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Abstract
The goal of this project was to develop and construct a mechatronical platform that
uses the software architecture AUTOSAR and allows the user to use generated software
components created in a model based development tool. The platform itself has been
developed in the form of a robot that balances on a ball. An extensive model of the
robot and a Linear-Quadratic-Regulator have been developed in order to control it. The
system has been simulated in Simulink and the controller has been code generated and
incorporated in the AUTOSAR environment. The robot has been built from scratch as
well.

Setting up and configuring AUTOSAR on the platform proved to be quite a chal-
lenge. Since AUTOSAR is very uncommon outside of the automotive industry the doc-
umentation about how to implement it is very limited. Once the platfrom was properly
configured, the control algorithms from Simulink were integrated and run on the ECU.
The concept works perfectly. However, due to lack of precision and some poor choices
of hardware components, the robot is not able to apply the small torques required close
to the equilibrium point. This makes it at the moment not possible for the robot to
balance for more than a few seconds.

Index Terms: Control theory, embedded systems, code generation,
Ballbot,SIMULINK, AUTOSAR
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Chapter 1

Introduction

1.1 Background
In the beginning of the 21st century the number of computer controlled functions in
cars started to become very large. Typically each major function, such as automatic
transmission and traction control, used separate Electronic Control Units (ECUs). The
hardware and the software were tightly connected which made it difficult to re-use or
move the software to another hardware platform. More and more automotive manu-
facturers realised the problem and decided to do something about it. This cooperation
resulted in the creation of the AUTomotive Open System ARchitecture (AUTOSAR).

Today, most automobile manufacturers, suppliers and tool developers use and jointly
develop AUTOSAR. As a result, it has become important to establish and maintain
competence of AUTOSAR within companies related to automotive industry. A possible
method to train employees in the matter is through internal courses. In order for such a
course to be stimulating and exciting the scope could be moved from pen and paper and
pure theoretics to working with an actual hardware system.

1.2 Aim
This project aims at developing a system that can be used as a teaching platform for
AUTOSAR. The shape of the system should be that of a so called Ballbot i.e. a dy-
namically stable robot balancing on a single spherical body, i.e. a ball. The system
should make use of a computing platform developed at the company as well as the
software architecture AUTOSAR. It should be able to serve as an evaluation platform
for different AUTOSAR software applications, e.g. a control algorithm developed in
MATLAB/Simulink using code generation.

The system is then to be used as a part of internal courses in AUTOSAR at a com-
pany as well as for demonstration purposes, e.g. at a business fair. As for the project’s
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Chapter 1. Introduction 1.3. Goal

contribution to the field of study, AUTOSAR is not a common software architecture
outside of the automotive industry, to the best of the authors’ knowledge. Hence it
could serve as an evaluation of the suitability of using such an architecture within other
disciplines.

1.3 Goal
The main goal is to construct and develop a fully working and running system. This
means that the system should run on the architecture AUTOSAR with the possibility
to upload and run programs and algorithms on it developed in Simulink. The system
should also be able to read data from various sensors connected to it and respond by
sending out control signals to its actuators in an appropriate way.

A fully working control method for stabilising a Ballbot that works at least in simu-
lations should be developed as well. These simulations shall be used when determining
parameters and components in the hardware design.

A secondary goal, depending on the time at hand, is to make the constructed robot
balance on a ball without support. Specifically, the system should be able to balance
without assistance and become stable when it is perturbed from its equilibrium point.
The system should also manage to return to its starting position when moved from this
point. Furthermore, the system should handle disturbances such as light pushes and
shoves without falling as well as carrying an additional load which alters the centre of
gravity, inertia and other model specific parameters.

1.4 Problem
Due to the nature of the project, the main scientific challenge is that of system design.
Through extensive research and motivated by current engineering methods decisions
about different aspects of the final system is to be made. These decisions are mainly
dictated by the desired functionality of the final system. The system design can be
divided into a software and a hardware part.

The software design of the system involves development of a suitable control al-
gorithm and implementing it using the software architecture AUTOSAR. Hence, the
software part could be seen as related to two research questions, that of control theory
(modelling, control design, robustness analysis) and software development (structuring,
efficiency and conformity to the industry standard).

As for the hardware design, it involves construction of chassis, choice of actuators
and sensors as well as the electronics surrounding these parts to name a few points. A
small form factor computer-on-module developed at the company using Smart Mobility
ARChitecture (SMARC) will be the central computing platform.

2



Chapter 1. Introduction 1.5. Scope

1.5 Scope
The AUTSOSAR system should work in the sense that the system is to be able to run. It
shall also be able to perform calculations on data gathered by different sensors as well
as controlling actuators. However it is not in the scope of this thesis to make the system
and software follow all the standards and requirements that are present in the automotive
industry.

The main objective for the control algorithm is to stabilise the robot i.e. keeping it
from falling. Navigation with respect to the environment, remote controlling etc. will
not be considered unless time permits.

Disturbances are considered to lie within a reasonable value such that it can be
included into the modelling error. This reduces the sensors to those only related to the
stabilisation, i.e. force sensors measuring the increase in mass when the robot is loaded
is not considered.

The robot is assumed to act in a standard environment i.e. robustness and other
performance parameters are not investigated in undulated terrain.

1.6 Method
To have a detailed understanding of the problems to be solved within the project, an
extensive literature study is to be made regarding existing systems of the same type and
other relevant subjects in connection to the project. Specifications of functionality for
the finished product is then listed.

The whole system is then to be designed on a block level, i.e. decide which parts
that are needed and the requirements they need to fulfil. The work is later on divided
into two paths; hardware and software construction. Before any placements of equip-
ment orders, the system is modelled and simulated together with the control algorithm
in MATLAB/Simulink in order to validate that the proposed design is possible to im-
plement, and if not, the system design is altered.

Given that the simulations are successful, the system is constructed and tested it-
eratively. Tasks also connected to the construction are basic software configuration of
the hardware platform as well as setting up the code generation from Simulink to the
AUTOSAR target.

When the whole system is completed it is to be evaluated by comparison between
simulations from a model of the system and real-world measurements. The work and
result is to be documented in a master thesis report as well as presented at the completion
of the project.

3



Chapter 1. Introduction 1.7. Previous work

1.7 Previous work
In 2005 Prof. Ralph Hollis at Carnegie Mellon University, Pittsburg USA, developed
the first working Ballbot, which later on in 2010 also was patented [1]. This Ballbot de-
veloped by Hollis and his group was designed to be of human size and able to withstand
disturbances such as light kicks and shoves, as well as collisions with obstacles such
as walls [2]. Hollis describes the driving mechanism as an inverted mouse-ball drive.
Instead of letting the ball’s movements provide computer signals through the mouse’s
rollers, the idea is to send computer signals to the roller in order to control the ball. To
achieve this the Ballbot is equipped with four steel rollers placed orthogonal to each
other around the centre of the ball, with actuators connected to two of them.

Despite the fact that the Ballbot is such a relatively recent invention several other
groups around the world have developed similar balancing robots of their own. One
example is the BallIP (Ball Inverted Pendulum) developed by Prof. Masaaki Kumagai at
Tohoku Gakuin University, Japan, in 2008 [3]. BallIP is much smaller than the Ballbot
and instead of using steel rollers to balance it uses three omnidirectional wheels that
all are connected to actuators. This makes it possible for the BallIP to pivot around
its vertical axis such that an arbitrary heading can be specified [3], in contrast to the
original Ballbot.

Even though some functional Ballbots obviously exists around the world, none of
them are built upon the software architecture AUTOSAR. Thus this is could be the first
project that tries to combine these two parts.

1.8 Outline of thesis
Essential background theory for the thesis is covered briefly in Chapter 2. Methods of
modelling and control is dealt with as well as more project specific theory regarding
AUTOSAR. In addition, concepts used in the hardware design are also presented.

Next, the modelling and simulations of the system is presented in Chapter 3. A
mathematical model of the system is derived and different simulation scenarios of the
system’s behaviour in Simulink are shown.

Chapter 4 then describes the system design in detail, covering both software and
hardware design as well as the construction of the robot.

The results achieved in the project is then presented and evaluated in Chapter 5.
Following in Chapter 6, is a discussion of the results which covers both successful parts
and possible further improvements that could have been done. At last, a conclusion
regarding the project as a whole is drawn in Chapter 7.
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Chapter 2

Theory

This chapter deals with theoretical background regarding modelling and control theory
as well as software architecture and electronics. Since most of the subjects are vast
topics which can not by any means be presented fully in this thesis, the focus lies on
results and implementation techniques from the theory.

2.1 Lagrangian mechanics
Whilst the Newtonian mechanics approach is the most well-known method for mod-
elling mechanical systems, the alternative of using the Lagrangian approach could be
beneficial in many cases. The former uses relations between vectors of force, momen-
tum and acceleration. In contrast, the latter derives the equations of motion by basic
steps based on scalar quantities such as energy, work and power, regardless of the ge-
ometrical aspects of the system. Hence, as systems become more complex, the New-
tonian approach involves intricate derivations of forces, reaction forces and constraints
on the different bodies involved whereas the Lagrangian approach is relatively easy. In
the latter case the derivations of the equations of motions is a totally analytical proce-
dure which demands no analysis of forces in vector form. The general outline of the
Lagrangian procedure is given in the list below [4].

1. Choose a set of generalised coordinates qi
A system of n masses can be fully described by 3n independent coordinates also
denoted as degrees of freedom (DOF). In a case of a constrained system the DOF
are less than 3n. Generalised coordinates describe the configuration in all DOF
relative to some reference system which can be arbitrarily chosen. Often sev-
eral different reference systems are used which then are related through binding
equations.

5



Chapter 2. Theory 2.2. Control Theory

2. Form the kinetic energy T (q̇i), potential energy U(qi) and the Lagrangian
L = T (q̇i)−U(qi)
The kinetic energy, consisting of both translational and rotational kinetic energy,
is expressed for each mass as a function of the time derivative of the generalised
coordinates and added together. In the same way, the potential energy as a func-
tion of the generalised coordinates is expressed for each mass and added together.
From the expressions of the kinetic and potential energy the Lagrangian is formed.

3. Solve the Euler-Lagrange equations d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= Fi, i = 1, ...,n

The Lagrangian is substituted in the Euler-Lagrange equations and the equations
are solved, resulting in a set of differential equations, each describing the dynam-
ics of a generalised coordinate, also known as the equations of motion. The term
Fi denotes generalised forces, i.e. non-potential forces acting on the system like
input forces and friction.

2.2 Control Theory
Control theory can be viewed as a collection of methods from the field of mathematics
and engineering for controlling systems such that they follow a desired behaviour. The
idea is to give the system an appropriate input signal in order for the output to follow
a given reference, despite the presence of various disturbances. This is achieved by
feedback where the designed controller gets the difference between the measured output
and the reference, the error signal, as input. A conceptual block diagram describing this
is shown in Figure 2.1.

