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Abstract 13 

 14 

Catalysis is a key phenomenon in a great number of energy processes, including feedstock 15 

conversion, tar cracking, emission abatement and optimizations of energy use. Within 16 

heterogeneous, catalytic nano-scale systems, the chemical reactions typically proceed at very 17 

high rates at a gas-solid interface. However, the statistical uncertainties characteristic of 18 

molecular processes pose efficiency problems for computational optimizations of such nano-19 

scale systems. The present work investigates the performance of a Direct Simulation Monte 20 

Carlo (DSMC) code with a stochastic optimization heuristic for evaluations of an optimal 21 

catalyst distribution. The DSMC code treats molecular motion with homogeneous and 22 

heterogeneous chemical reactions in wall-bounded systems and algorithms have been devised 23 

that allow optimization of the distribution of a catalytically active material within a three-24 

dimensional duct (e.g. a pore). The objective function is the outlet concentration of 25 

computational molecules that have interacted with the catalytically active surface, and the 26 

optimization method used is simulated annealing. The application of a stochastic optimization 27 

heuristic is shown to be more efficient within the present DSMC framework than using a 28 

macroscopic overlay method. Furthermore, it is shown that the performance of the developed 29 

method is superior to that of a gradient search method for the current class of problems. 30 

Finally, the advantages and disadvantages of different types of objective functions are 31 

discussed. 32 

 33 
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1. Introduction 40 

 41 

The most viable route to a reduction of the environmental costs of modern societies is an 42 

increase in the efficiencies of processes used in the manufacturing and transportation of 43 

products and in the production of energy [1]. Catalysis is a key phenomenon in a great 44 

number of relevant industrial processes, including feedstock conversion [2, 3], energy 45 

conversion [4], tar cracking [5], emission abatement [6, 7] and optimizations of energy use 46 

[8]. At the same time, nanotechnology has emerged as a subject area with a strong potential to 47 

enhance energy efficiency in all areas of the energy sector, from energy sources to energy 48 

change, distribution, storage and usage [9]. It now seems clear that the future development 49 

and optimization of fields such as renewable energy production and emission abatement will 50 

depend on the success of research activities related to reactive systems at the nano-scale.  51 

 52 

More specifically, the current development of heterogeneous catalysis at the nano-scale is 53 

particularly promising [7]. Within heterogeneous, catalytic nano-scale systems, the chemical 54 

reactions are allowed to proceed at very high rates at a gas-solid interface (often the surface of 55 

a precious metal). The process efficiency is limited by the acceptable cost of the particular 56 

material in combination with the surface-to-bulk atom ratio obtainable, since the chemical 57 

reaction only occurs at the surface and the interior atoms remain unused. As the gas 58 

containing the reactants is typically brought into contact with the catalyst while being forced 59 

to flow past it, optimization of the efficiencies of such systems require numerical tools that 60 

take into account both the chemistry and the fluid dynamics of the system.  61 

 62 

The governing processes in applications where the bounding geometry is of micro- or 63 

nanometer size typically span several orders of magnitude in spatial and temporal scales [10-64 

12]. Consequently, there are many inherent difficulties involved in performing non-intrusive, 65 

non-destructive experimental investigations of the processes occurring on the smallest scales 66 

in such systems. Comprehensive numerical models therefore form an indispensable basis in 67 

the research into their behavior. 68 

 69 

The multi-scale nature of heterogeneous catalytic systems has led to the development of a 70 

number of numerical frameworks dedicated to their study. Multi-scale models for reaction and 71 

transport in porous catalysts that are based on the continuum assumption have been proposed 72 

by several authors [13, 14]. However, such methods rely on the use of effective transport 73 

coefficients in macroscopic balance equations and cannot be used for systems where there is a 74 

net convective flow when the mean free path is significant to the bounding geometry (e.g. 75 



when the Knudsen number is larger than 0.015) [15]. For such systems, continuum 76 

descriptions are not valid, and the predicted velocity fields are therefore erroneous, leading to 77 

inaccurate predictions of momentum, heat and mass transfer. The route to accurate 78 

descriptions of molecular flows with chemical reactions is via molecular methods, e.g. by 79 

obtaining the solution to the Boltzmann equation rather than the Navier-Stokes equations [15-80 

