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ABSTRACT

Steel-concrete composite bridges offer several benefits compared to concrete bridges,
mainly with regard to reduced construction time and disturbance of the surrounding
area. In most cases the weight of the concrete deck makes launching of the whole
composite section difficult, and therefore the deck needs to be cast or lifted on the
steelwork in a second step. If the steel girders instead could be launched together with
the bridge deck, the construction time could be significantly reduced. The use of steel
sandwich decks (SSD) in bridges is a concept developed over recent years. SSD’s are
composed of two stiff outer face plates attached to a core and the high stiffness-to-
weight ratio allows for a weight reduction compared to concrete decks.

The purpose of this thesis was to evaluate SSD’s as an alternative to concrete decking
in composite bridges. An existing steel-concrete composite bridge was used as a case
study, to evaluate the performance of SSD’s and investigate the possibility of
launching the main girders together with the deck.

In a preliminary design it was investigated how different distances between transverse
girders influenced the dimensions of the SSD. The 3D SSD was idealised as a
homogeneous orthotropic plate and the area of the SSD was optimised.

The SSD obtained from the preliminary design was used to model the whole bridge in
the finite element software Abaqus/CAE and the performance of the SSD was studied
in more detail. The existing composite bridge was modelled as well in order to
compare stresses in the main girders. Finally, the performance during launching was
verified.

It was concluded that the SSD could be a valid alternative to concrete decks in
composite bridges, especially when reduction of the construction time is of
importance.

Key words: Steel sandwich decks, bridge decks, optimisation, finite element analysis
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Notations

Roman upper case letters

Ac Af

Gyy

er

Gy
e

Gy

e e
G&z'G&z

Lspanl

Lspanz
A4xx’ﬂ4yy

Area per unit width of corrugation and face plates respectively, [m]
Total width of the bridge, [m]
Distance between the main girders, [m]

Bending stiffness per unit width of corrugated SSD, for bending around
the x- and y-axis respectively, [Nm]

Torsional stiffness per unit width of corrugated SSD, [Nm]

Transverse shear stiffness per unit width of corrugated SSD, in the x- and
y-direction respectively, [Nm]

Modulus of elasticity of core material, [Pa]
Modulus of elasticity of concrete, [Pa]

Modulus of elasticity of face plate material, [Pa]
Modulus of elasticity of steel, [Pa]

Axial stiffness per unit width of corrugated SSD, in the x- and y-direction
respectively, [N/m]

Engineering constants, related to axial stiffness, for in-plane loading, [Pa]

Engineering constants, related to bending stiffness, for out-of-plane
loading, [Pa]

Shear modulus of elasticity of face plate material, [Pa]
Shear modulus of elasticity of core material, [Pa]
Horizontal shear stiffness per unit width of corrugated SSD, [N/m]

Engineering constant, related to horizontal shear stiffness, for in-plane
loading, [Pa]

Engineering constant, related to torsional stiffness, for out-of-plane
loading, [Pa]

Engineering constants, related to transverse shear stiffness, [Pa]
Moment of inertia per unit width of face plates, [m®]

Moment of inertia per unit width of corrugation, [m®]

Total length of bridge, [m]

Length between the transverse girders, [m]

Length of edge span, [m]

Length of middle span, [m]

Bending moments per unit width, in x- and y-direction respectively, [N]
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Twisting moment per unit width, [N]

Membrane forces per unit width, in x- and y-direction respectively, [N/m]
Membrane shear force per unit width, [N/m]

Characteristic axle load in traffic lane i, [N]

Non-dimensional coefficient used for calculation of Dy,,, [-]

Shear force per unit width, in x- and y-direction respectively, [N/m]
Volume per meter of main girders, from preliminary design, [m?]
Volume per meter of SSD, from preliminary design, [m?]

Volume per meter of transverse girders, from preliminary design, [m?]
Total volume of bridge per meter, from preliminary design, [m?]

Plastic collapse load of corrugation under patch load, [N]

Roman lower case letters

Vil

Width of the interval considered in calculation of b,, [M]
Effective width, [m]

Width of edge beam flange, [m]

Width of main girder bottom flange, [m]

Width of transverse girder bottom flange, [m]

Width of transverse support girder bottom flange, [m]
Loaded length of the corrugation in calculation of Py, [m]
Length of horizontal corrugation segment [m]

Ultimate strength of top face plate, [Pa]

Yield strength of top face plate, [Pa]

Yield strength of bottom face plate, [Pa]

Yield strength of SSD corrugation, [Pa]

Self-weight of bridge deck, [N/m?]

Distance between middle surfaces of face plates, [m]

Height of corrugation, measured vertically from centre line of crest to
centre line at trough, [m]

Height of edge beam, [m]

Height of main girder web, [m]

Height of transverse girder web, [m]

Height of transverse support girder web, [m]

Ratio depending on the distance to the zero-shear plane of SSD, [-]
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Ratio depending on the distance to the shear centre of the corrugation, [-]

Length of one corrugation leg, measured along the centre line, [m]
Length of corrugation opening, [m]

Half of the corrugation pitch, [m]

Characteristic uniformly distributed load in traffic lane i, [N/m?]
Thickness of corrugation, [m]

Thickness of top face plate, [m]

Thickness of bottom face plate, [m]

Thickness of edge beam, [m]

Thickness of main girder bottom flange, [m]

Thickness of main girder web, [m]

Thickness of transverse girder bottom flange, [m]

Thickness of transverse girder web, [m]

Thickness of transverse support girder bottom flange, [m]
Thickness of transverse support girder web, [m]

Deflection of cantilever part of SSD, [m]

Deflection of SSD between main and transverse girders, [m]
Width of traffic lane, [m]

Greek lower case letters

a
%
q
Ye
Yo
Ymo

Ym1

Neant
Mmia
Ukt
2

Nt

Angle of corrugation, [deg]

Correction factor for axle loads, [-]

Correction factor for uniformly distributed traffic load, [-]
Partial coefficient for permanent ULS load, [-]
Partial coefficient for variable ULS load, [-]
Partial factor for resistance check, [-]

Partial factor for instability checks, [-]
Coefficient considering the yield strength, [-]
Utilisation ratio for w,g¢, [-]

Utilisation ratio for w,,;4, [-]

Utilisation ratio for bending, [-]

Utilisation ratio for patch loading, [-]

Utilisation ratio for lateral torsional buckling, [-]

Buckling load factor, [-]
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V. Poisson’s ratio of core material, [-]

Veone Poisson’s ratio of concrete, [-]

Vs Poisson’s ratio of face plate material, [-]

Vs Poisson’s ratio, associated with extension, in x-direction, [-]
Vg Poisson’s ratio, associated with bending, in x-direction, [-]
12 Poisson’s ratio, associated with extension, in y-direction, [-]
vy Poisson’s ratio, associated with bending, in y-direction, [-]
& Reduction factor for self-weight, [-]

Oumfrop VON Mises stress in top face plate, [Pa]

Ox.f.top Stress in top face plate, in x-direction, [Pa]

Ox.f bot Stress in bottom face plate, in x-direction, [Pa]

0y f.top Stress in bottom face plate, in y-direction, [Pa]

Oyprrop ~ BeENding stress component in top face plate, in y-direction, [Pa]
Oynfrop ~ NOrmal stress component in top face plate, in y-direction, [Pa]
Vo1 Factor for combination of variable ULS loads [-]

Y11 Factor for frequent load combination, [-]

Abbreviations

ESL Equivalent Single Layer
FEM Finite Element Method
GMAW  Gas Metal Arc Welding
HAZ Heat Affected Zone
HLAW  Hybrid Laser Arc Welding
LM1 Load Model 1

SLS Service Limit State

SSD Steel Sandwich Deck

TS Tandem System

uUDL Uniformly Distributed Load
ULS Ultimate Limit State
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1 Introduction
1.1 Background

Steel-concrete composite bridges offer several benefits compared to concrete bridges,
mainly with regard to reduced construction time and disturbance of the surrounding
area (Collin & Lundmark, 2002). The need for formwork from the ground, when
constructing concrete bridges, can be avoided since the steel girders can be launched
or lifted and then act as support of the formwork. These advantages have contributed
to the growing popularity of composite bridges during the last decades.

In most cases the weight of the concrete deck makes launching of the whole
composite section difficult and therefore the deck slab needs to be cast or lifted on the
steelwork in a second step (Collings, 2008). If the steel girders instead could be
launched together with the bridge deck, the construction time would be significantly
reduced. A weight reduction of the deck could make launching of the whole bridge
feasible and also reduce the dimensions of the main girders and the substructure.

The use of steel sandwich decks (SSD) in bridges is a concept developed over recent
years. SSD’s are composed of two stiff outer face plates attached to a core. The core
can have various geometrical configurations and is supposed to resist shear forces
only, while the face plates resist bending moments. One important feature of the SSD
is the high stiffness-to-weight ratio, which allows for a weight reduction compared to
concrete decks.

The traditional steel decks used in bridge construction are the so-called orthotropic
decks, consisting of a top plate with longitudinal stiffeners. A significant feature of
orthotropic steel decks is the large amount of manual welding and problem with
fatigue cracks.

SSD’s are manufactured using laser welding which allows for welding from one side
and a more automated welding process (Caccese & Yorulmaz, 2009). The laser
welding process also improves the fatigue resistance compared to the orthotropic steel
decks (Bright & Smith, 2007). The use of laser welding for larger sections, like bridge
decks, is a relatively new technique but recent developments make SSD’s a potential
cost effective alternative to conventional decking.

1.2  Aim and objectives

The purpose of this thesis was to evaluate SSD decks as an alternative to concrete
decking in composite bridges. This is done through a case study in which the
objectives were to:

e Obtain a SSD configuration optimised with regard to weight, without the loss
of structural performance.

e Study how the dimensions of the main girders were influenced by replacing
the concrete deck with SSD’s.

e Investigate if the construction time could be reduced, by allowing for
launching of the bridge with the deck included.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145 1



1.3 Method

The thesis started with a literature study about SSD’s. The main focus was on the
structural behaviour and performance of the decks including properties like stiffness,
orthotropy, fatigue and instability. The history, applications and production processes
of SSD’s were covered briefly, as well as the construction and behaviour of steel-
concrete composite bridges.

To evaluate the potential of SSD’s a case study of a bridge over Bergeforsen was
carried out in two steps. The bridge was designed and built as a composite bridge
consisting of two launched I-girders and a cast in-situ concrete slab. The total length
of 166 m is divided into in three spans and the total width of the traffic lanes is 11.25
m.

In the first step a preliminary design was carried out with the purpose of finding a low
weight SSD configuration. Different configurations of the SSD and distances between
the transverse girders were investigated in order to find the combination resulting in
the lowest steel volume in the bridge. An optimisation routine developed by Beneus &
Koc (2014) was further developed and used to minimise the area of the SSD. A part
of the bridge deck was analysed with a finite element (FE) model in Abaqus/CAE to
check that the deflection of the SSD was below the requirement. In the preliminary
FE-analysis the 3D SSD was idealised as a homogeneous orthotropic thick plate in
order to reduce the modelling and calculation times.

In the second step the whole bridge was modelled and analysed in Abaqus/CAE with
the SSD from the preliminary design. A FE-model of the existing composite bridge
over Bergeforsen was created as well in order to be able to compare stresses in the
main girder bottom flanges of the two bridges. First, the dimensions of the bottom
flanges in the SSD bridge were adjusted until the bottom flange stresses in the two
models corresponded. Next, the edge beam was designed so that the cantilever part of
the SSD met the local deflection requirement. In addition to designing the main
girders and the edge beams, verification of the SSD capacity was done at critical
sections. Finally, it was investigated if the SSD deck could be launched together with
the main girders.

1.4 Outline

The first chapter describes the background, methodology and purpose of the thesis. In
the following chapter the literature study is covered. The main focus of the literature
study was the structural performance of the SSD. The elastic stiffness constants for
modelling the SSD as an equivalent single layer (ESL) was presented followed by a
description of the behaviour of thick orthotropic plates following Mindlin-Reissner
kinematics. Furthermore, an analytical solution for the deflection of the SSD
modelled as an ESL was presented.

In chapter three the preliminary design of the SSD was covered. The preliminary
design procedure of the SSD was explained and the configuration used for further
analysis was presented.

In the fourth chapter the bridge used as a case study was modelled in Abaqus/CAE.
Different models with either a SSD deck or a concrete deck were analysed. The
performance of the SSD deck was verified and in addition, the possibility to launch
the SSD deck together with the main girders was investigated.

2 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:145



In chapter five the methods and results were discussed and in chapter six conclusions
from the thesis were drawn and suggestions for further studies recommended.

1.5 Limitations

No complete design of the bridge was carried out. A comparative study of the two
bridge configurations was performed with respect to stress levels in the main girders.

The structural performance of the SSD deck was verified at critical sections but no
connections were designed and the fatigue strength was not considered. Furthermore,
only traffic loads and self-weight were considered.

The material needed for construction of the two bridges was compared but a cost
comparison was omitted.

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145 3



2 Literature study
2.1 Composite bridges

Composite bridges are structures that combine materials. The materials can be
concrete, steel and glass or carbon-reinforced plastic. One of the most common
composite bridge types consist of steel girders with a cast in-situ concrete slab
(Collings, 2008). The steel-concrete composite bridge holds many advantages
compared to a concrete bridge such as lower self-weight of the superstructure, no
need of falsework on the ground and shorter construction time.

In most cases the weight of the concrete deck makes launching/lifting of the whole
composite section difficult and therefore the deck slab needs to be cast or lifted on the
steelwork in a second step. To ensure stability before the concrete has been cast the
steelwork needs bracing.

I-girders are frequently used in composite bridges, and a typical composite bridge
with I-girders are shown in Figure 2.1. The longitudinal and transverse stiffeners are
used to transfer and distribute concentrated loads and to prevent local buckling of
plate elements. The cross bracing provides lateral stability and distributes vertical
loads to the main girders.

Borrier —

Shoor Stud—~. ~
Wi

Top Flonge —_ A 7
" ;

»
Longituding! stif fener ™ ‘.;\ —
Tronsverse stiffenery ./

Figure 2.1  Typical components of I-girder composite bridges (Saleh & Duan,
2000).

2.2  Shear lag

Shear lag arises because the in-plane shear straining of a flange cause the parts closest
to the web to develop higher longitudinal stresses then the parts further away (Vayas
& lliopoulos, 2014). Low in-plane shear stiffness G,,, therefore increases the shear
lag effect. Elementary beam theory cannot capture this phenomenon correctly since
the assumption that plane sections remain plane after bending is not true. Due to the
shear lag the stresses at the web-flange intersection are larger than those calculated
with beam theory. In design this effect is accounted for by introducing an effective
width b, (see Figure 2.2).
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Actual normal stress

—

Equivalent constant stress

Figure 2.2  Shear lag effect and effective flange width.

The effective width can be calculated with equation (2.1), obtained from Zou et al.
(2011), as the integral of the normal stress distribution divided by the maximum stress
in a given interval.

b/2
o, dx
p, = Loz 2.1)

O-m ax

b, Effective width, [m]
b Width of the interval considered, [m]
Oy Normal stress distribution, [Pa]

Omax Maximum normal stress, [m]

Moffatt & Dowling (1975) performed a parametric study on the shear lag effect in
steel box girders using finite element (FE) analysis. It was concluded that increased
flange width to span length ratio b/Lg,,, and increased axial stiffness to in-plane
shear stiffness ratio E, /G,,, lead to a more pronounced shear lag effect. Furthermore
it was shown that the shear lag was influenced by the type of loading and boundary
conditions, while independent of the type of cross section (box, I-, T- or U-).

A parametric study of the shear lag effect in orthotropic steel beam flanges was
conducted by Tenchev (1996) in order to establish a formula for a shear lag
coefficient b, /b. The conclusions by Moffatt & Dowling (1975) were confirmed and
it was also shown that the transverse axial stiffness of the flange E,,, had negligible

influence on the shear lag. Figure 2.3 shows the relation between b, /b, E, /G, and
b/Lspan-

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145 5
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Figure 2.3  Shear lag coefficient (Tenchev, 1996).

Zou et al. (2011) proposed equation (2.2) as an analytical model for calculating the
effective flange width for orthotropic bridge decks supported on steel girders. The
shear lag model was verified with a finite element (FE) model, for different truck load
positions.

_ ;" cosh(&1y) dy
’ cosh (%)

(2.2)

where:

1 E,

$ = -

Lspan | Gxy

b, Effective width, [m]

b Width of the interval considered, [m]
Lspan Span length, [m]

E, Axial stiffness, [N/m]

Gxy  In-plane shear stiffness, [N/m]

2.3  Steel sandwich decks

A steel sandwich deck (SSD) is composed of two stiff plates that resist bending
moments, separated by a low density core that resists shear forces (Caccese &
Yorulmaz, 2009). The high stiffness-to-weight ratio allows for considerable weight
reduction and faster construction compared to bridge decks made of concrete.

The core can have many different configurations with different properties (see Figure
2.4). Alwan & Jarve (2012) studied the axial, bending and shear stiffness in ten
different core configurations and concluded that the corrugated V-core (see Figure
2.6) was the most promising one for bridge deck applications.
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Figure 2.4  Different types of core configurations (Romanoff & Varsta, 2006).

2.3.1 History and application

Sandwich-like components were proposed for construction already in the 1950s. The
development of laser welded sandwich panels was initiated in 1988 by the U.S. Navy
and resulted in the use of stake welds to attach the face plates to the core (Abbott et
al., 2007). Stake welds penetrates the plates from one side and connects them (see
Figure 2.5). This concept was first used on the USS Mt. Whitey in 1994 and resulted
in weight savings of 40% compared to classical stiffened plate structures. Even if the
weight savings were significant, the research was abandoned since the manufacturing
price was to high.

C I

2%

~ N

Figure 2.5 Laser stake weld connecting the face plate and core.

During recent years there has been on-going research on the behaviour and production
of SSD’s. In the 1990s, European research projects investigated the production and
application of SSD’s in ship building (Kujala et al., 2004). A German research project
conducted by Meyer Werft resulted in the development of web-core panels.
Furthermore, two factories producing corrugated core sandwich panels have been
established in Finland.

2.3.2 Production of SSD

The development of new laser welding techniques has made it possible to produce
products with better static and dynamic performance, in a faster and more cost
efficient way. Traditional welding methods alone, like spot welding or gas metal arc
welding (GMAW), have certain disadvantages that causes problem when it comes to

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145 7



the production of SSD’s. In the GMAW process an electrode wire is continuously fed
through a conduit and welding gun to the base metal. High weld quality can be
obtained but there are limitations to the minimum metal thickness (Philips, 1961).

Laser welding is a high energy density process capable of welding many different
metals and alloys. It has many advantages compared to GMAW such as higher
welding speed, increased process reliability and no requirement of fill material
(Caccese et al., 2006). Furthermore, the heat affected zone (HAZ) and residual
stresses are reduced. However, the lack of filler material can lead to stress
concentrations due to the geometry of the weld, especially in sharp corners.

The hybrid laser arc welding (HLAW) is a combination of laser welding and GMAW,
utilising features from both methods (see Figure 2.6). The laser weld method provides
deep weld penetration, high speed, low heat input and small heat affected zones. In
addition the GMAW improves the weld geometry and gives wide tolerances for the
joint gaps, surface conditions and impurities (Abbott et al., 2007).

{ ,i GMAW
Laser Beam
T lll { (Spray Transfer Mode)
\-‘ lI ‘/_/
Laser Plumo\ Shielding Gas
Fusion Zone

Figure 2.6  Hybrid laser arc welding (Abbott et al., 2007).

Even though HLAW has many benefits and is available on the market, the practical
implication is not widely spread (Beneus & Koc, 2014). The investment costs and
risks involved when changing from well-established methods of welding, leads to a
conservative attitude in many companies.

2.4  Elastic stiffness constants of SSD

Libove & Hubka (1951) derived formulas and investigated the elastic constants for
corrugated core sandwich plates, used to idealise the 3D sandwich plate as a
homogeneous orthotropic plate (see Figure 2.7). In the derivations the modulus of
elasticity in z-direction was assumed to be infinite. Straight lines normal to the middle
surface were assumed to remain straight, but not necessarily normal to the middle
surface, during distortion of the plate. Furthermore, the corrugation was assumed to
be connected to the face plates through rigid joints at its crests and troughs.

The behaviour of a SSD can be described by the following elastic constants: two

extensional stiffnesses E, and E,, , two bending stiffnesses D, and D,,, a twisting

8 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:145



stiffness D,, , two transverse shear stiffnesses Dy, and Dy, , a horizontal shear
stiffness G, and two Poisson’s ratios v, and v,,.

Figure 2.7  Dimensions of corrugated V-core SSD (left) and equivalent elastic
constants of a homogeneous orthotropic plate (right).

2.4.1 Axial stiffness
The axial stiffnesses per unit width [N/m] are given in equations (2.3) and (2.4):

E - ErAy
y L2 (1 E;A; (2.4)
‘Vf( - Ex>

where:

Ar = trrop T trbor

E, Modulus of elasticity of core material, [Pa]

Ef Modulus of elasticity of face plate, [Pa]

trrop Thickness of top face plate, [m]

trpor Thickness of bottom face plate, [m]

A, Area, per unit width, of corrugation cross section, [m]

Vy Poisson’s ratio of face plate material, [-]

The Poisson’s ratios associated with extension are given in equations (2.5) and (2.6):

v}’c =vf (25)
E
vy = v,’cE—y (2.6)
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2.4.2 Bending stiffness

The bending stiffnesses per unit width [Nm] of a corrugated SSD are given in
equations (2.7) and (2.8):

D, = E;l + E.I, (2.7)
D = Erly
y 12 (1 E¢ly (2.8)
—Y ( T, )
where:
I¢ Moment of inertia, per unit width, of face plates, [m®]
I, Moment of intertia, per unit width, of corrugation, [m°]

The Poisson’s ratios associated with bending are given in equations (2.9) and (2.10):

Vy = Vf (29)
D
— (2.10)
X

2.4.3 Torsional stiffness

The torsional stiffness per unit width [Nm] of a corrugated SSD is given in equation
(2.11):

Gt 2 2
Dyy = 2 |Grty ropkl; + %(k(;] — k)" + Grtrrop(1 — kg) ]hz (2.11)
c

Gy Shear modulus of elasticity of face plate material, [Pa]

G, Shear modulus of elasticity of core material, [Pa]

t. Thickness of corrugated core plate, [m]

ks;  Ratio depending on the distance to the zero-shear plane, [-]

k. Ratio depending on the distance to the shear centre of the corrugation, [-]
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2.4.4 Horizontal shear stiffness
The horizontal shear stiffness per unit width [N/m] of a corrugated SSD is given in
equation (2.12):

G t?
A,

Gy =~ + GpA; (2.12)

2.45 Transverse shear stiffness

The transverse shear stiffness per unit width [N/m] in y-direction is given in equation
(2.13):

3

Dy = Sh( Ee )(;—CC) 2.13)

1—v?

h. Height of corrugation, measured vertically from centre line of crest to centre
line at trough, [m]

Ve Poisson’s ratio of core material, [-]

S Non-dimensional coefficient depending on the shape of corrugation, relative
proportions of sandwich cross section, and the material properties of the
component parts, [-]

The transverse shear stiffness per unit width [N/m] in the x-direction is given in
equation (2.14):

_ Gtch
Qx = W (2.14)
where:
Q Static moment of hatched area (see Figure 2.8) about the neutral axis, [m?]
I Moment of inertia of cross section of width 2p about centroidal axis, [m*]
h Distance between middle surfaces of face plates, [m]
p Half of the corrugation pitch, [m]

o~
a

Length of one corrugation leg, measured along the centre line, [m]
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Figure 2.8 Area used when calculating the static moment of area.

If it is assumed that the face plates resist the entire bending moment and that the
corrugation therefore carries no normal stress, equation (2.14) can simplified to
equation (2.15):

G.t2 (h
Doy =~ (_) (2.15)
c

2.5 Mindlin-Reissner plate theory

Plate theory is a simplification of 3D elasticity analogous to beam theory but with
extension in two directions. The two most common plate theories are the so called
Kirchoff theory for thin plates and Mindlin-Reissner theory for thick plates. In the
Kirchoff theory it is assumed that the normal remains straight and orthogonal to the
middle plane after deformation (Ofiate, 2013). The assumption that the normal
remains orthogonal to the middle plane after deformation means that the transverse
shear deformations do not contribute to the out-of-plane displacements. When
analysing a SSD the transverse shear deformations are too large to neglect and the
Mindlin-Reissner kinematics has to be adopted.

The Mindlin-Reissner kinematics assumes that the normal to the plate remains
straight but not orthogonal to the middle plane. Blaauwendraad (2010) made a
distinction between plates loaded in their plane and plates loaded perpendicular to the
plane and presented the theory for both. For plates loaded in their plane, the plane
stress state is called the membrane state while plates subjected to load perpendicular
to the plane are in a state of bending and transverse shear. In addition to the
assumption about the middle plane, the stress a,, in the direction normal to the mid-
plane is assumed to be negligibly small compared to the bending stresses oy, and o,,,,
and is set to zero. Furthermore, the middle plane is assumed to remain unstrained due
to bending.
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2.5.1 Plate acting as membrane

In the membrane state, all stress components are parallel to the middle plane and the
membrane forces per unit width N,,, N,, and N,, are obtained by multiplying the

stress COMPONENts gy, gy, and a,, with the thickness ¢ (see Figure 2.9).

Figure 2.9  Membrane forces in a thick plate (Blaauwendraad, 2010)

Using the elastic stiffness constants from section 3.2 and accounting for material
orthotropy result in the following relation between the deformations and stress

resultants:
P M —! Nyy
XX Ex y Ey
e Ny Nax
o E, YE,
v = Ny
Xy

Or with matrix notation:

=

&yt =|-vw/Ex 1/E, 0 vy

{exx} 1/Ey - 3,//Ey 0 Niyx
Yxy 0 0 1/Gyy | (Nxy

By inverting equation (2.19) the following stiffness formulation is obtained:

Ny Eyx VJIIExx 0 Exx
Nyy = VplcEyy Eyy 0 {EJ/J’}
ny 0 0 ny ny
where:
E
Exx = 1 xl ’
—ViVy
E
_ Yy
Eyy - 1 —viv!
xVy
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2.5.2 Plates in bending and shear

A plate loaded perpendicular to its plane will be subjected to a displacement w in z-
direction, and rotations ¢, and ¢, . A distributed load q is associated with the
displacement w and distributed couples g, and q,,, are associated with the rotations
@, and ¢,,. The load components and stress resultants are shown in Figure 2.10.

Figure 2.10 Load components with associated displacement and rotations on plate
subjected to bending and shear (left) and stress resultants in the plate
(right) (Blaauwendraad, 2010).

