with certainty out of M1 and M2 which of 

the two machines is the bottleneck. Similarly, from Figure 24, it can be inferred that M20 is the 

bottleneck as it active 66% of the total scheduled production hours. This method is also scaled down 

to determine bottlenecks on a day level. Figure 25 and Figure 26 shows the bottlenecks of the AAA 

and BBB line respectively. 

   

    

 

 

 

Figure 25 : Percentage Active period of AAA line machines for one particular day 
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Figure 26 : Percentage Active period of BBB Line machines for one particular day 

From Figure 25, it can be inferred that machines M1 and M2 are active 88% of the time and they are 

the bottlenecks in AAA line. But again, it cannot be said with certainty that out of M1 and M2 which 

of the two machines is the bottleneck. From Figure 26, machine M20 is active for 63% of the time 

and hence it is the bottleneck for BBB line.  

II.4.1.1.2. Mean Active Period Method 

The time of the active states are collected and the average time is then calculated. In addition to 

that, to estimate the accuracy of the bottleneck detection a 95% confidence interval is calculated. 

Applying the mean active period method for the machines in AAA and BBB line, the mean active 

period of each machine is got as shown in Figure 27 and Figure 28 respectively. 

 

 

 

 

Machines 
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Figure 27: Mean active period of AAA line machines with 95% confidence interval 

 

 

 

Figure 28 : Mean active period of BBB line machines with 95% confidence interval 

Figure 27 shows that the machine M1 is the bottleneck in AAA line as on average it is the machine 

with longest active duration compared to all the machines in the line. Moreover, the confidence 

intervals of this machine doesn’t overlap with other machine which indicated that machine M1 is the 

primary bottleneck and this machine should be improve to improve the AAA line performance. In 

other words, it could be described as M1 was working for an 856 seconds before being interrupted 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 

M11 M12 M13 M14 M15 M16 M17 M18 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
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by the waiting time. Also, the confidence interval of the average active period of machine M1 shows 

that the average duration fluctuates. Therefore, it can be concluded that machine M1 has the 

longest active period over 99% certainty and it is the primary bottleneck of the system.  Similarly 

Figure 28 shows that machine M26 is the bottleneck in BBB line. But again it could be inferred that 

M25 upper confidence interval is the same as machine M26 lower confidence interval. This could be 

an ambiguous situation in determining the most certain bottleneck. As a next level, machines M20 

and 240 have confidence interval overlapping with machine M25. Overall, the machine M26 has the 

highest sum of the mean active period with the confidence interval, it could be said that machine 

M26 is a bottleneck with a lower accuracy.  

This method is also scaled down to a day basis to determine the bottlenecks on a day level. Figure 29 

and Figure 30 shows the bottlenecks of AAA and BBB line individually. 

 

 

Figure 29 : Mean active period of AAA line machines with 95% confidence interval for 
one day 
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Figure 30: Mean active period of BBB line machines with 95 % confidence interval for 
one day 

From Figure 29, it can be inferred that M1 is the primary bottleneck of AAA line. From Figure 30, 

machine it could be said that, M30 is the primary bottleneck of the BBB line. Also, it could be said 

that machine M20 could be the bottleneck as the confidence interval of machine M20 overlaps with 

the confidence interval of machine M30, but then the degree of overlapping is very small (~ 1%). 

Also, machine M26 confidence interval also overlaps with machine M30, but again the degree of 

overlapping is small (~2%). From these values of small values of overlapping, it could be concluded 

that machine M30 is the primary bottleneck on that particular day.  

II.4.1.1.3. Cycle Time Method 

The cycle time is a good indicator to identify the bottleneck. The cycle time for each machine is 

found out from the data file. The elapsed time of the producing state of each machine is determined 

for each shift and for each day. To avoid the skewness effect i.e. to avoid very large or very small 

values can distort the average, the median indicator is more appropriate to compare the cycle times 

of different machines. From the MES data for AAA and BBB line, the median cycle time for each 

machine is found out and compared with other machines to find the bottleneck as shown in Figure 

31 and Figure 32. 

M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 
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Figure 31 : Median Cycle time of AAA line Machine 

 

 

 

Figure 32 : Median cycle time of BBB line machines 

From Figure 31 and Figure 32, it can be inferred that machine M2 in the AAA line and M20 in the 

BBB line are the bottleneck machines as they have the highest cycle time of 1336 seconds and 296 

seconds respectively.  

M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 

M11 M12 M13 M14 M15 M16 M17 M18 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
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Table 8 and Table 9 summarises the outputs from different bottlenecks detection methods applied 

over the AAA line and the BBB line. 

Table 8: Comparison of bottleneck detection machines of AAA Line 

Bottleneck rank Active period 

percentage method 

Mean active period 

method 

Median Cycle time 

method 

1 M1, M2  M1  M2 

2 M4  M2 M1 

3 M5, M7, M13 M4 M4 

 

Table 9: Comparison of bottleneck detection results of BBB Line 

Bottleneck rank Active period 

percentage method 

Mean active period 

method 

Median Cycle time 

method 

1 M20 M26 M20 

2 M29 M30 M29 

3 M22 M25 M26, M27 

 

It is clear from Table 9, that the active period percentage method and the mean active period 

method points the machine M1 and hence it is concluded that machine M1 is the primary 

bottleneck. Also, it is clear that the active period percentage method does not detect the bottleneck 

with certainity (Roser et al., 2001) as there are two machines which equal active period percentages. 

But with mean active period it could be concluded that the machine M1 is the primary bottleneck as 

it has the longest mean active duration with 95% confidence interval without overlapping with other 

intervals. But, according to the cycle time method, M2 is the primary bottleneck and this method 

does not consider the other active states expect the producing states.  

From Table 10, it can be inferred that the active period percentage method and the cycle time 

method points to the machine M20 as the bottleneck whereas the mean active period method 

shows M26 is the bottleneck. But according to the mean active period method, machine M26 is not 

a very certain bottleneck as there is an overlapping with the confidence interval of machine M25. 

Moreover, this arises as the mean active period is used which might have a skewed effect on the 

result. So considering these factors, it could be said that machine M20 is the primary bottleneck of 

the BBB line as the other two methods point to this machine. 

All the results drawn from the static bottlenecks analysis are validated with the production system 

expert in the industry and the expert agreed to the outcomes.  
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II.4.1.2. Momentary Bottlenecks 

The bottlenecks at any given instant of time could also be determined from the real time data. The 

sole bottlenecks and shifting bottlenecks are the two approaches to determine the momentary 

bottlenecks. For the momentary bottleneck approach, only the AAA line is taken for calculations due 

to the time constraint. The same calculations can be repeated for BBB line. 

II.4.1.2.1 Sole Bottlenecks 

The machine with the longest uninterrupted active period at any given instant is the sole bottleneck. 

To determine this bottleneck from the real time data, the active time for each machine is plotted on 

a uniform time scale, starting from start of the shift .This is done to map the state of the machine at 

every instant of the time and to visualize the states of all machines at the same time. Figure 33 

shows an example of the plot showing the active times of all the machines of AAA line from the start 

of the shift to the end of the shift on a particular day. 

 

Figure 33 : Plot of the active period of the machines of AAA line 

The sole bottleneck is found by determining the longest active period of the machine at the any 

given instant. Figure 35 shows the active period plot of machines on a particular day from the start 

of the shift, 06:30:00 until 06:53:48.  At 06:53:48, by comparing the length of the uninterrupted 

active period starting at that instant dating to the past, the sole bottleneck machine is found out. 