18]. Solving the Boltzmann equation directly is however very difficult for real-world 81 

problems, as it represents a 7D partial differential equation (for the probability distribution of 82 

molecular positions and velocities over time). A more efficient approach is then to use a 83 

molecular simulation model, such as Direct Simulation Monte Carlo (DSMC) [19]. It has 84 

been shown that the DSMC method can be directly related to the Boltzmann equation and that 85 

solutions from the two frameworks are consistent [20, 21]. Furthermore, the DSMC method 86 

has the additional advantages of allowing treatment of inverse collisions and ternary chemical 87 

reactions, which becomes especially problematic in attempts at solving the Boltzmann 88 

equation directly [19]. The DSMC method is therefore well suited to describe reactive nano-89 

scale systems [12, 22]. It is, in fact, the most widely used numerical algorithm in kinetic 90 

theory [23, 24] and has been experimentally validated for a great number of applications, 91 

including nonequilibrium gas flows (e.g. shocks) [24], rarefied gas dynamics (e.g. velocity, 92 

temperature and concentration slip) [25], near-vacuum flow of high-temperature gas at 93 

supersonic speeds [26], low-pressure deposition processes [27] and temperature-programmed 94 

desorption in heterogeneous catalysis [12]. 95 

 96 

A scientific problem of specific interest for heterogeneous catalytic systems is that of 97 

optimizing the catalyst distribution. In such an optimization process, the goal is to come up 98 

with a conceptual solution for the optimal design of the catalytic system, within a given 99 

design space while respecting a set of design constraints. Fine-tuning of the system with 100 

respect to actual real-life performance and manufacturability can then be carried out from an 101 

otherwise optimal starting point, resulting in significant reductions of the total development 102 

time and cost. However, most state-of-the-art optimization methods developed for reactive 103 

fluid flow systems rely on the availability of a system of partial differential equations 104 

describing the system in question. Hence, when the system to be optimized is described by a 105 

molecular method instead, many well-known optimization methods (such as the adjoint 106 

method for aerodynamic shape optimization [28, 29]) cannot be applied directly. Furthermore, 107 

as one of the most prominent characteristics of molecular systems is the existence of 108 

statistical uncertainties [30, 31], any chosen objective function will always contain some 109 

degree of noise. In the optimization of a reactive nano-scale system, it is therefore reasonable 110 

to choose an optimization heuristic that can find the approximate global optimum while 111 



handling uncertainties in the objective function and discrete search spaces. One optimization 112 

heuristic that fulfils these requirements is the stochastic optimization approach known as 113 

simulated annealing [32, 33]. The simulated annealing method is simple to implement, 114 

relatively fast and has been found to be more accurate than genetic algorithms and maximum 115 

entropy reconstruction techniques in reconstructions of heterogeneous media [34]. 116 

Interestingly, the simulated annealing method itself is also classified as a Monte Carlo 117 

method, as it is constitutes an adaptation of the Metropolis-Hastings algorithm [35].  118 

 119 

There have been previous attempts at using the DSMC method in optimization studies. 120 

Recently, Pflug et al. [36] used DSMC to optimize the film thickness uniformity in an 121 

industrial physical vapor deposition (PVD) reactor. However, the design of the PVD reactor 122 

in question allowed for a single DSMC computation to be used (per sputtering material) to 123 

optimize the geometry. For a generic heterogeneous catalytic system, such simplifications are 124 

typically not possible. Furthermore, enumeration approaches (repeating simulations for 125 

several values of a given design parameter) can be useful for systems that are easily 126 

characterized by a small set of design parameters [cf. 37], but are also not generally applicable 127 

to problems involving the distribution of a catalytic material over the walls of a fixed system, 128 

as the possible designs are too many and cannot easily be grouped together. 129 

 130 

Hence, the purpose of the present work is to develop a numerical tool for investigations of 131 

reacting, molecular flows that can be applied in optimizations of catalytic systems on the 132 

micro- and nano-scales. The main challenge to be faced is thus related to the inevitable 133 

fluctuations in any objective function that result from the natural uncertainty pertaining to the 134 