By introducing three curvatures k., k., and k,,,, the strains in a horizontal plane at
distance z from the middle plane can be written as:

Exx = ZKxx (2.21)
£,y = 7Ky, (2.22)
Yxy = ZKxy (2.23)
where:
o =00
XX ax
0,
=Ty
0oy 0y
o =5 T ok

Due to the assumption that o,, is zero, all horizontal layers of the plate are in a state
of plane stress. The same constitutive relation as in equation (2.20) can therefore be
applied to each layer, but with the Poisson’s ratios associated with bending v, and v,,.
Integration of the stress components o,,, 0y, and gy, over the thickness will then
give the bending moments per unit width M, and M,,, and a twisting moment per
unit width M,,,. With the bending and torsional stiffnesses from Section 2.4, the
following stiffness formulation is obtained according to Zenktert (1995):
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My, = Dxx(}cxx + vyrcyy) (2.24)

Myy = Dy, (Kyy + Vylry) (2.25)
M, = %KW (2.26)
where:
D
Dyx = m
D
Dy, = 1_—13/;1/3/

Or with matrix notation:

Dyx vnyx 0

Mxx Kxx

D D
M, \ = VxUyy vy DO {Kyy} (2.27)
M, 0 0 XY [ \Kxy

2

The shear forces per unit length V, and V,, are obtained by integration of the vertical
shear stress components a,, and o, over the thickness of the plate. With the

transverse shear stiffnesses from Section 2.4, the relations between shear forces and
shear deformations are given below:

Vi = Dox¥x (2.28)
where
ow
ow
yy - (py + E

2.5.3 Coupling between membrane action and bending

To define the constitutive law for coupled membrane action and bending, equation
(2.20) and (2.27) can be combined. If a common reference plane R is chosen equation
(2.30) is obtained according to Blaauwendraad (2010).
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Ny, VxEyy  Eyy 0 * * 0 eR
Ny, 0 0 Gy O R
Smr (= * * 0 Dy vyDy O |{P3  (2.30)
XX Kxx
MJISy * * 0 Vnyy Dyy 0 Kyy
Dyy
M, ) 0 0 x 0 0o = \Pxy/

In the general case, the coupling terms denoted with * in the stiffness matrix of
equation (2.30) will be non-zero and depend on the distance to the reference plane. If
a material is homogeneous or has symmetrical stiffness properties with regard to the
middle plane, there is no difference between the reference planes for membrane action
and bending. The reference plane R is then chosen as the common reference plane and
membrane action will be fully uncoupled with bending, resulting in zeros at the
positions denoted * in the stiffness matrix of equation (2.30).

2.6  Analytical analysis of a simply supported SSD

Chang (2004) proposed a closed-form analytical solution to calculate the deflection of
a simply supported SSD subjected to out-of-plane traffic loading. The sandwich plate
theory used is based on the Mindlin-Reissner kinematics described in Section 2.5, in
which the 3D SSD is idealised as an equivalent orthotropic plate.

2.6.1 Governing equations
Chang (2004) derived the following system of governing differential equations for an
orthotropic sandwich plate:

92 Dy, 07 D, 3%, ow

920, 92 Dy, 9? ow
— <Dyy ayz + 2 axz - DQy (py + DQ:V@ = 0 (232)

0¢, 6<py 0?2 02
where:
D,
D J—
1wy,
D
D,, = —=
oo 1—vy,
D
vy, = vxD—y
X
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2.6.2 Boundary conditions

Three boundary conditions should be prescribed at any point of the sandwich plate
edge. For a simply supported edge, two of the boundary conditions prescribe
deflections in z-direction and bending moments to zero. The third boundary condition
can be either a so called soft or hard type boundary condition (see Figure 2.11). For
the former, the twisting moment is zero and shearing of the edge is permitted. For the
hard boundary condition, shearing is not permitted and a twisting moment will be
present.

=0 Yz =0

[ /7@ n

z 1

Figure 2.11 Definition of soft (left) and hard (right) boundary condition.

2.6.3 Deflection of a simply supported SSD

For rectangular plate (length a and width b) with hard type simply supported edges,
the deflection, slopes and transverse load can be expanded with the double infinite
Fourier series given in equations (2.34) to (2.37):

SR mrtx nmwx
z Z Winn sm sm (T) (2.34)
=1

n=1

Z z Apn cos mnx) sin (ml:x) (2.35)
m=1n=

Oy = i i B sin (m:lrx) sin (nb#) (2.36)
m=1n=1

q= i i Qmn SIN (m;rx) sin (nbix) (2.37)
m=1n=1

(2.38)
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For a point load acting at a point (x,y) = (x',y"), qmn IS Obtained by equation (2.39):

4P (mmx"\ . (nnx'
Qmn = ——Sin sin| —— (2.39)

ab a

By substituting equations (2.34) to (2.37) into equations (2.31) to (2.33), the
following system of equations in terms of the unknown coefficients w,,,,, A,,, and
B,,,, Was obtained:

Ki1 Kz Kiz](Wmn 0
Ky Ky Kpz[jAmnp=1 0 (2.40)
K31 Ksp K3zl Bmn Gmn
where
mm\2 D, /nm\2 D mnr?
o = Dee () #2240, s = [ 224 D] (M)

Ko =Kz, Koz =Dyy (anﬂ)Z %(?)2 + Doy, Kzz3 = —Dgy,y (%)

mi 2 N 2
K31 =Ki3, Kizz =Kz, Kiz3 =Dy (7) + Dy, (7)
W 1S then obtained by solving equation (2.40) and used in equation (2.34) for
calculating the deflection of a simply supported SSD.

2.7  Equivalent single layer FE-model of SSD

For a plate to be analysed with other boundary conditions and geometries, a FE-
software is needed. In the FE-software the SSD can be modelled with single layer
shell elements, assigned with stiffnesses equivalent to those of the SSD. In this thesis
the FE-software Abaqus/CAE was used. Two different material models were
considered.

2.7.1 Lamina material model

The lamina material model in Abaqus/CAE considers orthotropic materials under
plane stress conditions. The lamina model works for either in-plane or out-of-plane
loading but cannot consider both at the same time. For the in-plane components of the
stress and strain, the stress-strain relation is of the following form:

822 = _V),C/E;I 1/E§I 0 0-22
Y12 0 0 1/GZy ) (12

€11 1/EX"  —vi/EX 0 011
{ } { } 24
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The inputs for the material model are the engineering constants Ey’, EY’, G5y, G5z, Gy,
and Poisson’s ratio vy, where the terms G, and Gy, are used to model the transverse
shear deformation. In case of out-of-plane loading the bending-curvature relationship

is given by changing E¥', EJ', Gg), and v, to EY , Ey, Gy, and v, in equation (3.47).

The engineering constants were obtained from Lok & Cheng (1999). For in-plane
loading conditions equations (2.42) to (2.44) were used:

g = E}: (2.42)
E
r 7y
Eg = - (2.43)
G
GE = _;y (2.44)

The engineering constants for out-of-plane loading conditions were obtained by
equations (2.45) to (2.47):

12D,
f=— (2.45)
12D
_ Yy
5= (2.46)
6D
Gg, = h;‘y (2.47)

The engineering constants related to the transverse shear stiffnesses were obtained by
equations (2.48) and (2.49), where k is a shear correction factor taken as 5/6:

GE =7 (2.48)
D
GS, = % (2.49)

2.7.2 General shell section

If in-plane and out-of-plane loading needs to be considered at the same time the
lamina model is insufficient for a geometrically orthotropic plate. Instead, a general
shell section has to be used in which shell section response is defined by equation
(2.50):

{N} = [DI{E} (2.50)
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where:

{N} Membrane forces and bending moments per unit length acting on the shell
section

[D]  Section stiffness matrix
{E}  Generalised section strains in the shell

Equation (2.50) can be written as:

(NexY  Dyy Dy 0 0 0 07 &

Nyy D21 D22 0 0 0 0 gyy

N

< Xy >: 0 0 D33 0 0 0 ny (251)
Mxx 0 O O D44 D45 0 Kxx

M,y 0 0 0 Dsys Dss O L’ny

M, ) 0 0 0 0 0  Dggl \Kxy

where the stiffness terms are given as (see Section 2.5):

14 !
D.. = E, Do =D = By  vEy
T R A A
Dpy=—2 | Da=g
22 = ) 33 = bxy
1—vvy
D, _ Dy, Vy Dy
— VyVy — VyVy VyVy
D
y
Dss = ==D
55 1— ViV, 66 xy
E
’ r Y
Vy = Vy—
y xEx
D
y
Vy =V, —=—
y xDx

If out-of-plane or in-plane loading is considered separately, the general shell section
and lamina material model should yield the same results.

2.8  Structural behaviour and performance of SSD

Chang et al. (2005) analysed the bending behaviour of a VV-core SSD and investigated
how the corrugation angle a, corrugation depth to core thickness ratio h./t., pitch to
corrugation depth p/h., and core to face thickness t./t; influenced the stiffness of
the plate. The sandwich plate theory used was based on the Mindlin-Reissner plate
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theory, in which the 3D SSD was idealised as an equivalent orthotropic 2D plate. The
theory was used together with the elastic constants derived by Libove & Hubka
(1951). The results from the study showed that the corrugation angle a was the
parameter with most influence on the stiffness. Increasing a slightly increased the
bending stiffnesses D,, and D,, but drastically decreased the shear stiffnesses Dy, .
This lead to an reduction of the overall stiffness.

In addition, the investigations confirmed a phenomenon observed in experiments done
by Tan et al. (1989). High ratios of h./t. and p/h,, together with a large corrugation
angle a might result in a negative moment M,, at the central point in the span of the
deck. This is a consequence of a much higher stiffness in the direction of the
corrugation, due to high D, and low D,,,. Most of the bending is therefore resisted in
the x-direction and causes small or negative M,,. Although, since the transverse shear
deformation is much greater than the bending deformation, the net deflection of the
plate was downward.

Beneus & Koc (2014) developed an optimisation routine in Mathcad, in which a SSD
was optimised compared to an orthotropic steel deck of similar size. The elastic
constants used were based on expressions from Libove & Hubka (1951). The
optimisation routine included constraints to ensure that the compression parts of the
deck were in cross section class three and that the local deflections were below a
given limit.

Two different optimisations were performed. The first one maximised D, with the
same area as the orthotropic steel deck and the second one minimised the cross-
sectional area with the same D, as the orthotropic steel deck. A significant increase of
both bending stiffness D, and torsional stiffness D,., was obtained for the case with
the same cross-sectional area. The area optimisation resulted in a weight reduction of
23% compared to the orthotropic steel deck. Furthermore, the bending stiffness in the
direction perpendicular to the corrugation D,,, was significantly increased in both
optimisation studies.

v

In addition to the optimisation studies, Beneus & Koc (2014) performed FE-analyses
in order to evaluate the structural performance of the SSD when utilised as a bridge
deck. The bridge in the analysis was modelled with two simply supported steel I-
girders as main girders, together with transverse steel girders. As a result from the
analyses the effective flange widths b, due to shear lag, and shear lag coefficient b, /b
were calculated. The SSD with maximised D, had a shear lag coefficient of 66% and
the SSD with minimised area a shear lag coefficient of 59%. A significant increase of
the effective width was obtained in both cases, when compared to an utilisation ratio
of 37% for the orthotropic steel deck.

In the analyses performed by Chang et al. (2005) and Beneus & Koc (2014), the
elastic stiffness constants derived Libove & Hubka (1951) were used. Rigid joints
were therefore assumed between the face plates and corrugation. In reality the
stiffness of the weld itself will affect the behaviour of the SSD. The influence of weld
configuration for one specific V-core sandwich deck was studied by Caccese &
Yorulmaz (2009), using 3D FE-models. The continuous stake welds were modelled
with shell elements and four different configurations were analysed (see Figure 2.12).
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Figure 2.12 Different weld configurations with one weld in the centre (top left), two
welds in between the corners and centre (top right), two welds in the
corner (bottom left) and welds in both corners and centre (bottom
right).

The increasing shear rigidity gained from placing the welds at the corners had large
influence on the overall stiffness. One weld at the centre line increased the
displacement at the top centre line with 62% compared to the case with welds at the
corner and centre and with 47% compared to the case with corner welds only. The
effect of weld link thickness was also investigated. The analysis showed that the weld
link thickness did not contribute significantly to the overall stiffness of the model if it
was chosen between 0.1 and 50 times the face plate thickness.

2.8.1 Failure modes

A sandwich plate will have different failure modes depending on the geometry and
type of loading. Zenkert (1997) listed the most common failure modes and presented
some analytical expressions. For a corrugated-core sandwich deck the failure modes
were identified as global buckling, shear crimping, yielding, local buckling, face
wrinkling and plastic collapse.

The shear crimping is a shear instability failure with the same limit as the global
buckling mode, when the critical load equals the shear stiffness. The general global
buckling failure and shear crimping failure are illustrated in Figure 2.13.

WAVAYAYAYAVAVay, uy

-—
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>

Figure 2.13  Global buckling failure (top) and shear crimping (bottom).
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If the SSD is loaded parallel to the corrugations, local buckling can be avoided by
assigning compression parts to cross section class three, according to SS-EN 1993-1-1
(2005). Face wrinkling on the other hand is a type of local buckling that can occur
either when the plate is subjected to in-plane compressive load perpendicular to the
corrugation, or in the compressed face during bending as shown in Figure 2.14.

C\/ >

Figure 2.14 Face wrinkling of compressed face plate due to bending.

When the SSD is subjected to patch loads a possible failure mode is plastic collapse
of the corrugation. The plastic collapse load was given by Naar (1997) and presented
by Kujala (1998) as:

=24 +4— ——F¢ xJtop
ple B B\ 1+ kikst, / fye

M
k f 0.5
, / My M 1Bc + 2, \| (1 _ <O'x,f.top)2) (2.52)

where:
M, = fy.f.toppt}g.top
s 2
M. = fy,ctc2
¢ 4
I = ptf.top
! 6
MZ
kz - f
12EI:M,,
sin a — k3

_ Jfyriop \/sinz a — sin? ¢
~ 40t.f,. singcose

ky

Ox.f.top Stress in the top plate parallel to the corrugation, [Pa]

fy.f.top Yield strength of top plate, [Pa]
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fyec Yield strength of corrugation, [Pa]

tr top Thickness of top plate, [m]

t. Thickness of corrugation, [m]

p Half of the corrugation pitch, [m]

a Corrugation angle, [rad]

c Loaded length of the corrugation, [m]

Naar (1997) conducted laboratory tests in order to verify the plastic collapse
formulation. The tests were conducted by applying a patch load on simply supported
SSD’s with different configurations. For top, bottom and core plate thicknesses above
1 mm, the accuracy of the formulation was typically within the region of 10-15%.

Biagi & Bart-Smith (2012) studied the in-plane compressive response of a truss core
sandwich column when the load was applied either parallel or perpendicular to the
corrugations. Different failure modes were identified depending on the direction of
the applied load and if strain hardening was considered or not. Failure maps were
constructed as functions of the column length L, face plate thickness h, corrugation
thickness t, corrugation angle @ and length of the corrugation leg . The core
slenderness ratio t/l and corrugation angle o were kept constant and the principle of
the failure maps is shown in Figure 2.15. Increasing the corrugation angle or lowering
the core slenderness ratio will expand the macro elastic buckling region.

Elastic Face Wrinkling Elastic Face Wrinkling
Macro Elastic Buckling Macro Elastic Buckling
e 120, T
\ ' ‘ B - i =

1204, v
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-." \1‘0? a 4 Y / Nt
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Figure 2.15 Failure mechanism maps for a corrugated core sandwich column with
() a strain hardening material and (b) an elastic-perfectly plastic
material (Biagi, 2010).

2.8.2 Fatigue resistance

Fatigue resistance is critical when designing steel bridges and for the traditional
orthotropic steel deck problems with fatigue cracks are a significant feature.
Geometrical stress concentrations due to the weld profile together with weld defects
are factors that strongly influence the fatigue life. The use of HLAW when
manufacturing the SSD’s reduces the HAZ and improves the weld geometry (Caccese
& Yorulmaz, 2009).
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Kozak (2005) identified five different types of fatigue cracks that can occur for laser
welded web-core sandwich decks (see Figure 2.16). The occurrence of the different
cases is determined by the stiffness, load and boundary conditions of the structure.

Case 1: Fatigue crack in the laser weld toe in the top plate, parallel to the web, as a
result of global bending.

Case 2: Fatigue crack in the laser welded toe in the top plate, transverse to the web, as
a result of global bending.

Case 3: Fatigue crack in top plate caused by local bending or buckling.

Case 4: Fatigue crack in the laser welded contact area of the web and the plates, as a
result of transverse bending.

Case 5: Fatigue crack in the laser welded contact area of the web and the plates due to
longitudinal shearing.

fatigue crack
_fatigue crack _laser weld toe  (due to longitudinal shear)

B fatigue crack

e, ' :
/—;—(:__ (due to transverse bending)

Figure 2.16 Fatigue crack occurrences in laser-welded web core sandwich decks
(Kozak, 2005).

Caccese et al. (2006) performed fatigue testing on different series of cruciform
specimens fabricated with the HLAW technique (see Figure 2.17). Test results were
also compared to historical data. In Figure 2.18 the results are plotted along with S-N
curves based on results for cruciform joints with conventional welding from Munse et
al. (1983) and Kihl (2002). The purpose of the specimen series A to C was to study
the effects of fillet size and shape of the weld. The investigation resulted in the final
detail, series D, and it was concluded that the fatigue life for this detail was
significantly better compared to similar specimens with conventional welds.
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Figure 2.17 (a) fatigue test specimen in test machine. (b) dimensions of the test
specimen (Caccese et al., 2006).
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Figure 2.18 Fatigue life of laser-welded cruciform specimens compared to
conventionally welded specimens (Abbott et al., 2007).

Bright & Smith (2004) investigated the fatigue performance of laser-welded SSD with
I-section beams as a core. A deck bending test was carried out to study the
performance of the laser welds directly below wheel loads (see Figure 2.19). In
addition, a joggle test was conducted to simulate the web bending that might occur
under offset wheel loads. In the deck bending test failure was defined as the first
fatigue crack appearing at both sides of an individual weld, due to shear stress in the
weld metal. When compared with mean S-N curves for weld classes published in
BS5400 (1980), the tests indicated Class C for details with two linear stake welds per
flange. In the joggle test the laser welds never failed. Instead, failure always occurred
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in the parent metal of the I-beam web. Altogether, it was concluded that the tests
indicated considerable fatigue strength of the SSD’s.

first crack on
front face

Weld A Weld B

\
Fatigue Failure
In Web

Figure 2.19 Test setup and first crack occurrence in deck bending test (left) and
joggle test (right) (Bright & Smith, 2007).
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Figure 2.20 Comparison of deck bending test results with BS 5400 mean S-N curves
(Bright & Smith, 2004).
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3 Preliminary design

3.1 Introduction

The purpose of the preliminary design was to find a low-weight cross-sectional
configuration to use in the more detailed analysis in Chapter 4. Different
configurations of the SSD and distances between the transverse girders L, were
investigated (see figure 3.1). The total width of bridge was 11.25 m and the distance
between the main girders B; was kept constant at 6 m, as in the existing bridge over
Bergeforsen.

Figure 3.1  Superstructure of the bridge (without edge beams).

A part of the bridge deck was analysed with a finite element (FE) model to check that
the deflection of the SSD was below the requirement. In the analysis the 3D SSD was
idealised as a homogeneous orthotropic thick plate in order to reduce the modelling
and calculation times. The elastic stiffness constants of the idealised plate was
calculated with the optimisation routine from Beneus & Koc (2014), but had to be
further developed to account for unsymmetrical SSD’s. Moreover, the optimisation
routine optimised the cross-sectional area of a SSD using the bending stiffness in x-
direction D, as a constraint. However, in the preliminary design the SSD was
designed to fulfil the deflection limit between the transverse and main girders,
meaning that the stiffness in both directions will influence the results. Therefore, the
plate deflection formula in section 2.6 was included in the optimisation routine in
order to optimise the area of the SSD constrained by a deflection limit.

A preliminary design of the main girders and the transverse girders was also
conducted, in order to see how the dimension of the SSD and distance between
transverse girders L, affected the dimensions of the girders, and in turn the total steel
volume in the bridge.
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3.1.1 Verification of agreement between analytical and numerical
solution

The analytical solution for deflection of a simply supported plate, in section 2.6 was
compared with the ESL-model using general shell section and eight node shell
elements with reduced integration. Since the investigated deflection was caused by
out-of-plane loading only, the ESL was modelled with the lamina material model as
well for comparison and verification of the general shell section. The deflection in the
middle of the plate was calculated for different SSD configurations and plate
geometries. The geometries of the different SSD’s are shown in Table 3.1 together
with the stiffnesses and corresponding engineering constants in Table 3.2. The
analytical deflection wypqiyticar» the numerical deflection with general shell stiffness
Wgsr css and the numerical deflection with lamina material model wgg; ;45 fOr plates
with different lengths and widths are shown in Table 3.3. A uniformly distributed load
of 10 kN/m? was applied in all analyses.

Table 3.1 Geometries for the different SSD ’s considered in the verification.

Plate no. [h, [mm] tf top [mm] tf bot [mm] | t. [mm] |« [deg] |f [mm]

1 100.0 8.3 8.3 5.0 60 42.3
2 120.0 5.0 5.0 3.0 80 98.8

Table 3.2 Stiffnesses and corresponding engineering constants for the different
SSD’s considered in the verification.

Plate no D, [Nm] |Dy [Nm] |Dyy, [Nm] | Dy, [N/m] |Dg, [N/m]
" |ES [Pa] E; [Pa] Gy [Pa] |G, [Pa] Gy, [Pa]
1 1.33e7 1.13e7 8.56€6 3.26e8 2.95e7
1.09e11 [9.32e10 |3.5e10 3.45e9 3.13e8
5 1.11e7 8.71e6 6.55e6 1.49¢8 5.00e5
6.3e10 4.98¢10 |1.8e10 1.39e9 4.69¢e6

Table 3.3 Analytical and numerical deflections for different plate geometries.

BxL [m] |Plate no. |Wanaiyticar [MM] ‘[Ar/ﬁrsﬁ]-“s Difference ‘f‘:ﬁ;ﬁ“’”
1x6 1 0.053 0.053 0.00% 0.053

2 1.168 1.166 -0.17% 1.166
oxd 1 0.255 0.255 0.00% 0.255

2 1.672 1.669 -0.18% 1.669
456 1 1.976 1.978 0.10% 1.978

2 9.455 9.441 -0.15% 9.441
10x10 1 33.071 33.080 |0.03% 33.080

2 76.935 76.893 |-0.05% 76.893
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As can be seen in Table 3.3 the analytical and numerical deflection of the simply
supported plate corresponded well. The numerical deflection was identical when
using general shell section and lamina material model as expected. This confirms that
the part of the stiffness matrix in the general shell section associated with out-of plane
loading corresponds to the lamina model for out-of plane loading.

In order to compare the lamina model and general shell section for in-plane loading,
the ESL was loaded with an axial tension force of 10kN/m and an in-plane shear force
of 1kN/m (see Figure 3.2). The plate was prevented from translation in all directions
at the left edge and prevented from translation in the z-direction on the other three
edges.

1 kN/m
LU 10 kN/m

v
v
v
v
v
v
\

> e

™~ _—>

& < & prl & <
< < < < < <

<
T

Figure 3.2  Loading and boundary conditions for general shell section and lamina
material model comparison.

Table 3.4 shows the translation in the x-direction at the top right corner of the plate,
with general shell section u, ;s and lamina material model w, ;45 , for the two
different SSD geometries.

Table 3.4 Comparision between the lamina model and general shell section for
in-plane loading.

BxL [m] |Plate no. |u, s [MM] |uyanu[mm] | Difference

1 0.0174 0.0174 0.00%
2 0.0276 0.0276 0.00%

4x6

The translation was identical in both cases which confirmed that the in-plane part of
the general shell section stiffness matrix corresponded to the lamina model for in-
plane loading. The general shell section was used in the further analyses since the
bridge deck was subjected to both in-plane and out-of-plane loads.
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3.2 Load model 1

The preliminary configuration of the SSD was designed to meet the deflection limit
under traffic load. Load model 1 (LM1) in SS-EN 1991-2 (2003) was used for the
analysis, and consists of two partial systems. The first is a tandem system (TS) with
double-axle concentrated loads, where each axle has the weight a,Q,. The second
consists of uniformly distributed loads (UDL) with the weight a,q;. The adjustment

factors ag and a,, are national parameters.

The width of the carriageway B determines the number of notational lanes and the
location of each lane should be chosen to yield the most unfavourable effect. The
bridge over Bergeforsen had a carriageway width of 11.25 meters, which gave three
notational lanes each having a width of 3 meters (see Figure 3.3).
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Figure 3.3  Notational lanes and wheel load position.

11.25m

According to LM1 the wheels have a contact area of 400x400 mm?® However, the
contact area on the SSD is larger due to a 45° spread through the asphalt (see Figure
3.4). With an assumed asphalt cover of 50 mm the contact area on the SSD became

500x 500 mm?.
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i Wheel Toad [

Asphalt cover B 50 mm

Figure 3.4  Contact surface on SSD from wheel load.

According to TRVK Bro 11 (2011) the deflection of a bridge should be determined
under the frequent combination of traffic loads. For the frequent load combination the
axle loads and uniformly distributed loads should be reduced with the factors ),
and 1 yp. respectively. The factors for frequent load combination, as well as the
adjustment factors a, and a,, was conservatively chosen to 1.0 in the preliminary

design. The traffic loads for each lane are shown in Table 3.5.

Table 3.5 Traffic loads used in the preliminary design.

Lane (i | o (s [Wromn | [ag | fase@e Havorafin
1 300 |9.0 1.0 |1.0 1.0 [1.0 |300 9.0
2 200 |25 1.0 |1.0 1.0 |1.0 |200 2.5
3 100 (2.5 1.0 |1.0 0 (1.0 [100 2.5
Remaining |0 2.5 - 1.0 - 1.0 |0 2.5

3.3  SSD configuration

The preliminary configuration of the SSD was designed to meet the deflection limit
between the main and transverse girders w,,,;4; (see Figure 3.5). It was assumed that
the deflection of the cantilever part w,,,; could be reduced with an edge beam, and
therefore this deflection was not governing in the preliminary design of the SSD.
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Figure 3.5  Deflection of SSD.

The flowchart for the preliminary design procedure is shown in Figure 3.6 and can be
divided into the following steps:

1. The cross-sectional area of the SSD was minimised for given lengths between
the transverse girders L, and the main girders B;. The optimisation was
constrained by the deflection limit of a simply supported plate. The output
from the area optimisation was the dimensions he, tftop, trpoes ter @,

f together with the stiffnesses E,, E),, Gy, Dy, Dxy, Dox, Doy -

2. A FE-analysis was carried out for a part of the bridge to get the deflection
between the main girders w,,;;. The SSD was modelled as an ESL with shell
elements, using stiffnesses from the area optimisation. Boundary conditions
were applied at the position of the main and transverse girders.

3. If the deflection between the main girders w,,;4 did not correspond to the
deflection limit &;;,,, g5, the deflection limit constraint in the area optimisation
was adjusted and new stiffnesses and dimensions were calculated. This was
repeated until the &;;,,, g5, Was reached.
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Figure 3.6  Flow chart of the preliminary design procedure.

3.3.1 Areaoptimisation of SSD, step 1

In order to optimise the SSD with a deflection limit constraint, equation (2.34) was
included in the optimisation routine developed by Beneus & Koc (2014) (see
Appendix A). The optimisation routine generated a combination of the following
geometric parameters, with the lowest cross-sectional area (shown in Figure 3.7):

h. Height of corrugation, [m]

trrop Thickness of top face plate, [m]

trpor Thickness of bottom face plate, [m]

te Thickness of corrugation, [m]

a Angle of corrugation, [deg]

f Length of horizontal corrugation segment, [m]
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tf.top

. Lr.bot

Figure 3.7  Dimensions of SSD.

In addition to the deflection limit, four other constraints were included in the
analytical optimisation. The first constraint prevented the SSD from buckling locally,
by assuring that the plates had a cross section in class 3. The maximum length-to-
thickness ratios according to SS-EN 1993-1-1 (2005) are given below:

l l l
2 < 42¢ < 42¢ <

— < 42¢ (3.1)
tf.top tf.bot te
where:
[, Length of corrugation opening, [m]
l, Length of inclined leg of the corrugation, [m]
€= /zgsfMpa Coefficient considering the yield strength, [-]
y
fy Yield strength, [Pa]

The second constraint limited the local deflection of the top face plate to 2p/400. A
part of the top plate with the length 2p was considered as a fixed beam subjected to
the largest wheel load, as shown in Figure 3.8. Beneus & Koc (2014) also included an
approximate fatigue stress constraint. Furthermore, f had to be larger than 20 mm due
to production aspects.
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Figure 3.8 Model used to calculate the local deflection of the top plate.