From Figure 34, it can be seen that machine M5 has the longest uninterrupted active period at 

06:53:48 and hence the bottleneck at this instant is the machine M5.  
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Figure 34 : Plot of active period of machines of AAA line within a time frame 

Furthermore, Figure 35 shows the active period plot with an extended time frame of Figure 34 i.e. 

starting from the start of the shift, 06:30:00 till 09:46:36.  

 

Figure 35 : Extended time frame plot of active period of machines of AAA and BBB line 

From Figure 35, it could be inferred that at 09:46:36, machine M5 has the longest uninterrupted 

active period which makes that machine as the sole bottleneck.   

II.4.1.2.1. Shifting Bottlenecks 

The bottlenecks in the real time change frequently. To determine the shifting bottlenecks from the 

real time data, the machine active period is plotted on a uniform time scale starting from the start of 

the shift. The first step to find out the shifting bottlenecks is to find out the sole bottlenecks. Then 

the other machine is compared with respect the sole bottlenecks in order to find the shifting 
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bottlenecks. If there are no sole bottlenecks at a given time instant, then the shifting bottlenecks for 

each machine is calculated with respect to other machines.  It could be seen from Figure 35 that the 

shifting bottlenecks is not observed in the real case as some machine are active for the entire shift. 

This was checked for three random days and the observation was same. 

To demonstrate this method, six machines from the AAA line where the shifting pattern could be 

observed among the machines are taken for calculation. The same procedure to determine the 

shifting bottlenecks could be repeated in other days where the shifting bottlenecks exists in order to 

get the shifting percentage for all machines. Figure 36 shows the visual representation of the shifting 

bottlenecks over the time period starting from 06:30:00 to 09:24:00.  

 

 

Figure 36: Shifting bottlenecks illustration 

From Figure 36, the percentage time the machines were in shifting and sole period is also calculated 

as shown in Figure 37.  
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Figure 37 : Sole and Shifting bottlenecks as a percentage of the time frame 

From Figure 37, it can be seen that machine M4 is the primary bottleneck over the specified period 

of time as it is a bottleneck for 71% of the time. 

II.4.2. Frequency of Breakdowns and Total down Time of the Machines 
The frequency of breakdowns and the total down time of the machines is also determined from the 

real time data. The frequency of the machine and the total down time of the machines in AAA line is 

shown in the Figure 38 and Figure 39. 

 

 

Figure 38: Total number of breakdown occurrences in AAA line 

M1 M2 M3 M4 M5 M6 



71 
 

 

 

Figure 39 : Total down time of Grovel line machines 

From Figure 38 and from Figure 39, it could be seen that the machine with highest number of 

breakdowns is M3 and its corresponding total down time is 22 hours which is not the highest. This 

indicates that the MTBF is less when compared to other machines. On the other hand, the machine 

M1 has 36 hours total down time but only 159 occurrences. This indicates that the machine M1 has 

larger MTTR when compared to other machines. The same analysis can also be replicated for the 

machines in the BBB line. 

II.4.3. Predictive Modelling of Production Indicators 
The predictive modelling is a collection of mathematical techniques to in a mathematical 

relationship and to predict the future values(Dickey, 2012). The predictive modelling of the 

production line is done from two aspects: Maintanence and line throughput. The aim of the 

maintenance predictive modelling is to identify the futuristic breakdown pattern of the different 

machines and the likely hood of the breakdown trend of different machines. On the other hand, with 

the breakdown pattern taken into consideration, the confidence level of production line meeting the 

set target production is also found out. These models will be helpful for the production and 

maintenance teams to design their action strategies.   

II.4.3.1. MTBF data modelling 

The futuristic breakdown pattern of the different machines is found by modelling the MTBF data. 

From the historical data, the MTBF is calculated for all the machines i.e. the time from the start of 

the failure till the start of the next failure is calculated from the data. The statistical distribution of 

the MTBF data for each machine is found through EasyFit 5.6 Professional software. The probability 
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density function is also found for each fit. The Kolmogorov-Smirnov (KS) tests are used to find out 

the statistical distributions. The MTBF data was calculated for the machines in the AAA line and the 

probability density plot for each machine is drawn for the length of the shift as shown in Figure 40.   

 

Figure 40 : Probability density plot of AAA Line machines 

From Figure 40, it can be seen that that during the first hour of production from the start time of the 

shift. This statistical distribution fit will be helpful for maintenance team in order to design their 

tactical maintenance strategies. 

II.4.3.2. Breakdown as a percentage of scheduled hours 

The breakdown as a percentage of scheduled hours is an indicator of the time lost due to 

breakdowns. With the plot of this indicator over a time period, the trend of the breakdown is 

visualised.  Moreover, having control limits on this breakdown time, it is possible to predict the 

general causes of the breakdown. Figure 41 shows the breakdown pattern of the machine M1, which 

the bottleneck machine was as pointed out by mean active period method, over the two month time 

period plotted in Minitab Statistical Software. It could be inferred from the Figure 41 that majority of 

the downtimes are due to common causes as they are within the three sigma level. The moving 

range chart shows the variation as calculated from the ranges of two successive breakdown 

percentages while on the other hand, the individual chart represents individual breakdown 

percentage. As all the point in the moving range chart is within the control limits, one can be sure 

that the breakdown pattern doesn’t have an unstable variation. Following this, one point is outside 

the control limit in the individual plot, shows that on that particular day, a major breakdown or huge 

number of small breakdowns have occurred in the machine and it has shifted more than three sigma 

levels from the average of the breakdowns. One more observation from the individual chart is that, a 

roller coaster trend is seen towards the end which needs more attention in detailing out the reasons 

for the losses as some problems seems to be causing a uniform drift to both sides of the centre line.  
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Figure 41: IMR trend chart for breakdown as a percentage of time 

II.4.3.3. Throughput estimator 

The throughput is one of the key parameter that is important for production engineers. From the 

past real time data, the expected throughput or the run rate can be calculated. Also, by using the 

probability approaches, the confidence level of the throughput is also calculated. The last machine in 

the AAA line is M18. Though the throughput numbers from this machine is not available, the 

producing state details of the machine are used to calculate the throughput of the AAA line. The 

count of producing states is the throughput. The historical throughput data was then modelled and 

the statistical distribution of the throughput data is obtained. Although, there are various statistical 

distributions could be fit for the data, the Weibull distribution is used as it is the most flexible 

distribution and is a representative of all other distributions by changing the shape and the scale 

parameter. The Weibull distribution of the historical throughput as shown in the Figure 42 is then -

used to predict the throughput on a daily basis as shown the Figure 43.  

IMR chart – Machine M1 
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Figure 42 : Cumulative Weibull distribution function of the historical throughput data 

 

 

Figure 43: Daily throughput prediction using the Weibull distribution from one sample 
iteration 

100 iterations were run and the average daily productions are added to give the monthly 

production. Figure 44 show that, the AAA line could handle a monthly volume of 870 at 90% 

probability level. With the volume greater than 870, the probability of achieving the production 

drops indicating more strategic plans need to be made by the production team in order to achieve 

the monthly production.  
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Figure 44: Throughput estimation with probability 
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II.5. Algorithms and Discussion 
This chapter explains the creation of generalised algorithms of the bottleneck detection methods and 

the maont 

II.5.1. Static bottleneck detection methods 
The three static bottleneck detection methods were possible to carry out from the real time data: 

Active period, mean active period and the cycle time method. Algorithms are defined for each one of 

these method. An assumption is made here that, the MES records the data for each individual 

machine and the output from the MES data files are individual for each machine as described in the 

Methodology Section.  