Controller System

Disturbances

u

Measurements

r e y
−

ym

Figure 2.1: Overall control system concept.
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Chapter 2. Theory 2.2. Control Theory

2.2.1 Proportional-Integral-Derivative controller
The most common types of controllers are the so called Proportional-Integral-Derivative
controllers (PID controllers) which are used in many industrial applications. The PID
controller has historically been considered to be the most usable type of controller when
there is no deeper knowledge of the underlying process to be controlled. The PID con-
troller tries to minimise the error signal in three different aspects where it takes the
present error, past error and future error into account. The P-part is proportional to the
error at present time, the I-part proportional to the integral of the error up to present
time and the D-part proportional to the derivative of the error up to present time [5]. A
typical PID controller can be formulated as [6]

u(t) = Kp

(
e(t)+

1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
, (2.1)

where

Kp = proportional gain,

Ti = integral gain,

Td = derivative gain.

Even though in many cases PID controllers can be tuned in a manner such that the out-
put follows the reference in a good way it is worth to note that the algorithm does not
guarantee optimal control of a system or a system’s stability. For large and complex
systems the PID method can be very difficult to implement and tune in a satisfactory
way. For cases like this an alternative control method is preferred. One example of such
a method is described in section 2.2.2.

Systems are usually split into two main categories, depending on how many outputs
and inputs they have [7]:

• Single-input single-output (SISO) - These systems have one input and one out-
put and are the simplest ones. They are usually controlled with the help of a PID
controller.

• Multiple-input multiple-output (MIMO) - These systems have several inputs
and outputs and are generally much more complex. A MIMO system is benefi-
cially represented as a state space model and the control method is usually some
kind of state feedback/optimal control.

7



Chapter 2. Theory 2.2. Control Theory

2.2.2 Linear-Quadratic-Gaussian controller
Linear-Quadratic-Gaussian (LQG) control is in the field of optimal control one of the
most elementary problems. LQG handles the case with linear systems disturbed by ad-
ditive white Gaussian noise, commonly without information about all states, i.e. some
states cannot be measured and therefore have to be estimated. An LQG controller con-
sists of a combination between two major parts; a feedback controller, namely a Linear-
Quadratic-Regulator, for regulation of the plant and a Kalman filter for estimation and
filtration of noisy states [8]. These two parts are going to be described further in the
following subsections.

Linear-Quadratic-Regulator

A Linear-Quadratic-Regulator (LQR) is a state feedback controller and therefore has the
capacity to handle large and complex MIMO systems. Instead of manually choosing the
feedback gains such that the poles of the closed loop system ends up in desired locations
(which is a common approach for other types of feedback controllers) the LQR method
uses a different approach. The idea is to optimise a cost function. The infinite horizon
LQR problem can be described as follows [8]:

Given a continuous-time linear system in state space form

ẋ = Ax(t)+Bu(t),
y =Cx(t)+Du(t),

x ∈ Rn,u ∈ Rp

where x is a vector containing the states, u is a vector of input signals and y a vector of
outputs, the idea is to minimise the quadratic cost function

J =
∫

∞

0

(
xT Qxx+uT Quu

)
dt, (2.2)

with respect to the system dynamics. Qx ≥ 0 and Qu > 0 are symmetric, positive (semi-)
definite matrices on the form

Qx =

qx1 0
. . .

0 qxn

 , Qu =

qu1 0
. . .

0 qup


These matrices are so called weight matrices. This is where the user can tune the system.
For example by setting a higher weight on for instance the first state (qx1) it is much more
beneficial for the system to take this state as close to zero as possible. It is also possible

8



Chapter 2. Theory 2.2. Control Theory

to decide how much the input signals should be penalised compared to the states. The
control law

u =−Q−1
u BT Px = Kx

is the solution to the LQR problem. The symmetric, positive definite matrix P ∈ Rnxn

can be found by solving the algebraic Riccati equation [9] :

PA+AT P−PBQ−1
u BT P+Qx = 0. (2.3)

The control law for the corresponding discrete-time system can be found in the follow-
ing way:

Given the discrete-time state space model:

x[n+1] = Adx[n]+Bdu[n],
y[n] =Cdx[n]+Ddu[n],

and the quadratic cost function to be minimised with respect to the system dynamics

J(u) =
∞

∑
n=1

(
x[n]T Qxx[n]+u[n]T Quu[n]

)
, (2.4)

the control law

u[n] = (BT
d SBd +Qu)

−1BT
d SAdx[n] = Kdx[n], (2.5)

is the solution to the discrete-time LQR problem. S is a matrix found by solving the
discrete-time algebraic Riccati equation [10]:

AT
d SAd−S−AT

d SBd(BT
d SBd +Qu)

−1BT
d SAd +Qx = 0. (2.6)

Integral action

Since the model used in the LQR does not describe the true nonlinear plant perfectly
there will be some steady-state errors. These can be compensated for by introducing
integral action in the LQ controller. This is achieved by augmenting the state space
model with the integral states xI =

∫ t
0(r−y)dτ [8]. The resulting augmented state space

model becomes:

[
ẋ
ẋI

]
=

[
A 0
−C 0

]
︸ ︷︷ ︸

Atot

[
x
xI

]
+

[
B
0

]
︸︷︷︸
Btot

u+
[

0
I

]
r

9



Chapter 2. Theory 2.2. Control Theory

By minimising the cost function

J =
∫

∞

0

([
xT xT

I
][Qx 0

0 QI

][
x
xI

]
+uT Quu

)
dt, (2.7)

subject to the augmented system’s dynamics, the LQ-regulator with integral action can
be calculated.

Kalman filter

Typically when using a state feedback controller not all states are available, only the
measured output y disturbed by noise. In order to reconstruct the wanted information
about the missing states an appropriate observer has to be designed. One common
choice of observer is the Kalman filter. This is an optimal observer that minimises the
estimation error x̃(t) = x̂(t)− x(t). Even in the case where all states are measured the
Kalman filter is often used because of its ability to optimally filter away Gaussian noise.

The Kalman filter is based on both measurements and a model of the system’s dy-
namics. In this way it is possible for the user to determine how much the filter should
trust the model compared to the measurements. This results in a trade-off between how
sensitive the user allows the system to be against measurement disturbances and how
fast the observer should track changes in the states [7].

In 1961 R. E. Kálmán and R. S. Bucy presented the method in the following way
(for simplicity the matrices presented are renamed to correspond with the notation used
above) [11]:

Given a linear dynamical system in state space form:

d
dt

x(t) = Ax(t)+Bu(t)+Fw(t),

z(t) = y(t)+ v(t) =Cx(t)+ v(t),

where z(t) is the observed signal, the optimal estimator has the form

d
dt

x̂(t) = Ax̂(t)+Bu(t)+L
(
y(t)−Cx̂(t)

)
. (2.8)

The intensities of the two white noise terms w(t) and v(t) are represented as Rw(t) and
Rv(t) and the covariance matrix of the estimation error x̃(t) as P(t), where P(t) satisfies:

d
dt

P(t) = AP+PAT −PCT R−1
v CP+FRwFT , (2.9)

10
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P(0) = E{x(0)xT (0)}

When P converges and the system is stable, equation (2.9) corresponds to the dual al-
gebraic Riccati equation:

0 = AP+PAT −PCT R−1
v CP+FRwFT . (2.10)

The Kalman observer gain is then given as

L = PCT R−1
v . (2.11)

For the corresponding discrete-time case [12], given the discrete plant:

x[n+1] = Adx[n]+Bdu[n]+Fdw[n],
z[n] = y[n]+ v[n] =Cdx[n]+Ddu[n]+ v[n].

The Kalman estimator is given as

x̂[n+1|n] = Ad x̂[n|n−1]+Bdu[n]+L
(
y[n]−Cd x̂[n|n−1]−Ddu[n]

)
, (2.12)

where

L = AdPCT
d
(
Rv +CdPCT

d
)

(2.13)

and P is the estimation error covariance matrix given by [8]:

P = AdPAT
d +FdRwFT

d −AdPCT
d
(
Rv +CdPCT

d
)−1CdPAT

d . (2.14)

2.3 Complementary filter
When facing the task to measure angles there are a few ways to go. A gyroscope sen-
sor is very good at measuring quick changes of the angle. By integrating the angular
velocity given by the gyroscope it is possible to get the angle as well. However, since
gyroscopes have a drift problem that makes the "zero angle" drift away from its original
position, only using a gyroscope for a balancing application like this would eventually
make the robot fall. Therefore the drifting problem has to be handled. An accelerometer
can also measure angles and does not have a drift problem like a gyroscope. Accelerom-
eters have in fact a very stable steady state behaviour, but on the other hand they are
pretty slow to follow rapid changes and are sensitive to measurement noise [13].

One simple and cheap solution is therefore to low pass filter the accelerometer value,
high pass filter the gyroscope value and combine them in a so called complementary
filter. The complementary filter has the form:
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angle[n] = (1−α)(angle[n−1]+gyro[n] ·dt)+α ·acc[n] (2.15)

where α is usually in the interval 0 < α < 0.5 and is a tuning parameter. A higher value
of α makes the system less sensitive to the gyroscope drift, on the other hand it also
gets less sensitive towards quick changes and introduces more measurement noise. Like
many other control applications there is a trade-off. Generally, the notion of a comple-
mentary filter is that if one measurement is filtered by a filter with the frequency func-
tion G(s), then the other measurement is filtered by its compliment 1−G(s) and they
are summed. The specific case of Equation 2.15 is the result of a simplification where
the original filter G(s) is an exponential moving average acting on the accelerometer
measurements and its compliment is acting on the gyroscope measurements.

2.4 AUTOSAR
As mentioned before, the key goal with AUTOSAR is to separate the software appli-
cations from the hardware and infrastructure. This makes it possible to develop the
software applications independently of which hardware that is going to be used. By
doing this it is much easier to re-use software as well as moving applications between
different ECUs. Furthermore every application uses a standardised AUTOSAR interface
which simplifies the integration between applications developed by different companies
[14]. In Figure 2.2 the basic structure of AUTOSAR is shown.
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Figure 2.2: Overview of the AUTOSAR structure [15].

2.4.1 Software Component
A Software Component (SWC) in AUTOSAR is an application or part of an application
that is designed for a particular purpose, e.g. locking a car (or controlling the movement
of a Ballbot). The Software Components communicate with their surroundings through
a standardised interface which makes it easy to re-use them on different platforms.

Inside the Software Components there is one or many runnables that execute specific
tasks. They are triggered by different events from the Runtime Environment (RTE) that
could be of different types. For example Timing Events are used when a runnable is to
be executed periodically, Operation Invoked Events when a client calls a server for a
service and Data Received Events when the triggering should be made by received data
[16].
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2.4.2 Virtual Functional Bus
In order to achieve the goal with SWCs that are independent of the underlying hardware,
the Virtual Functional Bus (VFB) was created. It serves as an abstraction where the
components can be integrated in a virtual AUTOSAR system and the communication
relationship between components can be verified. The idea with this approach is to
break down the complexity of a system very early in the design phase [17].