LM1 was used for calculating the analytical deflection wanqiyticar, but with some
modifications. In the analytical solution from equation (2.34), the distributed load
needs to be constant over the plate. Therefore LM1 was modified to one distributed
load of 9 kN/m?acting on the whole plate and four point loads of 150 kN around the
centre of the plate (see Figure 3.9).
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Equation (2.34) was derived for a simply supported plate. This is not true for a plate
segment in the bridge since it is continuous over the transverse and main girders. Due
to the boundary conditions, the optimisation routine gave a stiffer SSD than what was
necessary to fulfil the requirement in step 2. This was accounted for by adjusting the
deflection limit in the optimisation routine in step 3, until the utilisation ratio, in terms
of deflection, was 1 in the FE-model. The fact that LM1 was not correctly applied to
the simply supported plate in the optimisation could therefore be disregarded, since
the deflection limit constraint had to be adjusted anyway.
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3.3.2 FE-model for checking deflections of SSD, step 2

The FE-software Abaqus/CAE was used for checking the deflections of the SSD. The
models were created using Python scripts, to simplify the running of many analyses
with different SSD configurations and geometries (see Appendix E and F). The whole
width of the bridge was included together with a length equal to five times the
distance between the transverse girders. The main and transverse girders were not
included in the model at this stage. Instead, boundary conditions were applied so that
the plate was prevented to move in the vertical direction at the position of the main
girders. Two different load cases were considered, one to get the maximum deflection
in the cantilever part w,,,; and one to get the maximum deflection in between the
main girders w,,;4. In the FE-model, the modifications to LM1 described in Section
3.3.1 were no longer necessary, and the different load cases considered are shown in
Figure 3.10.

Figure 3.10 Load cases considered when checking w,, ;4 (left) and w g, (right) in
the FE-model.

The SSD needs to be closed at the edges of the deck. The preferable way would be to
have the edge beam between the face plates of the SSD. If the deflection of the
cantilever part needs to be reduced, the edge beams could be extended and connected
to the transverse girders as shown in Figure 3.11. However, the cantilever deflection
was not governing in the preliminary design and the configuration with the edge beam
between the face plates was therefore used. The edge beam had a width b;z=100 mm
and a thickness tg=12 mm.
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Figure 3.11 Different configurations of the edge beam.

In preliminary analyses, the distance between the transverse girders L, was varied
between 2 m and 9 m. The dimensions obtained from the area optimisation are shown
in Table 3.6, together with the stiffnesses in Table 3.7. The deflections from the FE-
analyses together with the utilisation ratios are shown in Table 3.8. As can be seen in
Table 3.8 the deflection limit of the cantilever part was not fulfilled, but this was not

considered until the more detailed analysis in Chapter 4.

Table 3.6 SSD dimensions used in the preliminary design, obtained from the area
optimisation.
L x B |t |trop |trbor |te  ja |f 1A Deflection limit
1 L1[mm] | [mm] | [mm] |[mm] | [deg] |[mm] [m2/m] | constraint
2X6 82.4 |34 |24 |26 [69.2 |20.0 |0.0112|L,/(0.98-400)
3x6 107645 |34 |34 |659 |20.0 |[0.0149]|L,/(0.87-400)
4x6 121.8|/52 |40 |40 |64.3 |20.0 |0.0170|L,/(0.83-400)
5x6 1289|56 |44 |42 |63.3 |20.0 |0.0182|L,/(0.80-400)
6X6 131.8/58 |46 |43 |62.6 |[20.0 [0.0187|B;/(0.78-400)
X6 139.9/6.2 |49 |46 |62.0 [20.0 [0.0199|B,/(0.78-400)
8x6 145565 |52 |48 |61.6 [20.0 [0.0208|B;/(0.78-400)
9x6 1499/6.7 |54 |50 |61.3 [20.0 [0.0215|B,/(0.89-400)
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Table 3.7 Stiffnesses for the SSD’s used in the prelimnary design.

Ly X By |Dy [Nm] [D; [Nm] [D, [Nm] [Dg, [N/m] | Dg, [N/m]

2X6 3.21e6 2.37e6 1.77e6 2.90e8 9.45e6
3x6 7.25e6 5.52e6 4.14e6 3.93e8 2.79e7
4X6 1.07e7 8.30e6 6.24e6 4.45e8 4.75e7
5x6 1.29e7 1.01e7 7.60e6 4.66€8 6.20e7
6X6 1.39e7 1.10e7 8.28e6 4.72e8 7.03e7
7X6 1.68e7 1.33e7 1.00e7 5.01e8 8.92e7
8x6 1.90e7 1.51e7 1.14e7 5.21e8 1.04e8
9x6 2.08e7 1.66e7 1.25e7 5.37e8 1.17e8

Table 3.8 Deflections and utilisation ratios from the preliminary design.

Ll X Bl BTG Wnid [mm] NMmid |Wcant [mm] Ncant
2X6 B 4.96 0.99 |3.78 0.76
3x6 B .47 1.00 [8.28 1.26
4x6 B 9.99 1.00 [12.78 1.95
5X6 B 12.44 1.00 [17.69 2.70
6X6 B 14.99 1.00 |22.77 3.47
7X6 B 14.84 0.99 123.79 3.63
8x6 B 14.89 0.99 124.83 3.78
9x6 B 14.91 0.99 |25.58 3.90

3.4 Main girders

A preliminary design of the main girders was also carried out, in order to see how the
dimension of the SSD and the distance between the transverse girders L, affected the
dimensions of the main girders (see Appendix A). The main girder dimensions
obtained in the preliminary design were never used in the more detailed analysis in
Chapter 4. Instead, they were included for the volume comparison in Section 3.6.

The main girders were designed to meet the deflection limit under characteristic
traffic load and the bridge was modelled as a continuous beam, considering half of the
cross section of the most loaded girder. This was done by treating the bridge deck in
the transverse direction as a beam resting on two supports being the main girders (see
Figure 3.12).
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Figure 3.12 Model used to calculate the lane factors used in the preliminary design
of the main girder.

The load was placed to obtain the largest reaction force in one main girder. The
proportion of the load carried by that main girder, called lane factor &, was
calculated for distributed traffic loads and axle loads separately. The lane factor was
then used to calculate the load acting on one main girder (see Table 3.9). The load
cases considered in the preliminary design of the main girders is shown in Figure
3.13.

Table 3.9 Traffic loads and lane factors used in the preliminary design of the

main girders.
B e e e P
1 3 300 |9.0 1.0 |1.0 [0.99(0.92 |296.3 38.6
2 3 200 |25 10 [1.0 |0.99(0.92 |197.5 6.9
3 3 0 2.5 0 1.0 {0.99(0.92 (0.0 6.9
Sum [493.8 38.6

493.8 kN 493 .8 kN
1l 38.6 kN/m
|

(8] (8]

Br—
O

493.8 kN 493.8kN
1l 38.6 kN/m

4} ' - l]J 0
33m
S0 m 66 Mm 50 1m

=

Figure 3.13 Load cases considered in the preliminary design of the main girders.
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In the preliminary design of the main girders, the dimensions of the bottom flange
were optimised while the thickness of the web t,,;,, and total height were kept
constant. The bottom flange thickness ty ¢ Was constrained by the cross section
class three requirement. Since the thickness of the web was kept constant at 18 mm
and the total height of the main girder was kept constant at 2.6 m, the cross section of
the web was in class four. However, the reduction of the cross-sectional constants was
omitted since the dimensions only were used for the volume comparison in Section
3.10.

The effective width of the SSD acting as top flange was investigated with equation
(2.2), given by Zou et al. (2011) (see Section 2.1.1). Equation (2.2) was derived for a
girder with symmetrical top flange, which was not the case for the investigated cross
section. In order to get an approximate value of the effective width the main girder
web was assumed to be in the middle of the top flange, when using equation (2.2) (see
Figure 3.14).

Lcant + Bl/z Lcant + Bl/z
Leane Bl/2 2 2

B, B,

Figure 3.14 Real position of main girder (left) and position used in the calculation
of the effective width (right).

The effective width b, in the first span L, ., Was calculated for two different lengths
between the transverse girders L, (see Table 3.10). The dimensions for the two SSD
configurations can be seen in Table 3.10. A decrease in the axial stiffness to in-plane
shear stiffness ratio E, /G,, , while keeping the width to span length ratio B,/
Lspan1 cONstant, only lead to a small increase of the effective width. The reason for
this is that the B, /L ratio has greater influence than the E, /G,, ratio on the effective
width. Since the effective width was an approximation, a conservative b, /B, ratio of
0.8 was chosen for all SSD configurations in the preliminary design of the main
girders. The dimensions of the main girders from the preliminary design are shown in
Table 3.11.

Table 3.10  Effective widths for different lengths between the transverse girders.

L1 X B1 Bz [m] Lspanl [m] BZ/Lspanl Ex/ny be[m] be/BZ

3X6 5.565 |50 0.111 4.030 5.347 0.961
9x6 5.565 |50 0.111 3.773 5.360 0.963
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Table 3.11  Main girder dimensions for different distances between the transverse

girders.
Ly X By |hygwImm] |ty [mm] | bygpy [MM] | tyepy [MM]
2X6 2550 18 1156 50
3X6 2557 18 1001 43
4x6 2559 18 942 41
5Xx6 2561 18 916 39
6X6 2561 18 905 39
7X6 2562 18 881 38
8Xx6 2563 18 866 37
9x6 2563 18 855 37

3.5 Transverse girders

A preliminary design of the transverse girders was also conducted, in order to see how
the dimension of the SSD and the distance between the transverse girders L, affected
the dimensions of the transverse girders (see Appendix A). The results were included
in the volume comparison in Section 3.10 and also used when modelling the bridge in
the more detailed analysis carried out in Chapter 4.

The dimensions of the transverse girders were optimised with the constraint that the
stress in the bottom flange should be below the yield strength. Furthermore, the
dimensions were constrained by the cross section class three requirements. The
transverse girder was modelled as a simply supported beam and the loading consisted
of self-weight and traffic load in the ultimate limit state according to equation (4.2).
The load case considered is shown in Figure 3.15.
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Figure 3.15 Load case considered for the preliminary design of the transverse
girders.
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The dimensions shown in Figure 3.16 were optimised to give the lowest cross-
sectional area within the given constraints. The ratio between the height of the web at
the edge and in the middle was chosen to 0.4
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Figure 3.16 Dimensions of the transverse girders.

In the preliminary design of the transverse girders, an effective width of the SSD
acting as top flange had to be calculated. Since the top plate of the SSD is compressed
when the transverse girder bends, the effective width was approximated as:

be.TG.tf = Xrcl1 (3.2)

The reduction factor y;, was calculated according to SS-EN1993-1-1 (2005) for
column buckling of a one meter wide strip of the top plate, with length [, and
thickness t¢ ., (see Figure 3.17).

Figure 3.17 Compressive stresses in the SSD due to bending of the transverse
girder.
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The dimensions on the transverse girders from the preliminary design are shown in
Table 3.12.

Table 3.12  Transverse girder dimensions for different distances between the
transverse girders.

Ly X By [hrgy [mm] | trg,, [MM] | brgpr [MM] | trgpy [MM]
2X6 707 10 339 14
3x6 718 9 318 14
4x6 840 8 295 13
5x6 603 6 354 15
6X6 555 6 374 16
7X6 556 7 371 16
8x6 557 7 370 16
9x6 558 8 372 16

3.6  Choice of configuration for further analysis

The volume per unit length of the bridge was calculated for the SSD, the main girders
and the transverse girders in order to find the SSD configuration and distance between
transverse girders L; with the lowest weight. The volume per unit length for different
L, are shown in Table 3.13 and Figure 3.18.

Table 3.13  Volume per unit width of the different components for different
distances between the transverse girders.

Ly X By | Vssp[Mm*Im] [Vigg[m®im] | Vo [m®im] | Vyoe [m®/im]
2X6 0.1264 0.2073 0.0627 0.3964
3x6 0.1672 0.1784 0.0373 0.3830
4x6 0.1914 0.1685 0.0275 0.3874
5X6 0.2043 0.1643 0.0192 0.3878
6X6 0.2101 0.1626 0.0169 0.3896
X6 0.2241 0.1590 0.0151 0.3981
8x6 0.2337 0.1567 0.0136 0.4041
9x6 0.2414 0.1551 0.0125 0.4089
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Figure 3.18 Volume per unit width of the different components for different
distances between the transverse girders.

The lowest volume per unit length was obtained with a transverse girder spacing of 3
m. However, the volume per unit length only increased with 7 % when the distance
between transverse girders increased from 3 m to 9 m. The labour cost for adding the
additional transvers girders was therefore expected to exceed the savings in material
cost from reducing the transverse girder spacing. On the other hand, if cross bracings
only are used with the same distance as the transverse girders, there could be stability
problems if the distance is too large. With this in mind, a girder spacing of 8.3 m was
chosen to get equally spaced girders on the bridge. The dimensions, stiffnesses,
deflections and utilisation ratios of the chosen configuration are shown in Table 3.14
to 3.16. Furthermore, the dimensions of the transverse girders are shown in Table
3.17.

Table 3.14  Dimensions of the chosen SSD configuration.

hc t .to t .bot tc a f A
Ly X By | rmmy [}rfnmzi [ﬂqu] [mm] | [deg] | [mm] | [m&/m]

8.3x6 |146.0/6.5 |55 |5.0 [62.7 [20.0 |0.0217

Table 3.15  Stiffnesses of the chosen SSD configuration.

Ey Ey ny D, Dy ny DQx DQy
[N/m] |[[N/m] |[N/m] [[Nm] |[Nm] [[Nm] [[N/m] [[N/m]

8.3x6  |4.55e9 [2.63e9 |1.18e9 [1.99e7 [1.58e7 |1.19e7 |5.67e8 [1.10e8

L, X B,
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Table 3.16

Deflections and utilisation ratios of the chosen SSD configuration.

Ly X By |Brg | Wmia [MM] | Mmia | Weane [MM] | 0cane
8.3x6 B 14.70 0.98 |24.79 3.78
Table 3.17  Dimensions of the transverse girders.
Ly X By |hrgy [Mm] | trgy [MM] | brgpr [MM] | trgpy [MM]
8.3x6 557 7 370 16
46 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:145




4 Verification of the SSD performance

4.1 Introduction

In order verify that the SSD from the preliminary design could be a viable option to
concrete decking, the whole bridge was modelled and analysed in Abaqus/CAE. A
FE-model of the existing composite bridge over Bergeforsen was created as well, in
order to be able to compare stresses in the main girder bottom flanges of the two
bridges. First, the dimensions of the bottom flanges in the SSD bridge were adjusted
until the bottom flange stresses in the two models corresponded. Next, the edge beam
was designed so that the cantilever part of the SSD met the local deflection
requirement. In addition to designing the main girders and the edge beams,
verification of the SSD capacity was carried out at some critical sections.
Furthermore, it was verified that the capacity of the main girders during launching
was sufficient.

After checking stresses in the top plate under wheel loads in Section 4.6.1, it was
decided to increase the thickness of the top plate from 6.5 mm to 7.0 mm. The
dimensions of the new SSD are shown in Table 4.1 together with the corresponding
stiffnesses in Table 4.2. This deck configuration was used throughout all analysis of
this chapter.

Table 4.1 Dimensions of the SSD after increasing the top plate thickness.

h. trtop |Lrpot |tc a f A
[mm] | [mm] | [mm] | [mm] | [deg] | [mm] | [m*/m]

146.0/7.0 |55 |50 [62.7 |20.0 |0.0222

Table 4.2 Stiffnesses of the SSD after increasing the top plate thickness.

Ex Ey ny Dx Dy ny DQx DQy
[N/m] |[[N/m] |[N/m] [[INm] [[Nm] |[Nm] [[N/m] |[N/m]

4.65e9 |2.73e9 |1.22e9 |2.05e7 [1.63e7 |1.30e7 |5.70e8 [1.20e8

4.2 FE-model

Three bridge models were created, one of the existing composite bridge and two of
the SSD bridge. In the analyses for which the local stresses in the SSD was irrelevant,
the whole bridge deck was modelled as an ESL. This model was used for the design
of the main girders and the buckling analysis. In the second SSD bridge model the
bridge deck was modelled with 3D SSD’s at some critical sections, in order to obtain
local stresses and deflections. All models were scripted in Python (see Appendix G to

).
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4.2.1 Composite bridge

Eight node shell elements with reduced integration were used to model the concrete
deck. For the main and transverse girders four node shell elements were used since
the eight node elements should be used for thick shells only (Abaqus, 2014).
Furthermore, linear Timoshenko beam elements were used for the cross bracings. An
isotropic material model were used for all elements, with an elastic modulus and
Poisson’s ratio of E; = 210 GPa and v = 0.3 for steel and E,,,. = 34 GPa and
Veone = 0.2 for uncracked concrete.

The concrete deck in the bridge over Bergeforsen had varying thickness over the
width of the bridge. In the FE-model this was simplified by assigning an equivalent
constant thickness to the deck. The equivalent thickness was calculated by dividing
the total cross-sectional area including the edge beams with the total width of the
bridge. In order to account for reduced stiffness due to cracking of concrete at the
interior supports, different sections were assigned. The support section of the deck
was modelled as a thin steel plate with the same cross-sectional area as the
reinforcement, and a length of 0.15(Lspan1 + Lspanz) according to SS-EN 1994-2
(2005). In the design of the existing bridge, a steel area of 1% of the concrete area
was assumed in the global analysis. The same steel amount was therefore used in the
following analyses.

In the existing composite bridge the main girders had a constant total height of 2.6 m,
while the dimensions on the flanges and webs varied (see Table 4.3 and Figure 4.1).

Table 4.3 Main girder dimensions in the existing composite bridge

Element hvcw.e | tucw.e | PMcbrc |tmebr.c|bmetrc |tmetr.c | ler

[mm] [[mm] |[mm] |[mm] |[mm] |[mm] |[m]
el 2554 19 800 26 500 20 11
e2 2530 18 900 40 600 30 18
e3 2516 21 1050 44 600 40 15
ed 2474 23 1150 63 780 63 11
eb 2508 21 1000 46 600 46 10
e6 2545 18 900 32 600 23 18

Figure 4.1  Different main girder sections.

To simplify the modelling of the bridge, the width of the top and bottom flanges was
kept constant. Instead, the thicknesses were increased to give the same total area (see
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Table 4.4). Since the shell elements were modelled from the centrelines, the height of
the web was kept constant even if the flange thicknesses changed.

Table 4.4 Main girder dimensions used in the FE-model, with the height
measured from centerline top flange to centerline bottom flange.
Element hvcw.e | tucw.e |PMebrc |tmepr.c|bmetr.c |tmeir.c |ler
[mm] |[mm] |[mm] |[mm] |[mm] |[mm] |[m]
el 2561 19 900 23 600 17 11
e2 2561 18 900 40 600 30 18
e3 2561 21 900 o1 600 40 15
e4 2561 23 900 81 600 82 11
€5 2561 21 900 o1 600 46 10
e6 2561 18 900 32 600 23 18
hyew.c Height of web
tMew.C Thickness of web
buerf.c Width of bottom flange
tMG.bf.c Thickness of bottom flange
buc.tf.c Width of top flange
tme.tf.c Thickness of top flange

lel

Length of main girder element

The composite bridge had transverse girders at each support, with different

dimensions for the interior and end supports (see Figure 4.2 and Table 4.5.)

Table 4.5 Dimensions of the transverse support girders in the existing composite
bridge.
hresw |tresw |DPresnr |tresnf |brests |treses
SUPPOTt | rom] |[mm] |[mm]  |[mm] |[mm] | [mm]
A, D 1100 15 350 20 20 15
B,C 1890 25 450 30 350 25
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Figure 4.2  Dimensions of the transverse support girders in the existing composite

bridge.

In addition, there were cross bracings consisting of KKR profiles every 7-8 m. The
vertical stiffeners at each cross bracing were omitted in the model since their effect on
the stress in the bottom flanges was negligible.

T — —

N ! s
\\\ KKR 150x150x6 mm_~ Lo7
. ps 97 m
\,/ N
KKR 250x150x8 mm RN S
—~ |
. 027m
255m '().90 111’ 255m

Figure 4.3  Dimensions of cross bracings in existing composite bridge.

The supports were modelled with reference points coupled to support surfaces on the
bottom flanges of the main girders. Support A was prevented to move in X, y and z-
direction and support B, C and D was prevented to move in y and z-direction (see
Figure 4.1). The concrete deck was connected to the main and transverse girders with
full interaction.

4.2.2 SSD bridge

For the main girder design and global buckling analysis, the whole bridge deck was
modelled as an ESL. However, to get the local stresses in the SSD a 3D model was
required. In order to reduce the computational time the SSD was only modelled in 3D
in some sections, while the remaining parts were modelled as an ESL. Based on
where the highest stresses and local deflections were expected, the 3D SSD was
modelled at support A and B and in the middle of span AB and BC (see Figure 4.4).
The length of the 3D SSD at support A and in span BC was increased, in order to span
between two transverse girders.
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ESL
7 \43 m

Figure 4.4  Parts of the bridge deck modelled as 3D SSD and ESL respectively.

The 3D SSD, main girders and transverse girders were modelled with four node shell
elements, while the ESL was modelled with eight node shell elements with reduced
integration. Moreover, the cross bracings were modelled with beam elements. An
isotropic material model, with E; = 210 GPa and v, = 0.3, was used for the 3D SSD,
main girders, transverse girders and cross bracings. The ESL was modelled with
general shell sections, using the elastic constants in Table 4.2. The different parts
were connected with full interaction.

The spacing and dimensions of the transverse girders was obtained from the
preliminary design (see Section 3.10). In order to increase the stability of the
compressed part of the bottom flange, cross bracings were added in connection to the
transverse girders. The same KKR profiles as in the existing composite bridge were
used, as shown in Figure 4.5

R AYAYAVAYAYAVAYAYAVAYAYAVAVAVAVAVAYAVAYA AV AYAVAYAYAYAYAVAYAVAYAYAVAYAVAYAVAVAYAVAYAYAVAYAVAYAYAYAVAYAYAVAVAYAYAVAVAYAVAVAYAVAYAVAVAYAVAYAVAVAYAVAVAYAVAYAYAVAVAVAVAYAYA

=k _ _rj::,—:L

———_

— e

KKR 150x150x6 mm
N

KKR 250x150x8 mm
—

—_— C——————

027 m

255m  090m  255m
Figure 4.5  Dimensions of cross bracings in SSD bridge.
The transverse support girders had the same dimensions as in the existing composite
bridge but without the top flange (see Figure 4.6 and Table 4,6). In addition,

cantilever parts with the same dimensions as the regular transverse girders were used
(see Table 3.17).
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Table 4.6 Dimensions of transverse support girders in SSD bridge.

hrgsw |tresw | DPresps |tresns
Support [mm] [mm] [mm] [mm]

A D 1115 15 350 20
B, C 1915 25 450 30
A A-A

AT VAT ATA AT AV AVAYAAYA VAT ATATAYATATAAYATAVAAVATATAVAVAYAVAYAVAVAVATATATA

tresw | hrgsw

trespf+ ——

A brgs.py

Figure 4.6  Dimensions of transverse support girders in SSD bridge.

4.2.3 Verification of ESL model

A verification was performed in order to confirm that the ESL reflected the behaviour
of the 3D SSD as top flange to the main girders in the bridge. Therefore two 1-beam
models were analysed and compared, one with the ESL as top flange and the other
with the 3D SSD. The width of the top flange was 10 m and a uniformly distributed
load of 10 kN/m?® was applied (see Figure 4.7).

Figure 4.7  Model used to verify the ESL model.

The deflection of the bottom flange w, ¢, deflection of top flange w,, and stress in the

middle of the bottom flange were compared and are shown in Table 4.7. The ESL-
model gave results with less than 0.5% difference compared to the 3D SSD.
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Table 4.7 Results from the verification of the ESL model.

Model [wps [mm] |w¢r [mm] | 0yppr [MPa]

ESL 6.55 51.52 39.77
3D SSD |[6.54 51.66 39.66

4.2.4 Mesh convergence

Mesh convergence studies were carried out for all analyses and are presented in
Appendix J.

4.3 Loads

The loads considered in the analyses were self-weight and traffic loads. The self-
weights of the main girders, transverse girders and cross bracings were applied as
gravity loads in all models, with a steel density of 7850 kg/m®. The self-weight of the
SSD was applied as a surface load since gravity load could not be applied to a general
shell section. The self-weight of the concrete deck was applied as a surface load to the
top flanges of the main girder, due to reasons described in Section 4.4. The surface
loads of the SSD and concrete deck, together with the weight of the covers are shown
in Table 4.8.

Table 4.8 Self-weights of the bridge decks.

Part Bridge A[m?m]|y [KN/m?] | g, [KN/m?]
SSD 0.0222 |77 1.7
Deck -
Composite 0.3282 |25 8.2
SSD 0.0500 |23 1.2
Cover -
Composite 0.1100 |25 2.8

Load model 1 (see Section 3.2) was used in the analysis with the adjustment factors
a, and a, according to TRVFS (2011) (see Table 4.9).

Table 4.9 Traffic loads used in the verification of the SSD performance.

Lane Qire [KN1 | qire [KN/M?] | @ | @ | @gQux [KN] | g qis [KN/M?]
1 300 9.0 0.9]0.7 (270 6.3
2 200 2.5 0.9]1.0(180 2.5
3 100 2.5 0 [1.0(0 2.5
Remaining | 0 2.5 - [1.0{- 2.5
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4.3.1 Load combination

Load combination of the self-weight and traffic loads in the ultimate limit state (ULS)
and service limit state (SLS), was done according to SS-EN 1990 (2002). The ULS
combinations were considered for analysing stresses in the main girders and SSD, as
well as for the global buckling analysis. The local deflection of the SSD was checked
in SLS for the frequent load combination.

For load combinations in ULS the most unfavourable of equation (4.1) and (4.2) was
used. In equation (4.1) the permanent loads are dominant while equation (4.2)
considers the variable actions as dominant. For the analyses considered, equation (4.2)
caused the most unfavourable effects.

Z Y6Gr,j TYoWo,10k1 4.2
T=1
Z $V6Gr,j +VoQka 4.2
=1

where:
G  Self-weight

Qx, Traffic loads, both uniformly distributed g; and axle loads Q; with
corresponding adjustment factors a, and a

Yo Partial coefficient for permanent action equal to 1.35
Yo Partial coefficient for variable action equal to 1.5
& Reduction factor for self-weight equal to 0.89

Yo, Factor equal to 0.75 for tandem systems and 0.4 for uniformly distributed
traffic load

For the frequent load combination in SLS, equation (4.3) was used.

z Grj 1,10k (4.3)
=1
where:

Y, 1 Coefficient equal to 0.75 for tandem systems and 0.4 for uniformly distributed
traffic load

4.4  Stresses in bottom flange of main girder

The stresses obtained from the FE-model of the existing composite bridge were used
to design the main girders of the SSD bridge. Due to the construction process of the
composite bridge, the stress analysis had to be performed in two steps in order to get
the correct stresses. To begin with the main girders were subjected to the self-weight
of the concrete deck and main girders only, without composite action between the
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deck and girders. This was done in order to simulate the casting of the concrete before
composite action was obtained. The next step was to apply the traffic load and the
self-weight of the asphalt cover and analyse the bridge when composite action had
been obtained. The stresses from the two analysis steps were then added together.
Two load cases, shown in Figure 4.8 and 4.9, were considered in second step in order
to get the maximum span moment and support moment respectively. The results are
shown in Table 4.10.

z
T—»x
1
| I |
0O [®) [®] Q
33m
50 m 66 M 50 m
| L
A U * o} o]
33m
50 m 66 M 50 m

Figure 4.8  Load cases causing the largest stresses in the bottom flange over the
support (top) and in the middle span (bottom).