II.5.1.1. Active period percentage method 

This method takes only the active states of the machine. Below is the generalised algorithm to 

calculate the active period percentage of a machine. 

Algorithm 

Step 1 : Start 

Step 2 : Specify the time interval 

Step 3 : Calculate the sum of active periods of the machine 

Step 4 : Calculate the active period percentage according to the Equation 4 

                                                                                                                        Equation 4 

Where Ai= Active period percentage 

             ai,k= Individual active periods 

             T = Start of the time interval 

             t = End of the time interval 

Step 5 : Stop 

Similarly, the same algorithm is used for all the machines in the production line to compute the 

active period’s percentages of the entire machines in the production line. 

The inputs are the time instants of the machine states and the tie intervals. The model output is the 

active period percentages of the machine. The algorithm is validated over the random data 

generated and compared the results with the manual calculations. 

The advantages of this algorithm are that the algorithm is defined for each machine and thus this 

algorithm can be implemented independently of the structure of the production system. Adding on 

it uses only the data recorded in the event log files and therefore it was easy to calculate from the 

event log files.  Though this algorithm is trained on the given data set, a sample random test data 

representing the problem was created and this algorithm was tested. To validate the results, the 

manual calculations were also done on the test data set and the results were compared.  
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Also as pointed out by Wang et al (2011) that this method assumes that the throughput from each 

machine is the same when the machines process different products during different active periods. 

This aspect is widely affected when there are different processing times, different product based 

breakdown patterns, setup times etc.  Moreover, with this active period method percentage 

method, the small and the large active durations cannot be interpreted. For example, with this 

method it cannot be said for sure that the machine is active for the time interval continuously or the 

active period is discontinuous but occurs more frequently 

II.5.1.2. Mean active period method 

Like active period percentage method, this method also takes only the active states into 

consideration in determining the bottlenecks. Furthermore, the generalised algorithm is same as 

that of the active period percentage method until the active periods of machine i is stored in 1 x n 

matrix.   

Algorithm 

Step 1 : Start 

Step 2 : Specify the time interval 

Step 3 : Calculate the mean of the active period of the machine according to Equation 5 

Step 4 : Calculate the standard deviation according to Equation 6 

Step 5 : Calculate the confidence intervals according to Equation 7 

Step 6 : Stop 

The mean active period of the machine i is calculated using Equation 2. This equation is adapted 

from Roser et al. (2001).  

                                                                                                                            Equation 5 

where 𝐴i̅= Mean active period 

             ai,k= Individual active periods 

             n = number of active periods 

 The standard deviation is calculated according to Equation 3. This equation is adapted from Roser et 

al. (2001). 

                                                                                                                   Equation 6 

The confidence intervals are then calculated at 95% confidence level by Equation 4. This equation is 

adapted from Roser et al. (2001).  

                                                                                                                                                  Equation 7 
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Similarly, the same algorithm is used for all the machines in the production line to compute the 

mean active period of all the machines. 

The inputs are the time instants of the machine states and the tie intervals. The model output is the 

mean active period of the machine. The algorithm is validated over the random data generated and 

compared the results with the manual calculations. 

Unlike active period percentage method, the mean active period could detect the bottleneck 

accurately at 95% confidence level. The similarity being with the active period percentage is that it 

follows the same algorithm until the active period matrix is calculated. Adding on, it’s relatively 

simple to calculate from the data set, only the information from the log files were used as pointed 

out by Roser (2001). 

Like active period percentage method this method also assumes the throughput from each machine 

is same and when each machine produces different products during different active periods(Wang, 

Chen, Wang, Zhang, & Sun, 2011). Though the mean active period includes a confidence interval, the 

primary bottleneck could be detected only when the confidence interval of the machines doesn’t 

overlap. Otherwise it cannot be said for sure which machine is the bottleneck.  Moreover the effect 

of the average concept will have skewed results when the active period set has a larger distribution 

of the data. Both the active period percentage and mean active period assumes that operator was 

not the bottleneck. For example, the machine could be waiting for the maintenance operator to be 

addressed when the machine is down. So the decision has to be taken whether the operator/ 

mechanic should be considered as a separate entity in the bottleneck detections using this method. 

II.5.1.3. Cycle time method  

This method is also very useful method in order to detect the bottlenecks more quickly from 

utilisation point of view. The generalised algorithm for this method is described below. 

Algorithm 

Step 1 : Start 

Step 2 : Specify the interval of time 

Step 3 : Calculate the median time of the producing modes of the machine 

Step 4 : Stop 

Similarly, the same algorithm is used for all the machines in the production line to compute the 

median cycle time of all the machines. 

The inputs are the time instants of the machine states and the time intervals. The model output is 

the median cycle time of the machine. The algorithm is applied over the real data set and the sample 

random data. The algorithm is validated over the random data generated and compared the results 

with the manual calculations. 

The same algorithm is run for all the machines in the production line and the median cycle time is 

compared to find out the bottlenecks especially when there is a large varieties of the products in the 

production line and the machines MES doesn’t monitor the  type of product rather it only monitors 

the machine  states. The cycle time method is a very easy method to detect bottlenecks from the 
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real time MES data. But on the other hand, it cannot detect the secondary bottlenecks and short 

term bottlenecks.  

The median cycle times when compared across the machines takes the different product variants 

processing times of the machines into consideration. This is one of the strength when compared to 

the former methods on bottleneck detection. On the other hand, it takes only the machine cycle 

time ( including loading time to machine, unloading time and the machine processing time) into 

consideration, and not the other active states of the machine like breakdowns, setups etc.. So to 

conclude, this method only points the machine which improves the throughput only from the 

machine cycle time perspective. Also, this method is a good method when applied to machines 

which has technical availability of 100%. Yet another situation is that, it can use in situations where 

the work station activities are completely manual as the manual cycle times could be computed and 

the median could be taken. 

II.5.2. Momentary Bottlenecks 
The bottlenecks at any given instant of time can be determined from the real time data by detecting 

the sole and shifting bottlenecks. Unlike the static bottlenecks algorithms design for each individual 

machine and then comparing the results across the machines in the production line, the momentary 

bottlenecks requires different approach.  The first step in determining the momentary bottlenecks is 

to aggregate the data of all machines in a production line into one data file for the required time 

interval. An algorithm is defined over this aggregated data in order to identify the sole and the 

shifting bottlenecks.  

II.5.2.1. Sole Bottlenecks 

The algorithm to determine the sole bottleneck machine in a production line is explained below. 

Algorithm 

Step 1 : Start 

Step 2 : State the current instant t and the number of the machines 

Step 3 : Check whether the which machines are active at t 

Step 4 : Determine the machine having the longest uninterrupted active period at t  

Step 5 : The machine with the longest uninterrupted active period is the sole bottleneck 

Step 6 : Stop 

The inputs are the current time instants, number of machines and the machines states and their 

time instants. The output is the bottleneck machines at that time instant. This algorithm is useful in 

finding out the sole bottlenecks at the defined time instants. The algorithm is applied over the real 

data set and the sample random data. The algorithm is validated over the random data generated 

and compared the results with the manual calculations. 

II.5.2.2. Shifting bottlenecks 

Shifting bottlenecks algorithms could be considered as an extended part of the sole bottlenecks.  