2.4.3 Runtime Environment
In the centre of the AUTOSAR ECU architecture the Runtime Environment (RTE) can
be found. Through the RTE the VFB is realised for a specific ECU. The RTE makes
the communication between different SWCs possible. Furthermore, it provides a way
for the components to access the Operating System (OS), communication services and
other Basic Software Modules.

For each ECU a new tailor-made RTE is generated. It is based on the ECU config-
uration settings, the SWCs mapped to the ECU as well as configurations and settings
from basic layers. Among other things the RTE is responsible for executing tasks and
running runnables [18].

2.4.4 Basic software
Below the RTE the Basic Software (BSW) is located and consists of several services
and component modules. The BSW does not perform any functional job itself, how-
ever it provides services to the Software Components. The modules in the BSW are
very ECU-specific and include among other things memory management, communica-
tion framework, operating system, microcontroller abstraction and ECU abstraction. It
also includes support for Complex Device Drivers, these are drivers that not are in the
AUTOSAR standard and handles specific hardware dependent features [19].

2.4.5 Operating system
The Operating System (OS) used in AUTOSAR is an extension of the OSEK OS, which
is an industry standard. The OS is responsible for scheduling of the tasks that have
runnables mapped to them by the RTE. The tasks and resources that should be mapped
to the OS are set in the configuration of the OS [19].
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2.5 Electronics
This section introduces some common electronic concepts within the area of mecha-
tronic design that have been utilised throughout the project.

2.5.1 Microcontroller signal types
A microcontroller is a small specialised computer very common in embedded systems.
In order to communicate with its surrounding it uses dedicated input and output pins
where different types of signals are received and sent. The most common signals used
are described briefly below.

Digital Input/Output Signals

These are the simplest kinds of signals that the microcontroller understands. The signals
are either "low" or "high". "Low" means a voltage level close to ground potential and is
interpreted as a logical zero in the processor. "High" is interpreted as a logical one and
corresponds to a voltage level close to +3.3V or +5.0V, depending on the manufacturing
technique. The measured voltage on an input pin is compared to a predefined threshold
in order to determine the logical level.

Digital signals can be used for example to control a light emitting diode, reading a
pulse or influence peripheral devices connected to the microcontroller in other ways.

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method that can be used for controlling the amount
of power delivered to a load (the user of the power), with very small losses. The idea
is to periodically switch on and off the voltage in a certain pattern in order to achieve
a desired average output voltage. This is done by controlling what percentage of the
period the voltage is "high", the so called duty cycle [20]. Figure 2.3 shows an example
of a PWM signal where the period is 4 ms and the duty cycle 75%. This means that
during 75% of the period, equal to 3 ms, the output is 5V and during the last 1 ms 0V.
Thus, the average output voltage is 5V·0.75 = 3.75V.
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Figure 2.3: PWM signal with 75% duty cycle.

The period and duty cycle can continuously be updated with new values by a mi-
crocontroller depending on the required output at the moment. Typically the period is
much shorter than the time constant of the load in order to get a smoother response.
If the response still is not smooth enough one could for example lead the PWM signal
through an analog filter before it reaches the load. A well designed filter more or less
transforms the PWM signal into a DC signal centred around the average voltage level.

PWM is often used together with H-bridges when controlling motors. This is further
described in section 2.5.2.

Analog-to-Digital Conversion

If the microcontroller should be able to use and calculate on the analog signals used by
devices connected to it, the analog signals have to be converted into digital representa-
tions. This is done by an Analog-to-Digital-Converter (ADC). The two main parts of the
conversion is sampling and quantisation. According to the Nyquist/Shannon theorem
the signal must be sampled with at least twice the frequency of the highest frequency in
the input signal, to avoid aliasing [21].

Quantisation is the process of mapping an analog value to a corresponding digital
one. Due to rounding or truncation of the digital values some small errors appear be-
tween the digital values and the true analog ones, this is called quantisation error. The
resolution of the ADC says how many bits that are used to represent the digital value.
The higher the resolution, the more precise the mapping from an analog value to a cor-
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responding digital one can be. Thus, a higher resolution results in a lower quantisation
error. [21].

2.5.2 DC motor
There are many types of electronic actuators today in direct current (DC) powered ap-
plications, especially since the introduction of power electronics and inverters paved
way for new types like the brushless DC motor and switched reluctance motor. These
motors have many advantages such as higher torque density, increased efficiency and
less mechanical wear. However, the traditional brushed DC motor is still common in
many applications because of its low cost and simple control electronics [20].

Brushed DC motor model

The brushed DC motor consists of two circuits, the field windings which builds up the
flux in the air-gap of the motor and the torque-producing armature windings in the rotor.
Brushes are used to transfer the current to the armature circuit and always have it flowing
in the right direction in order to create a continuous rotation in either direction. In many
motors the flux is established by permanent magnets instead, reducing the connections,
size and energy consumption. This relatively simple description of the physics behind
the brushed DC motor gives a very convenient equivalent circuit, shown in Figure 2.4.

+

–

V
R

I

L
EaM

+

–

Figure 2.4: Equivalent circuit of the brushed DC motor.

In addition to the equivalent circuit the following equations hold

T = kφ I (2.16)
Ea = kφ ω (2.17)

where T is the produced torque, ω the speed of the motor and Ea the counter-electromotive
force, a voltage proportional to the speed. The motor constant kφ is determined by the
physical aspects of the motor including the strength of the earlier mentioned flux.
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DC motor drivers

From Equations 2.16, 2.17 and the equivalent circuit it is evident that in order to control
the motor, the variable to control is the input voltage V . In the early days of the DC
motor this was often achieved by a variable resistance in series with the motor. With the
introduction of power electronics, the same result can be achieved much more efficiently
by the use of an H-bridge converter which is shown in Figure 2.5. By controlling the
duty cycle of the transistors 1-4 with the aid of a microcontroller the voltage Vout can be
of any value between ±Vin.

1

2

3

4

+ Vout –

+

Vin

–

Figure 2.5: H-bridge converter circuit.

2.5.3 Current sensing
As can be seen from 2.16 the output torque of the motor is proportional to the current
through the motor. Hence, in order to control the torque of the motor it is sufficient
to measure the current and calculate the new input signal to the motor accordingly.
The most common way to measure the current is through a shunt resistor, often at mΩ

values, in order to reduce the impact of the measurement on the rest of the circuit. To
have a low potential at the resistor it is often placed at the low side of the load close
to circuit ground, see Figure 2.6. The voltage across the resistor is then proportional to
the current in the circuit as Vsense = Rsense · i. Since the resistance Rsense has such a low
value, the voltage has to be amplified in order to increase the resolution. This can either
be accomplished through an operational amplifier circuit or a Hall effect sensor [22].
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Figure 2.6: Low side current sensing.

2.5.4 Quadrature Encoders
To fully observe the state of a DC motor, the speed of the shaft is of interest. A common
way of acquiring the speed is through an optical quadrature encoder. Such a device
consists of a rotating disc, a light source and a light sensor. The disc has a defined
pattern which either blocks or passes the light emitted from the source, resulting in pulse
trains at the light sensor output. By displacing two pulse trains by 90◦ it is possible to
determine not only the speed, i.e. frequency, but also the direction of rotation. Figure
2.7 depicts such signals at counterclockwise rotation since channel B is low at the rising
edge of channel A [23].

Figure 2.7: Quadrature encoder output channels A and B in counterclockwise rotation.
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2.5.5 Inertial Measurement Unit
Measurements of the velocity and orientation of a body can be made with the aid of an
Inertial Measurement Unit (IMU), commonly referred to as an electronic device with a
three-axis accelerometer, three-axis gyroscope and, in some cases, a three-axis magne-
tometer. The outputs of the sensors are then combined with some kind of sensor fusion
algorithm, e.g. the complementary filter discussed in section 2.3. Typical application
areas of an IMU is air crafts, unmanned control, navigation and more recently, handheld
devices like smartphones and portable gaming platforms.

Accelerometers

Modern accelerometers are often based on micro electro-mechanical systems (MEMS).
This is technology that simply put consists of a damped mass on a spring. When sub-
jected to acceleration the mass is displaced, enabling the displacement to be measured
by a capacitive sensor [24]. By placing three such masses orthogonal to each other the
acceleration around all three axes can successfully be measured. Depending on the ap-
plication, a trade-off between sensitivity and maximum measurable acceleration have to
be made.

Gyroscopes

Gyroscopes are common as sensors of angular rate in navigational applications. There
are many different types of gyroscopes relying on different physical phenomenons. The
vibratory MEMS rate gyroscope is perhaps the most common in embedded control ap-
plications. The principle of operation relies on the Coriolis Effect which causes vibra-
tion inside the gyroscope when it is rotated. The vibration is then detected capacitively
and the signal is conditioned to produce a voltage proportional to the angular rate [24].
It is important to note that since the gyroscope measures the angular rate, the angle will
drift over time if it is used as the sole sensor for angle approximation. This is due to
the fact that even at zero rate there will be a small value present due to noise, calibra-
tion errors and temperature variations which will accumulate quickly as the velocity is
integrated.

2.5.6 Analog filtering techniques
Actual electrical circuits will always be subjected to noise at some level. Either from
the 50 Hz electrical mains or other close-by signals by capacitive or inductive coupling.
Some circuits will themselves emit noise, such as logic and other high frequency switch-
ing equipment. By using analog or digital filters with a proper cut-off frequency these
effects can be mitigated. Low pass filters can also be used to turn a PWM signal into a
DC-level value. Two types of analog filters used for these purposes are described below.
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RC-filters

The most simple type of analog filter is the RC-filter (resistor/capacitor), shown in Fig-
ure 2.8 configured as a low pass filter.

+
R

Vin C

–

+

Vout

–

Figure 2.8: First order low-pass RC-filter circuit.

The transfer function for such a filter is given by

H( jω) =
1

1+ jωRC
(2.18)

which places the cut-off frequency at ωc =
1

RC . To have a steeper attenuation several RC-
filters can be cascaded. In some cases an operational amplifier at unity gain is placed as
a buffer on the output.

Common Mode Choke

Signal cables can be subjected to common-mode interference, i.e. interference appear-
ing on multiple signals simultaneously. Winding the signal cables in coils around the
same core effectively cancels the interference by presenting high impedance against
common mode signals and low impedance against differential mode signals.
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Chapter 3

Modelling and Simulations

This chapter covers the simulations of the proposed system. It starts out by describing
the modelling of the system using the Lagrangian mechanics approach outlined in sec-
tion 2.1. With the model as a basis, the control algorithm is developed using control
theory and the MATLAB/Simulink environment which is described in the second part
of the chapter. Finally, the results from the simulations are presented from which the
construction design is then built upon.