molecular regime: when the continuum approximation no longer holds, fluctuations appear in 135 

the macroscopic properties derived by averaging over molecular properties [38]. It is shown 136 

in the current work that a successful (i.e. robust and computationally efficient) optimization 137 

approach for such cases is dependent on a well-balanced combination of the choice of 138 

objective function, optimization algorithm and convergence criteria. 139 

 140 

 141 

2. Modeling 142 

 143 

2.1. The Direct Simulation Monte Carlo (DSMC) framework 144 

 145 

The route to accurate descriptions of molecular flows with chemical reactions is via molecular 146 

methods, e.g. by obtaining the solution to the Boltzmann equation rather than the Navier-147 



Stokes equations [15-18]. The molecular method chosen in the present work is the well-148 

established Direct Simulation Monte Carlo (DSMC) method [19], which is a probabilistic 149 

simulation approach. The fluid flow is modelled using particles that represent a large number 150 

of real molecules. The particle motion is updated deterministically using a time step that is 151 

smaller than the mean collision time, so that the intermolecular collisions can be decoupled 152 

from the molecular motion. The code developed in this work is based on Bird’s DSMC 153 

method [19] and is able to handle chemistry in the gas phase and to approximate the rate of 154 

surface chemistry reactions at gas-solid interfaces [39, 40]. More specifically, the code is 155 

designed for performing optimizations of the distribution of an active material over the 156 

bounding surfaces of the system. The aim is to make possible a complete optimization during 157 

the course of one single simulation run. The code is written in the programming language C. 158 

 159 

The DSMC procedure has been described extensively elsewhere [19], and will only be 160 

summarized briefly here. With DSMC, the ensemble of molecules is modeled with a reduced 161 

number of computational molecules that move in straight lines according to their velocities 162 

for a short time step during which no collisions take place. Thereafter, collisions are modelled 163 

using random numbers and collision probabilities, which are based on the collision cross 164 

section and the relative velocities between pairs of molecules. Here, the hard sphere model is 165 

used to determine the outcome of a collision (scattering angles and post-collision velocities) 166 

[19], as it is sufficient for the purpose of the present work. If a molecule collides with a wall, 167 

an adsorption or wall reaction event can be triggered, and if two molecules collide, a 168 

homogeneous chemical reaction can result. 169 

 170 

At certain intervals, sampling is performed over the molecules to derive the macroscopic 171 

fields of interest, such as the mass-averaged gas velocity, temperature and species or number 172 

concentrations. This sampling is performed on a computational mesh that is coarser than the 173 

mesh used to calculate collisions, and the two types of cells are typically referred to as cells 174 

(or samplings cells) and subcells (or collision cells), respectively. The flow is sampled every 175 

fourth time step to obtain samples with only a small degree of correlation. A schematic 176 

diagram of the DSMC algorithm within the layout of the complete code is shown in Figure 1. 177 

 178 



 179 

 180 

Figure 1. Schematic layout of the DSMC algorithm and the optimization algorithm and their 181 

interconnectedness. 182 

 183 

 184 

2.2. The stochastic optimization heuristic 185 

 186 

Macroscopic fields in a DSMC procedure are always deduced by averaging over the 187 

computational molecules and therefore have a tendency to contain statistical scatter, as the 188 

presence of a statistically significant number of molecules in all sampling cells at all times 189 

cannot be guaranteed [30]. (On the contrary, it is precisely this loss of statistically significant 190 

averages that causes the continuum approximation to break down and that therefore 191 

characterizes the molecular flow regimes). This problem becomes further emphasized with 192 

the DSMC method, since the actual number of real molecules is represented by a smaller 193 

number of computational molecules, which acts so as to increase the scatter [31]. In addition, 194 

the objective function in the optimization process may very well exhibit both global and local 195 

optima. Furthermore, it is not possible to test every conceivable geometrical design due to the 196 

large computational cost of such an investigation. A suitable compromise is then to use a 197 

stochastic optimization method, such as simulated annealing [32, 33, 41, 42]. Simulated 198 

annealing cannot be guaranteed to find the global optimum of an objective function, but it can 199 

avoid becoming trapped in a local optimum (when there is a better global optimum 200 

somewhere else), it prevents premature termination due to scatter in the objective function 201 

and it helps avoid the tedious task of investigating every possible design case. 202 