Algorithm 

Step 1 : Start 

Step 2 : The sole bottlenecks are determined at time instant t. Let the sole bottleneck machine be   
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   M1 

Step 3 : The starting time instant of the sole bottleneck M1 is determined. Let that be t1 

Step 4 : At time instant t1, determine the sole bottleneck machine and name it as M2 

Step 5 : The starting time instant of the sole bottleneck M2 is determined. Let that be t3 

 

Step 6 : Determine time instant when the active period of M2 ends is the time interval of t1 to t. Let  

  this time instant be t2. 

Step 7 : Similarly repeat the steps 4 to step 6 until the start of the shift 

Step 8 : Calculate the shifting and the sole bottlenecks of the machine according to Equation 8 and 

Equation 9 respectively, 

                               Equation 8                                                                                                                                                                                                                   

                                         Equation 9 

Step 9 : Stop 

The inputs are the machine states with time instants and the number of machines. The output is the 

sole and the shifting percentages of the machines. The algorithm is validated over the random data 

generated and compared the results with the manual calculations. 

As explained by Roser et al. (2003), the momentary bottlenecks show the primary, short term, long 

term and the non-bottlenecks of the production system. Also, it can be observed from the pattern of 

the real time data of AAA line that, some machines seems to be active for the entire period of the 

shift and the shifting pattern of the bottlenecks are hardly visually observed. In this case, the 

machines with the highest uninterrupted active period become the sole bottleneck machines. Also, 

one more observation is that, when this method is used in a production system which has more 

number of machines, then the complexity increases to identify the shifting pattern between the 

machines. One big advantage of this method is that, the scaling down and scaling up approach. This 

method could be applied to even fifteen minute interval to detect the bottleneck and could be 

scaled up to hours or even up to one day and it detects the bottlenecks at the defined instant of 

time with accuracy. Another advantage is that the shifting bottleneck approach can also be used to 

detect the secondary bottlenecks due to the overlapping functionality.  Also according to Roser et al. 

(2002), this approach of bottleneck detection showed the primary stations which restrain the 

capacity of the production line. Though the shifting bottleneck approach detects the primary 

bottleneck machine of the production line, this method cannot reveal what type of action is 

necessary in order to debottleneck the machine.  

II.5.3. Summary of different bottleneck detections methods 
The four different methods to detect the bottlenecks are summarised in the Table 11. From Table 11 

it could be inferred that the shifting bottlenecks is the most superior bottlenecks among the four 

types of the bottleneck detection methods and this is because of the accuracy in determining the 

bottlenecks and the ability to detect the bottlenecks at different time intervals (Roser et al, 2002). 

The accuracy is high because this type of bottleneck detection techniques is based on the nature of 

the production systems while the other methods are standalone methods and a comparison is 
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drawn to detect the bottlenecks.  The median cycle time is also a good method to detect the 

bottleneck especially where the cycle times are widely spread due to the product variant. On the 

other hand, this method doesn’t take the availability of the station into consideration. But it could 

be argued that the availability of the station is highly dynamic in nature and one can’t predict the 

exact availability of the station in spite of efficient and effective operational practices. In this 

situation, the cycle time method is very useful for bottleneck detection as the machine with the 

highest cycle time governs the line throughput. Also, it indicates the amount by which the cycle time 

of the bottleneck machine should be reduced according to Wiendahl and Hegenscheidt (2003). 
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Table 10: Comparison of the four different bottleneck machines 

Method Active period 
percentage method (%) 

Mean active period 
method (sec) 

Median cycle time 
method (sec) 

Shifting bottlenecks 
(%) 

Factors All active durations Mean of the active 
duration 

Median product 
processing times 

Overlapping active 
duration and 
longest un 
interrupted active 
duration 

Algorithm Independent of 
production system 

Independent of 
Production system 

Independent of 
production system 

Much dependent on 
production system 

Reason for why the 
machine is a bottleneck 

Machine with largest 
active percentage 
duration will cause the 
downstream machine 
to starve and upstream 
machine to be blocked 

Machine with the largest 
mean active period is 
least likely to be 
interrupted by other 
machines and has a 
large effect on the 
overall system output 

Machine with the 
largest cycle time 
will govern the 
overall system 
output even if the 
technical availability 
of the station is 
100% 

Machine with the 
largest sum of 
shifting and sole 
bottlenecks over a 
period of time 
reduces the overall 
output 

Indicator of bottleneck 
(How one can tell that the 
machine is the bottleneck) 

Largest active period 
percentage 

Largest mean active 
duration with 
confidence interval  

Highest machine 
processing time  

Sum of percentage 
of sole and 
percentage of 
shifting 

Dynamic analysis No No No Yes 

Accuracy of the detection High – when the 
machine has the 
highest active 
percentage among all 
other machines 
 
Low – if the active 
period percentages are 
the same 

High - when the 
confidence interval 
doesn’t overlap with 
other machines 
 
Low –if confidence 
interval overlaps 
 

High – when the 
stations have a 
availability of 100% 
 
 
Low – in other cases 
as only the 
processing time is 
used as an indicator 

Very high – when 
there is a sole 
bottleneck at the 
time instant of 
interest 
 
Medium – When no 
machine is active at 
that time instant of 
interest and the 
sole and shifting are 
done based on the 
past data  
 
Low – When two or 
more machines 
have the same 
uninterrupted 
active period at the 
time instant of 
interest  

Representation of product 
variants 

No No  Yes to some extent 
as median indicator 
is used 

No 

Representation of shifting 
bottlenecks 

No No  No Yes 

Ease of algorithm 
implementation 

High Medium High Low 
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II.5.4. Frequency of Breakdowns and Total time of Breakdowns 
The frequency of the breakdowns and the total time of the breakdowns can also be calculated from 

the real time data.  

Algorithm 

Step 1 :  Start 

Step 2 :  Specify the time interval 

Step 3 :  Calculate the number of error/down states to determine the frequency of the breakdowns 

Step 4 :  Calculate the time elapsed of the error/down states 

Step 5 : Calculate the total time of the error/down states according to the Equation 10

  

                                                                                                                                                                 Equation 10 

Step 6 : End 

The inputs are the time interval, machine states and their time instants. The output is the frequency 

of the error/down state and the total downtime of the machine. The algorithm is applied over the 

real data set and the sample random data. The algorithm is validated over the random data 

generated and compared the results with the manual calculations. 

The frequency and the total down time calculations from the real time data is a very useful metric 

for the maintenance department to develop long term strategies. Also, this analysis will indicate 

which machine requires condition monitoring. Adding on, this analysis also throws light on the 

maintenance key performance indicators (KPI’s) like MTTR and MTBF. For example, the machine 

with the highest frequency of breakdowns and has lowest total down time indicates that MTBF for 

that machine is lower when compared to other machines in the line. On the other hand, if the 

machine with lower frequency of breakdowns and higher total down time indicates that the MTTR is 

high for that machines when compared to other machines in the production line.  

II.5.5. Predictive Modelling of Production indicators 
The performance indicators of production system provide valuable information of the production 

system. The performance indicators like MTBF, percentage breakdown over scheduled hours, 

throughput is determined directly from the real time data.  