3.1 Modelling
In order to develop and evaluate the performance of a control algorithm acting on a
dynamical system an intimate knowledge of the system is desirable. In general, a model
consists of a set of differential equations describing the evolution of the system in time.
From a control theory point of view, it is beneficial to denote the differential equations
on a state space form as it enables the use of sophisticated methods of control design
as described in section 2.2.2. This section deals with the derivation of the state space
model and is inspired by the work of a bachelor’s thesis at ETH Zürich [25]. Worth
noting is that all algebraic calculations were made with the aid of the computational
software Wolfram Mathematica since the resulting mathematical expressions consists
of thousands of terms.

3.1.1 System description
The proposed design for the Ballbot robot is shown as a CAD model in Figure 3.1. The
model was developed in the open-source CAD modelling software program FreeCAD.
As described in Chapter 1 a Ballbot is a robot which balances on a ball. In the pro-
posed design the means of which the robot balances is by three radially equidistantly
placed actuating omniwheels. An omniwheel is a wheel with small cylindrical wheels
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Figure 3.1: A CAD-model of the proposed robot design.

around its circumference, which enables lateral movement in the direction of the wheel
axis. For reasons of simplicity, the omniwheels is modelled as regular wheels in the
CAD-model. When modelling the system mathematically, the model is reduced to three
simple bodies; one hollow sphere representing the ball, three discs representing the ac-
tuating omniwheels and one solid cylinder representing the body of the robot. Table 3.1
lists the mechanical parameters used when modelling the system.
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Table 3.1: Parameters of the mechanical system

Description Variable Value
Ball
Radius of ball rBa 0.107m
Mass of ball mBa 1kg
Omniwheels
Radius of omniwheel rOW 0.05m
Mass of omniwheel mOW 0.335kg
Mounting angle of motors in vertical plane wInc 55◦

Mounting angle of motor 1 in horizontal plane wSep1 0◦

Mounting angle of motor 2 in horizontal plane wSep2 120◦

Mounting angle of motor 3 in horizontal plane wSep3 240◦

Moment of inertia for motor Jmot 5.9µkgm2

Body and omniwheels
Radius of body (approximated as cylinder) rBo 0.1m
Mass of body and omniwheels mBoOW 5kg
Other parameters
Distance between centre of ball and COG of the body l 0.5m
Gravitational acceleration g 9.81m/s2

Gear box ratio igear 14

Using the parameters of 3.1 the moment of inertia of the bodies can be calculated.
The ball is approximated as a hollow sphere resulting in the following expression

IBa =

IBax 0 0
0 IBay 0
0 0 IBaz

 where IBai =
2
3

mBar2
Ba for i = x,y,z. (3.1)

As for the omniwheels, the moment of inertia of the motor transformed by the gear ratio
of the gearbox have to be taken into account resulting in

IOWi =
1
2

mOW r2
OW + i2gear · Jmot for i = 1,2,3. (3.2)

Finally, the inertia for the body is calculated according to

IBoOW =

IBoOWx 0 0
0 IBoOWy 0
0 0 IBoOWz

 where (3.3)

IBoOWx =
1

12
mBoOW (3r2

Bo +(2(l− rBa))
2)+mBoOW (rBo + l)2, (3.4)

IBoOWy = IBoOWx and IBoOWz =
1
2

mBoOW r2
Bo. (3.5)
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3.1.2 State selection
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Figure 3.2: Figure: The relative reference systems and their relationships [25].

To represent the orientation of the bodies, four different coordinate reference sys-
tems R0,R1,R′1 and R2 are used. Using the Tait-Bryan type of Euler angles the following
sequence of transformations relate the reference systems to each other:

R0
θz−→ R1

θy−→ R′1
θx−→ R2 (3.6)

The reference systems and their relationships are shown in figure 3.2. As can be
seen, R1 is derived by rotating around the z-axis of R0 with θz. In an analogous manner
R′1 is derived by rotating around the y-axis of R1 with θy and R2 is derived by rotating
around the x-axis of R′1 with θx.

The system has five degrees of freedom (DOF), the position of the ball in the plane
(two DOF) and the orientation of the body (three DOF). This requires a state vector with
ten states consisting of the coordinates in each DOF and their respective derivatives. To
match the output of a possible sensor solution with an Inertial Measurement Unit (IMU)
and a rotary encoder the following states were chosen

~x = [θx θ̇x θy θ̇y θz θ̇z φx φ̇x φy φ̇y]
T . (3.7)

As the reference system R2 is fixed relative to the body the variables θx,θy and θz
describe the orientation of the body. The variables φx and φy are the rolled angles of the
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ball in the respective direction, φx being the clockwise rotation around the x-axis and
φy the counterclockwise rotation around the y-axis, both referred to the R1 reference
system. The remaining part of the system to describe is the omniwheels, whose angular
velocities around their motor axis are denoted ψ̇1, ψ̇2 and ψ̇3 also related to the R2
reference system. This gives the following angular velocity vectors describing the full
system:

R1

#»

ΩBa =

φ̇x
φ̇y
0

 ,
 R2ωOW1 = ψ̇1

R2ωOW2 = ψ̇2

R2ωOW3 = ψ̇3

,

R2

#»

ΩBo = J · #̇»

θ =

 θ̇x− sinθy · θ̇z
cosθx · θ̇y + cosθy · sinθx · θ̇z
−sinθx · θ̇y + cosθx · cosθy · θ̇z

 (3.8)

where the velocity vector of the body is the time variation of the Tait-Bryan angles ~̇θ
converted to the R2 reference system with the Jacobian matrix J.

As inputs to the system, the three torques generated by the motors are chosen. These
are denoted T1,T2 and T3.

3.1.3 Binding equations
To be able to describe the system fully by the chosen states in Equation 3.7, some of the
variables in the final expressions in Equation 3.8 have to be substituted through binding
equations which relates the bodies to each other.

Relationship between omniwheels and ball

Assuming no slip between the omniwheels and ball the velocities of the bodies can be
directly related to each other. The validity of the assumption have to be considered
when designing the system by seeing through that there is enough friction between
the omniwheels and the ball and that the applied torques is within reasonable values.
Mathematically, the assumption states that the tangential speed of the omniwheels have
to be exactly the same as the speed of the ball in the same direction.

To express the surface speed of the ball, the angular velocity of the ball relative to
the body have to be calculated as

R2

#»

ΩBaREL = T21 · R1

#»

ΩBa− R2

#»

ΩBo (3.9)

where T21 is the transformation matrix between the ball and body reference system.
Defining the vectors from the centre of the ball to the omniwheels’ contact points on the
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ball as R2
#»a C0C1, R2

#»a C0C2 and R2
#»a C0C3 and the unit vectors for the tangential speed of

the omniwheels as R2
#»u 1, R2

#»u 2 and R2
#»u 3 the no slip assumption can be formulated as(

R2

#»

ΩBaREL× R2
#»a C0Ci

)
· R2

#»u i = R2ωOWi · rOW for i = 1,2,3. (3.10)

The left hand side corresponds to the ball’s surface speed in the omniwheel direction
and the right hand side to the tangential speed of the omniwheel.

Speed expressions for energy calculations

The absolute value of the rotation of the omniwheels have to take into account the
motion of the body as well. By using scalar projection of the body velocity vector
onto the vectors of which the omniwheels rotate around results in the following set of
equations

R2ΩOWi = R2ωOWi +
R2

#      »
MWi

||R2

#      »
MWi||

for i = 1,2,3. (3.11)

Solving the set of equations in 3.10 for R2ωOW1, R2ωOW2 and R2ωOW3 and replacing the
solutions into Equation 3.11 results in explicit expressions only dependent of the states
given in Equation 3.7.

To be able to calculate the translational energy of the ball, the translational speed is
needed. It is given by

R0
#̇»a C0 = (T01 · R1ΩBa)× R0

#»a GrC0 (3.12)

where R0
#»a GrC0 is the vector from the ground to the centre of the ball and T01 the trans-

formation matrix between the ball and inertial reference system.

3.1.4 Energies
The next step in the Lagrangian approach is to calculate the kinetic energy, both trans-
lational and rotational, and potential energy for each of the bodies. The zero point for
the potential energy is chosen as the plane intersecting with the centre of the ball.

Ball

The kinetic energy for the ball is given by

TBa =
1
2
·mBa · R0

#̇»a
T
C0 · R0

#̇»a C0 +
1
2 R1Ω

T
Ba · IBa · R1ΩBa (3.13)

and due to the choice of the zero reference through the centre of the ball the potential
energy is given by

UBa = 0. (3.14)
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Body

As mentioned when calculating the inertia of the bodies, a simplification is made re-
garding the inertia of the body and the motors, they are considered as one whole body.
With the help of a vector R2

#»a C0CBoOW from the centre of the ball to the centre of gravity
of the body the kinetic energy is given by

TBoOW =
1
2
·mBoOW · R0

#̇»a
T
C0 · R0

#̇»a C0 +
1
2 R2Ω

T
Bo · IBoOW · R2ΩBo+

mBoOW ·
(
T20 · R0

#̇»a C0
)
·
(

R2

#»

ΩBo× R2
#»a C0CBoOW

) (3.15)

where the last term models the coupling introduced from the fact that the centre of ball
is reference.

The potential energy is given by

UBoOW =−mBoOW ·G ·T02 · R2
#»a C0CBoOW (3.16)

where G denotes the gravitational vector and T02 the transformation matrix between the
body and inertial reference system.

Omniwheels

The rotational energy of the omniwheels are however modelled separately as

TOWi =
1
2
· IOW · R2Ω

2
OWi for i = 1,2,3. (3.17)

3.1.5 Equations of motion
Given the expressions derived in the previous section, the Lagrangian is formed as

L = T −U = TBa +TBoOW +TOW1 +TOW2 +TOW3−UBa−UBoOW . (3.18)

What remains before the final declarations of the Euler-Lagrange equations is the gen-
eralised forces Fi. The generalised forces considered are the actuating motor torques
T1,T2 and T3 which act on R2ωOW1, R2ωOW2 and R2ωOW3. Those are not functions of
the states in Equation 3.7 hence a polynomial separation has to be done expressing them
as

R2ωOWi = JTi ·~̇x for i = 1,2,3. (3.19)

The counter torques TC1,TC2 and TC3 acting on the body in the opposite direction of
T1,T2 and T3 is given by

#»
T Ci =−Ti · R2

#      »
MWi

||R2

#      »
MWi||

for i = 1,2,3. (3.20)
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This gives the following expression of the generalised forces

Fi = JT
T 1 ·T1 + JT

T 2 ·T2 + JT
T 3 ·T3 + JT ·

(
#»
T C1 +

#»
T C2 +

#»
T C3

)
(3.21)

where JTi for i = 1,2,3 is given from Equation 3.19 and J is the Jacobian given in
Equation 3.8.