; 3.0 05 20 0505 20 05 [m]

Q1 Q1
Q Q
Y q3 J/ ’ qd- 1 \|/ 0 \l/

I W I W/

2625 6.0 2.625

Figure 4.9  Load placement in the transverse direction causing the largest stresses
in the bottom flange.
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Table 4.10  Bottom flange stresses in the existing composite bridge.

Section Stress before composite | Stress after composite | Total stress
action [MPa] action [MPa] [MPa]

Middle span | 157 212 369

Support 189 106 294

When designing the main girders of the SSD bridge, the model with the whole bridge
deck as an ESL was used. The thicknesses of the web and bottom flanges, together
with the ratios between the areas of the bottom flanges in each section, were kept the
same as in the existing composite bridge. The width of the bottom flanges was then
adjusted until the stress in the span was the same as for the composite bridge. The
final dimensions are shown in Table 4.12 and the corresponding stresses are shown in
Table 4.11.

Table 4.11  Bottom flange stresses in the SSD bridge.

Stress in SSD
bridge [MPa]

Middle span | 369
Support 250

Section

Table 4.12  Main girder dimensions in the SSD bridge.

hvw |tmew |bPmepr |tmebr |l
[mm] [[mm] |[mm] [mm] |[m]
2574 19 436 26 11
2560 18 490 40 18
2556 21 572 44 15
2537 23 626 63 11
2554 21 544 46 10
2568 18 490 32 18

Element

o OB |W|IN |-

The results showed that the dimensions of the main girders could be significantly
reduced when using a SSD instead of concrete (compare with Table 4.3). A
comparison of the axial stiffnesses of the decks is shown in Table 4.13, in which the
effective widths were calculated with equation (2.1) from Zou et al. (2011). The axial
stiffness of the concrete deck in the span was larger than the axial stiffness of the
SSD. However, the self-weight of the deck was lowered from 11.0 kN/m? to 2.9
kN/m? when using the SSD. Moreover, the stiffness of the cracked concrete over the
support is only 7 % of the uncracked stiffness while the SSD is fully active.

Even though the main girder in the SSD bridge was less utilised over support
compared to the composite bridge, the dimensions were kept since it would be
beneficial in verification of the capacity during launching.
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Table 4.13  Axial stiffness of the bridge decks.

Section A[m?m] |E [GPa] |b,/b |EA[N/m]
Span SSD bridge 0.0222 |210 0.85 |3.96e9
Composite bridge [0.3282 |34 0.88 ]9.82e9
SSD bridge 0.0222 |210 0.76 |3.54e9
Support : X
Composite bridge |0.0033 [210 1.00 |6.89e8

4.5  Local deflection and edge beam dimensions

In order for the cantilever part of the SSD to fulfil the deflection requirement w,,,,; <
L.an: /400, the edge beam dimensions were adjusted. The largest deflection of the
SSD occurred in the end span between two transverse girders, for the load cases
shown in Figure 4.10 and 4.11. Furthermore, the deflection between the main girders
Woiq Was checked as well.

Z

L.
!_UTL

FiY o ] o
s

§3m 66 m 50 m

Figure 4.10 Load case resulting causing the largest deflection of the SSD.
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Figure 4.11 Load placement in the transverse direction considered when checking
Weane (top) and wy,;4 (bottom).

It was necessary to use the edge beam design described in Section 3.3.2, in which the
edge beam was extended and connected to the transverse girders. The dimensions and
utilisation ratios are shown in Table 4.14.

Table 4.14  Edge beam dimensions and deflection of the SSD.

w, Wi
hEB [mm] bEB [mm] tEB [mm] [rﬁ%l]t Ncant [nr]nr;]d] Nmia

402 300 20 6.38 |0.97 [9.18 |0.61

Finally, it was verified that the local deflection of the top plate w;,., under the wheel,
fulfilled the deflection requirement 2p /400 (see Figure 4.12). The results are shown
in Table 4.15.
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Table 4.15 Local deflection of the SSD.

Wioc [mm] Nioc
0.10 0.21

Figure 4.12 Local deflection of SSD.

4.6  Stresses in the SSD

The largest local stresses in the SSD occurred in the top plate under the wheel loads
for the load case shown in Figure 4.13 and 4.14. The tandem system was placed in the
middle between two transverse girders instead of in the middle of the span. The same
load case resulted in the largest compressive stresses in the bottom plate, when

considering the risk of face wrinkling, described in Section 4.6.2.

Z
L» X I 1
Fiy (o] * O
37.35m
50 m 66 M 50m

Figure 4.13 Load resulting in the largest stresses in the SSD.
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Figure 4.14 Transverse load placement causing the largest stresses in the SSD.

Moreover, the largest stresses in x-direction over the support and in the span were
presented in Section 4.6.3, for the load case shown in Figure 4.15 and 4.16. Finally,
the plastic collapse load of the corrugation was calculated in Section 4.6.4, using the
largest stress in x-direction in the top plate.

z
T—»x
1
| I |
i (@) ) [®] (o]
33m
50 m 66 m 50 m
| L
Py U * U o)
33m
50 m 66 M 30 m

Figure 4.15 Load cases causing the largest stresses in x-direction over the support
(top) and in the span (bottom).
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Figure 4.16 Transverse load placement resulting in the largest stresses in x-
direction.

4.6.1 Top plate under wheel load

The largest stresses in the top plate of the SSD occurred under the wheel load closest
to the main girder. The position of the wheel load, together with the path considered
for plotting stresses, is shown in Figure 4.17.

VAVAVAV

| Result line !

T_,y ) Main girder

Figure 4.17 Result line considered for the maximum stresses in the top plate.

The largest stress in the y-direction o, (., Was found in the outer fibre of the plate
and are shown in Figure 4.18.
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Figure 4.18 Stress in y-direction along the result line.

Connections between top
plate and corrugation

The von Mises stress o,y 0, ShOWn in Figure 4.19, is an equivalent tensile stress that
considers the multiaxial loading condition and was used to predict if the top plate
would yield. The highest von Mises stress was obtained in the outer fibre of the plate

and was 20 MPa lower than gy £ ¢o,-

500

300

200

OpM.f.top [MPal]

100

100 130 300 350

Distance along result line [mm)]

Figure 4.19 von Mises stress along the path.

Connections between top
plate and corrugation

In Figure 4.20, o, +0p is plotted for different element sizes, and it clearly shows that

the peak stress was mesh dependent.
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Figure 4.20 von Mises stress along the result line for different mesh sizes.

To get the accurate stress, the graph was extrapolated using the stress gradient
between the stresses at a distance of t¢ ., and 0.5t ., from the intersection. The
peak stress arises due to the fact that the face plates and corrugation are connected at
single node points with full interaction, but in reality the transition would be smoother
due to yielding and stress redistribution. It was therefore decided that the stress at a
distance tf o, from the intersection should not exceed the yield stress f,, ¢ ;op,, While
the peak stress should not exceed the ultimate strength f,, ¢ o, In this case it would
have required S690 steel, which may be problematic when it comes to weldability
(Collin & Johansson, 2005). Instead, the thickness of the top plate was increased from
6.5 mm to 7.0 mm to allow for the use of S460 steel.

The values of g, £ op from the analysis with a top plate thickness of 7.0 mm are
shown in Figure 4.21 and summarised in Table 4.16, together with the largest stresses
in the x- and y-direction

Table 416  Stresses in the top plate.

Position

Gx.f.top [M Pa]

Gy.f.top [M Pa]

GvM.f.top [Mpa]

Allowed stress

tr.top from tie

-174

454

444

fy.5.top = 460 MPa

Peak value

-194

530

510

fu.f.top = 540 MPa

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145

63




350
500

450
—+—Element size = 0.258 5
400

350
------- Comections between top

00 plate and cormugation

Tpng. f.top [MPa]

200

150

Distance along result line [mm]

Figure 4.21 Extrapolated von Mises peak stress.

4.6.2 Compressive stresses in the bottom plate

Due to bending of the SSD in the y-direction there is a risk of face wrinkling in the
bottom plate of the SSD, as described in Section 2.8.1. The largest compressive
normal forces per unit width Ng; occurred at the bottom plate segment next to the
main girder (see Figure 4.22).

<

T Main girder

Figure 4.22 Verification of buckling resistance in the compressed part of the bottom
plate.

The bottom flange was verified against buckling according to equation (4.4):

Neg
<1.0 4.4
Ny ra (4.4)

By treating the bottom plate segment as a simply supported column with a length of
one corrugation opening [, (see Figure 4.22), the buckling resistance N 4 could be
calculated with equation (4.5) according to SS-EN 1993-1-1 (2005):

64 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2015:145



_ XAf.botfy.f.bot

Np,ra = o (4.5)
where:
X Reduction factor for simply supported column, [-]
Af pot Cross section area of the bottom plate, [m*/m]
fy.f .ot Yield strength of the bottom plate, [Pa]
Ymi Partial factor for instability checks equal to 1, [-]

The results from the calculations in Appendix B are shown in Table 4.17.

Table 4.17  Results from the verification of buckling capacity in bottom plate.

Ngg [KN/m] | Ny rg [KN/M] | Ngg/Npra
617 677 0.91

4.6.3 Largest stresses in x-direction

The largest stresses in x-direction in the top plate o, f;,, and in the bottom plate
Ox.r.pot @' shown in Table 4.18. The largest stresses over support and in the span

were considered. Furthermore, the stress at a distance of the plate thickness away
from the connection between the face plate and corrugation, as well as the peak value
was calculated.

Table 4.18  Largest stersses in x-direction.

Ux.f.top [Mpa] Gx.f.bot [Mpa]
Section
L op fr<_3m Peak value | 0ot frgm Peak value
connection connection
Span -177 -196 -131 -133
Support | 129 130 105 107

4.6.4 Plastic collapse of the corrugation

When the SSD is subjected to high patch loads from the wheel loads there is a risk for
plastic collapse of the corrugation, as described in Section 2.8.1. The plastic collapse

load P, was analytically calculated with equation (2.52) and plotted against the ratio
between the stress in the top plate o, f .o, and the yield strength of the corrugation

fy.c = 355 MPa (see Figure 4.23).

CHALMERS Civil and Environmental Engineering, Master’s Thesis 2015:145 65



350

-__--"‘"'--..__
300

i Plastic collapse

200 S load, Py

150 — — Wheel load, Pypeer
100 \

50 \

: |

0 0.2 0.4 0.6 0.8 1

Load [kN]

Ox.f.top

B

Figure 4.23 Plastic collapse load for different oy ¢ o,/ fy ¢ ratios.

The wheel load from LM1 was compared with the plastic collapse load and it was
found that the oy f 0/ fy.c ratio needed to be smaller than 0.77 for the corrugation to
have enough capacity against plastic collapse (see Appendix B for calculations).

A 0y rrop/ fy.c ratio was calculated for the largest stress in the top plate under the
wheel load oy f.o,. The largest stress under the wheel load was the same as the
largest stress in Section 4.6.3, resulting in a oy f1op/fy.c ratio equal to 0.55. The
results are showed in Table 4.19.

Table 4.19  Stress in top plate and utilisation ratio with respect to plastic collapse.

Gx.f.top [M Pa] Gx.f.top/fy.c Pwheel/Pplc
-196 0.55 0.75

4.7  Buckling analysis

In order to capture the real buckling behaviour of the SSD bridge, a non-linear
buckling analysis with the deck modelled in 3D is required. However, a sufficiently
high value of the buckling load in a linear buckling analysis could indicate that the
bridge has enough buckling resistance. A linear buckling analysis was therefore
performed.

The Lanczos eigensolver in Abaqus/CEA was used for the buckling analysis to obtain
the buckling mode and the load factor A. The buckling mode indicates how the deck
will buckle and the load factor is the ratio between the buckling load and applied load.

The load case shown in Figure 4.8 and 4.9, with the uniformly distributed load in the
span only, gave the highest compressive stress in the SSD and was therefore used in
the buckling analysis. The first buckling mode occurred in the web of the main girder
with a load factor of A = 1.44. Since the cross section of the main girder web was in
class 4 early local buckling was expected. The first buckling mode in the SSD
occurred at a load factor of 1=13.29, which indicated that the SSD had enough
buckling capacity. The buckling mode is shown in Figure 4.24
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Figure 4.24 First buckling mode in the SSD.

4.8 Launching

During the launching procedure large moments and vertical patch loads arises at the
supports. The moments can cause lateral torsional buckling, local buckling and
yielding of the girders, while the patch loads can lead to local buckling of the web and
local yielding of the bottom flange. The verification of the capacity was done
according to SS-EN 1993-1-5 (2006).

Two load cases were considered where the moments My, and reaction forces Fgy
were calculated at support A and support B, right before the launching nose had
reached support B and support C respectively (see Figure 4.25). The launching nose
was assumed to have a length L;, equal to one fourth of span AB and a weight
corresponding to half the weight of the main girders, according to an example from
Lebet & Hirt (2013).

LLN
| o« A«
= [} IAMNE) o
LLN
| # e
= IADﬁ‘w—o o e}

@ B © D)

Figure 4.25 Launching stages considered.

The utilisation ratio for bending n, was calculated with equation (4.6), in which the
moment resistance My, was calculated with equation (4.7). In the equation (4.7), the
area of the main girder web was reduced to account for local buckling, which gave the
effective section modulus W .

M
m=—2<1.0 (4.6)
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(4.7)

The patch load resistance Fr,; depends mainly on the thickness of the web t,,;,, and
the length of the support. It was assumed that the SSD bridge had a support length of
0.5 m and no vertical stiffeners. The patch load resistance was verified with equation
(4.8).

F
n, = =2 < 1.0 (4.8)
Rd

Since the support section of the bridge was subjected to both bending moment and
patch loading, the interaction was checked with equation (4.9).

Furthermore, the resistance against lateral torsional buckling was verified with
equation (4.10). The moment resistance reduced for lateral torsional buckling M}, z4
was calculated with equation (4.11).

M
M = o B <10 (4.10)
b.Rd
w.
My ra = X Weysfy (4.11)
Ym1

The reduction factor for lateral torsional buckling y,r was calculated in a simplified
manner, by treating the bottom flange of the main girder as a simply supported
column that buckles in the lateral direction. The length of the bottom flange column
was given by the distance between cross bracings L, and it was assumed that the
compressive force from the bending moment at the support was constant along the
length.

The calculations in Appendix C showed that bridge had enough capacity during
launching and the utilisation ratios are summarised in Table 4.20.

Table 4.20  Utilisation ratios during launching.

Launching stage Nm<1[n<1[n,+08n, <14 |n,r=<1
Launching nose at support B {0.45 0.24 [0.59 0.65
Launching nose at support C|0.61 0.53 1.02 0.83

4.9  Volume and weight comparison

The total volumes of the different parts were calculated in Appendix D and are shown
in Table 4.21. Moreover, the launching weights and total weights of bridges are
shown in table 4.22. The steel volume in the SSD bridge, if the SSD was excluded,
could be reduced with 8 m®or 20% compared to the existing composite bridge. With
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the SSD included the total volume of steel was 74 m*® compared to 40 m® in the
composite bridge, which means that the launching weight was increased by 84%.
However, the total weight of the SSD bridge was only 32% of the total weight of the
composite bridge.

Table 4.21  Total volume of the different parts.

Part Bridge Total volume [m?]
Deck SSD _ 41.39
Composite |648.42
Edge beams SSD - 4.53
Composite |5.96
Main girders SSD - 24.02
Composite |37.31
Cross bracings SSD - 0.99
Composite |1.60
Transverse support | SSD 1.11
girders Composite |1.15
Transverse girders | SSD 1.78

Table 4.22  Launching weights and total weights of the bridges.

Bridge Launching weight [MN] | Total weight [MN]

SSD 5.68 7.83
Composite |3.09 24.49
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5 Discussion

The purpose of the preliminary design was to find a weight-optimised configuration
of the SSD, which could be further analysed and evaluated. In order to carry out the
preliminary design, the 3D SSD was idealised as a homogeneous orthotropic thick
plate with equivalent stiffness constants. Some parts of the deck were modelled as an
equivalent single layer (ESL) in the more detailed analysis as well, in order to save
time when running the analyses. In Section 4.2.3 it was verified that the ESL could
simulate the behaviour of the 3D SSD as a top flange to the main girders. The choice
to model the SSD with an ESL, when local stresses in the SSD were of no interest,
could therefore be justified.

In the optimisation routine, the deflection limit constraint had to be changed manually
in order to get an utilisation ratio close to one in the FE-model. Since the FE-analysis
was carried out using Python scripts, it would serve the purpose of the preliminary
design to incorporate the optimisation routine in the script. This was not possible due
to the fact that Mathcad was used for the analytical optimisation. However, in the end
the same results were obtained even though time could be saved if the deflection limit
constraint were not changed manually.

It was assumed that a SSD that fulfilled the constraints in the optimisation, described
in Section 3.3.1, also would have sufficient capacity in other aspects. The results from
the analysis of local stresses under the wheel loads in Section 4.6.1 indicated that the
deflection constraints only might be insufficient. However, the thickness of the top
plate only had to be increased with 0.5 mm, which indicates that no major changes of
the preliminary dimensions are needed.

Moreover, fatigue was not considered in the verification of the performance. It is
possible that consideration of the fatigue strength would result in further
modifications of the design.

The results showed that the dimensions of the main girders could be significantly
reduced when replacing the concrete deck with SSD’s. A complete design of the main
girders was not carried out but since both the existing composite bridge and the SSD
bridge were modelled in Abaqus/CAE, the stresses in the bottom flange could be
compared for the load cases considered. The axial stiffness of the uncracked concrete
deck was higher than the axial stiffness of the SSD. However, a lower self-weight of
the deck together with the fact that the concrete is cracked over the supports explains
why the dimensions of the main girder could be reduced.

The formulation for the plastic collapse load was verified by Naar (1997) for a simply
supported SSD. However, the SSD considered in this thesis was not simply supported
and worked as a top flange to the main girder. Some uncertainties were therefore
associated with the plastic collapse load P,,.. To verify that the corrugation of the
SSD has enough resistance against plastic collapse a non-linear buckling analysis
could be performed. However the utilization of the SSD was 75%, which gave some
margin for errors in the plastic collapse load.

The capacity of the main girders during launching was verified for the launching
stages that caused the largest moments and reaction forces. However, it is possible
that other stages could be critical, since the main girder had varying dimensions along
the bridge. In a more thorough launching investigation, the moments and reaction
forces for all possible positions of the bridge should have been calculated. On the
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other hand, if the bridge would have insufficient capacity in other sections than the
ones studied, it is possible to adjust the length on the launching nose to lower the
section forces. In addition, the approach for calculating the lateral torsional buckling
was conservative since the web of the main girder would contribute to the stiffness.

It is not possible to draw conclusions whether the total cost will be reduced if a SSD
deck is used, based only on the results from this thesis. Material savings were possible
in the main girder primarily, but the cost for producing the SSD has to be compared to
the cost for casting the concrete deck. However, it is certain that the construction time
is reduced when the SSD is launched together with the main girders. In urban areas
this is a considerable advantage.
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6 Conclusions

In this thesis a literature study on the structural behaviour and performance of SSD’s
was conducted in order to understand the potential of SSD decks as a replacement for
concrete decks in composite bridges. In the preliminary design, an optimisation of a
SSD deck was carried out to reduce the weight with maintained structural
performance. Moreover, the structural performance of the SSD deck was verified and
compared with an existing composite bridge using Abaqus/CAE.

The conclusions from the thesis, based on the results and discussion, were:

e The SSD configuration from the preliminary had sufficient capacity, except
for minor changes of the top plate thickness under the given limitations.

e The main girder dimensions and total weight of the bridge could be
significantly reduced due to the high stiffness-to-weight ratio of the SSD deck.

e Calculations indicated that it is feasible to launch the SSD deck together with
the main girders.

Based on the verifications it was concluded that the SSD deck could be a valid
alternative to concrete decks in composite bridges, especially when reduction of the
construction time is of significance.

6.1 Recommendations for further studies

In future studies a cost comparison could be carried out to further establish the
concept of SSD decks, as a cost efficient alternative to concrete decking in composite
bridges. The comparison should include the construction cost for the bridge and take
into account the cost for society, regarding disturbance during the construction time.
Furthermore, the concept could be applied to other bridge types as well. The
advantages of SSD decks are not limited to medium span bridges.

A thorough study on the fatigue strength is also necessary for the concept to be fully
verified. Moreover, connections between the elements were not considered in the
thesis. These details can be crucial for the performance of the bridge as a whole and
should therefore be studied further.
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Appendix A - Analytical optimisation of SSP

Contents

1. INPUT DATA
1.1. Bridge geometry
1.2. Material properties
1.3. Loads

2. SSP

2.1 Geometry

2.2. Cross-sectional constants

2.3. Elastic stiffness constants
2.3.1. Axial stiffness, Ex & Ey
2.3.2. Horizontal shear stiffness, Gxy
2.3.3. Bending stiffness, Dx & Dy
2.3.4. Torsional stiffness, Dxy
2.3.5. Dimensions needed for DQx and DQy
2.3.6. Transverse shear stiffness parallel to the corrugation, DQx
2.3.7. Transverse shear stiffness perpendicular to the corrugation, DQy

3. LOCAL DEFLECTION AND FATIGUE LOAD
3.1. Local deflection
3.2. Fatigue load

4. DEFLECTION OF SSP

5. DEFLECTION MAIN GIRDER
5.1. Loads and lane factors
5.2. Cross sectional constants
5.3. Deflection
5.3.1. Deflection with load in mid span
5.3.2. Deflection with load in side span

6. STRESS IN TRANSVERSE GIRDER
6.1. Effective width top flange
6.2. Cross-sectional constants
6.3. Cross section class
6.4. Bending stress in bottom flange

7. TOTAL STEEL VOLUME IN BRIDGE SECTION
8. OPTIMISATION
8.1. SSP

8.2. Main girders
8.3. Transverse girders

9. ELASTIC CONSTANTS FOR SSP
9.1. Change in dimension of SSP
9.2. Elastic constants
9.3. Additional constants
9.4. Check constrains for new dimensions

10. STEEL VOLUME
11. VECTOR IMPORTED TO FE-MODEL



1. Input data

1.1. Bridge geometry

Biot := 11.25m
Ly :=8m
By :=6m

Biot — B1

Leant =

=2625m

Lspan1 = 50m

Lspanz = 66m

1.2. Material properties

v:=03

kg
= 7850 —
P 3

m

E := 210GPa
E
G, = ——— = 80.769-GPa
2:(1+v)

fy = 355MPa

235MP
3= ’y - 0814
y

1.3. Loads

Reduction factors

g1 = 1.0 Qg1 = 1.0

Wo.upL =10 ors=10

Partial coefficients
For ULS

Vg =135 £:=0.85
Q1= 15

Total free witdh of bridge
Distance between transverse girders

Distance between main girders

Length of cantilever part
Length of side span

Length of middle span

Poisson's ratio

Density of steel

Modulus of elasticity

Shear modulus of elasticity

Yield stress

Coefficient considering the yield stress for cross-section class assignment

All reductionn factors are chosen to 1.0 in the preliminary design



Permanent loads

toover = 50mm

ag == 500mm
kN

Veover = 23—
m

9eover = Yeover't

Variable loads

kN
=9—
A1k 2
m
kN
=25—
A2k P
m
kN
=25—
A3k P
m
kN
=25—
Qrk >
m
Qqk == 300kN
Qo = 200kN
Qg = OkN

daxel.LM1 = 1.2m

dwheel.LM1 = 2:0m

Wiane = 3.0m

cover'c

Thickness of the asphalt cover

Contact area of the wheel taking the asphalt cover into consideration

Asphalt density

Load from asphalt cover

Distributed traffic load lane 1

Distributed traffic load lane 2

Distributed traffic load lane 3

Distributed traffic load remaining lane

Load from axel in lane 1

Load from axel in lane 2

Load from axel in lane 3

Distance between axels

Distance between wheels

Width of traffic lanes



2. SSP
2.1. Geometry

2p !