II.5.5.1 MTBF Data Modelling 

From the real time data, it was straightforward to calculate the MTBF and to find the statistical 

distribution. Though the statistics delivers more insights, the disadvantages of this statistical fit are 

that more data needs to be collected in order to minimise the error during the statistical fit. The 

MTBF is calculated from the real time data file as shown in the Figure 45. 
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Figure 45: MTBF calculation description from the real time data 

The outcome of the statistical distribution of the MTBF data can be used directly as an input to the 

simulation. Adding on, this method is more superior to the method proposed by Troyer (2009) which 

gives the average estimation of MTBF. This average estimation is affected by the extreme values if 

present in the data and does not indicate the correct picture.   

 As per Ahamed and Kamaruddin (2012), the MTBF statistical probability distributions of different 

machines could be compared to find out the pattern of the machine failure rate and this was also 

possible to do from the real time data. Also, the statistical distributions of the MTBF data of the 

machines, can tell the pattern of the breakdowns during any particular day. One can pin point at the 

exact time intervals when the machines have the highest probability to the failure. This type of 

information could be used by maintenance team to develop tactical proactive strategies such as 

frequent watch or checks on the machine by the maintenance team during the hour in which it has 

the highest probability to fail.  

II.5.5.2. Breakdown as a percentage of scheduled hours 

Monitoring breakdown as a percentage of scheduled hours could be a very important KPI for the 

maintenance team.  An overall trend and the localised pattern analysis of this indicator will provide 

useful information to the maintenance team as without identifying and correcting the factors 

contributing to the special cause variation, the breakdowns cannot achieve a statistical state of 

control. Also, the increasing and decreasing trend of the breakdown pattern of a particular machine 

could help maintenance team to design the long term and short term strategies: for example, 

implementing condition monitoring of a component if the breakdown is associated with some 

critical component in the machine or to strengthen the preventive maintenance activities.  

 II.5.5.3. Throughput estimator 

The prediction of the throughput from the historical data is a good indicator for the overall 

production team in order to assess whether the production system could meet the demand.  As 

explained by Johnson (2011), the monte carlo method can be used in throughput estimation. The 

strength of the throughput prediction is that the probability density function of the throughput is 

built over the historical data and this throughput data includes all losses in the production system. In 

other words, the losses in the production system will have a direct effect on throughput. This means 

that the historical throughput data is a good indicator to reflect on all the losses. With these losses in 

the production system, the monte carlo model predicts the confidence level of the production 

system meeting the required demand. In general, if the confidence level is less, then the production 
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team could plan for an overtime or allot new resources etc. for a shorter span of time in order to 

meet the required demand.  

Traditionally, the production team calculates the success rate of achieving the demand from their 

experience in the production system. This method of calculating from the experience could be 

wrong sometimes as some scenarios could be excluded. On the other hand, this monte carlo method 

of confidence level estimator includes all extreme scenarios. Hence, this method is much more 

reliable in predicting the success rate to meet the demand.  

II.5.6. Summary of the discussion 
The argument made by Roser et al. (2001) that the machine with the largest mean active period with 

confidence intervals contains reasonable faults when compared to the results drawn from this 

thesis. The most important is that Roser et al. (2001) doesn’t argue for instances when the 

confidence intervals of different machines overlap. So it can be concluded that the machine with the 

largest mean active period need not be the primary bottleneck if it has overlapping confidence 

interval. Also, Roser et al. (2001) didn’t acknowledge the fact that average parameter is not a good 

indicator when the machine’s active period intervals are not equal and are widely spread. This was 

also seen in the results drawn from this thesis.  

Similarly, Roser et al (2002) argument on the machine with the highest sum of shifting and sole 

bottleneck percentages is the bottleneck machine is concluded with overreaching assumptions. The 

Roser et al (2003) also draws the same conclusion in analysing yet another case in which the pattern 

of shifting bottlenecks is almost the same as the first case. The author doesn’t include the case 

where two machines have equal uninterrupted active period. The argument might have been 

strengthened if the analysis of the latter case also leads to same conclusion. The results from this 

thesis point to the fact that in a complex production system some machines are always active from 

the start to the end of the shift, in which case the shifting pattern is not observed.  

Also it could be found that the turning point method for bottleneck detection from the real time 

data which was proposed by Li et al. (2009) cannot be applied to the empirical data set as the data 

set doesn’t have the blockage and the starvation times of the machine explicitly. Though the author 

claims to have developed the generalised algorithm for this method, the algorithm could not be 

used in the empirical data set in this thesis and this is due to the fact of the lack of the necessary 

data collection of the process.  

The bottleneck approaches should be selected based on the nature production system and the type 

of the goal that is aimed for. For example, if the goal is to get the maximum throughput from the 

production line of machines which has very high reliability, then cycle time method is a good 

indicator of the bottlenecks.  

MTBF is very useful metric and could be derived from the real time data. The method of calculation 

presented in this thesis is based on computing the exact time intervals. This is in contraction to 

Toyer (2009) method of MTBF calculation which was based on again the averages parameter. Also, 

the percentages of breakdowns trend and the monte carlo simulation of the throughput parameter 

was proved to be good pointers based on which the tactical decisions could be made.  
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II.6. Conclusion 
In this chapter the conclusion drawn from the study are presented. This is done by answering the 

research questions. 

RQ 1 : How can the real time data be used to visualize bottlenecks and downtime 

parameters? 

The effective bottleneck detection techniques: Active period, mean active period, cycle time 

method and shifting bottlenecks are tried over the real time. It was possible to carry out 

these methods over the real time. Moreover, the numerical results from these methods 

were converted into simple graphs in order to detect the bottlenecks visually. Also, the 

frequency of breakdowns in and the total down time in a given interval of time are the 

useful indicators to develop maintenance strategies.  

 

Though different bottleneck methods were tried out, the application of the bottleneck 

detection methods should be based on the nature of production system. 

 

 

RQ 2 : How can the predictive analytics deliver value for tactical decision making process? 

The predictive analytics in terms of confidence level predictor of the expected service level 

of the production system to the forecast demand, maintenance trend analytics delivers 

valuable information to the production and the maintenance team in order to better plan 

their tactical activities. 

 

Though the predictive analytics is very useful, one has to understand that it is the forecast 

and this could change from the reality as the production disturbances like sudden 

breakdowns etc. cannot be foreseen with accuracy.  

 

From the results of this thesis, it is understood that the variability elitists in the production 

system and the real time data analytics could help in understand the causes of the variability 

and help the production and the maintenance team to develop their tactical and long term 

strategies.  This could be seen from the below Figure 46 which shows that the daily output 

of the given production line variation across the days.  
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Figure 46: Daily output of BBB line 

From Figure 46 , the first highlighted yellow area shows that  the production per day varies mostly 

between 40-50. This variation could be due to the short term bottlenecks or disturbances. The 

second highlighted red area shows that there are some critical losses affect the system and pushes 

down the throughput to the level of 10.  Analytics is a powerful operation on the real time data, to 

identify the reasons behind this variation which is proved in this thesis. 
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II.6. Future Work 
The algorithm drawn from this thesis could be tested on different production system real time data. 

Adding on, the automation of algorithm over the real time data is an important step for having 

continuous decision support. Also, more predictive analytics could be extended further to determine 

the future active states of the machines during the consecutive production run day and to predict 

the bottlenecks from this forecast data of active states. This will further make the production team 

to plan better for the future.  