Finally, the Euler-Lagrange equations are given by

d
dt

(
∂L
∂ ẋi

)
− ∂L

∂xi
= Fi, i = 1, ...,10 (3.22)

with L as in Equation 3.18 and Fi as in Equation 3.21. Solving these equations yields
the equations of motion.

3.1.6 State-space model
The derived equations of motion is, as mentioned, a set of differential equations describ-
ing the modelled system. These are to be converted into a state-space model as

~̇x = A~x+B~u, y =C~x+D~u (3.23)

~x = [θx θ̇x θy θ̇y θz θ̇z φx φ̇x φy φ̇y]
T (3.24)

~u = [T1 T2 T3]
T . (3.25)

However, to be able to factor out the matrices A,B,C and D the nonlinear differential
equations have to be linearised. A suitable linearisation point is the unstable equilibrium
where all states are zero which also is the point around which stabilisation is desired.

3.1.7 Odometry
Since there is no direct way to measure the states φx and φy related to the movement of
the ball, these have to be approximated by other available sensors via odometry calcu-
lations similar to those deriving the equations of motions. This results in expressions
for φ̇x and φ̇y as functions of the angular velocities of the omniwheels, ψ̇1,ψ̇2 and ψ̇3 as
well as the states θx, θy, θz and their derivatives.
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3.2 Control design
The control method for regulation of the body’s tilt angles and the robot’s position is
LQG-control (see section 2.2.2). Since the outputs from the real robot are going to be
sampled measurement values the system is a discrete-time system, from the controller’s
point of view. The first step to develop a suitable controller is therefore to discretise
the continuous-time state-space model given in section 3.1. This is easiest done in
MATLAB using the command:

sysd = c2d(sys,T s),

where sys is the continuous-time system model and Ts the sample time. The discrete-
time LQR gain matrix Kd can then be calculated with the MATLAB command dlqr
which takes the matrices Ad and Bd as inputs, together with the weight matrices Qx and
Qu.

Since the measurements most likely will have some additional noise a Kalman filter
is implemented as well. The Kalman gain L is therefore calculated with the MATLAB
command kalmd. The function takes as inputs the continuous-time system with state-
space matrices A, [B F ],C,D as well as the matrices Rw and Rv and the sample time Ts.
Note that in our case, since there is no feedthrough term, the matrix D is simply zeros
of the appropriate dimensions.

3.3 Simulink implementation
In order to simulate the model it is implemented in the Matlab tool Simulink. By do-
ing this it is possible to verify and investigate if the model behaves in a realistic way.
With the help of the simulations it is also easy to evaluate the developed controller and
determine if it has the desired behaviour. It also makes it easier to analyse the system’s
robustness against disturbances. Figure 3.3 shows the overall layout of the Simulink
implementation of the system displaying the main blocks. In Figure 3.4 the imple-
mentation of the LQG controller is shown and in Figure 3.5 the implementation of the
Kalman filter.
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Figure 3.3: Implementation of the system in the simulation environment Simulink.
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3.4 Simulation results
In this section some results of the simulations performed in Simulink are going to be
shown. The simulations presented in Figure 3.6 up to and including Figure 3.9 have the
initial angles θx = 10◦ (0.1745 rad) and θy = 5◦ (0.0873 rad), all other states are zero.
The set points, i.e. the references the controller wants to take the states to, are all zero
as well. The variance of the added white Gaussian noise is 0.05 rad2.
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Figure 3.6: Simulation with initial angles θx = 10◦ (0.1745 rad) and θy = 5◦ (0.0873 rad)
and all set points at zero. As can be seen the system manges to stabilise. The plotted
angles and angular velocities are the ones that comes directly from the block "Ballbot"
in Figure 3.3.
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Figure 3.7: Simulation with initial angles θx = 10◦ (0.1745 rad) and θy = 5◦ (0.0873 rad)
and all set points at zero, i.e the same scenario as in Figure 3.6. However this plot only
shows the angles and not the angular velocities.
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Figure 3.8: Simulation for same scenario as in Figure 3.6 and 3.7. The plot shows the
signals entering the Kalman filter in Figure 3.5. The added white Gaussian noise has a
variance of 0.05 rad2.
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Figure 3.9: The plot shows the output from the Kalman filter in Figure 3.5 when the
noisy signals in Figure 3.8 act as inputs. As can be seen the Kalman filter reduces the
noise very well.
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set points for φx =−π rad and φy = π rad, all other at zero. As can be seen the system
manges to take the states toward their respective set point in a reasonable time.
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Chapter 4

System Design

This chapter covers the construction and design of the robot and describes its major
parts, both in hardware and software.

4.1 Hardware
This sections deals with the hardware design and motivates the choices made. It also
briefly describes the already available hardware components which have been used
within the project.

4.1.1 Chassis
The chassis design has been presented in the modelling subsection 3.1.1. Early on, a
design using three equidistantly placed actuating omniwheels were chosen to enable the
robot to turn around its own vertical axis. It also eliminates the demand for other braces
to keep the body at a fixed distance from the ball. This design has been used in several
other projects such as Rezero [25] and BallIP [3]. The latter also incorporates a simple
storey-like solution using circular transparent hard plastic sheets. Combining these with
threaded rods, washers and nuts a very flexible design could be achieved, capable of
post-construction adjustments to make room for different equipment but also testing
different sensor placements and weight distributions. The attachment of the flexible
storey can be seen in Figure 4.1.
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Figure 4.1: Attachment of flexible storeys within the robot body.

The actuating omniwheels were attached to the body with metal braces which were
manually bent to the right angle to fit the ball at all three contact points. The ball is a
high friction medicine ball specifically chosen for not having any seams which could
introduce more nonlinear phenomena.

4.1.2 Microcontroller platform
The computational platform used for the project is the Open Dependable Electrical and
Electronics Platform (ODEEP) developed at QRTECH AB, shown in Figure 4.2. It
is built upon the automotive grade microcontroller MPC5567 from Freescale and has
several communication interfaces built in such as SPI, CAN and Ethernet to name a
few. Examples of other hardware integrated on the board are wide range power supply
regulation, high current driver outputs and SD-card support. However, the main rea-
son for choosing ODEEP is the possibility to generate complex algorithms from MAT-
LAB/Simulink directly as well as it supports AUTOSAR. To program and debug the
system, a Powerful Embedded Ethernet Debug Interface (PEEDI) from Ronetix where
used, connecting to the platform via the Nexus interface.
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Figure 4.2: The Open Dependable Electrical and Electronics Platform (ODEEP) devel-
oped at QRTECH AB.

4.1.3 Sensors and actuators
As actuators for the system, both brushless and brushed DC motors were considered.
However, since brushless DC motors require more complex and expensive control elec-
tronics, brushed DC motors were chosen. Also, the physical modelling of a DC motor
is much simpler, making it easier to evaluate and simulate in MATLAB/Simulink. The
specific model is 3266E_0 from Phidgets with a planetary gearbox for increased torque
and encoders for control purposes. As drivers for the motors, Sabertooth 2x5 from Di-
mensionEngineering were chosen. Each driver can supply two brushed DC motors with
up to 5A and they can be operated in several different modes, analog, serial or R/C in-
put. In analog mode, the output from the drivers is a voltage to the motors proportional
to the analog voltage applied at the input. The drivers are built upon a H-bridge driver
at 32 kHz, enabling operation in both directions. Details about brushed DC motors and
H-bridge drivers have been further explained in subsection 2.5.2.

As for the sensors measuring the attitude of the robot, the motion processing unit
MPU-6000 from InvenSense was used. It combines a three-axis gyro with a three-axis
accelerometer and has built-in signal conditioning and ADC conversion. The digital
signals can then be transferred over either I2C or SPI. The chip also incorporates a dedi-
cated processor for motion related calculations called Digital Motion Processor (DMP).
This could possibly reduce the main processor load significantly by letting the DMP
handle the sensor fusion, however it requires knowledge about how to program the mo-
tion processor and a full documentation for the DMP is not yet available. This resulted
in the sensor fusion having to be made on the main processor to save development time.
Considering the fact that both the gyro and accelerometer data for all the three axes
have to be transmitted, the SPI interface was chosen because its significantly higher
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transmission speed compared to I2C. AUTOSAR has built-in drivers for SPI and the
ODEEP platform has hardware support for SPI which makes the implementation easier.
To have a better physical interface to work against an evaluation board of the chip where
used with header connectors, on-board power regulator and magnetometer.

In addition to the attitude sensors, the robot needs to know its orientation in the plane
since the rolled distances of the ball in two perpendicular axis are states in the model.
This is achieved by the use of quadrature encoders mounted on the motor axis which
emits a pulse pattern when the motor operates. More information regarding quadrature
encoders can be found in subsection 2.5.4.

4.1.4 Expansion card
To have a coherent interface between the sensor/actuator components and the compu-
tational part, an expansion card was designed in Altium Designer. Using the 80 pole
board-to-board connector on ODEEP and stacking the expansion board on top of it, all
necessary interfaces were made available. Apart from connecting the external hardware
to the MCU, some signal conditioning had to be made on the board as well. The motor
drivers operate in analog mode and hence the MCU has to control an analog voltage.
This is achieved by controlling the duty cycle of a 100 kHz PWM signal and then feed-
ing it through a second order analog filter with a buffer residing on the expansion card.
Also, to cancel out common-mode noise introduced by the motor on the quadrature en-
coders’ signals, common-mode chokes were used. To relieve the MCU from completely
decoding the quadrature signal, the dedicated integrated circuit HCTL-2032 from Av-
ago Technologies was placed on the board. The circuit decodes the quadrature pulses
and outputs a clock and direction signal which can be read by the MCU.

Since the control algorithm generates torque references as inputs to the system and
the drivers only can control the speed of the motors, an outer PI-loop is designed to
control the torque. Hence measurements of torque, or more precisely current, is needed.
This is also done on the expansion board by the use of an integrated Hall current sensor,
ACS718 from Allegro, in low-side current sensing mode as described in Subsection
2.5.3. The analog signal output from the sensor is then fed to the ADC-unit of the MCU,
making it available to use as a control feedback. In Figure 4.3 a complete CAD model
of the designed expansion board can be seen. The IMU evaluation board is mounted
into the female header in the middle of the board and is fixed with screws through the
holes. Details about other auxiliary components on the board such as pull-up resistors,
decoupling capacitors etc. is considered to be out of the scope for this report and thus
not described any further.
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Figure 4.3: CAD model of the designed expansion board.