 203 

In the current work, the following simulated annealing heuristic is used: 204 



1) Sample the objective function for one initial (randomly chosen) design case. 205 

2) Pick another design case (using an algorithm that has to be specified separately). 206 

3) If the new case is better, move to it. If it is worse, accept it anyway with a certain 207 

probability, P. This probability is to be a function of the time elapsed in the optimization 208 

process and it too has to be specified separately. 209 

4) Repeat steps 2-3 a pre-determined number of rounds or until the objective function reaches 210 

a pre-defined threshold value. 211 

 212 

At the heart of the simulated annealing algorithm lies the determination of the probability P. 213 

The original probability function of Kirkpatrick et al. [32] is here modified slightly, so that 214 

 215 

𝑃 = 𝑒𝑥𝑝 [
−(𝑓′ − 𝑓) 𝑓⁄

𝑇(𝑡)
] 216 

 217 

In this notation, f is the value of the objective function, a prime denotes the value for the 218 

newer design case, and T(t) is the analogue of temperature in a physical annealing process. In 219 

this work, the function T(t) is defined as 220 

 221 

𝑇(𝑡) = 𝑎𝜏(1 − 𝑏 𝑡 𝑡𝑚𝑎𝑥⁄ ) 222 

 223 

where t is the total time elapsed in the simulation and tmax is the time at which the 224 

optimization process is stopped. Hence, the tendency to accept a design case that is worse 225 

decreases with time. The variable  represents the convergence criterion for the normalized 226 

change in the objective function, and the parameters a and b thus determine the behavior of P 227 

in time. These values should be chosen to enable a more global character of the search 228 

initially, and to progress towards a local search in the most promising region with time. The 229 

optimum values for a generic problem will always be problem-dependent to some extent. In 230 

the current work, the values a = 2 and b = 0.95 were found to produce satisfactory results. 231 

 232 

The final component in the optimization routine is the algorithm for picking another design. 233 

This component is not prescribed by the simulated annealing algorithm as such, but typically 234 

involves a randomized selection of either the step length, the step direction, or both [41]. The 235 

following algorithm was applied in the present work: 236 

1) The new design is obtained by moving the catalytically active region of interest a 237 

(uniformly distributed) random distance in the interval [x/20, x/10], where x is the extent 238 

of the domain in coordinate direction x. 239 



2) The direction in which to move is by default the direction of increasing value of the 240 

objective function, but in 25% of the cases the direction is reversed to introduce a random 241 

behavior also to the design picking algorithm. 242 

3) Modifications to the new design choice are made if needed to ensure that the geometric 243 

bounds of the system are respected. 244 

 245 

A schematic illustration of the implementation of the optimization algorithm into the DSMC 246 

framework is shown in Figure 1. For every design that is to be evaluated, the DSMC code 247 

needs to run long enough for the samples used to calculate the objective function to converge. 248 

It is therefore evident that the choice of objective function and the robustness of the 249 

optimization algorithm with regard to fluctuations and sampling errors are of utmost 250 

importance in the derivation of the combined procedure. 251 

 252 

 253 

3. Results and Discussion 254 

 255 

The DSMC code is validated in an extensive series of tests, of which only a subset are 256 

reported here. Thereafter, the task of finding the optimum position for a catalytically active 257 

region inside a three-dimensional pore is used to test the robustness and efficiency of the 258 

proposed optimization algorithm.  259 

 260 

 261 

3.1. Validation of the DSMC code 262 

   263 

As the most challenging aspect of the DSMC procedure in relation to molecular motion lies in 264 

the modelling of molecular collisions, one fundamental validation test carried out is that of a 265 

homogeneous gas at rest in a one-dimensional domain. This test case proves that the code is 266 

able to predict the correct solution for a one-dimensional homogeneous gas and that the 267 

performance of the random number generator used is acceptable. Indeed, the number of 268 

collisions predicted is very close to the theoretical value [19], and the mean collision 269 

separation is less than 5% of the cell-width, meaning that collision partners are located within 270 

the same subcell.  271 

 272 

Next, the performance of the DSMC code is exemplified for a non-isothermal fluid flow test 273 

case where the domain is a flow between two planes separated by a distance of 0.5 m. This 274 

distance is divided into 40 sampling cells with 10 collision subcells each. The number of 275 



computational molecules is 105, and the number density of molecules is 1020 m-3. The 276 