Predictive analytics tell what will happen in the future. Perspective analytics means what must be 

done which is an extension of predictive analytics. This aspect could be explored for autonomous 

decision making by machines with the help of the real time data. 
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2. Overall Discussion 
In the two parts of this thesis, it was proved that analytics over the different real time data sets 

provided valuable insights. Firstly the difference between the data sets is that the first data set was 

unstructured and a framework was developed to make it structured and the second data set was 

more structured and was uniform across the machines. In both these cases the data analytics 

yielded valuable insights. The analysis on the first data set reveals how important is to measure the 

operator influenced loss times in order to improve the productivity and the importance to capture 

the losses in a standardised format. The analysis on the second data set reveals how the data could 

identify the bottlenecks, show the trends of maintenance KPI’s etc.  

The interesting part of the analytics is that the decisions could be made based on the facts that are 

derived from analytics and not by rough judging or guessing. However, one of the key important 

finding in working on two data sets is that, the data analytics is best applied to questions which has 

uncertain answers and answering that question will have add a huge value to the company. On the 

other hand, it could be argued that, for the questions which have low level of uncertain answers and 

answering those doesn’t add much value, then judgemental way of making decisions can be used. 

For example, it could be seen that finding the bottlenecks was a critical and question with an 

uncertain answer due to the complex production system and the variety of activities. Identifying the 

bottlenecks with certainty is possible using analytics which will help to improve the throughput from 

the production line to a large extent. In this case data analytics will show the trends and identify the 

bottleneck machines in the production line. Simulation could also be argued as an alias to data 

analytics but it often takes more time to build the model and interpret the results. 

The two different strategies of the analytics in two different data sets yield important insights. 

Reflecting on those, it could be generalised that three different aspects are important when working 

with such type of big production data. Those are the importance on avoiding the sampling error, too 

much focus on numerical precisions and stability. The sampling error is that picking up of a small 

sample from the population and analysing instead of analysing the entire population data in order to 

identify the trends that affect the production system performance. The second one is that the 

evaluation of trends is more important in the production analytics rather than focusing on numerical 

precisions of the results. The third one is that use of the data insights to assess the impact of each 

event which are likely to occur and to develop strategy using those inputs rather than only planning 

for exclusive scenarios and ignoring others. Also, it is important to note that analytics itself will not 

provide the right answers. It is only about getting the trends and it needs to be used as an enabler to 

initiate the scenario based thinking. Yet another important insight is that, the KPI’s needs to be 

identified even before looking at the data so that the data analysis could be made to look only that 

particular KPI trend. 

From analysing the two sets of data and assessing the value it can yield, it is imperative that 

manufacturers could use the real time data to discover the new waves of productivity potentials. 

The common theme of analytics and the use of it in the two different data sets actually reveal the 

type of behaviour of the machines and the type of behaviour of the losses in the production system. 

The analysis on the past data and the predictive analytics on the data, which is in the form of huge 

number of log files of the machines, could throw new trends that is hidden in the production system 

and which is not always thought by the companies. Without the analytics on the real time data, 

looking for the areas of potential improvement is like looking for a needle in a haystack. 
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3. Conclusion 
The findings from the Data Set 1 are the operator influenced loss times and their impact on OEE. The 

findings from the Data Set 2 are the bottleneck detections and the predictive analytics. These results 

are the productivity potentials which were identified by data analytics.  

The operator influenced loss times, the bottleneck detection techniques and the KPI trends could be 

directly derived from the real time data using analytics and this method is much faster and hence 

the fact based decisions could be made and quickly. By improving the operator influenced loss times, 

the OEE could be increased. Similarly, by detecting the bottlenecks in the production line, it could be 

managed efficiently in order to achieve higher throughput. Adding on, the predictive analytics could 

help to foresee the failure pattern of the machine and helps to design the right maintenance 

strategy, thus increasing the overall availability of the system. 

The operator influenced loss times, detecting the bottlenecks and identifying the failure patterns are 

some of the ways to manage and improve higher productivity. This thesis demonstrates that the 

data analytics is a valuable tool to identify the productivity potentials from the massive influx of big 

data, as well as to develop analytical platforms that can run over the real time data to deliver key 

insights.  
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APPENDIX A: Losses Description and Levels of Operator Influence 
 

Loss Description Level of operator influecne 

Fullt i konveyorbuffert May be operator related 

Materialväntan May be operator related 

Materialväntan, B2 May be operator related 

Materialväntan, L5 May be operator related 

Materialväntan, R3 May be operator related 

Materialväntan, R4 May be operator related 

Vänta jobb May be operator related 

Breakdown Operator related 

ställtid Operator related 

Reparation (EM) Operator related 

Systemfel Operator related 

Systemfel RS 3 Operator related 

Tappmaskin/Rinser K4 - Tekniskt fel Operator related 

Verktygsbrist Operator related 

Verktyg - Haveri Operator related 

Artikelbyte med enkel städning Operator related 

Artikelbyte utan städning Operator related 

Artikelbyte Operator related 

Artikelbyte med helstädning Operator related 

Påspackare (PP) Operator related 

Skivbyte Operator related 

F42-Ecobloc-Fyllare-Fyllning Operator related 

Fyllning Operator related 

Påfyllning zink Operator related 

slipskivebyte Operator related 

Maskinjustering Operator related 

Material (materialbyte) Operator related 

Modellbyte Operator related 

Orderbyte Operator related 

Orderbyte med ställ Operator related 

Sortbyte/ställ Operator related 

Sortbyte med disk Operator related 

Sortbyte utan disk Operator related 

Product change Operator related 

Byte elektroder LGR Operator related 

Byte elektroder Q2RS Operator related 

Byte Film Operator related 

Byte Tråd Operator related 

Byte av coil Operator related 

Rullbyte (RB) Operator related 

Slipskivebyte Operator related 
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Inställning/Justering, D1 Operator related 

Inställning/Justering, D3 Operator related 

Inställning/Justering, L5 Operator related 

Inställning/Justering, R3 Operator related 

Inställning/Justering, R4 Operator related 

Inställning/Justering, S2 Operator related 

Ställtid Operator related 

Byte klippdel längdtråd  Operator related 

Verktygsbyte Operator related 

Operatör ej stämplat Operator related 

Sök Operator related 

Stopp för packen Operator related 

Artikel saknas May be operator related 

Kapsylbrist May be operator related 

Vagnar/Emballage saknas May be operator related 

Kartong Saknas (KS) May be operator related 

Enternt material saknas May be operator related 

Externt material saknas Not operator related 

Externt Material Not operator related 

Grafitbrist May be operator related 

Gallerbrist May be operator related 

Habiaproducerat material May be operator related 

Inkö tom May be operator related 

Internt material saknas May be operator related 

Internt material May be operator related 

Saknar insatsmaterial May be operator related 

Saknar meterial (burkar, etiketter etc) från leverantör Not operator related 

M-Brist- Gummi Not operator related 

Material brist May be operator related 

Material brist - Tork May be operator related 

Material brist - Externleverans Not operator related 

Saknar Råvara (SR) May be operator related 

M-Brist-Gummi May be operator related 

Ingen aktiv artikel May be operator related 

Ingen produkt (IP) May be operator related 

Ingen Produt (IP) May be operator related 

Order/Material brist May be operator related 

Otorkat material May be operator related 

Väntar på burkar att packa May be operator related 

Fönsterbrist May be operator related 

Fönster brist May be operator related 

Absence - Operator Operator related 

Personal saknas Operator related 

Brist på personal Operator related 
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Personal - Ej Fullbemannat Operator related 