4.1.5 Power
Both ODEEP and the motor drivers need power in order to operate. The most cost-
effective and power dense portable energy source was found to be lithium polymer bat-
teries (LiPo). It is the most common battery type for radio controlled hobby vehicles
and hence has a wide range of capacities and voltages commercially available. The bat-
tery chosen for the robot is a Zippy Flightmax 3000 mA h with four cells and a nominal
voltage at 14.8 V. ODEEP can run at any voltage between 12 to 24 V but the motors is
rated at 12 V and hence, a voltage converter is needed to supply them with the correct
voltage level. A switching regulator, Quanum QM12V5A-UBEC, designed for radio
controlled applications was thus fitted together with the battery.

42



Chapter 4. System Design 4.2. Software development work flow

4.2 Software development work flow
The software implemented in the robot is based on the software architecture AUTOSAR.
To be able to develop software following this standard two different programs are used.
For configuration of the AUTOSAR environment an AUTOSAR authoring tool, namely
Arctic Studio, is used. To write more complex algorithms like the LQG regulator MAT-
LAB/Simulink is used.

4.2.1 Arctic Studio and Arctic Core
Arctic Studio and Arctic Core are software developed by the company ArcCore. Arctic
Studio is based on Eclipse and allows the user to configure, validate, generate and in-
tegrate BSW modules and the RTE according to the AUTOSAR standard. From Arctic
Studio it is also possible to create a Software Component Description (SWCD) that can
be exported to other programs. The SWCD specifies for instance the interfaces, data
types and events used in the SWC and creates a skeleton that can be filled with con-
tent in for example Simulink. This is often referred to as a top-down approach when
developing AUTOSAR SWCs.

Arctic Core can be seen as the heart of the program. It contains among other things
predefined interfaces, data types and BSW modules. Arctic Core also includes support
for several evaluation boards and target hardware [26].

4.2.2 Code generation from Simulink
Being able to use the method of code generation, writing complex algorithms like the
one to stabilise the robot is made much simpler. Writing for instance an advanced
control algorithm in Simulink is by many considered much more intuitive than writing
it directly in for example plain C-code. This model based approach also makes it easier
for others to quickly continue working in the same file. Hence the possibility to, with
some minor adjustments, use an algorithm that works in simulations straight off with
the help of code generation can reduce development time a lot. It also increases the
chance to discover errors in the design at an early stage.

To be able to import SWCs configured in Arctic Studio as arxml files into Simulink
an extra MATLAB Toolbox needs to be downloaded. With the Embedded Coder Sup-
port Package for AUTOSAR its possible to use the class arxml.importer to import these
kinds of files and create a skeleton in Simulink with the correct in-ports, out-ports, data
types and events defined.

With the SWC skeleton imported into Simulink the controller used in simulations
is copied into it. It is important to note that all integrators and derivatives have to be
discrete. To be sure that everything works as intended one should use the inbuilt function
Configure Model as AUTOSAR Component and validate the configuration, such that it
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follows the AUTOSAR standard. The Embedded Coder in MATLAB has support for
a number of different processors including Freescale’s MPC5567 used in this project.
Hence it is possible for the compiler to generate code adjusted for the hardware the
code is going to run on. When the code has been generated it is copied back into Arctic
Studio where it is mapped to the corresponding task and integrated with the rest of the
system.
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4.3 Software implementation
To be able to get a fully working system the basic software have to be configured specif-
ically for the processor being used. The high level control algorithms however are im-
plemented as AUTOSAR software components, hence it is possible to re-use them on
different ECUs if needed. In Figure 4.4 an overview of the all the software implemented
on the robot is shown.

Figure 4.4: Overview of the implemented AUTOSAR structure displaying the Software
Components being used and how they interact with each other.
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4.3.1 AUTOSAR Software Components
This section describes the created AUTOSAR software components and complex device
drivers shown in Figure 4.4.

IMU Driver

The IMU Driver handles the communication with the IMU sensor over SPI. Arctic Core
includes basic support and functions for the SPI protocol that can be used. However the
data being sent and received have to be handled manually. This is done in a so called
complex device driver written in C code. The IMU Driver initialises the IMU sensor
by writing settings to its internal registers and then periodically reads the wanted data
from its output registers. The received data from the accelerometer and the gyro is
then written to sender ports that through the RTE can communicate with the rest of the
AUTOSAR system. The IMU driver operates with a frequency of 160Hz.

Interrupt Driver

Similar to the IMU Driver that handles SPI communication, external interrupts also need
to be taken care of in a complex device driver. The Interrupt Driver is a CDD written
in C that is configured to act on events on seven different interrupt pins connected to the
microcontroller. Six interrupts belong to the quadrature decoders and one to an external
button used for resetting integrators in the control algorithms.

As mentioned in section 2.5.4, the rotated length and direction for each motor can
be calculated by counting the number of pulses on the two signals coming from the
corresponding quadrature decoder. One interrupt pin is connected to the decoder clock
signal and one to the decoder direction signal. When a clock pulse is registered the
driver checks the status register flag for the corresponding direction pin. If this flag is
set a counterclockwise rotation has occurred, otherwise a clockwise. The driver updates
the internal counter variable for that specific motor accordingly. This method makes
sure that no pulse is missed and that the rotational states of all motors always are up to
date.

The Interrupt Driver also handles the integrator reset request triggered when the
user pushes a physical button connected to the microcontroller. When such an event is
registered a status variable is set and held high until it is read by the appropriate software
component.

The driver is set up with an AUTOSAR client-server interface. This means that
whilst the internal counter values are updated every time a new interrupt signal is raised,
output data from the driver is only sent when a request from another component is made.
Hence the frequency new data comes with from the Interrupt Driver is determined by
how often it is called upon.
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Sensor-Actuator Component In

Sensor-Actuator Components are software components that allow the other software
components to interact with real sensors and actuators on the hardware. In other words
they provide interfaces between the physical values used by the sensors and actuators
and the other SWCs. In this project two Sensor-Actuator Components have been writ-
ten. One is handling input signals and one output signals. The input sensor-actuator
component periodically fetches measured current values from the ADC unit as well as
encoder counter values and reset requests from the Interrupt Driver. These data values
are then sent on to the SWCs that require them. The update frequency is 160Hz and
the component is written directly in Arctic Studio. The C-code determining the compo-
nent’s behaviour is written manually without any involvement of MATLAB/Simulink.

Raw data to state conversion

The data from the IMU Driver and the Interrupt Driver consist of raw values from the
accelerometer, gyro and encoder counters. This doesn’t correspond straight off with the
states described in section 3.1.6 that is used by the control algorithm. Thus the raw
values must be converted to the appropriate form before they are sent further on.

The angular velocities θ̇x, θ̇y and θ̇z are the simplest ones since they are the gyro
values straight off. The angles however are a bit more complicated. Because of the phe-
nomena with gyroscope drift only integrating the angular velocities don’t give a result
good enough. Hence a complementary filter is used where both gyroscope and ac-
celerometer data are combined. Firstly the angles from the accelerometer are calculated
as:

Angx = atan2
(
accy,

√
acc2

x +acc2
z
)

Angy = atan2
(
accx,

√
acc2

y +acc2
z
)

Since the accelerometer uses the gravitational force to calculate the angles and since a
rotation around the z-axis doesn’t influence the measured force in the different axes, it is
unfortunately not possible to determine Angz in the same way. To get the wanted angles
θx and θy, complementary filters are used in the following way:

θx[n] = 0.04 ·Angx +0.96 ·
(
θx[n−1]+gyrx ·dt

)
θy[n] = 0.04 ·Angy +0.96 ·

(
θy[n−1]+gyry ·dt

)
θz is simply the integrated gyrz value.

To recreate the rotation angles of the omniwheels (ψx,ψy and ψz) the corresponding
counter values for each motor are divided by the number of pulses per revolution and
converted to radians by multiplying with 2π .
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Ballbot Controller

The Ballbot Controller is the main controller of the system that keeps the Ballbot bal-
ancing and moving to set points in the plane. As inputs it uses the states recreated in
the Raw data to state conversion SWC as well as the measured applied currents for each
motor. The algorithm first reproduces the states corresponding to the movement of the
ball (φx, φ̇x,φy, φ̇y) from the wheel rotation angles ψx,ψy and ψz. All signals are then
filtered in a Kalman filter. This is mostly done for filtering away measurement noise.
Using this data the control signals corresponding to torque references for each motor
are calculated by the Linear Quadratic Regulator.

The Kalman filter wants to know the previous control signals. By converting the
measured currents into applied torque this can be achieved. A simpler approach would
be to use the previous control outputs instead. However since these only are references
to the torque controller it is more true to use the measured values instead. All this is
done in Simulink and MATLAB. The Ballbot Controller has an update frequency of
160Hz.

Torque Controller

The motor drivers being used cannot take torque references as inputs. Instead it uses
analog input voltages as speed references, where 2.5V corresponds to no movement,
5V full speed forward and 0V full speed backwards. Consequently the torque refer-
ences from the Ballbot Controller must be converted into speed references in the form
of different voltage levels. This is done in the Torque Controller. Since torque is propor-
tional against current the torque references are firstly converted into current references.
By measuring the real currents in the motors and feeding them back in a loop, the error
between the reference and the true value can be fed into a PI-regulator. Hence an appro-
priate control signal and speed reference can be calculated. In other words the Torque
Controller is really a Current Controller, it is developed in Simulink and has an update
frequency of 1600Hz.

Sensor-Actuator Component Out

Similar to the sensor-actuator component that handles input signals this is a component
that works as an interface between the software components and the hardware. It takes
the requested voltage references from the Torque Controller as inputs, converts them
to appropriate PWM duty cycles and passes this new information forward to the PWM
driver. The update frequency is 1600Hz.

48



Chapter 4. System Design 4.3. Software implementation

4.3.2 AUTOSAR Basic Software
This section describes briefly some of basic software modules used in this project and
what they do. Support and code for these modules are included in Arctic Core and
don’t have to be written manually. However the modules still have to be configured and
connected to each other in the Arctic Studio environment.

Operating system

The operating system contains five different tasks that run with different priorities and
frequencies. There is a start up task as well as a service task that runs the basic software.
Furthermore three other tasks are connected to the runnables in the SWCs. Highest pri-
ority has the service task that makes sure that all background functions run as supposed.
The IMU driver runs on a task of its own whilst the Sensor-Actuator Component In
SWC, the Raw data to state conversion SWC and the Ballbot Controller share one task.
Similarly the Torque Controller and the Sensor-Actuator Component Out SWC share
one task that runs at a higher frequency.

ADC Driver

Initialisation and control of the Analog Digital Converter units on the microcontroller is
handled by the ADC Driver. The driver provides services for enabling, disabling, start-
ing and stopping of conversions [27]. In this project the ADC is used when measuring
the internal currents of the motors, these are the signals that are fed back to the Ballbot
Controller and the Torque Controller.

Digital IO Driver

The Digital IO Driver handles the digital inputs and outputs from the microcontroller.
The driver provides services for writing to and reading from DIO channels (pins), DIO
ports and DIO channel groups. All services are synchronous [28]. The quadrature
decoders used in this project require two digital signals as inputs, in order to specify
their internal settings. These signals are configured as DIO channels.