% 4

trop

Ef bt
1

Height of the cross-section
Measured from centreline of top plate to centreline of bottom plate

tf.top t bot
+—+

=Negep T 2 2 te.ssp

hssp(hc.ssp ’ tf.top’ tf bot- tc.ssp)

Measured from top to bottom of SSP

hssp.tot(hc.ssp’tf.top’tf.bot’tc.ssp) = Nessp + ttop T tbot * te.ssp

Length of the inclined corrrugation leg

he.ssp

' I

h

c.ssp( c.ssp’o‘ssp)

Length of corrugation opening
Io(hc.ssp’("ssp’fssp) =2 'c.ssp(hc.ssp")‘ssp)'cos(o‘ssp) + fssp

Half of the corrugation pitch

£ ) fssp N Io(hc.ssp’o‘ssp’fssp)

pssp(hc.ssp’o‘ssp’ ssp) T 2

Length of cross-section

'ssp(hc.ssp’o‘ssp’fssp) = 2‘pssp(hc.ssp""ssp"‘ssp)




2.2. Cross-sectional constants

Area

Area of top flange:

Af.top(tf.top~hc.ssp’o‘ssp~fssp) = tf.top"ssp(hc.ssp’o‘ssp’

Area of bottom flange

fssp)

Af.bot(tf.bot’ hc.ssp’o‘ssp’fssp) = tf.bot‘'ssp(hc.ssp’O‘ssp’fssp)

Area of the core:
A
Area of the core per unit width:

f

AC.ssp(tc.ssp’ he.ssp> @ssps ssp)

Total Area:

c.ssp(tc.ssp’ hc.ssp’o‘ssp’fssp) = 2'fssp'tc.ssp

+ 2'tc.ssp"c.ssp(hc.ssp’o‘ssp)

Ac.ssp(tc.ssp’ he.ssp>Ossp: fssp)

Issp(hc.ssp »Ossp>

fssp)

Atot.ssp(hc.ssp’tf.top’tf.bot’tc.ssp*o‘ssp’fssp) = Af.top(tf.top’hc.ssp’o‘ssp~fssp)

Total area per unit width:

Assp(hc.ssp’tf.top’tf.bovtc.ssp’o‘sspﬂfssp) =

Neutral axis

Zna.ssp(hc.ssp’tf.top’ % bots tc.ssp’o‘ssp’fssp)

+ At bot|tf.bot> Nc.ssp> @ssp> fssp)
+ Ac.ssp(tc.ssp’ he.ssp>ssp: fssp)

Atot.ssp(hc.ssp’tf.top’tf. bot> tc.ssp »Ossp> fssp)

Issp(hc.ssp »Ossp» fssp)

t
C.SSp
tc.ssp'fssp'[tf.topJr 5 ]

+ 2'tc.ssp' 'c.ssp(hc.sspso‘ssp)'(

tf.top
+lesspTssp
' 2

hc.ssp
2

t
C.SSp
+— + hc.ssp

tf
FRRLELIN

tc.ssp
2 2 )7

N Af.bot(tf.bot’hc.ssp’o‘ssp’fssp)'(hssp(hc.ssp’tf.top>tf.bot’tc.ssp)) |

Atot.ssp(hc.ssp > tf.top’tf.bot’ tc.ssp »Qsgp>

fssp)



Moment of inertia
X-direction
Moment of inertia of the top flange:

leoo(h f 3
h £ ssp( c.ssp>ssp ssp)'tf.top
If.top.ssp.x( c.ssp’tf.top°tf.bot’tc.ssp’°‘ssp= ssp) = 12

2
ISS (hC.SS ’ ssp’fss ).tf.tO '(Zna.ss (hC.SS ’tf.tO ’tf.bot’tc.ssp’ Ssp’fssp))

Moment of inertia of the top horisontal part of the core:

3
£ fssp‘tc.ssp

I SSF’) 12

h

c.top.ssp.x( c.ssp’tf.top’tf.bot’tc.ssp=°‘ssp’

2

+f h

ssp le.ssp( 2

na.ssp( c.ssp’tf.top’tf.bot’tc.sspﬂssp’fssp)
t t

e f.top _ Cssp

2 2

Moment of inertia of the inclined part of the core:

3
te.ssp’ Ic.ssp(hC-SSp’O'SSP)

. 2
Iinc.ssp.x(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =2 7 's'n(o‘ssp)
2
t t h
f.top C.SSp C.SSp
+2tc.ssp"c.ssp(hc.ssp’o‘ssp)' ; T, T, o
+ _Zna.ssp(hc.ssp I top- t.bot> te.ssp> Ossp> fssp)
Moment of inertia of the bottom part of the core:
3
feep't
_ 'ssp’'c.ssp
Ic.bot.ssp.x(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = 12
2
tf.top tc.ssp
+Hsspte.ssp > T, * hessp
+’Zna.ssp(hc.ssp’tf.top’tf.bot’tc.ssp")‘ssp’fssp)
Moment of inertia of the bottom flange:
leoo(h f 3
) ssp( c.ssp* ssp> ssp)'tf.bot
If.bot.ssp.x(hc.ssp>tf.top’tf.b0t7tc.ssp")‘sspjssp) = 12
2
+ Issp(hc.ssps0‘ssp’fssp)'tf.bot' hssp(hc.ssp>tf.top’tf.bot’tc.ssp)
+ _Zna.ssp(hc.ssp’tf.top’ t bot: te.ssp> ssp- fssp)



Total moment of inertia of SSP in x-direction:

Itot.ssp.x(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = If.top.ssp.x(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)
*+1c top.ssp.x(c.ssp> t.top> t.bot: te.ssp- Ossp> Tssp) -
*+linc.ssp.x hc.ssp’tf.top’tf.b0t°tc.ssp’o‘ssp’fssp)

+ Ic.bot.ssp.x(h

c.ssp’tf.top7tf.bot’tc.ssp=°‘ssp’fssp)
(h

+If.bot.ssp.x c.ssp’tf.top*tf.bot’tc.ssp’o‘ssp’fssp
Y-direction
Moment of inertia of the top flange:

3
Issp(hc.ssp""ssp > fssp)'tf.top
12

If.top.ssp.y(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =
2
+ I‘ssp(hc.ssp’o'ssp’fssp)'tf.top'(zna.ssp(hc.ssp°tf.top=tf.bot’tc.ssp=°‘ssp’fssp))

Moment of inertia of the bottom flange:

3
Issp(hc.ssp »Qssp» fssp)'tf.bot

If.bot.ssp.y(hc.ssp’tf.top’tf.bot’tc.sspﬂo‘ssp’fssp) = 12

2
+ Issp(hc.ssp""ssp’fssp)'tf.bot‘ hssp(hc.ssp’tf.top’tf.bot’tc.ssp)
**Zna.ssp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)
Total moment of inertia of SSP:
Itot.ssp.y(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = If.top.ssp.y(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)
+ If.bot.ssp.y hc.ssp’tf.top’tf.bot’tc.ssp"’ssp’fssp

Moment of inertia in x- and y-direction per unit width [m”~4/m]

'tot.ssp.x(hc.ssp 4 tf.top’tf.bot’ tc.ssp »Ossp» fssp)
|

| h t t t Qe . =
ssp.x\''c.ssp- “f.top "f.bot> *c.ssp’ ssp> 'ss
P ( P P PSP p) ssp(hc.sspﬁo‘sspjssp)

h

'tot.ssp.y( c.ssp’tf.top’tf.bot’tc.ssp=°‘ssp’fssp)

Issp.y(hc.ssp7tf.top’tf.bot’tc.ssp’o‘ssp>fssp) = Issp(hc ssp’o‘ssp’fssp)



2.3. Elastic stiffness constants

The elastic stiffness constants are calculated in order to treat the SSP as an equivalent single layer. The elastic constants are
calculated according to "Elastic constants for corrugated-core" by C.Libove & R.Hubka. All constants are calculated per unit
width of the plate.

2.3.1. Axial Stiffness, Ex & Ey

Axial stiffness in the stiff direction per unit width:

Ex.ssp(hc.ssp’tf.top’tf.bot’tc.ssp=c"ssp’fssp) = E'Assp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)

Axial stiffness in the weak direction per unit width:
E'(tf.top + tf.bot)

LA E-(ttop * tf.bot)
E

Ey.ssp(hc.ssp 4 tf.top’tf.bot’ tc.ssp »Ossp» fssp)

x.ssp(hc.ssp ’ tf.top’ tf bots tc.ssp »Ossp» fssp)

2.3.2. Horizontal shear stiffness, Gxy

2

Gc'tc.ssp

GA(hc.ssp’tf.top=tf.bot’tc.ssp=°‘ssp’fssp) = G¢ i op * A t + Gt pot
C.ssp( )

c.ssp’ hc.ssp »Ossp> fssp

Horizontal shear stiffness per unit width:

Gy (hc.ss Y top- t.bot> te.ssp» Ossp- fss ):: GA(hc.ss  top- t.bot> te.ssp- Ossp- ss )
y p p P p>'ssp P p p p>'ssp

2.3.3. Bending Stiffness, Dx & Dy

Bending stiffness in the stiff direction per unit width

= E-l f,

Dx.ssp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) ssp.x(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’ ssp)

Bending stiffness in the weak direction per unit width
E-l

h t t t Q f,
ssp.y( c.ssp’ f.top’ f.bot> “c.ssp> “ssp> ssp)
Dy.ssp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)
2
1-v [1

_ E"ssp.y(hc.sspvtf.top’tf.bot’tc.ssp’o‘ssp’fssp)]

h fssp)

x.ssp( c.ssp’tf.top’tf.bot’tc.ssp’o‘ssp~



2.3.4. Torsional stiffness, Dxy

A - A
kc:l. 1.t "2
2 2-p-h

71
|
h

L4

r,

t bot ~ tf.top J

1
k.(h t t t =—=|1+
cl''c.ssp’ f.top’ f.bot> "c.s3
( P P p) 2[ 2'hssp(hc.ssp’tf.top’tf.bot’tc.ssp)

2
Gc'tc.ssp 'kc(hc.ssp=tf.top’tf.b0t’tc.ssp)

+ Gyt
¢ *f.bot
) AC.ssp(tc.ssp’ hc.ssp""ssp ’ fssp)
kGJ(hc.ssp’tf.top’tf.bot’tc.ssp""ssp’fssp) = G A(h

c.ssp’ tf.top’ % bot: tc.ssp’o‘ssp 4 fssp)

GJ(hc.ssp>tf.t0p=tf.bot’tc.ssp7°‘ssp7fssp) =

: . .2
Gc'tf.top'k(}ﬁ_hc.ssp’r'f.top’r'f.bot’tc..ssp’O‘sspjssp,:' 'hsspl._hc..ssp’tf.top’tf.bot’tc..ssp,:'
2

G-t -
C 'C.5E5
N P

- LoL2
Ac Tt h o P ‘:I'!rI‘:Gﬁ_h__c.ssp’tf.top’tf.bot’tc..ssp’c:‘ssp=fssp,:' “‘
ACsspllesspressprTssprlssp) L+_kcl.,hc.ssp=tf.top=tf.bot’tc.ssp,:' )

+ G tppot |._1 - 1"-‘GJ'l._hc.ssp=tf.mp=r'l’.‘r3m:=tc.ssp’O‘ssp’fssp,:',:'ﬂ

Torsional stiffness per unit width:

ny.ssp(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp) = 2'GJ(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp)

10



2.3.5. Dimensions needed for DQx and DQy

-y

Symmetrical corrugation k.y=k.z --> K.Ay and K.Az vanish

Rcq = 0mm No radius on the corrugation

k
z
al(hc.ssp’RCl) = [1 - ?]'hc.ssp -Re1

ky fSSp
bl(hc.ssp’("ssp>fssp) =[1- Py ‘pssp(hc.ssp’assp’fssp) T

1
2

Cl(hc.ssp>°‘ssp’fssp’RCl) = (al(hc.ssp’RC1)2 + bl(hc.ssp’o‘ssp’fssp)z)

2 (Ne.ssprRew
0‘1(hc.ssp’°‘ssp’fssp’RCl) = ata”(mj

¢} (h Ocens feerns R ) asin| Ret
1\"c.ssp> ssp> 'ssp> " C1) T
prossprss c1(hc.ssp""ssp’fssp=RCl)

11



1
2

2 2
d1(hc.ssp""ssp’fssp’RCl) = (Cl(hc.ssp’o‘ssp’fssp’RCl) -Re1 )
e(hc.ssp’o‘ssp’fssp’RCl) = 0‘1(hc.ssp’°‘ssp’fssp’RCl) + Bl(hc.ssp’o‘ssp~fssp’RCl)

el(hc.sspﬁo‘ssp’fssp’RCl) = RCl'COS(e(hc.ssp’O‘ssp’fssp’RCl))

gl(hc.ssp’o‘ssp’fssp’Rm) = RCl'Si”(e(hc.ssp’O‘ssp’fssp’RCl))

jl(hc.ssp’o‘ssp’fssp’RCl) = al(hc.ssp’RC1) + el(hc.ssp’o‘ssp’fssp’RCl)

kl(hc.ssp’(’ssp’fssp’Rm) = b1(hc.ssp*°‘ssp’fssp) - g1(hc.ssp’O‘ssp’fssp’R(:l)

Height of radius (z-direction)

h
_ Nessp
Il(hc.ssp’o‘ssp=fssp’R01) T, T Jl(hC-SSP’aSSp’fSSP’R01)

Length of one corrugation leg

Is(hc.ssp’o‘sspﬂfssp’RCl) =fegp * 2'RC1'e(hc.ssp’°‘ssp’fssp’RCl) + 2'dl(hc.ssp""ssp*fssp’RCl)

2.3.6. Transverse shear stiffness parallel to the corrugation, DQXx
Area, per unit width, of the corrugation cross-section, [m*2/m]

Is(hc.ssp > O‘ssp’fssp’ RCl)'tc.ssp

A h t Qg f, R =
c.ssp.x\''c.ssp’ “c.ssp> ssp’ 'ssp> T C1
P ( P P PSSP ) pssp(hc.ssp’o‘ssp’fssp)

Transverse shear stiffness parallel to the corrugation per unit width

2 2
Gc'tc.ssp [ hssp(hc.ssp*tf.top’tf.bot’tc.ssp)]

D h t t t Q. f =
x\"'c.ssp> f.top> ‘f.bot> *c.ssp> Hssp- 'ss
Q ( P P P P p) A pssp(hc.ssp’o‘ssp’fssp)

c.ssp.x(hc.ssp 4 tc.ssp’o‘ssp 4 fssp’ Rea

12



2.3.7. Transverse shear stiffness perpendicular to the corrugation, DQy

The tranverse shear stiffness perpendicular to the corrugation per unit width is calculated as

3
_E N[k
1o he

where S is a non-dimensional cofieceint.

DQy = Shssp[

Nondimensional coefficient S

The non-dimensional coefficient S is calculated for symmetrical corrugation of the SSP but allows for different thicknesses of

the top and bottom plate.

K values

The K values are non-dimensional functions of the corrugation shape

2
Klz(hc.ssp""ssp’fssp’RCl) = 5[

2
kl(hc.ssp +Ogqp fogps RCl)] dl(hc.ssp »Ogqp> fogps RCl)

he.ssp

he.ssp

3 3
+g 1 pssp(hc.ssp’o‘ssp’fssp) B bl(hc.ssp’o‘ssp’fssp)
S8l hessp hessp
o Rea ) bl(hc.ssp’o‘ssp’fssp Lefn i R .bl(hc.ssp’o‘ssp’fssp)
h h ( c.ssp’ %ssp> 'ssp» Cl) h
c.ssp c.ssp c.ssp
" Rea ~ el(hc.ssp’o‘ssp’fssp’RCﬂ
hessp hessp
2
R
1 Cl
ty e(hc.ssp’O‘ssp°fssp’RCl)'[h j
c.ssp
gl(hc.ssp’o‘ssp’fssp’RCI) el(hc.ssp’o‘sspjssp’RCl)
he.ssp he.ssp

13




i1 (hc.ssp’o‘ssp fssps RCl) kl(hc.ssp’o‘ssp »Tsps RCl) dl(hc.ssp’o‘ssp +ssps RCl)

2
Klyz(hc.ssp’o‘ssp’fssp’RCl) -y he.ssp ' hessp ‘ hessp
2 2
+1 1 pssp(hc.ssp=°‘ssp’fssp) ~ bl(hc.ssp’c‘sspjssp)
2140 hessp hessp _

Rea al(hc.ssp’Rm by hc.ssp’o‘ssp’fssp)
+2.h : h : e(hc.ssp’o‘ssp’fsspvRCl)'h—

c.ssp c.ssp c.ssp

. el(hc.ssp’o‘ssp’fssp’RCl) ~ Rea
hessp hessp
. gl(hc.ssp’o‘ssp’fssp’RCﬂ_ b1(hc.ssp’°‘ssp’fssp)
hessp hessp
1 gl(hc.sspﬁo‘ssp’fssp’RCI)
L 2 e ssp ]
. 2
ke (h £ Rl 2 Jl(hc.ssp’o‘ssp’fssp’Rm) dl(hc.ssp’o‘ssp’fssp’RCﬂ 1 fssp
Iy( cssp*ssp-ssp: Cl) - 3. he ssp . he Ssp ’ 4.hc ssp

Rea al(hc.ssp»RCI) a1(hc.ssp’R01)
+2: : : e(hc.ssp’o‘ssp’fssp~RCl)'

h h h

c.5sp c.ssp c.ssp

o gl(hc.ssp’o‘ssp’fssp’ RCl)
hessp )

2
Rea j

1
iy e(hc.ssp’o‘ssp’fssp’ RCl)'( h
c.ssp

. gl(hc.ssp’o‘ssp=fssp’R01) el(hc.ssp’o‘ssp’fssp’RCl)

he.ssp he.ssp 1]

R f
C1 ssp
+ Z'G(hc.ssp’o‘ssp’fssp’ RCl)' h A
cssp Mcssp

] dl(hc.sspﬁo‘sspjssp* RCl)
KL(hc.ssp’O‘ssp’fssp’ RCl) =2 h

c.ssp

f, dq(h f, R

 Tssp 1( c.ssp’ %ssp 'ssp> Cl) 2

KLy(hc.ssp’O‘ssp’fssp’RCl) =% +2 h ‘Cos(e(hc.ssp’assp’fssp’RCl))
c.ssp c.ssp

Rei
+_‘(e(hc.ssp’%sp’fssp’RCl) ]
&899 |+ sin(6( e, ssp-ssp fssp+ Rea))-05(6( M ssp-ssp- fssp- Rea))

d1(Ne.sspssp-fssp-Re)
KLyz(hc.ssp’O‘ssp’fssp’RCl) =2 ( =P he zzp = )'3'”(9(hc.ssp’°‘ssp’fssp’RCl))'COS(e(hc.ssp’o‘ssp’fssp’RCl))

Rer 2
'5'”(9(hc.ssp=°‘ssp’fssp’ RCl))
)
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dl(hc.ssp"’ssp’fssp’ RCl)

- -sin(e(hclsspsassp’fssp’RCl))2
c.ssp

KLZ(hC'SSp’assp’fSSp’RCl) = 2.
Rel
T '[e(hc.ssp’%sp»fssp,RCl) j
cssp | 4 —Sin(e(hc.SSp~0£sSp,fSSp,RC1))~COS(G(h c.s5p-Ossp-Tssp- RCl))

C values

3
tc.sspJ pssp(hc.ssp’o‘ssp’fssp)

tf.top h

1
Cl(hc.ssp’tf.top’tc.ssp’assp’fssp’RCl) = KL(hc.ssp’O‘ssp’fssp’RCﬁ + 5[
c.ssp

ky, p (h ,Oggn. f )
Xy Pssp(Nc.ssp>@sspTssp
Cz(hc.ssp’o‘ssp’fssp’ RCl) =5 'KL(hc.ssp’O‘ssp’fssp’ RCl)

C3(hc.ssp’tc.ssp’ussp’fssp’RCl) = Klz(hc.ssp’o‘ssp’fssp’RCl)
) pssp(hc.ssp’o‘ssp’fssp) & pssp(hc.ssp’o‘ssp’fssp)

+ky h 14 h 'KL(hC.SSp’O'SSp’fssp’RCl)]

c.ssp c.ssp

2
1 tc.ssp
+E{h ] ‘KLz(hc.ssp’O‘ssp’fssp’RCl)
c.ssp

C4(hc.ssp=tf.top’tc.ssp°°'ssp=fssp=RCl) = Klyz(hc.ssp’o‘ssp’fssp’RCl)
t t Ky Pssn(Nc.ssp>ssps f
+%. g+ |1+ f.top]' c.ssp}v[_y_ ssp( c.ssp’ ssp ssp)

i h 2 h 'KL(hc.ssp’O‘ssp’fssp’ RCl)j
c.ssp ) Mc.ssp c.ssp

1 ( tessp
*E'[h ] 'KLyz(hc.ssp"Xssp’fssp’RCl)
c.ssp

t t
1 f.top | ‘c.ssp
CS(hc.ssp’tf.top’tc.ssp""ssp"‘ssp’RCl) = E'{kz + [l + ) }'KL(hC-SSp’O‘SSP’fSSp’RCl)

tessp hc.ssp

CB(hc.ssp=tf.top’tc.sspﬁo‘ssp7fssp=RCl) = Kly(hc.ssp’o‘ssp>fssp’RCl)

t t t t
ftop | ‘cssp || 1 f.top | ‘c.ssp

+|k, + |1+ . J . :Hz{kz + [1 e 'KL(hc.ssp’(’ssp’fssp’RCl)
c.ssp/ 'c.ssp c.ssp) ''c.ssp

1 tc.ssp
+E.[h j 'KLy(hc.ssp’o‘ssp>fssp’RCl)
c.ssp

t 3

f.bot

C7(tf.b0t’tc.ssp) = (t j
c.5sp
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Non-dimensional cofficient S

S(hc.ssp=tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ RCl) =
Bessp N 2 . N
(b £ C?ltf.bot'tc.ssp .kcllhc.sspp‘ssp'fssp=RC1’ ’Cllhc.ssp=‘fmp'tc,.ssp=°‘ssp'fssp=RC1’CSIhc.ssp=[cssp-“"‘ssp'fssp'RCI’,I -
PssplPessp Osspissp o . N
\ Fssp‘hcssp-'“ssp'fssp} ( . Pssplic ssp'o‘sspjssp’ W
=G0 sepete sepsOsep Fesp Ret] = e IR 2.0yl B Ret) - e IR Gt o hssp Fasp Bet) |
cssp c.ssp J
[ Psplbessp:Ossp-Tesp) | Pssplhic.ssp:Pssp-fesp) . )
122 P 1 s (il ssp-tetop- cssp—“ssp;fssp Rt} CalBe ssp-Trtop-t s O5sp-fssp Kot \
F 3 ® |+ =Calhe cop-ssp fusp -Ret 1 Cs Ihcssp tetop-tessp-Ossp-Fssp Bt J
+~Calhg gp-o, = fosp Rcﬂcﬂhcssp Y tap-le.ssp-Pssp Lasp- Rcﬂ 3

+Cslbe s5p-te ssp-ssp: ssp Rcﬂclhussy Y top-te.ssp Ossp-Tasp Rcﬂ
+=Celh ssp-tetop-tessp:Ossp-Tasp Ret) Cilhssp-rop-tessp ssp- ssp Rey)-Cslhe gsp-tessp-Ossp-fusp Rei)

| CalBe sep OsspoFasp - Rey)

Transverse shear stiffness perpendicular to the corrugation per unit width

DQy(hc.ssp*tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =

CCc.sspt Tiope Thot: c.ssp T SSpUSSp T J SS_C.SST.IUT.UITC.SS_:
S{he ssp-t.top-Trbot-te.ssp- ssp-Fssp -Re1) Pispl Pe.ssp-TFtop-tebot tessp

16

¢ E ™

1.
Wl= )

. \# O3l spp-te ssp-ssp-Tasp-BC1) Ol sop Ttop - tessp-Mssp-fasp Ren) |
c.ssp - \ \ g . N
- b |h tetop-Ebot-t ’ 3 C?Itf.bot't:.ssp’ C4|h:.ssp=tf.top't: ssp'o‘ssp=fssp=RC1* | Cl‘h:.ssp'tf.top-'tc ssp'“sspjgsp'Rf,ﬂ Cylhe ssp'tf.to cssp'“sspjgsp'RCl:‘ ‘\
ssplcssp: LioprLbot-c.asp H’) Gyl ssprTsspr ssp Rl C'Ihc.ssp=tf.top't:.ssp'°‘ssp=fssp=R'C1*

3

J

Pesplhy 2 . A
p(Be ssp b
+ heep Calhe ssp-ttop te ssp-ssp-Fssp RC1)” — Calhe ssp-te ssp-©ssp Fssp -Re1) Col he ssp-trtop e sspPssp fssp - Re) )
. e
[PssplBossp-Ossp-fssp) |
N | [l ssposspFsp- Rcﬂcﬁ‘hcssp ttop-Te ssp-Cssp-Fesp -RC1) 3
. cssp 4 1 #=Calhe sop-Tetop- e sspssp-Tssp-BC1) C( e sop- T rop-te.ssp-Pssp-Fusp-Be1)
')Fssplhcssp sspe ssp’ 2 3\
A {es sl ssp-thtop-te ssp ssp ssp Rey)” - |
~ ossp /1 +=Cilbe cep tetopste ssprOespfasp Rcﬂcs‘hcssp Atop-tessp:OsspifaspRol)
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3. Local deflection and fatigue load
3.1. Local deflection

The local deflection of the top plate is calulated by treating the top plate as a fixed beam with the same width as the wheel load
and the length of 2p. Only traffic load is considered in the deflection calculation

| | @

| &

AN

AMNNY

Quk-oy
QueoQL _ oo kN
21;1C

Quheel = One wheel load

3
actitop

'top(tf.top) == Moment of inertia of top flange strip

Local deflection:

4
Quheel’ Issp(hc.ssp>°‘ssp’fssp)
384-E- |t0p(tf_top)

E’I(hc.ssp I top: Cssp> fssp)

3.2. Fatigue load

The fatigue load consists of self weight and traffic loads according to load model 3. The fatigue limit constraint used later in
the optimisation is approximative since no detail category exists in Eurocode for laser welded sandwich panels.

Total weight of the section:

Gssp(hc.ssp’tf.top’tf.bot’tc.ssp’%sp’fssp) = ’A‘ssp(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp)'p
Self-weight per unit width:

qself(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = Gssp(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp)'g“"‘c
Total permanent load:

q(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp) = qself(hc.ssp’tf.top’tf.bot’tc.ssp’("ssp’fssp) * Gcover

Traffic LM3:
120kN 120 kN

Aw.LM3 = _2-ac =
Total load for calculation of the fatigue stress:

qtot(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp) = Ow.Lm3 q(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)
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4. Deflection of SSP

The deflection of the SSP between main and transveres girders is calculated with the analytical solution for
deflection of a simply supported plate. The analytical solution was obtained from " Elasto-pfasto analysis of
corrugated sandwich steel panels" W.Chang.

Loads

Loads according to LM1

Characteristic load combination is used in the optimisation of the SSP
kN

d1g:= A1k = 9, Distributed load
m
Q4= % = 150-kN One wheel load
2

Uniformly distributed load

Load used in the optimisation:

ajctt = —22 11 ]

i-jm

Wheel loads

The wheel loads are placed symmetrically around the centre of the plate. The distance between axels is
1.2 m and the distance between wheels in one axel is 2.0 m

Wheel load 1

L B
X1 ::71+0.6m:4.6m yp = !

4-Q i-10-X jy
Qq(i,j) = 1d -sin ! -sin !
L1'Bg L By

18



Wheel load 2

Ly By
x2::7+0.6m:4.6m y2::7+lm:4m

4.Q i-7r-X jomy
Qy(i,j) = 1d -sin| 2 -sin 2
L1-Bg Ly By

Wheel load 3
Ly By
x3:=7—0.6m=3.4m y3:=7—lm=2m
4.Q i-7r-X jomy
Qa(i.J) = ——2 sin| —2 |.sin| ——>
L1'Bg L By
Wheel load 4

Ly By
x4:=7—0.6m=3.4m y4:=7+lm=4m

4.Q i-7r-X jomy
Qi) = —2 sin) ——2 | sin| ——=
L1By L By

Deflection

Poisson's ratios

“Xy =v=03

Dy.ssp(hc.ssp ’ tf.top’tf.bot’ tc.ssp’O‘ssp i fssp
= '|ij< D

Vyx(Ne.ssp- .top- t.bot te.ssp> Ossp: fssp) )
Y ( P P P P p) x.ssp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)

h fssp)

x.ssp(hc.ssp 4 tf.top’ t bots tc.ssp’o‘ssp > fssp)

2 Dy.ssp( c.ssp’tf.top=tf.bot’tc.ssp*%sp’

I’p(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =1-vyy D

Coefficients used in deflection formula

Dx.ssp(hc.ssp ’ tf.top’tf.bot’ tc.ssp""ssp > fssp)

D.

h t t t Q f
xx\''c.ssp> f.top> ‘f.bot> "c.ssp> Yssp- 'ss|
( P P pross p) 1- ny“’yx(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)

fssp)

1- l’xy"’yx(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)

D Dy.ssp(hc.ssp’tf.top’tf.bot7tc.ssp’°‘ssp’

yy(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =

19



Wij(hc.ssp=tf.top’tf.bot’tc.ssp""ssp’fssp’ i ’j) =
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Deflection

The deflection in the middle of the plate is considered

B
1
Ly Yi=—=3m

X=—=4m
2 2

Number of terms in the Fourier seris used in the deflection solution. Here both i and j are choosen to 1 since using more
terms is more computationally demanding in the optimisation analysis.

i=1.1 j=1.1
Distributed load

WUDL(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) =

jLi

Wheel loads

Wheel load 1

Wl(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = Z
j
Wheel load 2

Wz(hc.ssp > tf.top’ t bot: tc.ssp ’ 0‘ssp’fssp)

A
-

Wheel load 3

f

W3(hc.ssp=tf.top’tf.bot’tc.ssp’O‘ssp’ ssp) =

IN_.F4 1
-

Wheel load 4

W4(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = Z
j

Total deflection in the middle of the plate

E |: E | W5l Be sspetrtop:tEbottessprCesp-Tasp 44 _:"qijC[i-'j}'sm L |
1 1
\ ' J

(Wij(hc.ssp’tf.top’tf.bot’tc.ssp’assp’fssp’ N )'Ql(i ’j)'Si“(

v

(Wij(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ N )'QZ(i ,j)-sin(

(Wij(hc.ssp°tf.top’tf.bot’tc.ssp=°‘ssp’fssp’ i )'QB(i ,j)~sin(

v

Wtot(hc.ssp’tf.top’tf.bot’tc.ssp’assp’fssp) = WUDL(hc.ssp’tf.top’tf.bot’tc.ssp’o‘sspsfssp)
+W(N¢ ssp>trtop> t.bot> te.ssp> Cssp> fssp

+W3(N¢ ssp>t.top> t.bot> te.ssp> ssp- fssp

tWa hc.ssp’tf.top’tf.bot’tc.ssp’assp’fssp;
)

* W4(hc.ssp U top» tf.bot> te.ssp Ossp» Fssp
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5. Deflection main girder

The deflection limit of the main girder is used to design the main girders in order to see how the SSP configuration and
distance between transverse girders affects the main girder dimensions.