Personal brist Operator related 

Personal brist - Annnan Stn Operator related 

Personal brist - Lågprio Stn Operator related 

Personal brist - Ej Fullbemannat Operator related 

Personal brist - Annan Stn Operator related 

Personal brist (PB) Operator related 

Personal brist -Ej Fullbemmanat Operator related 

Justering efter ställ Operator related 

Justering/Inställning Operator related 

Justering klippdel längdtråd Operator related 

Justering, No Hit!, B2 Färgprov Operator related 

Justering, No Hit!, D1 1:a Körning/Colorering Operator related 

Justering, No Hit!, D1 Färgprov Operator related 

Justering, No Hit!, L5 1:a Körning/Colorering Operator related 

Justering, No Hit!, L5 Färgprov Operator related 

Justering, No Hit! L5 1:a Körning/Colorering Operator related 

Verktygsjustering Operator related 

Kontroll och Justering Operator related 

Etikettmaskin K1 - Justering Operator related 

Mätning Operator related 

Meypack K1 - Justering Operator related 

Ingen justering, Hit! Färgprov Operator related 

Prasmatic K4 - Justering Operator related 

SMI K3 - Justering Operator related 

Tappmaskin/Rinser K4 - Justering Operator related 

Tappmaskin K1 - Justering Operator related 

Mikrostopp May be operator related 

Other Not possible to classify 

Övrigt / Orsakskod saknas Not possible to classify 

Annat mekrelaterat UH Not possible to classify 

Annan orsak Not possible to classify 

Processproblem Not possible to classify 

Annan maskin prioriterad May be operator related 

Producerat antal uppnått May be operator related 

Order färdig May be operator related 

Bristande kvalitet Not possible to classify 

M-Brist - Externleverans Not operator related 

Omarbete Operator related 

Ingen produkt från linjen May be operator related 

Linjeuppstart Operator related 

Line Startup Operator related 

Line startup Operator related 

Normal uppstart/montering Operator related 
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Produktions Start (PS) Not possible to classify 

produktion Start(PS) Not possible to classify 

Uppstart/Kallstart, R3 Not operator related 

Uppstart/Kallstart, R4 Not operator related 

Uppstart/Kallstart, S2 Not operator related 

Uppstart/uppvärmning Not operator related 

Uppstart/Avslut Not operator related 

1015-M200 Not possible to classify 

M200-1015 Not possible to classify 

Tryckverk 1-6, D1 Operator related 

Referensfel Vision Operator related 

AM16 Andra fel May be operator related 

AMS Brist på majs May be operator related 

Other mechanical maintenance Operator related 

Påspackare Operator related 

Påspackare (PP) Operator related 

Banderoll, S2 May be operator related 

pga CNC Berger Operator related 

Bestrykningstork, D3 Operator related 

Kartongmaskin Operator related 

Uppstart, avslut Not possible to classify 

Uppstart Not possible to classify 

BOXES May be operator related 

Brättbyte, change of something Operator related 

Byte IPS storlek Operator related 

C&C maskin Operator related 

Kabel + Verktyg Operator related 

Åkvagn stannar Operator related 

Vagnar/Emballage saknas May be operator related 

Kartongresare, D3 Operator related 

Orsaks kod finns ej Not possible to classify 

CD Not possible to classify 

C-motor Operator related 

Centrumhylsa Hålsko Operator related 

Byte varumärke Operator related 

Avslut Not possible to classify 

Avslut med problem Not possible to classify 

Avslut med problem (skriv) Not possible to classify 

Klimat Tunnel - Låg Fuktighet Operator related 

Coilbyte Operator related 

Kontaktrör Operator related 

Kontroll provutrustning Operator related 

Omställning Operator related 

Transportör May be operator related 
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Transportbanor Operator related 

Lucka Operator related 

Skärstans Operator related 

Klippverktyg Operator related 

Datumprinter Operator related 

DatumBandfel (DB) Operator related 

Avdrag Not possible to classify 

Detaljbrist May be operator related 

Riktning tråd 6mm Operator related 

Hämta/lämna material May be operator related 

Borr 2 Operator related 

Körning efter rast May be operator related 

pga Hålslip Operator related 

EJ planerad service Operator related 

Elektriskt fel Operator related 

Elfel Operator related 

Gavelsvets Operator related 

Maskinhaveri Operator related 

Planerat UH stopp Operator related 

Etikettfel (EF) Operator related 

F42-Ecobloc-Blåsmaskin-Blåsfel Operator related 

F43 Packmaskin - Utlopp May be operator related 

F43 trågmärkare Operator related 

F43B Etikettmaskin Anker - Etikett Operator related 

F43B Etikettmaskin Anker - Utloop May be operator related 

Falskt stopp Not possible to classify 

Fel på konveyor Operator related 

Matarverk Operator related 

Film Not possible to classify 

Fixturbyte Operator related 

Planhetskontroll Operator related 

Spolning Foam Operator related 

Fluss övriga fel Operator related 

FM10 Fyllmaskin-Pappersbrott Operator related 

FM10 Pallastare Operator related 

FM2 Fyllmaskin - LS/TS Operator related 

FM2 Trågmäkare Operator related 

FM2 Trågpackare Operator related 

FM3 Pallastare Operator related 

FM3 Trågpackare Operator related 

FM4 Fyllmaskin - Backsystem Operator related 

FM4 Trågpackare Operator related 

FM5 Etikettmaskin - Utlopp May be operator related 

FM5 Pack - Bricka Operator related 
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FM7 Fyllmaskin-Fyllstystem Operator related 

FM7 Pallastare Operator related 

FM8 Fyllmaskin-Backsystem Operator related 

FM8 Fyllmaskin-LS/TS Operator related 

FM8 Fyllmaskin-Pappersbrott Operator related 

FM8 Trågpackare Operator related 

FM9 Fyllmaskin-Fyllsystem Operator related 

FM9 Fyllmaskin-Pappersbrott Operator related 

FM9 Pallastare Operator related 

FM9 Trågpackare Operator related 

Folie Bromsen Operator related 

Formsäkring Operator related 

Formläggare Operator related 

FS - Temp. Aggregat Operator related 

FS -Temp.aggregat Operator related 

FUH Not possible to classify 

Fullt i konveyorbuffert May be operator related 

Fastnar i utkast Operator related 

Fastnar i modell Operator related 

Grosning Not possible to classify 

Haveri Operator related 

Höglager May be operator related 

Hydraulikbortfall Operator related 

ILA-pack Operator related 

Formspruta övrigt Operator related 

Inlastningsfel Operator related 

Inpastare, R3 Operator related 

Internt material May be operator related 

Trassel Operator related 

Jomet/Metod Not possible to classify 

Justerning, No Hit!, D1 Färgprov Operator related 

Justerning, No Hit!, D3 Färgprov Operator related 

Klipportal Operator related 

Köpdetaljer May be operator related 

Kutsbrist May be operator related 

Etikettutrustning, R3 Operator related 

Etikettutrustning, R4 Operator related 

Lådbrist May be operator related 

Lådrobot Operator related 

Större ställ  Operator related 

Laserstråle Operator related 

Sidolyft mellan décor och 2-fot cell Operator related 

Mindre ställ Operator related 

Vågen Operator related 
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Linjeavslut Operator related 