PWM Driver

The PWM module (Pulse Width Modulation) links PWM channels to a hardware PWM
on the microcontroller. The module provides services and functions allowing the user
to select the period time of the signal as well as the duty cycle [29]. The input voltages
to the motor drivers given by the Torque Controller are examples of low pass filtered
PWM signals used in this project.
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Port Driver

One pin on the microcontroller can for different applications be configured to have dif-
ferent functionalities. For instance, in one project a pin might be used for SPI, PWM or
as a General purpose I/O (GPIO) pin. In another project however the user might want
to use the pin for CAN or LIN communication instead. Depending on the wanted func-
tionality, different initialisation routines for the pin have to be performed. This is where
the Port Driver is used. By configuring a pin for a specific functionality, the Port Driver
performs the appropriate initialisation [30].

SPI Driver

The SPI driver (Serial Peripheral Interface) provides services and functions for sending
and receiving data on the SPI bus. The SPI bus operates with one master and one or
several slaves. The bus uses the following four logical signals:

• SCK: Serial Clock

• MOSI: Master output, Slave input

• MISO: Master input, Slave output

• CS/SS: Chip Select/Slave select

The most common setup is that the SCK, MOSI and MISO signals are shared among all
slaves while the CS/SS signal is individual for each slave. When the CS/SS signal goes
low (active) the corresponding slave is selected [31]. In this project the processor acts as
master and the IMU unit as the only slave. The Basic Software SPI Driver handles the
low level communication and provides different functions in C code that can be used by
the user. The high level communication concerning what to write and what to read is in
this project handled in the IMU Driver.
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Evaluation

By performing a lot of different test scenarios the performance of the robot has been
evaluated. Each software component has been tested individually as well as all the
different hardware components. The behaviour of the whole system with all components
connected to each other has also been tested in various experiments. Results from these
test scenarios are presented in the following section.

5.1 Results
Initial tests with the whole system as described in the previous chapter did not work as
intended. The angles seemed reasonable however the control signals calculated from
the LQG controller quickly grew until max speed on the motors were reached. Con-
sequently, the system was reduced in order to make it less complex and easier to trou-
bleshoot. The Kalman filter as well as the reference tracking via integral states were
found to introduce unpredictable behaviour and the following tests has been done with-
out those parts. When going back to a more basic approach the robot’s performance
improved drastically and it could balance for a few seconds before falling. The robot
compensates correctly for large movements but has difficulties when trying to apply the
small torques required around the equilibrium point. When balancing a robot like this
around such a small point with this many degrees of freedom a high precision for small
angles is a requirement. Unfortunately this seems to be the biggest problem for this
system.

5.1.1 Model and controller evaluation
To be able to evaluate the whole system and its individual software components, data
i.e. the internal states, have to be collected and analysed in some way. At first this
was done by in software routing the wanted signals to PWM ports on the MCU. This
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is an easy way where one can look at the signals with the help of an oscilloscope. It
is possible to for example determine that the signs of the signals are correct, e.g. if
an angle is increasing or decreasing when tilting the sensors. However the precision
is rather inaccurate and the resolution is quite poor. The number of simultaneously
examined signals is also limited by the number of available PWM ports.

A better solution is to store the internal data, what the processor sees, on a buffer
within the MCU and then send it to be analysed on a laptop.

Firstly a method was developed where the logging started by getting invoked by the
user. A limited number of samples were collected and saved on the internal SRAM on
the MCU. When the buffer was full the data was sent to the laptop through the JTAG
connection used when programing the micro controller. Even though this worked the
method was quite poor. Doing it this way the logging takes much time where many
different steps have to be taken in both Arctic Studio’s debugging environment as well
as in MATLAB in order to get satisfying plots of the data. The main disadvantage was
though the limited number of samples that could be collected. Due to limitations in the
size of the SRAM and even more in the debugging environment only 200 samples for
each internal state could be collected. This corresponds to data covering a test of 0.4 s
with a sample rate of 500 Hz, this is too few for the test scenarios required.

Thus another more advanced method was developed where the data do not get stored
on the SRAM but instead continuously streamed to the laptop over a CAN interface.
By using the software CANalyzer the signals can be plotted in real time as well as
being saved to a MATLAB data file (.mat). A lot of time was spent on making the
CAN communication work. At first built-in AUTOSAR modules were used. This was
however very complex and included many extra features that this project did not need.
This introduced many extra problems, some of them could not be handled. At the end
a manually written CAN driver was written instead that did not use AUTOSAR at all.
This method worked perfectly and the the data in the plots below are collected this way.

A number of tests were performed in order to evaluate the behaviour of the imple-
mented software components. Firstly the inputs to the control algorithm were investi-
gated, that is the internal states recreated from the measured sensor values. In Figure 5.1
the result from one of the tests checking the angle θx and angular velocity θ̇x is shown.
In the test the robot was tilted manually, at first to around −40◦/−45◦ and then in the
opposite direction to positive 40◦/45◦.

52



Chapter 5. Evaluation 5.1. Results

Time [s]
0 5 10 15 20 25 30 35 40 45

A
n
gl
e

-50

-40

-30

-20

-10

0

10

20

30

40

50

Measured angles θx and θ̇x from the robot

θx [deg]

θ̇x [deg/s]

Figure 5.1: Test scenario for the angle θx and angular velocity θ̇x. The robot is tilted
approximately 40◦ in both directions.

As can be seen in Figure 5.1 the recreated state θx follows this behaviour very well.
Due to limited external measurement equipment it was very difficult to tilt the robot
to an exact angle, it had to be an approximation. One can also see that the angular
velocity, state θ̇x, follows the angle θx in a reasonable way. The plots are furthermore
pretty smooth. This implies that there aren’t too much noise on the signals.

In Figure 5.2 the result from a corresponding test scenario for states θy and θ̇y is
shown. The robot was manually tilted to approximately -/+ 40◦. Even here the con-
cerned angle and angular velocity show a reasonable behaviour. As expected the noise
level is a bit higher on the angular velocity signal. However the noise level is too low to
cause any serious problems.
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Figure 5.2: Test scenario for the angle θy and angular velocity θ̇y. The robot is tilted
approximately 40◦ in both directions.

In Figure 5.3 a similar test case for the angle θz and angular velocity θ̇z is shown.
In this test the robot was rotated around the vertical axis approximately 90◦ in both di-
rections. This corresponds with the data in the plot where both states show a reasonable
behaviour.
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Figure 5.3: Test scenario for the angle θz and angular velocity θ̇z. The robot is rotated
approximately 90◦ in both directions.

The following two figures present results from test scenarios concerning the angles
φx, φ̇x,φy, and φ̇y. These are the states corresponding to the movement of the ball calcu-
lated using the odometry method described in section 3.1.7. In both tests the ball was
rotated somewhere between 90◦ - 100◦ around the corresponding axis.
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Figure 5.4: Test scenario for the angle φx and angular velocity φ̇x. The ball is rotated
approximately 90◦ - 100◦ around the ball’s x-axis.
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Figure 5.5: Test scenario for the angle φy and angular velocity φ̇y. The ball is rotated
approximately 90◦ - 100◦ around the ball’s y-axis.
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As can bee seen in both Figure 5.4 and Figure 5.5 the results are not as good as
in the previous tests. The estimated angles of the ball’s rotation are much lower then
the actual value. This error could come from the test setup. When tilting the robot
and rotating the ball manually the movement of the robot could possibly get a different
behaviour compared to the scenario where it balances by itself. Since the odometry
calculations are based on the model of the robot this could introduce some errors in the
calculations when it does not behave in the way the model expects. In either way, this
behaviour could have a bad influence on the control behaviour. If the controller gets
wrong information regarding these states expecting the robot to have moved less than in
reality wrong control outputs will most likely be calculated.

One can also notice that the angular velocities of the ball (φ̇x and φ̇y) are very noisy.
If these states have almost any weighting at all in the LQR control design the resulting
control signal will be very noisy as well.

The next three plots show results from tests where the calculated torque references
from the control algorithm are evaluated. These are the references that are sent to the
motor drivers and these torque values should ideally be applied on the ball by the motors.
When leaning straight towards a specific motor and the control algorithm just wants to
stabilise the robot it is expected that this motor stays still while the other two motors
applies torque on the ball, in opposite directions against each other.
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Figure 5.6: Test scenario showing showing the three control signals/torque references
from the control algorithm when tilting the robot towards and away from motor 1.
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Figure 5.7: Test scenario showing showing the three control signals/torque references
from the control algorithm when tilting the robot towards and away from motor 2.
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Figure 5.8: Test scenario showing showing the three control signals/torque references
from the control algorithm when tilting the robot towards and away from motor 3.

58



Chapter 5. Evaluation 5.1. Results

As can be seen in Figure 5.6, Figure 5.7 and Figure 5.8 the control algorithm behaves
exactly as anticipated and corresponds to what could be seen in similar simulations (see
Figure 3.11). In these tests the weighting on the states φ̇x and φ̇y was very low in order
to not introduce so much noise.

5.1.2 Torque control evaluation
As could be seen in the previous section the recreation of states and calculation of con-
trol signals work more or less exactly as intended. The remaining problem is to convert
the torque references from the controller into a real applied torque on the ball as de-
scribed in section 4.3.1. In order to determine how well or bad this module work tests
where the measured currents and control signals were investigated. One of tests is pre-
sented in Figure 5.9. In this test a step response for one of the motors was performed.
Input to the PI-controller was a step with amplitude 0.5A.
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Figure 5.9: Step response with an amplitude of 0.5A showing measured current and
regulator output.

As can be seen in Figure 5.9 the measured current signal is extremely noisy. The
measured current has a standard deviation of 0.25A and a peak-to-peak value of 0.45A
in the region where it should be constant. This is very much concerning the range it
should work within. With this robot’s motors an applied torque of 0.25A corresponds
to a torque of 0.123 Nm on the ball and 0.45A to 0.218 Nm. In order to keep the robot
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stable around the unstable equilibrium with angles at zero it has to be possible to apply
very small torques on the ball as well as not applying any torque when there shouldn’t
be any. This high noise level makes that impossible to control.

To try solving this problem the measured current signal was filtered in several ways,
both in hardware and in software. This helped a bit but not enough. The main problem
was that when the noise was filtered to a low enough level the filters introduced a phase
shift and time delay such that the controller became to slow to do anything useful. More
about the problem with the current measurements are discussed under section 6.