5.1. Loads and lane factors

) 3.0 0.5 20 0505 20 0.5 [m]
& 0 fl QI\L
q1
qz i’ q: i’ J l
l [ M I ] 1
A B
2625 T 6.0 = 2625

’ # # -

The load case resulting in the largest load on one main girder is shown in the figure above. The charateristic load
combination is used.

Loads

Traffic loads, (same numbering as in picture)

Qqk = 300-kN

Qo = 200-kN
Qgy = 0-kN
kN
=9.—
A1k 5
m

g, and q; have the same magnitude, only q, defined here:
kN

= 25—
A2k 2
m

22



Lane factors

Load positions

dwheel LM1
o1 = By + Loant % - 05m = 7.125m

|Q2 = IQ]- - W|ane =4125m

|Q3 = IQ]- - 2W|ane =1125m

lg1:= lgg = 7-125m

By

o=~ - (Wiane — Lcant) = 2625 m

Lane factors

Qilor + Qopcl
Rpg i QL C2lQ2 _ 15 e
By

R
B
|fQ = _BQ =0.988
91k Wiane g1 + 92k 2Wiane g2 kN
Bq = - 38625 —
q B m
1
kN

Rag = A1k Wiane * 92k 2Wjane ~ RBq = 3375'?

R
fo-—B9 oo

q Ragq * Regq

Reaction force at support B from axel loads

Reaction force at support A from axel loads

Lane factor for axel loads

Reaction force at support B from uniformly distributed load

Reaction force at support A from uniformly distributed load

Lane factor for uniformly distributed load

Loads on main girder B in the direction parallel to the main girders

Qif = g (Qqi + Qo + Q) = 493.75-kN

kN
Qi = Ifq'(qlk""’lane + q2k'2WIane) = 38625'?

Axel load

Uniformly distributed load
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5.2. Cross-sectional constants

Area
SspP

The effective width is assumed to remain constant at 80 % of half the width of the bridge.
By
be = 0.8 Lcant + 7 =45m

Area of SSP

AMG.tf(hc.ssp ’ tf.top’tf.bot’ tc.ssp »Ossp» fssp) = Assp(hc.ssp ’ tf.top’tf.bot’ tc.ssp »Ossp» fssp)'be

Main girder
The total height of the main girder is kept constant at 2.6 m.

hMG.W(tMG,bf) = 2.6m - tpmG.bf Height of web

AMGw(tMG.bf - tMG.W) = "Me.w(tMG.b ) tMGW  Area web

AMG bf (PMG.bf +tMG.bf ) = PMG.bf tMG b Area bottom flange

Full section

AMG.tot(hc.ssp’tf.top’tf.b0t°tc.ssp""ssp’fssp’bMG.bf IMG.bf ’tMG.w) = AMG.tf(hc.ssp°tf.top’tf.bot’tc.ssp=O‘ssp’fssp)
+Amc.w(tMe b tMe.w) -
+ AMG.bf (PMG bf - tMG.bf)

Moment of inertia

Centre of gravity
Measured from the top of the section

Zna.l\/IG(hc.ssp’tf.top’tf.bot’tc.sspﬁo‘ssp’fssp’bMG.bf9tMG.bf’tMG.w) #

. \ tf.top“‘.
"“)—i{}.tf'l_hc,.ssp-'tf.top-'tf.bot-'tc..ssp-'Q‘ssp-'fssp,:"; zﬂa.sspl_hc.ssp-'tf.top-'tf.bot-'tc,.ssp-'Q‘ssp-'fssp,:' * 5 j

i

N . gl |
+'JL}\.{G.wl_t}\.{G.bf-'t}\.-iG.w_:"; hssp.totl_hc.ssp -'tf.tcp-'tf.bot-'tc.ssp_:' + J.,

A . . tgbe )
+ 206 bl PMG bf - MG bE] | Bssp totl Be ssp-tetop:tebot-te.ssp) + PvewltMene) + —5— J

[5%]

AMG ot Pes sprFrop-Thot-tessp-Sssp: £ sp- oG bf -G b - tMG_w,:'
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Moment of inertia

Top flange:

Ix.MG.tf(hc.ssp=tf.top’tf.bot’tc.ssp’("ssp’fssp’bMG.bf=tMG.bf°tMG.w) =

Issp.xl,hc.ssp-'tf.top-'tf.bot-'tc.ssp-'C‘ssp-'fssp,:"be
.o Y
+A}\.{G.tfl_hc..ssp-'tf.top-'tf.bot-'tc.ssp-'C‘ssp-'fssp_:"f Zna.MG'_hc.ssp-'tf'.top=tf.b0t=tc.ssp=mssp=fssp -'bMG.bf -'t).-iG.bf-'t}\.-iG_w_:' h\
LL+ _zna.sspl_hc.ssp-'tf.top-'tf.bot-'tc..ssp-'O‘ssp-'fssp_:' J-'
Web:
IX.MG.W(hC.SSp’tf.top’tf.bOI’tC.SSp’O‘SSp’fSSp’ bMG.bf - tMG.bf ’tMG.W) =
h )
MG.w MG vl ]G b |
5
) ). 32

+ AMG wl MG bE -'t}\.-iG_w_:" [hy sp totlfles sp -'tf.top Trbot-Tes sp_:'
, "Gl MG b
S

;\\+ _‘Hla.l-i{}l_hc.ssp top-YEbot:-te.ssp:Cesp -'fssp -PMGbE MG bE "t:\'iG.‘-'v'_:l JJ

Bottom flange:

'x.MG.bf(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp’ bMG.bf - tMG.bf ’tMG.w) #

3
MG bf TMG.bE
-
+ A6 b | MG bf -'tMG.bf_:" ( hssp.totl,hc.ssp -'tf.top -'tf.bot-'tc.ssp,:'
N 16wl MG bE) + MG bE i
i‘_+ _Zna.MGl,hc.s speFiop: ot e ssp-Vssp £ sp MG bf - TG bE -'tMG.w,:' j

Full section:

Ix.MG(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’bMG.bf’tMG.bf ’tMG.w) #

LG £ Pe ssp-tEtop-tEbot - fo.ssp-ssp-Fssp - MG bf - ]MG bE - 'MG.w) -
P P P possp .

* Ix.l-iG.wl_hc.ssp -'tf.top -'tf.bot-'tc.ssp Psgp -'fssp bpig bf IGbE -'tMG.w_:'\
+ LG |_h-:.ssp Ytop-Fhot-le.ssp-Ossp -'fssp PMG bf - IMGbf -'tk-iG.w_:'
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5.3. Deflection

Two load cases are considered; one when the uniformly distributed load is in the middle span with the axel loads in the middle,
see figure below. The other with the uniformly distributed load in one side span and the axel load centred in the middle of that
span.

1)

~

Lspanl " Lspanz Lspanl

5.3.1. Deflection with load in mid span

agzz , bg22
|
agz1 | boay
i
U
4 ——— O] ) | b —— O
K uw D
65‘2 c1
A B w C D
span2

Distances to point loads and support angels for the load case when the load is in the middle span

I-span2 . daxel.LM1
2

aQ22 = =33.6m
bQZl = Lgpan2 — 8oy = 33.6m
bQ22 = LSpan2 - aQ22 =324m

Support moment
Continuity condition

-Og1= Om2
Oc1 = ®c2
Symmetry gives
982 = 6c1
981 = Oc2
Mg = Mc
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Standard cases for beam bending gives the expressions for eBland 0R2

01 = Mg Lspanl

3El
Me-L A ELess Queber-L bey12
0gy = B’ -span2 N LF *~span2 N If Q21 span2 1 Q21
3El 24EI 6-El L 2
span2
2
Qif-PQ22 Lspan2. . b2z ) Mc Lspan2
6-El L 2 6EI
span2

The continuity condition gives

3 2 2
9if-Lspan2 . Qif-bg21-Lspan2 L bgo1 . Qif-bg22-Lspan2 . bgo2

24 6 2 6 2
I-span2 I-spanz

Mp, =
B2
[Lspanl Lspanzj

+
3 2

Mgy = ~L473 x 10*kN-m

3
91 Lspan2
24

M =—
B2.
a _[ Lspanl N Lspanzj

3 2

— ~9.316 x 10°-kN-m

2 2
Qi P21 Lspan2 . boo1 ) Qi P22 Lspan2 L b2z
6 2 6 2

L, L,
2 2
Mgy o = span PN J _ _5.411 x 10°KkN-m
Q L L
| spanl . span2
3 2

Deflection

Deflection in the middle of the span

Wspanz(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssn’fssp’bMG.bf IMG.bf ’tMG.w) =

- 4
j":1].1°']‘spa.t12
3S'I'E'Ix.MGl_hc..ssp Ytop-Hbot-te ssp-Vssp £ sp P0G b MG bF -'tf\-iG_w_:'
2
Mp,L -
2 B2 “span2 -
16'E']x.}.-1GI_hc.ssp I top-Fhot:lc.ssp-Tssp -'fssp PG f MG b -'tMG.w_:'
2 27
. Q2021 Lapan? o dagyy |
ol = B
483E-L 4ol s i 2T A . N Y ) | 2]
Lonal c.ssplﬁftop Fhot:fe.ssprsspeTssp ba1G bf - tMG bE - MG N Lspa.nl<
2 { 2
. Q]f'lel'Lspanl 13z 'L'lel |
'I'S'E'Ix.l-i{}l_hc.ssp-'r'f.top-'r'f.bot-'tc.ssp-'c‘ssp-'fssp-'bMG.bf -'th-iG.bf-'tl-iG.w_:' | Lspa.nllj
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5.3.2. Deflection with load in side span

The deflection in the side span is calulated in the same manner as the deflction in the mid span. Now the distributed load is in
span 1 and the axel loads in the middle of span 1

I-spanl daxel.LM1

aQ11 = > =244m
L d
_ spanl axel.LM1

bQ11 = Lspant ~ 2Q11 = 25:6m
lez = Lspanl - anz =244m

Support moment
Continuity condition
fg1 = 9

Standard cases for beam bending gives the expressions for eBland 02

3 2
- Mgp-L q; gL Qir-apnq1-L a
01 B"-spanl . LF =spanl . If °Q11 spanl 1- Q11

3EI 24El 6-El L2
spanl

2

+Qlf'f’lle"-spanl L aQ12

6-El 2

Lspan1

0gy = MB'LspanZ
3E

The continuity condition gives

3 2 2
91fLspan1 . Qif-2Q11 Lspant 1 aQ11 . Qif-2Q12-Lspant 1 aQ12
24 6 2 6 2
I-spanl I-spaml
(Lspanz + Lspanl)
3

Mgy =

Mgy = ~9.191 x 10>KN-m
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Deflection
Deflection in the middle of the span

Wspanl(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’bMG.bf IMG.bf ’tMG.W)

j'ql.t"'l‘spa.ﬂl4
394'E'11i.}\-iGl_hc.ssp Y top-Fhot:Tessp Tssp 55 sp MG bf MG bE -'t).-i[G.\\'_.:' )
. MBI'LspmlJ -
16'5'&.)-1G|,hc.ssp-'tf.top-'tf.bot-'tc.ssp-'c‘ssp-'fssp PG bE -'t)-iG.bf-'t)-iG.w,:' p \
. Q]f'anl'Lspanlz __'3_ J"'ﬂquz |
'I'S'E']x.).-i(}l_hc.ssp-'tf.top-'tf.bot-'tc.ssp-'o‘ssp-'fssp NG BE -'t).-iG.bf-'t).-iG.W_:' L Lspanll{
5 / 3
. Qb1 Lspant” ae b |
'I'S'E']x.).-i(}l_hc.ssp-'tf.top-'tf.bot-'tc.ssp-'o‘ssp-'fssp NG BE -'t).-iG.bf-'t).-iG.W_:' L Lspanllj
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6. Stress in transverse girder

The yield stress in the bottom flange of the transverse girder is used as a constraint in the design of the transverse griders
in order to estimate how the SSP configuration affects the transverse girder dimensions. The transverse girder is shown
below.

tre.w hre.w

tTG.be ——————— *

bre.pr

6.1. Effective width top flange

The effective witdh of the top flange is calculated by using the reduction factor for buckling of a column with length of one
corrugation opening |,, width 1 m and thickness of the top flange. The transverse girder is designed to be in CSC3.

Buckling of the top plate due to bending of the transverse girder

jmp = 0.49 Imperfection factor, solid section class c

30



Area and moment of inertia of top flange in SSP:

ATG.tf.be(tf.top) = g goplm

3
‘ tf.tOp -im
ITG.tf.be(tf.top) = 12

Critical buckling stress:

mE ITG.tf.be(tf.top)

fssp =

Ncr(hc.ssp°tf.top’0‘55p’ >
Io(hc.ssp’o‘ssp’fssp))
Slenderness:

ATG.tf.be(tf.top)'fy

PN h t Q, f =
TG\ "c.ssp> f.top>Pssp> 'ss
( P P P p) j Ncr(hc.ssp*tf.top’o‘ssp’fssp)

Reduction factor:

2
QTG(hc.ssp’tf.top’ussp’fssp) = 0'5'[1 + 0‘imp'(>‘TG(hc.ssp’tf.top’o‘ssp’fssp) - 0'2) + >‘TG(hc.ssp’tf.top’O‘ssp’fssp) ]

XTG(hc.ssp’tf.toy:)’o‘ssp’fssp) =

1

= if >\TGl_hc,.ssp-'tf'.top-'0‘5513-'f5513_I' =02

. 2 X
q)TGl_hc.ssp top:Ts sp-'fssp_II + '\‘J@TGl_hc.ssp-'tf.top-'c‘ssp-'fssp I' - >\'I'Gl_hc,.ssp-'tf'.top-"3‘5513-'f55p I' A
1 otherwise

Effective width of top flange:

be.TG(hc.ssp’tf.top’o‘ssp*fssp) = XTG(hc.ssp’tf.top""ssp’fssp)'Ll

6.2. Cross-sectional constants
Area

Area of flange (SSP), only the top an bottom plate of the SSP is assumed to contribute in bending perpendicular to the
corrugation

ATG1f (Me.sspt.top: f.bot-Ossp+Fssp) = De (e ssp: .top:Ossp- fssp) (tfop * t.bot)
Arew("Tew tTe.w) = MTewtTew Area of web

ATG bf (PTG bf 1T bE ) = PTG bE TG b Area of bottom flange

Area of the mid section of the transverse girder
ATG.mid(hc.ssp’tf.top’tf.bot’o‘ssp’fssp’hTG.w’tTG.w’bTG.bf ’tTG.bf) = ATG.tf(hc.ssp’tf.top’tf.bot’o‘ssp’fssp)

+ATG.W(hTG.W’tTG.W
+ATG bf (TG bf +1TG b )
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Centre of gravity

Zna.TG(hc.ssp’tf.top’tf.bot’tc.ssu’o‘ssn’fssp’ 16w tTG.w- PTG bf ’tTG.bf)

/
i \ fop |
""‘TG.tfl_hc.ssp-'tf.top-'tf.bot-'c‘ssp-'fssp,:"; Zna.sspl,hc.ssp-'tfmj:u-'tf'.}:bmz-'tc.ssp-":“ssp-'fssp,:' * 5 j
_ N . bTGw)
+"‘LTG_Wl_hTG_w-'tTG_w_:"; hssp.totl,hc.ssp-'tf'.top-'tf'.bot-'tc.ssp,:' + 5 j
_ . ; TGf |
+ATE bl PTG b -'tTG.bf_:"; hssp.totl_hc.ssp-'tf.top-'tf.bot-'tc..ssp_:' +hygw y )

ATG.midl_hc.ssp FtopEbot- Yssp -'fssp PG w TG PTG bE -'tl"G.bf_:'

Moment of inertia
Top flange:
'TG.tf(hc.ssp’tf.top’tf.b0t=tc.ssp’°‘ssp=fssp’hTG.wJTG.w’ brG.bf otTG.bf) :

Issp.}fl_hc.ssp Mtop-Ybot-tessp-Vssp -'fssp ,:"be.TG |_hc.ssp top:ssp -'fssp :'

N bl
+AI'G.1:F|_hc.ss T top:Fhot-Tss -'fss :' zna.TG'_hc.ss T top-Thot-Te.ssp-Tss -'fss -'hTG.w-'tTG.W-'bTG.bf-'tI'G.bf_:'
P P prossp 5 P P P prossp
7

1 Z1"1:4..551:l|_hc.ssp -'tf.top-'tf.bot-'tc.ssp-'O‘ssp-'fssp_:' +

Web:

'TG.W(hc.ssp’tf.top=tf.bot’tc.ssp="ssp’fssp= hrew tTG.w PTG bf !tTG.bf) #

3
trew BTG w
12

7
I

brgw

+ A‘TG.\Vl.hTG.W-'tTG.W_:I-. h, sp.totl,hc.ssp T top -'tf'.bot-'tc.ssp,:' *

2

tf.top\-
2 )

L_+ _Zna.Tﬁl_hc.ssp top:TFbot:Te.ssp-“ssp -'fssp Brg w TG PTG bE -'tTG.bf_:' J.'

Bottom flange :

ITG.bf (hc.ssp’tf.top’tf.bot’ tc.ssp’o‘ssp’fssp’hTG.w~tTG.w’ b1G.bf ’tTG.bf)

3
BTG bf TTG.bE
5

7

+ATG.bf|_bTG.bf -'tTG.bf',:". hssp.totl,hc.ssp-'tf'.top-'tf.bot-'tc.ssp,:' +hpg gt

TG bf AN
.

LL+ _Zna.T'Gl_hc.ssp-'tf.top-'tf.bot-'tc..ssp-'c‘ssp-'fssp BTG - TG w PTG b -'tTG.bf_:' JJ

Moment of inertia of whole tansverse beam section:
ITG(hc.ssp’tf.top’tf.bot’tc.ssp’O‘ssp’fssp’hTG.W’tTG.W brG.bf ’tTG.bf) :

IrgarlBe s spFtop-Thot-Te.ssp-Tssp: £ sp BTG w TG w PTG bE -'tl"G.bf_:' .
+Ig B, sspftop bot:Te.ssp-“ssp £ sp BTG - 1TGw- PTG bE -'tTG.bf_:'\

* ITG.bfl_hc.ssp toptbot-te.ssp: Vssp fes
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6.3 Cross section class

In the preliminary design of the transverse girders the web is forced to be in cross section class 3. The following ratios needs to
be lower than hyg ,/tyg,, for this to be true. The bottom flange is also designed to be in cross section class 3 but this is done
directly in the optimastion .

Web span section

1J’TG.span(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ h 16w tTG.w PTG bf ’tTG.bf) =

hrgw+ hssp.totl_hc.ssp-'tf.top-'tf.bot-'tc.ssp_:' B lna.TGl_hc.ssp-'tf.top-'tf.bot-'tc.ssp-'c‘ssp-'fssp BTG w TG w PTG b -'tl"G.bf_:'

Zr'ra.l'{}l_hc.ssl:u-'tf'.mp-":F.bm:-'tc.ssp-":“ssp-'fssp BTG TG w PTG bf -'tTG.bf',:' - hssp.totl,hc,.ssp-'tf.top-'tf.bot-'tc..ssp_:'

BTG.Web.span(hc.ssp’tf.top’tf.bot’tc.ssp’(’ssp’fssp’hTG.W’tTG.W’ b1G.bf ’tTG.bf) =

4284

o # PG span(fe ssp+ Htap: T bot: fo sspsTsspsFssp : TG w1 TG w: PTG vf TG bf ) > =1
067+ 03301 cpon(Be ssp-Ttop Fbot-te.ssp- Ossp-Fssp PTG.w-tTG.w-PTGbE TG bE) pamessprHop prOSSPTESP i

62-23{1 =G span{Be ssp-tFop: rbot:te ssprissp Fsep DTG w1 16w+ PTG ve 116 b)) PTG spanlPe ssp+Frap - tebot: fe ssp:Pssp-Fesp PTG w TG w PTG be TG b Otherwise

Web support section

11JTG.support(hc.ssp’tf.top=tf.bot’tc.ssp°°‘ssp’fssp°hTG.w’tTG.w’ brG.bf ’tTG.bf) =

Zrla.Tl.'}l,hc.ssp-'tl".'ccrap-'tf'.bc:at-'tu:.ssp-'C“ssl:u-'f'ssl:u BTG w TG w PTG bE -'tTG.bf,:' - hssp.totl,hc.ssp-'tf.top-'tf.bot-'tc.ssp,:'

hrgw + hssp.totl_hc.ssp-'r'f.top-'tf.bct-'tc.ssp_:' - Zna.TGI_hc.ssp-'tf'.top-'tf'.bot-'tc.ssp-'c‘ssp-'fssp BTG T PO bE -'tTG.bf_:'

BTG.WEb.SUppOft(hC.Ssp’tf.tOp’tf.bOt’tC.SSp’OLSSp’fSSp’hTG.W’tTG.W’ brG.bf stTG.bf) =

424

o i 16 support! Pe.ssp-Etop-Ebot-e.ssp Pssp-Lssp PTG TG PTG bF 1T = —1
0.67 + 0334 suppart‘ ha.ssp'tf.mp 'tfbot'tc.ssp :Qssp 'fssp brG w tTGw-PTGRE -1TG bf} P " ® ® P ®

6231 = P15 support{he ssp: ttop-bot:Te ssp+Pssp Tssp MG v+ 176 w- PTG of 776 be =P TG support] ie ssp: Ftop S bot-Te sspCssp - Tssp ;PTG w: TG w-PTG bf -TTG br] otherwise
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6.4. Bending stress in bottom flange

Loads

The transverse girder is desiged in ULS using equation 6.10b in EN 1990 since this gives the

highest variable laod

The load case used are shown in the figure below. It is assumed that the transverse girder carries all load from traffic and

self-weight of the SSP from an area corresponding to L, x By

Transverse girder

o !
o s s s
OO ORI HH

%

Main girder

oS
SR e
et ey et i
S

<5 Il

GRS

e

92

v

F 3

Self-weight
Cantilever part:

gTG.cant(hc.ssp’tf.towtf.bot’tc.ssp’o‘ssp’fssp’ hrG.w ITG.w PTG bf =tTG.bf) =

e '—“sspl_hc.ssp ftop:Fhot-Tessp-Cssp -'fssp_:"L 1 h\ gp

L T6w M4 PTG + PTG be T * Tew Mo w )

34



Middle part:

gTG.mid(hc.ssp’tf.top’tf.bot’tc.ssp’assp’fssp’ h 1w tTG.w PTG bf ’tTG.bf) =

gl Asspl_hc.ssp Y top- ot TesspOssp -'fssp_:"l‘l ‘\ gp

| ATG.mid e ssp-Ftop - bot-Cssp-Tssp - BTG TG PTG be PTG bE] )

Traffic load

Two lanes between main girders

kN
= . -Lq =108-— Lane 1
aTG.1 = Q.1 %1k 1 m
kN
- \Qor-Lq = 30— Lane 2
a1G.2= Q.1 %2kt m
Wheel loads

One axel lane 1
Q1G.1= 1Q.1 Quk = 450-kN

QTGZ = "[Qlek = 300-kN One axel lane 2

daxel.Lm1 = 1.2m Distance between axels
dwheel.LM1 = 2M Distance between wheels
Wigne = 3M Width of traffic lanes
Moment

(a8
l——

MTG.cant

+

MTG.CQHCC

A 4

The maximum moment in the span of the transverse girder are calculated by treating it as a simply supported beam with support
moments from the weight of the cantilevering part
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Support moment

The support moments are determined by the self-weight on the cantilever part, they are equal due to
symmetry

MTG.cant(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ h 16w tTG.w PTG bf ’tTG.bf) =

{ 3 1 2 17
i Lognt | — L L |
cant cant cant cant
—lg g Asspl_hc.ssp-'tf.top-'tf.bot-'tc.ssp-'o‘ssp-'fssp_:" ' * g w 0BT w ——— + LG b TG b + g 00 hrg 6 J,"g' P

Span moment
Taking the moment equlibrium around A gives the reaction force at support B, Rg

RB(hC.SSp’tf.top’tf.bot’tC.SSp’OLSSD’fSSD’hTG.W’tTG.W’bTG.bf ’tTG.bf) B

r 7
:

gTG.m.idl_hc..ssp Ftop-TFbotte ssp-Tssp 5 sp BTG wtTEw PTG bE -'tTG.bf_:" ER

I

L CELﬂt‘\

WA

+ BTG.cantl . sspFiop oot T ssp Vssp- lcssp BTG TG PTG bE - tTbe:'Lcmt.Bl+

L
TETG. c.antlhc. sspFiop-Fhot-Tossp-Tssp: f'ssp BTG e Taw PTG BE tT’be:l

3

C,E.t‘lt

‘ 0 Y
| “la.ﬂe | R o
+ATG.1 * 9162 Mane' | Mane T 5 ) Qrg.10-3m + Q16,11 ¥ane ~ 05m) -

+QH}j |“la.ne + Djm:- + QTG’ [2Wjane — Djm:-

“lane

By
Vertical equlibrium gives the reaction force at support A, Ry
RA(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’hTG.W’tTG.W’bTG.bf ’tTG.bf) B

BTG mid|Pe. sspftop-fbot-te ssp-Ossp- ssp BTG TG w PTO b - 1:I'be:' By -

+ 287G cant| Pe. ssp:Frop-Fhot:tessp-Vssp: fssp BTG TG w PTG bE - tTbe':' Leant -
+4TG 1 Mane T 9TG 2 ane * 20161 + 20162 - .