Line training Operator related 

Linjeuppstar Operator related 

Fylla på material May be operator related 

Lång tid Vibrasvets May be operator related 

Tappar vacuum i låda Operator related 

Tappar vacuum i form Operator related 

LS/TS Not possible to classify 

M - Brist - Externleverans Not operator related 

Maskin Operator related 

Machine error Operator related 

Maskinfel Plastmaskin, X1 Operator related 

Huvudverktyg Operator related 

Underhåll MEK/EL Operator related 

Manuell hantering Operator related 

Manuell laddning Blohm Operator related 

Material May be operator related 

Material slut May be operator related 

Material, R4 May be operator related 

Mekaniskt fel Operator related 

Mekfel Operator related 

Mekfel robot Operator related 

Motorskydd skrotbana Operator related 

Multipond/Metod Not possible to classify 

Ny personal Operator related 

Ingen justering, Hit! 1:a Körning/Colorering Operator related 

Ingen produkt från linjen May be operator related 

Ej planerad service Operator related 

Normalt avslut Not possible to classify 

Ej avkodat stopp Not possible to classify 

Märkmaskin Operator related 

Okagoriserate Not possible to classify 

Okatergoriserat Not possible to classify 

Operatörs UH Operator related 

Opertörs UH Operator related 

Övrigt / Orsakskod saknas Not possible to classify 

Andra Maskinfel (AM) Operator related 

Övrigt mekfel Operator related 

Övrigt, X1 Operator related 

Omställning (O) Operator related 

Utmatning May be operator related 

Ugnar 1-5, D3 Operator related 

P - brist - Ej Fullbemmanat Operator related 

P-brist - Ej Fullbemmanat Operator related 
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P-brist - Övrigt Operator related 

P -Brist - Annan Stn Operator related 

Palletare K3 - Justering Operator related 

Pallastare/Metod Operator related 

Palletering (PA) Operator related 

Pappersbrott, B2 Operator related 

Pappersbrott, D1 Operator related 

Pappersbrott, S2 Operator related 

P-Brist - Ej Fullbemmanat Operator related 

Otillåtet stopp Operator related 

Personal utlånad Operator related 

Plastare Operator related 

Pneumatisk fel Operator related 

Portal Not possible to classify 

Förberedelser sen start May be operator related 

Tryckverk, 1-5, D3 Operator related 

Problem med RS3 Operator related 

Process/Filtrering Operator related 

Process/Mixern Operator related 

Processproblem Operator related 

Producerat antal uppnått Operator related 

Produktion Avstägning (PA) Not possible to classify 

Programering Operator related 

Punkstvets Operator related 

Köpt material Not operator related 

Kylare Operator related 

Rb - Plockfel Operator related 

Rb - Positionsfel Operator related 

Orsakskod finns ej Not possible to classify 

Orsakskod saknas Not possible to classify 

Orsakskod saknas (andra) Not possible to classify 

Orsakskod saknas Lagret K4 Not possible to classify 

Upprullning, D1 Operator related 

Reparation mall Operator related 

Ståll Not possible to classify 

RIBBON Operator related 

Robot   Operator related 

Robot (Vanilj) Operator related 

Robot 2 Operator related 

Robot 3 Operator related 

Robot fell Operator related 

Robot Övrigt Operator related 

RS Not possible to classify 

Gummiblandning Operator related 
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Rullbyet Operator related 

Prov Operator related 

Provtagning Operator related 

Slipskivebyte Operator related 

Scorotron, X1 Operator related 

Repor May be operator related 

Screenverk 1-3 S2 Operator related 

Screenverk, D1 Operator related 

Givarfel O -ringsränna Operator related 

Givarfel EL Operator related 

Givare Operator related 

Service Operator related 

Ställ Operator related 

Inställning/Justering, R3 Operator related 

Plåthantering Operator related 

Hylla fastnar i magasin (Maskinfel) Operator related 

Hylla fastnar i magasin (Skevhet/Mått/Svetsfel) Not possible to classify 

Omställning/sort byte Operator related 

Liten omställning Operator related 

SMI K3 - Justering Operator related 

Mjukvarufel Operator related 

Stacker Operator related 

Staplingsutrustning Operator related 

Personal Operator related 

Personal - Lågprio Stn Operator related 

Trappa Operator related 

Prägling, D3 Operator related 

Start och stopp Not possible to classify 

Uppstart/Kallstart, B2 Not possible to classify 

Uppstart/Kallstart, D3 Not possible to classify 

Uppstart/Kallstart, R3 Not possible to classify 

Uppstart/Kallstart, S2 Not possible to classify 

Uppstart/uppvärmning Not operator related 

Uppstart, X1 Not possible to classify 

Station 1 May be operator related 

Stegtransportör Operator related 

Stopp vid nerplock Operator related 

Stopp vid påhängning May be operator related 

Stopp pga annan msk Operator related 

Stoppkod saknas Not operator related 

Stopp i Décor 2 -fot cell Operator related 

Stopp i Décor cell Operator related 

Stopp måleri Operator related 

Stopp föregående skift May be operator related 
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Stopp för packen Operator related 

Syncropack Operator related 

Systemfel Operator related 

Systemfel RS 3 Operator related 

Tappmaskin/Rinser K4 - Justering Operator related 

Tappmaskin/Rinser K4 - Tekniskt fel Operator related 

Tappmaskin K1 - Tekniskt fel Operator related 

Tekniskt/Maskin Operator related 

Teknik Operator related 

TEFLON - BOTTOM BELT Operator related 

Tempereringsagregat - FS Operator related 

Limmet Not possible to classify 

Fram etikett Not possible to classify 

Normal omställning Operator related 

Order färdig Operator related 

Sen start före pack Not possible to classify 

Trepack (TP) Not possible to classify 

Tid utanför ordinare uppgift Not possible to classify 

Verktygsfel Operator related 

Verktyg Operator related 

Verktyg - Avformningsfel Operator related 

Verktyg - Balansering Dysa Operator related 

Verktyg - Haveri Operator related 

Verktyg - FS Operator related 

Verktyg - Pipbrott Operator related 

Verktygstvätt Operator related 

Transfer Operator related 

Transfervagn Operator related 

Transport Band (T) Operator related 

Trågpackare Operator related 

Vagn/pallbyte Operator related 

Felsökning Operator related 

Truck körning Not possible to classify 

Sortbyte Operator related 

Ugnsproblem Operator related 

Okategoriserat Not possible to classify 

Unerhåll MEK/EL Operator related 

Avrullning, R3 Operator related 

Uppstaplare 2/4 Operator related 

Verktyg + kabel + Färg Operator related 

Vaccum Operator related 

Vacuum - Rb Operator related 

Vacuumpump Operator related 

Vacuumsläpp Operator related 
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Vacuumfel Vibrasvets Operator related 

Verkgsbyte Operator related 

Verktysbyte Operator related 

Verkygsbyte Operator related 

Vinda Operator related 

Vision Operator related 

Väntar på P4 May be operator related 

WA-maskin 10-pack Operator related 

Svets Q2RS Operator related 

Hjul fastnar i transportör Operator related 

Rullmaskin, L5 Operator related 

Rullmaskin, R3 Operator related 

Rullmaskin, R4 Operator related 

Rullmaskin, S2 Operator related 

Wolfen (W) Operator related 

Inplastare kaka Operator related 

Inplastare, D3 Operator related 

Inplastare, R3 Operator related 

Inplastare, R4 Operator related 

Inplastare, S2 Operator related 

Fel ihopträdning Operator related 

Uncategorised Not possible to classify 
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APPENDIX B: Layout of AAA and BBB Line 
 

 

 

 

 

 

 

 

 

 

 

 

 