Knudsen number is approximately 0.03. The lower wall is stationary and maintained at a 277 

temperature of 250 K. It has surface properties such that 50% of the incoming molecules are 278 

specularly reflected, whereas the rest are diffusively reflected. The upper wall is maintained at 279 

300 K and moves at a velocity of 1 m/s in the plane perpendicular to the gap. At this wall, 280 

80% of the incoming molecules are specularly reflected. For this problem, the performance of 281 

the current code is validated by comparing its predictions to benchmark results from one of 282 

Graeme Bird’s program in the DS suite (DS1V) [43], in line with Bird’s recommendation on 283 

how to assess the validity of a new DSMC code. The predicted temperature slip is 284 

approximately 3.4 times higher at the hotter boundary, which agrees well with the DS1V 285 

solution as shown in Figure 2.  286 

 287 

 288 

 289 

 290 

Figure 2. Sampling cell temperature as a function of the normalized position between a 291 

stationary and a moving wall of different temperatures. The plane at position 0 is maintained 292 

at 250 K and is specularly reflecting to 50% while the plane at position 1 is maintained at 300 293 

K and is specularly reflecting to 80%. The predictions obtained in the current work are in 294 

excellent agreement with the DS1V solution.  295 

 296 

 297 

The ability of the code to handle different molecular species and chemical reactions is 298 

validated in a homogeneous chemistry test case. Two stationary walls are separated by a 299 

distance of 0.5 m. Both walls have surface properties such that there is 100% specular 300 

reflection. The gap between the walls is initially occupied by oxygen (O2) at a number density 301 

of 1020 m-3 and a temperature of 5000 K. In this test case, two chemical reactions may occur, 302 

namely the dissociation and recombination, respectively, of diatomic oxygen and atomic 303 
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oxygen: O2  2O. The total duration of the simulation is approximately one second of real 304 

time, and the result is shown in Figure 3. Again, the current code is in excellent agreement 305 

with the DS1V solution.  306 

 307 

 308 

 309 

Figure 3. Volume-averaged concentration of diatomic oxygen as a function of time. The gas 310 

consists of 100% pure O2 initially. The predictions obtained in the current work are in 311 

excellent agreement with the corresponding DS1V solution. 312 

 313 

 314 

A comprehensive treatment of surface reactions in the DSMC framework would necessitate 315 

detailed modeling of adsorption, desorption, coadsorption, reaction, surface diffusion and the 316 

effects of surface defects, which is currently beyond the state-of-the-art for this computational 317 

technique, although significant advances are made continuously [12]. Such additional 318 

complexities would also add to the computational cost and significantly reduce the efficiency 319 

of the optimization. In this work, surface reactions are therefore instead implemented as 320 

occurring at a wall with a certain probability [40]. This probability can be tuned to reproduce 321 

a physical reaction rate, implying that the main simplification involved is related to the loss of 322 

coverage-dependence. This simplification is deemed appropriate in the light of the main goal, 323 

which is to combine the DSMC simulation with an inline optimization routine. 324 

 325 

As a test case for the surface reaction setup, the wall-catalyzed dissociation of oxygen is 326 

simulated at a temperature of 300 K in the same geometry as the homogeneous validation 327 

case. Dissociation is prescribed to occur at the walls with a reaction probability of 1%. The 328 

temporal evolution of the atomic oxygen concentration profile is depicted in Figure 4. The 329 

results presented here agree with what is qualitatively expected for the system under 330 
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investigation and thus constitute a verification of the implementation of the wall reaction 331 

mechanism into the code. 332 

 333 

 334 

 335 

 336 

Figure 4. 3D surface plot showing the time-and-space resolved atomic oxygen concentration 337 

in the heterogeneous chemistry test case. The gas is initially pure diatomic oxygen (O2). Upon 338 

collision with a wall, there is a 1% probability that a diatomic oxygen molecule dissociates 339 