Instead the torque/current controller was finally removed completely. The torque
references from the LQR controller were instead mapped to an appropriate size and
routed directly to the motor drivers. This can work since the mechanical system is much
slower than the electrical. This means that small rapid changes in the electrical signals
will be smoothed out such that only the mean value of the signals in a certain interval
will influence the behaviour of the mechanical parts. In fact this showed an improved
performance. The robot was however still not able to perform the small precise changes
required around the equilibrium point in order to balance by itself.
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Discussion

Throughout this project, a ball-balancing robot has been designed, constructed and eval-
uated. Using the software architecture AUTOSAR, the system runs successfully on
the ODEEP platform and the integration of the high-level control algorithms, code-
generated from Simulink, have been proved successful. However, the goals set at the
start of the project have not all been met since, as mentioned in the previous chapter, the
robot does not balance for more than a couple of seconds. This chapter will discuss the
outcome of the project, issues with the current design and suggest further development
to improve the system.

6.1 Project planning
During the course of the project, it became evident that the initial plan was a bit am-
bitious given the time at hand for a master thesis project. Not only was there a steep
learning curve on different subjects such as AUTOSAR and the MCU oriented pro-
gramming but the design part was very time-consuming as well and not to mention the
troubleshooting. Given the experience of conducting this project the planning would
have been different. Allocating more time to troubleshoot as well as the design in Al-
tium and basic software configuration in AUTOSAR would have been better. Also, the
mechanical solutions could have been simplified to better fit the time available as well.
The decided dimensions of the robot demanded a high motor torque, making it more
difficult to find suitable motors and finally in practise, more difficult to control. The
three-part actuating design as chosen also results in a more complex system and given
the outcome, a simpler design could have been more successful in reaching the final
goal even though resulting in a not as elegant final product. As an example, the inverted
mouse drive solution as implemented by Hollis in [2] would have been easier to model
and control but on the other hand, the robot would not have been able to rotate around
its own vertical axis.

61



Chapter 6. Discussion 6.2. Components and software

6.2 Components and software
In addition to better planning, some of the choices of components and software imple-
mentation could have been better. As mentioned in the previous chapter, the measured
current was way too noisy to serve as an input to a torque controller. By choosing a
current sensor with an appropriate measurement range the resolution could have been
increased, making the measurements less sensitive to noise. The currently used sen-
sor has a range of ±10 A, a sensitivity value of 200 mV/A and 70mArms noise. The
motor current turned out to reside within ±1.5 A which consequently gives very small
voltage steps at the sensor output not far from the noise level. Another possible solu-
tion to the measurement noise problem would have been to use a shunt resistance and
an operational amplifier circuit. Even though such a solution would have meant more
components and perhaps inferior performance, it would have been adjustable to fit the
motor range by a simple replacement of a few capacitors and resistors.

Even though modular tests of components were made, they could have been done in
an even more detailed fashion. As an example, the motor drivers were specified in data
sheets and manuals to control the speed of the motor. As it turned out after precious time
of troubleshooting the whole system, the drivers did not have any feedback or control of
any kind. The speed reference was simple converted to a fixed duty cycle at the output
to the motors.

Another decision that should have been made earlier in the project was to exclude
logging of internal states via CAN from the AUTOSAR environment and implement
it manually. Given a possibility to early on analyse and ensure that the sensors and
algorithms produce reasonable values could possibly have led to a more successful final
product. Now, this decision was made out of desperation after countless hours trying
to integrate and get CAN up and running in AUTOSAR with basically no time left to
analyse the data.

6.3 AUTOSAR feasibility
One of the main research points of this thesis, was to evaluate if it is a feasible and
well-functioning solution to use an AUTOSAR architecture in a mechatronical platform
outside of the automotive industry. Throughout this project, AUTOSAR has proved to
be very complex and time-consuming at first. It has a steep learning curve and even
though the specifications are extremely well documented the actual implementation of
an AUTOSAR system is not. Another problem is that since it is still confined to au-
tomotive industry, there is close to no discussions online on forums and blogs as with
other open-source software architectures, making it even harder to implement in prac-
tise. Also, the flexibility of AUTOSAR comes with a lot of overhead on seemingly
simple functionality. Trying to debug the code generated and available from the author-
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ing tools often leads to a long chain of function calls and hidden macros. One example
is the before mentioned attempt at enabling CAN communication to log internal states,
which had to be abandoned after weeks of troubleshooting in favour of writing it manu-
ally in C and getting it up and running in only two days. Putting the configuration phase
aside, the main idea of platform independence for higher lever tasks is a big advantage.
By taking things a step further and using model based design such as in this project is
an even greater advantage, possibly reducing complexity and development costs. That
was also the part that worked really well, the integration of .arxml-files to Simulink and
from there to AUTOSAR compliant C-code worked with a minimum amount of tweak-
ing. It proved to be very powerful many times during the troubleshooting phase to just
modify the Simulink model and regenerate the code as opposed to rewrite manually and
possible loosing structure by making temporary changes.

6.4 Model validity and control theory
As pointed out in the previous chapter, the robot did not perform nearly as well as in
the simulation, being unable to balance for more than a few seconds. Hence it is in-
teresting to discuss what could have been done differently when it comes to modelling
and control. The three dimensional model used in the project is complex and required
a tremendous amount of computing power in Mathematica. The main motive for using
such a complex model is the superior dynamical performance as described in the bach-
elor’s thesis [25]. However, the report also states that the robot is fully functional with a
much simpler decoupled two dimensional model. Perhaps the three dimensional model
was a bit to ambitious and a simpler two dimensional model would have saved critical
time needed to troubleshoot the system.

At the very end of this project, data collection from the robots internal states over
CAN were achieved. A very interesting and rewarding point would have been to com-
pare these results to simulations of the system with the same test scenario. Proper
adjustments to the model could have been made as well as fine-tuning of the controller,
possibly achieving better end results. Also, the transformations between coordinate sys-
tems could have been verified. Unfortunately, there was not enough time.

The control algorithm chosen was Linear-Quadratic-Gaussian control, which later
where reduced to an Linear-Quadratic-Regulator because of the problems with the Kalman
filter. Of course other methods are available, such as Model-Predictive-Control (MPC)
or a plain Proportional-Integral-Derivative (PID) controller. LQG is in the case of
MIMO-systems far superior to PID. However, it is more mathematically complex and
heavily dependent on a good model of the system to control. MPC is perhaps the most
sophisticated controller, being able of predict future behaviour, account for actuator lim-
its and a possibility to run closer to the system constraints. With the time at hand for
the project, LQG was deemed the most appropriate control method as it is a commonly
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implemented method with lots of documentation. Also, it is a well known method for
us personally since it has been used in several projects throughout our education.

6.5 Further improvements
Finally, there are some other points of the systems that can be improved further. As
mentioned, the Kalman filter as well as the set-point tracking via integral states had
to be removed due to unpredictable behaviour. A possible explanation for this is the
previously mentioned noisy current measurements as those are also inputs to the filter.
The fact that the simulations fail when applying the same amount of noise to the mea-
surements as well supports this claim. Fixing the current measurement and in addition
evaluating the model and making appropriate adjustments, perhaps the Kalman filter
could be introduced again. This could result in a significantly increased disturbance
rejection. Introducing the set-point tracking ability again will enable the robot to move
in the plane according to given instructions. Combining this with set-point commands
over CAN or wireless communication would expand the possible applications of the
robot.

Another area that could be improved further is the calibration of the sensors to have a
proper equilibrium point. At the moment, the robot is assumed to be at its equilibrium at
system reset and with this method, the equilibrium point is heavily dependent on the fact
that the operator holds the robot absolutely upright. Clearly, this is not optimal and the
system would benefit from an alternative solution where, ideally, the equilibrium point
is found automatically by either an adaptive filter or a predefined movement pattern. The
deadband present at the DC motors could also be compensated for to have an appropriate
response when applying small torques. This has already been tested to some extent in
the present setup, however, it could be developed even further.

As mentioned in Subsection 4.1.3 the IMU includes a dedicated motion processor,
DMP. By using DMP to produce the appropriate angles of the robot could decrease
the ECU processor load significantly as well as increase the accuracy due to the more
sophisticated algorithms available for DMP. Also, this would separate the IMU calcu-
lations from the ECU, consequently increasing the data integrity and making it fully
platform independent.

Despite all the things that could have been made better during the project, a great
amount of parts have successfully been implemented to great satisfaction. A full three
dimensional model has been implemented in Simulink and simulations can be run in a
3D-animation environment to run different test scenarios depending on different model
parameters, noise levels and sampling frequencies. The algorithms developed work
without problems in the simulation environment and can successfully be code-generated
into AUTOSAR and runs flawlessly. All external components such as sensors and ac-
tuators has been integrated successfully into AUTOSAR and all aids at providing the
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control algorithm with sufficient data. Considering the time available this is not such a
bad result after all and the amount of knowledge obtained through the project has aided
in personal development for both of us.
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Conclusion

A mechatronical system in the form of a ball-balancing robot has been designed, simu-
lated and constructed. The goal of the system was to serve as a test platform of the model
based design capabilities of the software architecture AUTOSAR. The design uses three
equidistantly mounted omniwheels and a storey-like body accommodating the ECU,
IMU and other electronic components. A three dimensional mathematical model of the
system was derived and used in simulations to develop a Linear-Quadratic-Regulator
capable of balancing the system and following set points in the plane. Investigations of
different model parameters’ impact on the system and decisions regarding the final sys-
tem to be constructed were made. After successful simulations of the complete closed-
loop system, AUTOSAR compliant C-code of the control algorithm was generated from
Simulink. To have a functional interface between the sensor-actuator part and the ECU
platform, an expansion card was designed in Altium Designer incorporating the addi-
tional control electronics. In addition to the electrical and mechanical construction of
the system, the basic software in AUTOSAR have been configured including drivers to
connect the control algorithm to hardware. Finally, an internal logging module were
implemented which communicates via CAN to debug the system.

Even though the construction and software development were finalised and the con-
cept fully functional, the robot was not able to balance for more than a few seconds. The
reasons for this were mainly poor choices of hardware in combination with not enough
time allocated to troubleshoot in a structured way. Given the outcome, a less ambitious
and time-consuming mechanical design could have been chosen to reach the final goal
of a fully balancing robot. Also, important functions for debugging the system such
as the CAN logger of the internal states, should have been implemented outside of the
AUTOSAR environment at a very early stage to save time.

Regarding the main focus of the thesis, AUTOSAR suitability in model based de-
sign, the following conclusions can be made. Setting up AUTOSAR and configuring the
basic software proved to be a very time consuming and challenging task due to the steep
learning curve, complex design and lack of implementation documentation. Hence,
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the flexibility of the AUTOSAR hardware independent structure comes at a cost of in-
creased initial work to get the system up and running. On the other hand, the integration
of Simulink and AUTOSAR enables a simple and efficient way of implementing com-
plex control algorithms on ECUs using model based design, possibly saving valuable
resources and time. Hence, a model based design development using AUTOSAR and
Simulink can certainly pay off, especially on systems using a great amount of complex
control algorithms which are easy to describe on a higher abstraction level such as in
Simulink in contrast to implementing it in a lower level programming language.
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