+ _RBl_hc.ssp top:-U¥hot:le ssp:Cssp -'fssp PG w TG w PTG bE -'tTG.bf_:'

Span moment calulated for different parts
The x-coordinate is starting from support A
Part 1: 0<x<0.5m

MTGl(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ h 16w TG PTG.bf - 1TG bf ’X)

Rafhg sspFiop ot Tossp Vssp- fssp BTG TG BTGB tl"(}bf:"i
+Mpg, cantlhc sspFiop oot T ssp Vssp- lcssp BTG TG PTG b - tTbe:'

rG1*  ETGmidlbe. ssp-ftop-Hbot-tessp-ssp-Tasp PTG w TG w- PTG bE - I:Tbe:' 5

2 2
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Part 2: 0.5<x<25m
MTGZ(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ h1G.w 6w PTG bf - 1TG.bf ’X) =

Bafh, sspfrop ot e ssp ssp: fssp BTG TG w PTG bE - tTbe':'x
+Mrg, cantlhc sspFtop-Fhot:Tessp Dssp: fssp BT6 - TG w PTG bf - PTG bf':'
aTG.1 "
2
+—01q 1-(x - 0.5m)

BTG mid{Be. sspFrop FThot-Tossp Ossp: fssp 16 - tTaw PTG BE tTbe:')‘
2

Part 3: 25<x<3.0m

MTG3(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ h 16w ITG.w-PTG.bf - 1TG bf » X) =

R_—‘Ll,hc.ssp-'tf.top-'tf.bot-'tc.ssp-'c‘ssp-'fssp DTG - TG w PTG bf -'tTG.bf,:"x L
+Mrg, c.antl,hc..ssp Wtop-Fbot-Tessp-Cssp £ sp BTG w O w PTOBE -'tTG.bf,:'
pl
161 %
2
+-Qrg.1 (5~ 03m) - Qg 1~ (Wiane — 05m]]

]
g1"'[."r.r:f1.id|_hc.ssp I top Fbot-Te.ssp Tssp e sp BTG w TG PTG bE -'t'I'(.“r.l:if.:"’i

2

Part 4: 3.0<x<35m

MTG4(hc.ssp’tf.top’tf.bovtc.ssp’o‘ssp°fssp’hTG.w’tTG.w= bTG.bf tTG.bf ’X) =

R_—"il_hc.ssp-'tf.top-'tf.bot-'tc..ssp-'c‘ssp-'fssp BTG - TG w PTG b -'tl"(}.'r:bf_:"ji o
+ \iTG.cantl_hc.ssp Y top-Fhot:tessp Vssp -'fssp BTG o TG w PTG bE -'tTG.bf'_:'
A

\ 2
|l ™lane | 2TG.mid! Pessp-Htop-Ebot-te.ssp Vssp-Lssp PTG w TG PTG bE TG B )
TG Mane | FT 5 | S

7
I

L
i (%~ Wiane I
*Qrgy(x - 0m) - QTG-Y[- ~®ane ~ D_im[l - qTG.E'%

Maximum moment in span

Function that transform a range variale to a vector, needed to use max function in Mathcad

xvec(sl,sz,e) := | Count « ORIGIN
for ie $1,5p.. €

VecCount i

Count < Count + 1
Vec
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Defining x-ranges

"step = 0.01m Step
X161 = Xvec(0m=0m + nstep,0.5m)
XTG2 1= Xyec(0-5M.0.5M + Ngyep. 2.5m)

(
X763 = xvec(2.5m,2.5m + nstep°3'0m)
(

XTG4 = Xyec(3:0m,3.0m + “step=3-5m)

Finding maximum moment

By testing the maximum moment was found to be in the range 2.5<x<3.0

MTG.max(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ hrG.w tTG.w PTG b =tTG.bf)

max| Mygsi Be ssp-ttop-tEbot-te.ssp Ossp-fssp - PTG w TG PTG bf - TG bE - *163))

Bending stress

OTG.bf (hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp’ hTG.w ITG.w PTG bf ’tTG.bf) #

M6 maxl Be ssp- top: bot-te.ssp-Pssp-Tssp - PTGw TG w PTG bE - TG LE] . N
hssp.totl hc..ssp-'tf.top-'tf.but-'tc.ssp:' + B1G . T ITGRE _.
;\_+ ~Zna TG 1'lc,.ssp Ftop-Ybot-te.sspssp £y sp BTG TGw PTG bf - 1TG bt ) j

16 e ssp-ttop-tbot-fe ssp-Ossp-fssp PTOw+ 1TGw - PTG b7 - TG bE)
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7. Total steel volume in bridge section

9]

SP

Vssp(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp) = Assp(hc.ssp’tf.topvtf.bot’tc.ssp’o‘ssp’fssp)'Btot

Main girders
VMG(PMG.bf - tMG.bf - tMG.w) = 2(AMG.bf (PMG bf - tMG bf) + AMG.w(tMG.bf - tMG.w))

Transverse girders
Middle part :

V1 mid"Tew tTew PTG bf - tT6 bt ) = B1(MTewtTe.w * PTG bf tTG.bF )

Cantilever part :

LTG.edge(hTG.w) = \](Lcant)z + (O-B'hTG.w)2

047G w + hrG.w
— 5, tew* L7 edge("TG.w) PTG bf TG bf

V16.edge(MTG.w- TG w-PTG.bf 116G bF ) = Leant
Total volume:

V16.mid("Te.w- tTe.w: PTG b +1TG.bf ) + 2V1G edge( TG+ tTG.w- PTG bf 1T bf )
L
1

V1a(hTew tTew DTG b - tTe bf ) =

Total volume of bridge section per unit length

Vtot(hc.ssp’tf.top’tf.bot=tc.ssp’°'ssp’fssp’bMG.bf tMG.bf» tMG.w TG tTG.w: PTG bf ’tTG.bf) :

vsspl_hc.ssp -'r'f.top -'r'f.bot-'tc,.ssp.-'c‘ssp -'fssp,:'
*+ VG| MG bf TG bF - MG

+ V16 h16 w- TG w- PTG bE - TG bE)

39



8. Optimisation

In the optimisation the cross-secional area of the SSP was minimised within given constraints. Furthemore, preliminary
dimensions of the main and transverse girder were calculated for the optimised SSP.

— 6

CTOL := 1-10 Tolerance the minimising iteration
8.1. SSP
Definition of constraints

- mi”(BlﬁLl) The global deflection in the mid span should be limited to the
ws 400 shortest of B, and L, divided by 400.
|
=P ppeq
tc.ssp

I <1 Maximum width to thickness ratios for compression parts must be in
t top ! cross-section class 3.

|

< 4263

t bot
20mm < f The length of the horizontal corrugated segment has to be a small as

mm = Tssp possible to minimize the resulting moments which cause local buckling

in the face plate.
lss The local deflection of the top plate needs to fulfill the required control
1 < Tg 1.ssp/400. Taken from TRVFS 2011:12, pg. 64.
4
U LM3 s 2 To check the fatigue strength of the welded joints the stress in the

71MPa > WV SR joints needs to be less than the stress value from the detail category

1m-2:t¢ 4o 2 given in EN_1993-1-9. There is no detail category in Eurocode for the

top laser weld detail connection that is used in a SSP so 71MPa is taken
as a reference since it's a reasonable stress value used for toe
cracking of weld. Load Model 3 was used for the fatigue loads acting on

the deck.

Calculating deflection limit
Shortest of B, and L,

By
Sy = | O g« ——— if By <L

lim.mid lim.mid ™ 400 0.78 1="1
L
otherwise

S e ——
lim.mid = 450.0.78
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Minimising SSP area

Predefined values

hc.ssp = 180mm tf.top = 7mm Oggp = 65-deg
tessp = 7TMM Lt hot = 7Mm fisp = 20mm
Constraints
Given
| h Ne? ’f | h R ,f
o< JolMesspOssplesp) 5 o < JolMessp-ssp-fssp) _ 204
U bot tf top
| h , 0
0< c.ssp( c.ssp ssp) <a2eq
tc.ssp
20mm < fssp

Wtot(hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp7fssp) < 8jim.mid

2
qw.LM3'|ssp(hc.ssp »Ossp> fssp)

71MPa >
(lm tf.top2'2>
|

ssp(hc.ssp’o‘ssp’fssp) N
400

Minimising SSP area

= 5I(hc.ssp’tf.t0psstp’fssp)

he.sspA
tf.topA
1 botA
tc.sspA

QsspA

fsspA

= Mi”imize(vssp’ hc.ssp’tf.top’tf.bot’tc.ssp’o‘ssp’fssp)

a1



8.2. Main girders

Definition of constraints

I-spanl
WSPanl < 400 . . L
The deflections in span1 and span2 are limited to L/400
w < Lspanz
span2 = 400

The web of the main girder of the web was fixed to 18mm, which was used in the

tMew = 18mm composite bridge over Bergforsen. With this thickness the web is in CSC 4, and a
reduction of the area should be made. This area reduction is omitted since the
purpose of preliminary design of the main girders only is to estimate of the steel
volume of the bridge.

bmG.bFtMGw
2 = 14.53 The web and bottom flange of the main girder must be in cross
t\MG.bf section class 3.

Minimising area of main girders

Predefined values

bMG.bf = 800mm tMG.bf = 18mm tMG.W = 20mm

Constraints

Given

I-spanl
400

Wspanl(hc.sspA’ tf.topA’ 1 botA tc.sspA’O‘sspA’fsspA’ bMG.bf »tMG bf - tMG.W) <

I-spanz
400

WspanZ(hc.sspA’ tf.topA’tf.botA’tc.sspAs&sspA’fsspAs bMG.bf > tMG.bf ’tMG.w) <

bmG.bftMe.w
2
= 1463
t
MG.bf
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Minimising area of main girders within given constraints

bMG.bfA

tMe.wA

8.3. Transverse girders

Definition of constraints

otepf <fy

bre.bftrew

2
= 1453

TG bf

The stress in the bottom flange must be below the yield stress

The web and bottom flange of the main girder must be in cross
section class 3.

Minimising area of transverse girders

Predefined values

Constraints

Given

h
0< TG.w

trew

h
0< TG.w
trew

bre.prtrew

2
= 14-&:3

TG bf

< ﬁTG.Web.span(hc.sspA’tf.topA’tf.botA’tc.sspA""sspA’fsspA’ hrG.w ITG.w PTG bt ’tTG.bf)

< ﬁTG.Web.support(hc.sspA’tf.topA’tf.botA’tc.sspA’O‘sspA’fsspA’hTG.W’tTG.W’ bTG.bf ’tTG.bf)

OTG.bf (hc.sspA’ tt topA- t.botA te.sspA - sspA- fsspAs NTGws 1TG.w PTG bf ’tTG.bf) <fy
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Minimising area of transverse girders within given constraints

hrewa
Te.wA o
b = Minimize( V6. h1g e tre.w: PTG bf 176 bf )
TG.bfA

tTG.bfA

a4



9. Elastic constants for SSP
9.1. Change in dimensions of SSP

The plate thicknesses of the chosen configuration are rounded up to whole or half millimeters. The new dimensions are checked
to fulfill the given requirements. tt op WaS changed to 7 mm since the FE-analysis showed that 6.5 mm did not provide enough

capaciy for local stress under wheel loads.

Change in dimensions

hc.ssp tf. top tf,bot

Npe = 146MM — he gopn Nitop = 7:0MM — tf 550 Nipot 7= SSMM — tf hota

tc.ssp assp fssp

Nic = 5mm — tc.sspA Ny = 1.094414 - O5spA ng := 0mm

New dimensions Dimensions from the optimisation
hc.sspN = hc.sspA + Npe = 146-mm hc.sspA = 145.4607-mm

tf.topN = tf.topA + ”ttop =7-mm tf.topA = 6.497-mm

tf potN = t.botA + Nipot = 2-5-mm tf pota = 5:188-mm

tc.sspN = tc.sspA + N =5-mm tc.sspA = 4.839-mm

Q = 1.075191
OgspN = OsspA + N = 1.094 SspA

180
%SPN% - 62.705 Osspa = 61604

fsspN = fispa + Mg = 20-mm fsspA = 20-mm

9.2 Elastic constants

All the elastic constants are calulated per unit width

Axial stiffness parallel to the corrugation:

ExN = Ex.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN’fsspN) = 4.655 x log‘%
Axial stiffness perpendicular to the corrugation:

Eyn = Ey.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN’o‘sspN’fsspN) =2.732 % log‘%

Horizontal shear stiffness:
. 9 N
GyyN = ny(hc.sspN’tf.topN’tf.botN’tc.sspN’o‘sspN>fsspN) =1219x 10 “m

Bending stiffness parallel to the corrugation

7
Dxn = Dx.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN’fsspN) =2.05x 10 -N-m
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Bending stiffness perpendicular to the corrugation:

7
Dy\ = Dy.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN’fsspN) = 1637 x 10 -N'm
Torsional stiffness:

7
DyyN = ny.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN~fsspN) =1233x10 -N-m

Transverse shear stiffness parallel to the corrugation

8 N
Doxn = DQx(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN’fsspN) =5.684 x 10 “m

Transverse shear stiffness perpendicular to the corrugation

8 N
DQyN = DQy(hc.sspN’tf.topN’tf.botN’tc.sspN’(’sspN’fsspN) =1135x 10 E

9.3. Additional constants

Engineering constants

The engineering constants are used when the SSP is modelled with the lamina model in Abaqus

Total height of SSP
From centreline top plate to centreline of bottom plate:

hn = hssp(hc.sspN’tf.topN=tf.botN’tc.sspN) =0.157m

Engineering constants

12-D.
XN 10
EyeN = =6.33x 10 -Pa
hN
12-D,
. yN 10
EyeN = - 505x107Pa
hN
6-D.
XyN 10
GyyeN = - L9x107Pa
hn
D,
) QxN 9
GyzeN = 75 =4.337 x 10"-Pa
= |h
(6) N
D,
. QyN 8
GyzeN = =866 x 10 -Pa

5
(E)m
Area, center of gravity and moment of inertia SSP

The constants calculated here are needed for the check of the local stresses in the SSP and launching see Appendix B and
Appendix C.
2

m
AsspN = Assp(hc.sspN’tf.topN’tf.botN*tc.sspN’O‘sspN’fsspN) = O'OZZ'F
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Center of gravity

Zna.sspN = Zna.ssp(hc.sspN’tf.topN’tf.botN’tc.sspN""sspN’fsspN) =0.074m

Moment of inertia

Parallel to the corrugation:

4
-5m
lssp.xN = Issp.x(hc.sspN’tf.topN’tf.botN’tc.sspN’O‘sspN’fsspN) =9.763x 10 m
Perpendicular to the corrugation:
-5 m4
lssp.yN = Issp.y(hc.sspN’tf.topN’tf.botN’tc.sspN°°‘sspN’fsspN) =7.644x 10 m

9.4 Control of new dimensions

The new dimensions are controlled for local deflection and cross section class

Local deflection

Length of cross-section (2p):

lsspN = Issp(hclsspN,asspN,fsspN) = 190.678-mm

Local deflection:
oN = 5I(hc.sspN’tf.topN’O‘SSpN’fsspN) = 0.344-mm

Control

IsspN

oy =0344-mm < =0.477-mm OK

Cross section class
All parts of the SSP should be in CSC3

Length of the inclined leg of the core:

lc.sspN = Ic.ssp(hc.sspN’O‘sspN) = 164.292:mm

Length of corrugation opening
o = lo(Nc.sspN-OsspN- fsspn) = 170.678:-mm

Control

|
Corrugation SN _ 5o g5 < 42e4-34172  OK
tc.sspN
lon
Top flange =24383 < 42eq=34172 OK
tf.topN
|
Bottom flange =31.032 < 42e49=34172 OK
t botN
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10. Steel volume

The steel volume of the SSP, main girders and transverse girders is calculated. This is done in order to see how different SSP
configurations and distances between transverse girders affects the steel volume. The volume calculation is done for the
optimised dimensions i.e before changes. The volume is calculated per unit length of the bridge.

Main girder dimensions Transverse girder dimensions

h
TG.WA
7.4
bMG.bfA 866.09 557.485

. 57298 TG.wA 5.798
MG.bfA | = 37. -mm = -mm
t 18 bTG.biA 370.103
MG.wA t 16.081
TG.bfA
Volume SSP:

3
m
Vssp(hc.sspA’tf.topA’tf.botA’tc.sspA’O‘sspA>fsspA) = 023375'?
Volume main girder:
3
m
VMG(PMG.bfA tMG bFA  tMG.wA) = 0.15674.~—

Volume transverse girder:
3
m
V1e(hre.wA-tTG wA- DTG biA-tTG.bfA) = 0.01231-~ =

Total steel volume:
3

m
Viot(Nc.sspA- t.topA- tF.botA - te.sspA- OsspA- fsspA: MG bfA+ tMG.bfA tMG. WA NTG.WA TG wA - PTG bfA - TG bfA) = 0403-=—
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11. Vector imported to FE-model

The elastic constants calculated in the optimisation swere used in FE-analyses, in which the SSP was modeled as an equivalent
singel layer. Since a lot of different and configurations of the SSP wereanalysed the model was scripted. This section gives a
vector of the results from the optimsiation, which can be saved as comma seperated values and imported to Abaqus.

The constants used in the vector are
Vy=I[h.cssp tftop tfbot tc.ssp a.sspfsspAssph ExEyGxyD.x Dy D.xy D.Qx D.Qy Exe Eye
Gxye Gxze Gyze w_mid w_cant]
Both the elastic stiffness constants and the engineering constants are included since both the general shell section and lamina

model was used. The deflection in span w_mid and at the cantilever w_cant is put to zero in this vector. When the FE-analysis is
finished the deflections are recorded and written to the two empty places.

[Bessp ttopN YhotN TosspN foopN AsspN N Eaw By Gov D Dy Do Dou Doy ExeN EyeN GiyeN OxzeN Gyzen 0 n\'
. oy, PN TTEspN W TN TN T TN TyN T 7O Uy TeeN TyeN TayeN TmeN TyeeN
VN - mm mm mm mm sspN mm m m E 5 E N-m N-m N-m E 5 Pa Pa Pa Pa Pa
N m m m m m )

Vector imported to FE-model

0 1 2 3 4

VN =
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Appendix B- Local stresses in SSP

Contents

1. INPUT DATA
1.1. Bridge geometry
1.2. Material properties
1.3. Loads

2. LOCAL STRESSES IN TOP PLATE
2.1. Normal stress from global bending over main girders
2.2. Local bending stress under wheel load

3.. COMPRESSIVE STRESS IN BOTTOM PLATE
3.1. Reduction factor for buckling
3.2. Buckling resistance of bottom flange

4. PLASTIC COLLAPSE OF CORRUGATION
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1. Input data
1.1. Geometry

Bridge
Biot = 11.25m Total free witdh of bridge
Ly:=8m Distance between transverse girders
By = 6m Distance between main girders

B, — B

tot 1

Leant = 5 =2625m Length of cantilever part
Lspan := 50m Length of side span
Lspanz = 66m Length of middle span
Liot = 2'Lspanl + '-span2 =166m Total length of the bridge
SSP
hc.ssp = 146mm
tf.top = 7.0mm
tf.bOt = 5.5mm
tc.ssp = 5mm

aggp = 1.004414

fssp = 20mm

tf.top t bot +t ~ 0457m

h csspt T, T, c.ssp

sspLi=h

tf top I bot
hggp:=h + —— + —— =0.164m Total height of SSP ( top topplate to bottom bottom plate)
p sspl 2 2

h
lbuck = ﬂ-z +fgqp=0.171m Lenght of corrugation opening
tan(assp p
lbuck 1[ssp
= +— =0.095m
Pssp 2 2
m2
ASsp = 0.022165 — Cross-sectional area/unit width of SSP from optimisation
m
Zna.ssp = 0.07355 m = 0.074 m Center of gravity SSP
m4
hessp = 9:461x 107> = Moment of inertia SSP
' m



~

= 7.6441x 10" °

. m
y.ssp’ m

hc.ssp

o= tan(assp)

=0.171m

2+ fssp

1.2. Material Properties

v:=03
kg
= 7850 —
P 3
m
E := 210GPa

E ) = 80.769-GPa

f

. ftop = 460MPa

fy ¢ = 355MPa

fybet := 355MPa

vy = 10
1.3. Loads

Self-weight
Vg = 1.35

€= 0.89

Asphalt cover

toover = 50mm
kN
Yeover = 23—
m
kN
9k cover = tcover Ycover = 1'15‘_2
m
SSP
kN
= p-0-Acepy = 1.706-—
Ik.ssp = P9 Assp p
m
SSP and cover

kN
94 = 5'”fg'(gk.ssp + gk.cover) = 3-432'_2

m

Moment of inertia SSP

Lenght of corrugation opening

Poisson's ratio

Density of steel
Modulus of elasticity

Shear modulus of elasticity

Yield stress top plate of SSP
Yield stress corrugation of SSP
Yield stress bottom plate of SSP

Partial factor for instablity checks

Partial cofficeint for self-weight in ULS
Reduction factor for self-weight
Thickness of the asphalt cover
Asphalt density in [kN/m~3]

[4] p45

Asphalt load



Traffic load

Q= 15 Partial factor variable load
DL
kN
=9—
Ak p
m
ag = 0.7 Reduction factor for UDL traffic

kN
m

Axel load
Q = 300kN One axel load
ag = 0.9 Reduction factor for axel load

Qq = "\{Q'OLQ-Qk = 405-kN
daxel = 2.0m Distance between axels

Wiane = 3.0m Lane width

1.4. Results from FE-analysis
Normal stress component in top plateom bending in y-direction
Ox.yn.top.FEM = 126MPa

Bending stress component in top plate from bending in y-direction

Oy yb.top.FEM = 404MPa

Normal force in y-direction in bottom plate of SSP, per unit width.

kN
NEd.y.bot FEM = 617 ==

Stress in the top plate from global bending

UXftOpFEM = 196 MPa



2. Local stresses in top plate

The local stress in the top plate was obtained under the wheel load next to the main girder. The stress has two componets;
normal stress from bending of the cantilever part of the SSP and local stress from bending of the top plate between corrugations.
This control was made in order to se if it was possibe to include the local stress in the top plate as a constraint in the
optimisation.

2.1. Normal stress from global bending over main

Z
Q4 Q4
L, | |
N g +g |
N
Y
2.625m

The SSP was treated as a cantilever fixed at the main girder. The stress under the wheel load closest to the main girder was
calculated

Moment

Effecitve width of the SSP

Wheam = 8:9m Assumed value

Moment
2

X< .
M(x) = (qd'Wbeam + gd'Wbeam)'? if Om <x <0.5m

2
X .
(qd‘Wbeam + gd‘Wbeam)'? + Qg (x — 0.5m) if 0.5M < X < dgyey + 0.5m

2
X .
(qd'wbeam + gd""’beam)'? + Qqg(x — 0.5m) + Qd~(x —0.5m - daxel) if dayel + 0.5M <X < Lgnt

3
Mg := M(dgye) + 0.5m) = 1.168 x 10™-kN-m

Cross sectional constants

_4 4
Itot.y = Wbeam"y.ssp =6.803x10 'm

Normal stress top plate

I .
tot. - Section modulus
Wiy = —2 = 9.25x 107 >m°
Zna.ssp
Mg
Oy ynitop = —— = 126.303-MPa

Normal stress from FE-analysis:

Ox.yn.top.FEM = 126 MPa



2.2. Local bending stress under wheel load

Z

L,_V Q172

| Gi+g |

& &, & A &

The local stress from bending was calcualted by treating the top plate as a continuous beam supported on the corrugation.

Moment
Max filtmoment (Faktor: gL¥) Stadmoment {Faktor: gL?)
Belasiningsfall
My, My My M, M, My Mo My Mg
4fack  STEFRRENL 00772 0,0364 0,0364 00772 —0,1071 —0,0714 —0,1071
. 0,0561 0,0561 —0,0357 —0,1072 —0,0357

The highest support moment was calulated using the beams shown in the table above.

- ? % | g N
M 00T {1+ 1 v (g 02072] o, P a0

Cross-sectional constant

t 2
f.top -
Wtf.top = T =8.167 x 10

w

6 m
m

Stress from local bending in top plate

o . MB.loc
X.yb.top -~
yb-iop Wtf.top

= 390.021-MPa

Bending stress from FE-analysis:

Oy yb.top.FEM = 404 MPa



3. Compressive stress in bottom plate

Due to bending of the SSP deck in the y-direction there is a risk of face wrinkling in the bottom plate of the SSP.
The largest compresive force from the FE-model occured in the bottom plate next to the main girder, see figure
below.

" Main girder

In order to calulated the buckling resistance of the bottom flange in the y-direction, it was treated as a simply
supported column with length of one corrugation opening |,.

3.1. Reduction factor for buckling

2
Af bot = tipot = 55 % 10 3»% Cross section area of a unit width strip of the bottom plate
3
If ot _gm? o
'f.bot.y = o 1.386 x 10 o Moment of inertia
2
7 -E-l
Ngp = ——— 22 _ ogg433. N citical buckiing force
2 m
lo
Qimp = 0.49 Imperfection factor for solid section [1] Table 6.1
buckling curve ¢
’ A,
X:i= M = 1.407 Slenderness [1] (6.49)
cr

2
By = 0.5{1 + Qjmp (A = 0.2) + xw = 1785

Xc = ! = 0.347 Reduction factor
2 2
q’l + '5131 -\
Xe= |1 if xg21 =0347
X¢ Otherwise




3.2 Buckling resistance of bottom plate

Buckling resistance:

£ .
N = M _ 676.887~k—N [1] (6.47)
b.Rd
M1 m

Normal force in y-direction from FE-analysis:

kN
NEd.y.bot FEM = 617 =

NEd.y.bot.FEM

-0912 <10
Np.Rd

The bottom flange has sufficent capacity



4. Plastic collapse of corrugation

When the SSP is subjected to high patch loads from the wheels there is a risk for plastic collapse
of the corrugation. The plastic collapse load can be determined from:

M 05
ki-Bc+ —— :
1 2
M 2-M o,
F’plc("ratio) = 24—t 4. 1+ ke Kot e );.f.top
s s + KKz lessp y.c
where:
c:= 0.5m Load lenght of the corrugation, in this case the length of one wheel
fy.f.top = 460-MPa Yield stress top plate of SSP
fy ¢ = 355-MPa Yield stress corrugation of SSP
f, Pecpt 2
L= M = 1.074 x 10°N-m [1] (187)
£ ot o’
My, = 2P 5219 10°L.nm [5] (188)
4 m
Pespltop.
Iy = %ﬂc’p —545x 10 °m? 5] (189)
Mtz
Ky := ——— =0.038 [5] (190)
12.E-1-My,
. 2
2-ko-sin( oy
2
&= atan Zhysin(ossp)” - 0.076 5] (191)
. 2 K 2
S'“(O‘ssp) - ko
. 2 . 2
f sin(o, - sin(¢)
Ky = yftop ( _SSp) _ 208811 [5] (192)
40'tc.ssp'fy.c sin(¢)-cos(d) m

Mt 5] (193
8= W:o.omm [5] (193)

[5] (194)

kg = jsin(oassp)2 + %-cos(ussp)2 =1.486
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Plotting plastic collapse load

The plastic collapse load of the corrugation is plotted against the ratio between the stress in the top plate and
yeild stress of the corrugation, in order to see how the stress in the top plate affects the plastic collapse load.

M
kq-B-c+
M \ r? 2Myy 20'5 5] (186)
Poin(Gpatin) = 2| 4— + 4| ———— -(17 Ot —‘ 5] (186
plc( ratlo) 8 8 |1+ kl'k3'tc.ssp ( ratlo)

Function that transforms a range variale to a vector
xvec(sl,sz,e) := | Count « ORIGIN
for ie 1,59

VecCount i

Count « Count + 1
Vec

Creating vector with top plate stresses from 0 to the yield stress of the corrugation with steps of IMPa

OMPa, 1MPa,f, )

Oy f.top.vec = Xvec( oy

Ratio between top plate stress and yeild stress of corrugation

_ Ox.ftop.vec
Oratio = 7 ¢
y.c

Load from one wheel

The wheel load in ULS is included in the plot in order to see which ratio that is needed for the SSP to have sufficent

capacity against plastic collapse.

Qk
Pwheel = "‘{Q-OLQ-T = 202.5-kN One axel load

Ratio at which plastic collapse occures

Given

Opatio.int = 0-1 Start guess

Pplc(“ratio.int) Pwheel

Oratio.int = Find("ratio.int) =0.778

The C’x.f.top/ fy.c ratio needs to be smaller than 0.778.
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Plot 4x10°
107
F’plc("ratio)
F’wheelJ
[«5)
2 (P
S wheel 2107
L ~=
0
PWhee|+100kN
1x10%
0
0

Plastic collapse load

0 | “ratio.int
Tratio-| 4 |’ o
Oratio.int

ox.f.top/fy.c

With the stress in the top plate, obtained in FE-analysis

Ox f.top.FEM = 196-MPa

The plastic collapse load is:

5 0.5

My
kq-B-c+
M, wl t P 2-M,,
Polc = 24— + 4—-
p 8 B 1+kyKgtessp

Giving the utilisation ratio of the SSP

P
wheel _ 754 <1.0 oK

plc

l1o [Ux.f.top.FEM

f

= 268.622-kN
y.c
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Appendix C - Capacity during launching

Contents
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1.1. Bridge geometry
1.2. Material properties

2. LOADS
3. MOMENTS AND SUPPORT REACTIONS
4. RESISTANCE TO PATCH LOADING

5. MOMENT RESISTANCE
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5.2. Effective cross-sectional constants
5.3. Moment resistance

6. LATERAL TORSIONAL BUCKLING
7. CAPACITY CHECKS
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1. Input Data
1.1 Geometry

Bridge

Biot = 11.25m Total free witdh of bridge

Bssp = 6m Distance between main girders

LSsp = 8.3m Distance between transverse girders

B — B

Leant = tot s _ 2.625m Length of cantilever part

Lspanl = 50m Length of side span

Lspanz = 66m Length of middle span

Liot = 2-LSpanl + Lspan2 =166m Total length of the bridge

SSP
m2

ASSp = 0.022165 — Cross-sectional area/unit width of SSP, from optimisation
m

hc.ssp = 146mm

tf.top = 7.0mm

tf.bOt = 5.5mm

tc.ssp = 5mm

Oggp 1= 1.094414

fssp = 20mm

tf.top t bot

+ = s = 0457m

hssp1 = Nessp +

tf.top % bot

hegp:==h + —— 4+ —— =0.164m Total height of SSP ( top topplate to bottom bottom plate)
p sspl 2 2
hc.ssp . )
lpuck = —— ~ 2+ fssp =0.171m Lenght of corrugation oppening
ta”(o‘ssp)
5 m4
Ix.ssp = 9.461 x 10 F Moment of inertia SSP
tf top .