(O2  2O). The code predicts that the concentration of atomic oxygen resulting from this 340 

dissociation increases with time and penetrates into the domain. 341 

 342 

 343 

In conclusion, the observations from these validation tests support the inference that the code 344 

can be used for the optimization processes described next. 345 

 346 

 347 

3.2. Optimization of the position of a catalytically active region 348 

 349 

A three-dimensional nano-scale “pore” can be constructed by having two boundaries specified 350 

as an inlet and an outlet, and a procedure is implemented by which the pressure difference 351 

between these boundaries is maintained throughout the simulation [44]. The remaining four 352 

sides of the domain are regular walls, which may be designed with or without protrusions. 353 

The aim is to design a numerical framework that can be used to determine the optimal 354 

distribution of a limited amount of catalytically active material over this pore wall surface. To 355 

simplify the problem setup, the catalytically active material is limited to a single surface 356 
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location, but generalization to an arbitrary number of active sites is straightforward. 357 

Consequently, in the simulations presented here, the catalytically active region is a 2 nm thin 358 

section around the perimeter of a rectangular (100 x 100 x 300 nm) 3D pore. 359 

 360 

 361 

3.2.1 Objective function 362 

 363 

The most important feature of the objective function is that it converges quickly, which means 364 

that the signal should be strong in comparison to the fluctuations present. A comprehensive 365 

treatment of a catalytic reaction at the active region would have to account for sticking factors 366 

lower than unity [45], temperature-dependence of the chemical reaction rates and changes to 367 

the gas phase composition that could potentially affect the molecular flow field. Such effects 368 

would however tend to increase both the magnitude of the fluctuations (by making the 369 

objective function signal lower because of the lower reaction probability) and to delay the 370 

convergence towards a steady state (by introducing changes into the molecular flow field). 371 

For the purpose of optimization, the additional value in terms of the accuracy possibly gained 372 

from adding such descriptions is small in relation to the computational cost. Hence, in the 373 

current work, the chemical reaction is assumed not to influence the molecular flow field. In 374 

other words, no actual reaction (wherein molecules change nature) is carried out, but the 375 

molecules that have made contact with the catalytically active surface are marked, so that 376 

their concentration can be monitored by the code. This approach is equivalent to monitoring 377 

the impingement rate on the catalytically active sites, rather than the actual reaction rate [46]. 378 

Under the assumption that the flow field does not change significantly with the trace species 379 

conversion, this method may thus reduce the computational cost of obtaining converged 380 

statistics by several orders of magnitude. Additionally, it could be thought of as a means of 381 

probing the mass transfer rate towards the catalytically active sites (e.g., as in CO oxidation 382 

experiments over Pt/Al2O3 catalysts). It is well known that the reduction of the real number of 383 

molecules to a smaller number of computational molecules in DSMC makes the method 384 

sensitive to the prediction of rare events, which have low probability and therefore would 385 

require a large number of computational molecules to be reproduced correctly. A further 386 

advantage with the proposed approach is therefore that it makes use of all computational 387 

molecules, rather than the small fraction that reacts with the catalyst surface upon 388 

impingement. 389 

 390 

The design picking algorithm is implemented to move the catalytically active section around 391 

in the domain. This algorithm waits for a steady signal from the outlet sampling of marked 392 



molecules before changing the location of the catalytically active section as proposed by the 393 

simulated annealing algorithm. The objective function is judged to have converged when the 394 

relative change between two samples is less than 10-3. The convergence history for a typical 395 

design with the specified convergence criterion is shown in Figure 5. The simulation for this 396 

design is continued from the last state of the simulation for the previous design. It is clear that 397 

for the objective function to be useful in finding the optimum location, it need not provide a 398 

highly accurate value for the converged number of marked molecules on the outlet. Instead, 399 

the accuracy necessary is determined only by the need to be able to tell two different designs 400 

apart. 401 

 402 

 403 

 404 

Figure 5. Visualization of the objective function versus time for a given position of the 405 

catalytically active slit in the 3D pore. 406 

 407 

 408 

The effect of the number of computational molecules employed on the fluctuations in the 409 

objective function was also investigated, for 103, 104 and 2.104 molecules, respectively. There 410 

were no significant adverse effect from employing a smaller number of computational 411 

molecules, leading to the decision to use 103 molecules in the subsequent optimization runs. 412 

For a more complicated pore structure than the current one, the requirements for the number 413 

of computational molecules could possibly increase [47]. 414 

 415 

The computational cost for one DSMC run (i.e. one call to the objective function) depends on 416 

the number of computational molecules used, the number of cells used for the discretization 417 

of the computational domain and the time step employed. For a small number of 418 

computational molecules and a small computational domain (as used here), the time step is 419 

the most limiting factor. At atmospheric conditions, the mean collision time is approximately 420 



10-10 s, implying that the objective function would converge within 104 time steps (the time 421 

step is of the order of 10-11 s and the total time needed somewhat less than 10-7 s (cf. Figure 422 

5)). For the chosen design case, the corresponding run-time for one call on a single CPU is 423 

then several hours. However, atmospheric conditions represent an extreme case in the limit of 424 

zero Knudsen number, and lower pressures or higher temperatures reduce this time 425 

significantly. Similarly, much more complex geometries could significantly increase the 426 

number of computational molecules needed, which would increase the computational cost and 427 

probably make parallelization of the DSMC algorithms necessary [48]. 428 

 429 

3.2.2 Sample fluctuations 430 

 431 

Fluctuations in the sampled DSMC properties are the main challenge for the optimization 432 

algorithm. There are macroscopic overlay methods [49, 50] available for the DSCM 433 

framework that are based on the solution of trace species transport equations using the flow 434 

field of the other (dominating) species. Such methods thus represent a solution to the problem 435 

of treating very rare events in DSMC without having to resort to using an excessive number 436 

of computational molecules. However, these approaches are susceptible to numerical errors if 437 

the sampling of the macroscopic fields has not yet converged. This is a significant drawback 438 

in optimization, and it makes these methods less efficient than the sampling of marked 439 

molecules as proposed here. 440 

 441 

As an example, consider the sampling of the three velocity components u, v and w in a 442 

randomly chosen cell in a three-dimensional pore with a gas at rest at 300 K, as depicted in 443 

Figure 6. It is seen that a total time of 0.1 ms is needed to obtain an estimate of the steady-444 

state solution which is correct within approximately 10-3 m/s. When the simulation is 445 

terminated, hundreds of billions of molecular moves and billions of collisions have been 446 

performed, but mass conservation is still only within 0.1% error tolerance. Errors of such 447 

magnitude are still too large to be acceptable in the solution of a species transport equation 448 

with chemical reaction source terms for a species present in trace amounts. 449 

 450 

 451 



 452 

 453 

Figure 6. Convergence history for the three sample velocity components in a randomly 454 

chosen cell in a 1 x 1 x 3 m domain (discretized into 8 x 8 x 24 sampling cells). All velocity 455 

components tend to zero as time increases, which is the result expected for a gas at rest. 456 

 457 

 458 

3.2.3 Optimization 459 

 460 

The optimization algorithm is evaluated for an objective function that contains two local 461 

optima (and three extreme points), as depicted in Figure 7. The global optimum is positioned 462 

around z = 0.2 and is ~2.6%, where z is the normalized position of the catalytically active slit 463 

in the streamwise direction. There is also a local maximum (~1.5%) at around z = 0.7. Figure 464 

7 represents the converged objective function, but for any sampling from a DSMC simulation 465 

there will always be a significant uncertainty due to the presence of noise in the signal. This 466 

noise emanates from the molecular uncertainties and is further influenced by the convergence 467 

criteria used: in order for computational efficiency not to be lost, the sampling that produces 468 

the objective function signal has to be terminated within a realistic time frame, and so the 469 

signal will always be somewhat colored by noise. The extreme point that separates the curves 470 

leading to the two maxima is located at z = 0.5. Hence, for the current objective function – 471 

and in the absence of noise – a gradient search optimization process starting from a random 472 

location would find the global optimum in 50% of the cases and the other maximum in the 473 