Znassp = 0.07355 m + —— = 0.077m Center of gravity mesaured from the top of the top plate

' 2



Main girder

The section used depends on the length of the launching nose and which support that

is considered.

Support A

Length of Main girder
launching nose: element:
0-6 m 4

6-21'm 3

Element 3:

bMG.bf.3 = 572mm

MG bf.3 = 44mm
MG.w.3 = 26m = tyg pf.3 = 2.556:m

tMGw.3 = 21mm

Element 5:

bMbe5 = 544mm

tMbe5 = 46mm

=125m

. Lspanl
LN~ 4

Support A

DMG.bFA = PMG.bf 3 = 572-mm
IMG.bf.A = tMG.bf 3 = 44 mm
hMGw.A = hMew.3 = 2.556'm
tMGw.A = tMG.w.3 = 2L:mm
Support B

bMG.bFB = PMG.bf.4 = 626:mm
IMG.bf.B = tMG.bf.4 = 63-mm
hMGw.B = "MG.w.4 = 2537'm

tMG.w.B = tMG.w.4 = 23-mm

Support B

Length of Main girder
launching nose: element:
0-1m 6

1-11m 5

11-22 m 4

Element 4:

bMG.bf.4 = 626mm

IMG.bf 4 = 63mm

hMGw.4 = 2.6M =ty pfa = 2.537m

tMG.w.4 = 23mm

Element 6:

bMbeG = 490mm

tMbeG = 32mm

Length of launching nose

Width bottom flange
Thickness bottom flange
Height of web

Thickness of web

Width bottom flange
Thickness bottom flange
Height of web

Thickness of web



Transverse girder
hrG.w = 557mm
trgw:= 7mm

Edge beam
hEB = 402mm

bEB = 300mm

tEB = 20mm

1.2. Material properties

v:=0.3
pg = 785049
3
m
E,:= 210GPa
ES
Gy = ——— = 80.769-GPa
2:(1+v)
fy, == 460MPa
235
epf = |[— =0.715
bf J 460
235
ey = |— =0.814
W 355
"‘{MO =1.0
ML= 1.0

Poisson's ratio

Density of steel

Modulus of elasticity steel

Shear modulus of elasticity steel

Yield strength

Partial coefficient for cross-section resistance checks

Partial coefficient for instability checks



2. Loads

SSP

One girder with half of the SSP as top flange is considered.

VSSp = ASSPT = 0.125~F

kN
Yk.ssp = P59 Vesp = 9598'?

Main qgirders

3
VMG tot = 24.016m

kN
9kMG = P50 VMG = 55697 =

Volume per unit lenght of the bridge

Self -weight per unit length

Total volume of the main girders

Average volume of one main girder per unit
length of the bridge

Self-weight per unit length

Transverse girders and cross-bracings

3
Vg tot = 3.777m

kN
9.TG = Ps9VTG = 0876~

Edge beams

3
VER ot = 4.528m

kN
9kEB = ps-g~VTG = 0.876-;

Total self weight in ULS

Vg = 135

99~ 16 (Okssp * 9kMG * 9k TG + Ok EB) = 2284~

Weight launching nose

9k.MG kN
gd.LN = ’YG-T = 3.759~F

Total volume of the transverse girders and
cross bracings

Volume per unit length considering half of the
transverse girders and cross bracings

Self-weight per unit length

Total volume of the edge beams

Volume per unit length considering one edge beam

Self-weight per unit length

Partial cofficient

kN



3. Moment and support reactions

The two load cases considerd are shown in the figure below

- LLN -
= e o o
&) &) © D
At support A

The moment and reaction force at support A is calculated right before the launching nose has reached support B.

Moment equlibrium around A gives

(Lspanl - I-LN)2

L
> - gd.LN'LLN'[Lspanl -

LN 4
Mp = —0g° Tj =-1.811 x 10 -kN-m

Vertical equlibrium gives

Rp = gd-(Lspanl - LLN) +gq LNl = 903.473-kN

At support B

The moment and reaction force at support B is calculated right before the launching nose has reached support C

Moment equlibrium around B gives

(Lspanz B I-LN)Z

: LN 4
MB = —gdf - gdLNLLN Lspanz - T = -3.549 x 10 -kKN-m

Moment equlibrium around A gives

2
94" Lspan1 M
—, e ;
Rpy = ———————— = 1.281 x 10%kN
L,
spanl

3

Rg = Ry + Rpp = 255 x 10%kN



4. Resistance to patch loading

The reistance can be calulcated as
= fy"—eff‘tw
M1

Frd

sg:= 0.5m Assumed width of support

Effective loaded length

Support A:
f, b
fytMG.w.A
m2A =0 >\F <=0.5

2
h
MG.w.A
my A= o.oz[—j =67.491 N >05

IMG.bf.A
Iy A= S+ 2~tMG_bf_A-(1 + Jmia+ mZ_A) =1.444m
Support B:
f,b
my g = LB _ 57017
fytMG.w.B
mZB =0 )\F <=0.5
h 2
MG.w.B
myg =002 WB | 3433 g >05
: t
MG.bf.B

'y.B =S+ 2'tMG.bf.B'(1 + ’ml.B + m2.B) =1.599m

Reduction factor for effective length

Support A:

Theoretical critcal buckling stress

kpp=6 No vertical stiffeners

3
t
MG.w.A 3
FCr.A = ngFAES— =4.109 x 10"-kN

hvG.w.A

[2 6.1

[2 (6.8)

[2] 6.9

[2] (6.10)

[2 (6.8)

[2 6.9

[2] (6.10)

[2] Figure 6.1



Relative slenderness

Iy, act -,
) y.A*MG.wW.A"y
NpAE [T =1843

Fer.a

05
XEp = —— = 0271
EA

Support B:

Theoretical critcal buckling stress

kppg="6 No vertical stiffeners

3
t
MG.w.B 3
Forp = 0.9kp grEg———— = 5.438 x 10"kN

hmG.w.B

Relative slenderness

at K
Nep i YBMEWBY 764
Fcr.B
XER = 05 283
2EB

Design resistance

Support A:
Letra = XF.A"y.A =0.392m Effective length
oL -t
Frg A= LA MGWA _ 5766 . 10%kN
Rd.A
M1
Support B:
Leffg = XF.B'Iy.B =0.453m Effective length

foLoge et
Frap = LB MOWB _ 796 . 10> kN

M1

[2] Figure 6.1



5. Moment resistance

5.1. Cross-sectional constants
Area

Top flange, SSP

It is asssumed that no shear lag occurs.

B
Ag = Assp-% - 0125m’

Web

AwA = hmewAtMG.w.A = 0.054 m’ Support A

AwB = hve.w.B tMG.w.B = 0.058 m Support B

Bottom flange

2

2
Apf B = bMG bf.BtMG.bf.B = 0039 m Support B

Total area

2
At A= A + Ay A+ Apfa = 0204m°  Support A

2
At = A + Ayt Apeg = 0222m Support B

Center of gravity

Distances from top plate of SSP to each parts center of gravity

2t = Znassp = 0.077m

Support A:

h
2y = Nssp @ - 1442m

t
MG.bf.A
Zpf A= hssp +hvewA * - - 2.741m

AtfZef + AvAZw.A T Apf.A ZbfA
ZnaA = = 0.766 m

Atot.A

10



Support B:

h
MG.w.B
2y = hggp + ———— =1432m
t
MG.bf.B
218 = Nssp + MMGwB + ——, = 2732m
AeZie + -Z + A -z
- tf2tf + Aw.B'Zw.B T Aof.B Zbf.B 003
Atot.B

Moment of inertia
Top flange

B
tot 2 4
lif A = 'x.ssp'T + Atf'(zna.A - th) —0.06m

B
tot 2 4
It B = Ixssp > Atf'(zna.B - th) =0.086m

Web
t h 3
MG.w.A MG.w.A 2 4
wa=—""—r—+ Awa (Znaa — 2w.a) = 0.054m
t h 3
MGw.B "MG.w.B 2 4
we=—"—,  * Ay (ZnaB ~ 2w.p) =0048m

Bottom flange

3
b -t

MG.bf.A TMG bf.A 2 4
—_— AbfA.(zn&A - zbf‘A) =0.098m

| =
bf.A 0
b t 3
MG.bf.BIMG.bf B 2 4
btg =" ' Apt.8(ZnaB ~ 2fg) = 0132m

Whole section
. 4
Ia=lifa+ wat lpra=0212m

4
Ig:= I + lwg + lpr.g = 0-265m

11

Support A

Support B

Support A

Support B

Support A

Support B

Support A

Support B



5.2. Effective cross-sectional constants
Reduction factor web

Suppport A:
Zna.A ~ Nssp

’Ll)MGWA = =-0.309

hMG.w.A + Nssp ~ Zna.a
2
Ko a = 781 = 629Dy A + 978 Upg A = 10684

hmG.w.A

t
= —MOWA 612

ANppi=—""""—
p.A
28'4‘€W\’ Ko.A

_ Xp.A - 0.055-(3 + wMG_W_A)

PA: = 0.564
N 2
p.A
Suppport B:
Zna.B ~ Nss
’lI)MGWB = d =-0411

hMG.w.B + Nssp ~ Zna.B

2
Ko g =781 - 629U\ wp + 978 Vmews = 12.054

hmG.w.B

t
- MG.w.B _ 1375

N —————
8.4ey [kop

Ap g — 0.055:(3 +
op = p.B ( MG.W.B) 0652
2
>‘p.B

Effective height of web
b b,

% Hﬂ“hh'[ﬂTrrnhww o

e wll

Support A:
h
MG.W.A
MMGw.A el = 04paT— ———— = 044m
- PMG.w.A
, hMG.w.A
hMGw.Ae2 = 06-PAT— ——— = 066m
- bve.w.A

12



Support B:

hMG.w.B

hMG.w.B.e1:= 04pg T — —— = 0469m
- bMG.w.B

h
MG.w.B
hMG.w.B.e2 = 06:pg T — ——— = 0.703m
- bMG.w.B

Area

Web

Support A:

_3 2
Aw.Ael = "MewAeltMGw.A=9245x 10 ~m

hme.w.A

Avaez = | IMGwA™ T
MG.wW.A

Support B:

2
AwB.el = "MGw.BeltMGw.B =001l m
hmG.w.B

AwBe2= |"MewB ~ T — —
PMG.w.B

Total area

2
+ hMG.W.A_eZ]'tMG_W'A =0.027m

2
+ hMG.w.B.er'tMG.W.B =0033m

2
AtorAe = A+ Awael T AwAe2 T Apra = 0186m Support A

2
ApotBe = Atf + AwBel * AwB.e2 + Apfp = 0-208m Support B

Center of gravity

Support A:
. hMG.w.AeL
Zy.ael = Nssp + hMGw.A ~ — - 24%m
hMG.w.A
PMGwA~ T * "MGwAe2
. - PMGw.A
Zy.Ae2 = Nssp + 2 =0.795m

Af-ztf + AvaelZw.Aael T AwAe2 ZwAe2 T Aof.AZbEA

4 =
na.A.e
Mot Ae

13

=0.662m



Support B:

h
MG.w.B.el
ZwB.el = Nssp * PMG.W.B ~ —, - 2466m
hmG.w.B
"MGwB ™ Ty~ *"MGwB.e2
. -~ PMG.w.B
Zy.Be2 = Nesp + . =0885m

AtfZtf + Aw.BelZw.B.el T Aw.B.e2Zw.B.e2 * Abf.BZbt.B

ZnaBe = =0.833m
AtotB.e
Moment of inertia
Top flange
: Pt 2 N Support A
lif.Ae = 'x.ssp' 2 + Atf‘(Zna_A_e - th) =0.043m uppo
: Pt 2 N Support B
lif.B.e= Ix.ssp' 2 + Atf'(zna,B.e - th) =0.072m uppo
Web
Support A:
t h 3
MG.w.A"'MG.w.A.el 2 4
lw.Ael = P + A\N.A.el'(zna.A.e - ZW.A.el) =0031m
t h 3
MG.w.A"'MG.w.A.e2 2 —4 4
lw.Ae2= I + Aw.A.eZ'(Zna.A.e - ZW.A.ez) =977x10 'm
Support B:
t h 3
MG.w.B""MG.w.B.el 2 4
lwB.el = 12 + AwBel(ZnaBe ~ Zw.Be1) =0029m
t h 8
MG.w.B"""MG.w.B.e2 2 —4 4
hwB.e2 = 12 + AW.B.eZ'(Zna.B.e - Zw.B.eZ) =756x10 'm
Bottom flange
b t 3
MG.bf.A""MG.bf.A 2 4
btAae=",  * Aot A (Znaae ~ Zora) = 0109m Support A
b t 3
MG.bf.B"*MG.bf.B 2 4
lfge=—" >+ Abf.B'(Zna.B.e - be.B) =0.142m Support B

12

14



Whole section
4
IA.e = |the + IWAel + IWAeZ + IbfAe =0.184m SupportA

4
IBe=lfBet WBelt WBe2t lbfee=0244m Support B

5.3. Moment resistance

Calculated for the bottom flange

N,
o A
= 4,035 x 10-KN-m

Mpg A =
Rd.A -
(hssp +vewA T tMG.bEA ~ Zna.A.e)
fy

——
B.e
MO0

- 5807 x 10%kN-m
ssp ¥ "MG.w.B * IMG.bEB ~ Zna.B.e)

MRd.B = (n

15



6. Lateral torsional buckling

The bottom flange of the section is treated as a simply supported column and a reduction factor
for buckling is calculated. The reduction factor is used to calculate the capacity of the composite
section against lateral torsional buckling

Area of bottom flange

2

Apg g = 0.039m’

Moment of inertia of bottom flange

3
t -b
MG.bf.A""MG.bf.A —4 4

b 3
_ 'MG.bfBPMGLEB

| . 3 4
bf.LT.B " 12

=1288x10 “m

Crictical buckling force

Buckling length, distance between bracings

Ler = 8.3m

Crictical buckling force

7r2-E -l
Nor g = ——2ETA 9 065 x 10" kN
: 2
LCr
112-E -l
Ner g = ———=TB _ 3675 . 10* kN
: 2
L

cr

Reduction factor

Slenderness

 [Aoraty (1] (6.50)
ATA= ~ - 0.749
cr.A
A f
bf.B"y
ANTB= N = 0.684
cr.B
Imperfection factor ¢ welded I-profile
[1] Table 6.3

2
®lTA= 0.5-(1 o T(ATA =02+ AT A —‘ =0.915

2
1= 0.5-{1 +o m(ATB - 02) + M\ T8 W =0.853

16



Reduction factor support A:

1

XLTA = = 0.694
’ ® ® 2 2
LTAT{2LTA ~ALTA
Reduction factor support B:
1
=0.734

XLTB =
P ) Z_NtRl
LT.B*{®LTB LT.B

Moment resistance reduced for lateral torsional buckling

4
Mp RdA = XLT A'MRd A = 2.801 x 10 -kN-m

4

17



7. CAPACITY CHECKS

Patch loading

Support A

Mgg.a = [Ma| = 1811 10" kNm

M
Ed.A

T]lA = M = 0.449
Rd.A

F,
Ed.A
A= T = 0239
Rd.A

Ny A+ 081 A= 0598 <14

Lateral torsional buckling

Support A

MEeg.A
Mp.Rd.A

=0.647 <10

Support B

Medp = |Mg| = 3549 x 10" knm

M
mp= EdB =0.611 <10
MRd.B
F
Ed.B
Npp = —2B _ 053 <10
Frd.B
ny g+ 08mnyg=1021 <14
Support B
M
ﬂ = 0.832 <1,0

Mp.Rd.B

18

272



APPENDIX D

Volume and weight comparison



Appendix D - Volume and weight comparison

Contents

1. SSP bridge
1.1. Main girders
1.2. Cross bracings
1.3. Transverse girders
1.4. Transverse support girders
1.5. Edge beams

2. Composite bridge
2.1. Main girders
2.2. Cross bracings
2.3. Transverse support girders
2.4. Edge beams

3. Weight comparison



1. SSP bridge
1.1. Main girders

Dimensions of the different sections

Element 1:

bMG bf.1 = 436mm

IMG.bf.1 = 26mm

AMG.w.1 = 26M =ty pf1 = 2.574-m
tMG.w.1 = 19mm

|e|_1 = 11m

2
AmG.1 = Pmewitmewy -~ =006m
+ DG bf.1 MG bf 1

Element 3:

bMbe3 = 572mm

tMbe3 = 44mm

|e|'3 = 15m

2
AmG.3 = hmew.3tMew3 -~ =0079m
+ DG bf3 MG bE3

Element 5:

bMG.bf.S = 544mm
tMG.bf.5 = 46mm
AMG.w.5 = 26m = tyg pf.5 = 2.554'm
tMG.w.5 = 21mm
|e|_5 = 10m

. h 2
AMG.5 = hMG.w.5tMGws5 -~ =0.079m

+ DG b5 MG bES

Total volume

Element 2:

BMG bf.2 = 490mm

tMG.bf.2 = 40mm

AMG.w.2 = 26m = tyg b.2 = 256 m
tMG.w.2 = 18mm

IE|.2 = 18m

2
AmG.2 = PMew.2tMGw.2 - =0086m
+ DG bf. 2 TMG.bf 2

Element 4:

bMbe4 = 626mm

tMbe4 = 63mm

|e|'4 = 11m

2
AMG.4 = "Mew.4tMG.w.4 - =0098m
+DMG bf.4 MG bf4

Element 6:

bMbe6 = 490mm

IMG.bf.6 = 32mm
tMG.w.6 = 18mm

IE|.6 = 18m

2
AMG.6 = "MG.w.6tMG.w.e - =0.062m
+ DG bf.6 TMG.bE6

Width bottom flange
Thickness bottom flange
Height web

Thickness web

Length of element

Cross-sectional area

3
VMG.tot = 4AMG.1 el 1 + AMG.2 1612 T AMG.3 lel3 + AMG 4 lel.a + AMG5 lel.5 + AMG.67lel.6) = 24.016:m



1.2. Cross bracings

Cross-sectional areas

2
AKKR150 = 0.00346m

2

IbOt = 6m

Idiag = 3.080m

Total volume

nCB = 17

KKR 150x150x6 profile

KKR 250x150x8 profile

Length of bottom bracing

Length of diagonal bracing

Number of cross bracings

3
VeB ot = NcB(2AKKR150 ldiag + AKKR250 Ipot) = 0-989'm

1.3. Transverse girders

Dimensions
B:= 11.25m

Bl = 6m

B-B

L B =2.625m

cant ‘=

tTGW = 7mm
bTG.bf = 370mm

tTG.bf = 16mm

Volumes
Middle part :

Total free width of bridge

Distance between main girders

Length of cantilever part

Height web

Height of web at the edge

Thickness web
Width bottom flange

Thickness bottom flange

3
V1emid = Br(MTewttew * DTG.bf trg.br) = 0.059'm

Cantilever part :

LTG edge = \/(Lcant)2 + (O-ﬁ'hTG.W)2 =2.646m

04hgw + hrew

VTG.edge = Leant’ P

3
Tew * LTG.edge PTG bf TG bf = 0.023-m



Total volume:

Nrg:=17 Number of transverse girders

3
V1610t = "T6(VTG.mid + 2VTG.edge) = 1778:M

1.4. Transverse support girders

Dimensions

Support A & D: Support B & C:

hres.ADw = 1115mm hres.Bo.w = 1915mm Height web

trGs.AD.w = 15mm trgs.BC.w = 25mm Thickness web
b1Gs. AD bf = 350mm brcs.BC.bf = 450mm Width bottom flange
tTGS.AD.bf = 20mm trgs.BC.bf = 30mm Thickness bottom flange

Total volume

3
Vres.tot = 2B1 (TGS AD.w TGS AD.W + PTGS.AD bf tTGS AD.bF ) - = 1.113:m
+2:B1(hrgs.BCwtTGS.BCw + TGS BC bf 1TGS.BC.bF ) -

+4VT1G edge

1.5. Edge beams

Dimensions

Liot := 166m
hgg = 402mm
bgg == 300mm
tgg = 20mm

Agg = tepheg + (beg - teg)] = 0.014m”

Total volume

3
VEB.tot = 2'Ltor App = 4.528:m

1.6. Deck

Dimensions

B:=11.25m
2

m
Asgp = 0.022165 ~—

t = 50mm

cover *

Total length of bridge
Height

Width flanges
Thickness

Cross-sectional area



Total volume
V. = AcerBeLy o, = 41.393.m°
SSP.tot = Mssp P Lot = 44993 M

3
V, -B-Lipr = 93.375'm

cover.tot = tcover

2. Composite bridge
2.1. Main girders

Dimensions of the different sections

Element 1:

bMbel = 800mm

tMbel = 26mm

hMG.w.1 = 26M =ty bf1 — tvg i1 = 2:554-m
|e|_1 = 11m

2
AmG.1= Pmewitmew.l -~ =0079m

+DMG b1 MG bEL
+OvG.H.1 MG .1

Element 3:

bMG.bf.3 == 1050mm

tMG.bf.3 = 44mm

bpme.tf.3 = 600mm

tmG.tf.3 = 40mm

hMG.w.3 = 26M = tyg bf.3 ~ tMG tf.3 = 2516'm
tMG.w.3 = 21mm

|e|_3 = 15m

2
AmG.3 = hmew.3tMews -~ =0123m
+ DG bf3 MG bE3

+OvG.F.3 tMG.HF.3

Element 2:

bMbe2 = 900mm

tMbez = 40mm

hMG.w.2 = 26M =ty b2 — tvg.tr2 = 253m
tMG.w.2 = 18mm

IE|.2 = 18m

2
AmG.2 = hmew2tMew2 - =01m
+DMG bf2 TMG.bE2
+DvG .2 tMG.tF.2

Element 4:

bMG.bf.4 == 1150mm

tMG.bf 4 = 63mm

bMG.tf.4 = 780mm

MG tf.4 = 63mm

hMG.w.4 = 26M =ty bf.4 — MG tfg = 2474 M

tMG.w.4 = 23mm

IE|.4 = 11m

2
AMG.4 = PMew.atMGw4 - =0.178m
+DMG bf4 MG bf 4

+DVG.tF.4 tMG.tF 4

Width bottom flange

Thickness bottom flange

Width top flange

Thickness top flange

Height web
Thickness web
Length of element

Cross-sectional area



Element 5: Element 6:

bpma.bf.5 = 1000mm bpmG.pf.6 = 900mm
MG bf.5 = 46mm MG bf.6 = 32MM
bpme.tf.5 = 600mm bpe.tf.6 = 600mm
MG tf.5 = 46mm MG tf.6 = 23mm

hMG.w.5 = 26M =ty bf 5 — tMg.th5 = 2508 M hyg w6 = 2.6M = tyg bre — tMG.tFe = 2:545-m

tMG.w.5 = 21mm tMG.w.6 = 18mm
|e|_5 = 10m IE|.6 = 18m
2 2
AMG5 = "Mew5s tMGwSs - =0126m AMG.6 = "MG.w.6'IMG.w.6 - = 0088 m
+ DG b5 MG bES +DMG.bf.6 TMG.bE6
+ OG5 MG A5 + DG 1.6 tMG.tF.6

Total volume

3
VMG.Citot = 4(AMG.1 el 1 + AMG.2 lel2 + AMG.3 lel.3 + AMG.4Tel4 + AMG 5 el 5 + AMG 6 lel.6) = 37:309-m

2.2. Cross bracings

Cross-sectional areas

AKKR150 = 0.00346m° KKR 150x1506 profile
AKKR250 = 0.00614m° KKR 250x150x8 profile
Itop = 6m Length of top bracing

lpot = 6M Length of bottom bracing
Idiag = 3.219m Length of diagonal bracing

Total volume

ncg:= 20 Number of cross bracings

3
VeB.C.tot = "ce (AkKR150 top + 2AKKR150 diag * AKKR250 bot) = 1-598:m



2.3. Transverse support girders

Dimensions
Support A & D:

hrGgs.AD.w = 1100mm
TGS.AD.w = 15mm
bTGS.AD.bf = 350mm
TGS.AD.bf = 20mm
bTGs.AD.tf = 200mm

TGS AD.tf = 15mm

Total volume

Support B & C:
hrGgs.Bc.w = 1890mm
TGS.BC.w = 25mm
bTGs.BC.bf = 450mm
t7GS.BC.bf = 30mm
bras.BC.tf = 350mm

7Gs.BC.tf = 25Mm

Height web

Thickness web

Width bottom flange
Thickness bottom flange
Width top flange

Thickness top flange

3
Vres.Crot = 2B1(M1es. ADw TGS AD.W + PTGS.ADbf tTGS.ADbF + PTGS.AD.AF TGS AD1F) - = 1152
+2By(hrgsBCw TGS BCw + PTGS BC bf TGS BCHf * PTGS.BC.Af 1TGS.BC.AF)

2.4. Edge beams

Total volume

2
Agpg = 0.017946m

3
VEB.C.tot = 2'Ltor Agp = 5.958'm

2.6. Deck

Total volume

3 3
Vieck C.tot = 654.382m° — Vg ¢ tor = 648.424-m

3. Weight comparison

Self-weights

:25m
3

m

kN
Vsteel = 77 3
m

Yconcrete *

kN
Ycover.ssp = 23 3
m



G =277 B = 5173 % 10°N
2

m

cover.C

Launching weigths

GL ¢ = steel (VMG.C.tot + VeB.Ctot * VTGS.C tot) = 3.085-MN

GL ssp = Tsteel (VMG .tot * VCB.tot + VTG 1ot + VTGS t0t + VEB.tot + VSSP.tot) = 5-684-MN

G
ZLssp = 1.843

GLc

Total weights
Giot.c = GL.c * Gcover.C * Vconcrete' Vdeck.C.tot = 24-468-MN

Gtot.ssp = GL.ssp * Ycover.ssp Veover.tot = 7-832-MN

G
tot.ssp _ 0.32

Got.c



APPENDIX

Mesh convergence



Mesh convergence are presented here for:

- Stress in the main girder bottom flange
- Stress in the top plate of the SSP over support
- Compressive stress in SSP bottom plate due to bending over the main girder

The mesh convergence for the local stresses in the top plate of the SSP is shown in the report.
Some of the convergence studies was carried out before the increase in thickness of the top
plate, therefore the stresses can differ some from the final values presented in the report.
Some of the convergence studies were conducted before the top plate thickness was changed.
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Stress convergence bottom flange
Composite bridge - Span - Traffic load
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Stress convergence SSP
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Stress convergence SSP

Bottom plate - Compressive stress due to bending around main girder
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