remaining 50% of the cases. The aim here is to prove that the simulated annealing algorithm 474 

can exhibit superior performance to such an algorithm. 475 

 476 
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 478 

Figure 7. Objective function with two local optima, but only one global, and three extreme 479 

points. 480 

 481 

 482 

The statistics for the results of the simulated annealing algorithm when applied to a system 483 

that is described by the aforementioned objective function are shown in Figure 8. The 484 

optimization process has been repeated 1000 times for every limit on the number of calls to 485 

obtain reliable statistics. The algorithm is typically able to find the correct optimum after 20 486 

function calls. As the total number of calls allowed increases, the number of unsuccessful 487 

simulation runs decreases significantly. This behavior is superior to the performance of a 488 

gradient search method. A gradient search would only be able to find the local optimum 489 

closest to the initial position (and only if allowed a large enough number of calls), and would 490 

not in general be able to handle the fluctuations in the objective function. Consequently, a 491 

gradient search method could at best produce two ridges of equal height in Figure 8.  492 

 493 
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 495 

Figure 8. Statistics for the simulated annealing algorithm developed in the present work for 496 

the objective function in Figure 7. 497 

 498 

 499 

Finally, it should be stressed here that the number of calls needed to find the correct optimum 500 

is much dependent on the convergence criterion for the objective function (cf. Section 3.2.1). 501 

If this convergence criterion is relaxed, each function call will be cheaper but more function 502 

calls will be needed. Similarly, if the convergence criteria is tightened, the number of calls 503 

needed will decrease further, at the expense of a higher computational cost for each call. The 504 

optimum settings for the optimization algorithm itself will therefore depend mostly on the 505 

signal-to-noise ratio of the objective function chosen for the system under study. Furthermore, 506 

the computational cost for the DSMC simulation is approximately proportional to the number 507 

of computational molecules employed, implying that one would like to use as few molecules 508 

as possible. At the same time, however, the time needed to obtain statistically converged 509 

DSMC results increases with decreasing the number of computational molecules. In practice, 510 

the applicability of the DSMC approach is therefore mainly limited by the restriction that the 511 

time step must be smaller than the collision time, which implies that weakly rarefied flows 512 

(where the number density of molecules is relatively high) are much more computationally 513 

expensive than strongly rarefied flows (where the number density is low). In relation to the 514 

hierarchy of pores existing in a realistic porous medium, the DSMC technique is therefore 515 

most suited to study the behavior in the smaller pores, although it should be stressed that there 516 

are no limitations to the validity of the approach for the entire range of pore sizes. For the 517 

methodology developed in the current work to be more efficiently applied to a large 518 

computational domain spanning a wide pore size distribution, it is likely that some kind of 519 

hybrid DSMC/CFD (computational fluid dynamics) method would be most appropriate [51]. 520 
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 521 

4. Conclusions 522 

 523 

A Direct Simulation Monte Carlo (DSMC) code has been developed that treats molecular 524 

motion in wall-bounded systems with homogeneous and heterogeneous chemical reactions. A 525 

simulated annealing optimization algorithm is implemented to allow for optimization of the 526 

distribution of a catalytically active material within a 3D pore where the flow field is 527 

described by the present code. It is shown that the performance of the simulated annealing 528 

method for the current class of problems is superior to that of a gradient search method, in 529 

that it enables optimizations also of systems that exhibit global and local optima as well as 530 

fluctuations. Furthermore, using a stochastic optimization heuristic to handle the presence of 531 

noise in the sampling of the objective function is shown to be more efficient than using a 532 

macroscopic overlay method. 533 

 534 

To minimize the difficulties involved with handling noisy objective functions, the objective 535 

function should be a strong signal, suggesting that probing the mass transfer rate towards the 536 

catalytically active sites is more efficient than trying to approximate the actual surface 537 

reaction rate, as long as the local coverage does not vary significantly with the position of the 538 

catalyst material. The approach described in the present work thus represents a suitable 539 

starting-point for addressing a number of important research challenges involving the 540 

optimization of reacting nano-scale flows and reacting heterogeneous flows with and without 541 

surface diffusion. 542 

 543 
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