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Process Stream Data Analysis: Data Reconciliation and Gross Error Detection for 
Process Integration Studies. 
 
 
 
Master’s Thesis 
CRISTINA MURCIA MAYO  
Department of Energy and Environment 
Division of Industrial Energy Systems and Technologies 
Chalmers University of Technology 

 

ABSTRACT 

One of the major challenges for energy companies is to adapt their process plants to the 
continuous improvements of available technologies, so as to make their old plants as 
competitive and cost-efficient as the new ones. Along these lines, process stream data 
was recently collected for analysing opportunities for improved process integration of 
the Hydrocracker Unit of a major oil refinery located in Lysekil on the West Coast of 
Sweden. However, inconsistencies in the process data measurements, e.g. energy 
balances that do not add up, made the study cumbersome. For analysing heat exchanger 
networks it is essential to establish sets of process data with balanced heat balances for 
the existing heat exchangers.  The aim of this thesis project was to develop a computer-
based solution for systematic analysis, identification and correction of the “raw” data 
obtained from process data measurements in order to acquire such a consistent set of 
data.  

With this purpose, a tool for Data Reconciliation and Gross Error Detection for process 
stream data was developed using Visual Basic in Microsoft Excel. The tool is based on 
the Modified Iterative Measurement Test. A second tool, which is easier for handle 
large data sets and especially designed for networks with non-linear constraints was 
also developed. This second tool is only able to solve Data Reconciliation problems, so 
it is targeted for sets of data where there are exclusively random errors. 

Both developed tools were used to analyse the data set collected from the refinery’s 
Hydrocracker Unit with the purpose of generating a consistent set of data with balanced 
heat exchangers. The solution proposed is an energy balanced network, where from the 
32 temperature measurements, all the reconciled values, except two, are within the 
specified bounds indicated. The two reconciled temperatures outside the bounds are the 
ones in which the presence of a gross error has been confirmed. Since this is a 
preliminary study, the solution proposed must be taken as a recommendation.  

Key words: data reconciliation, gross error detection, Modified Iterative Measurement 
Test, hydrocracker unit.  
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1 Introduction 
Todays the world is moved by petroleum. Crude oil is one of the most important fossil 
fuel in modern society, and all of us make use of it daily in any of its myriad forms.  

Even if you ride a bike instead of using the car, and you try to avoid taking the plane or 
any transport run by oil, you are taking benefit from the petroleum or any of its by-
products. Roads, lubricants, oils, plastics, gas for the barbecues, house heating and even 
cosmetic products are made with it. According to the International Agency (2015), the 
world oil demand for the first trimester of 2015 was around 93.45 million of barrels per 
day, that is, around 14857 million of litres per day (1bbl≈0.159𝑚𝑚3).   

When crude oil is extracted from a well, it is a useless component, and it is necessary 
to process it in order to separate it into different fractions. The set of processes needed 
are carried out at refineries.  

Since oil is a natural and non–renewable resource, whose reserves according to BP 
(British Petroleum ) has been estimated to run out in about 53 years, it is essential to 
design the most efficient refining process so that the largest amount of products with 
the desired quality can be obtained. In addition to this, the scenario is continuously 
changing, legislations are becoming stricter and the market is looking for new 
environmentally friendly technologies. For that reason, it is important to collect data 
not only for monitoring the process but for studying the improvements’ opportunities 
and adapting the plants to this new reality.    

With the last purpose, process stream data was collected in the Preem refinery in Lysekil 
few years ago. This data set is the one used as a test bench for the study. 

 

1.1 Background 
Industrial chemical processes are usually complex, involving different units such as 
reactors, heat exchangers, splitters, etc., and connected by mass and energy flows. With 
the aim stated in the introduction, large amounts of process variables (flowrates, 
temperatures, pressures, fluid levels, compositions, etc.) are continuously measured and 
recorded. However, measurements are never 100% precise, resulting in incoherencies 
that complicate and, in some cases, corrupt or even invalidate the results from the 
studies done based on the collected data.  

This thesis focuses on analysing the stream data collected for pinch analysis studies and 
making the adjustments so that the energy balances are satisfied and no inconsistencies 
are present in the data.  

One element used in pinch analysis, which aims at identifying the potential for energy 
savings by minimising the thermal energy consumption and maximising the amount of 
heat recovered, is the grid diagram. It is a useful and powerful representation of the heat 
exchanger network.  Figure 1.1 is an example of heat exchanger network, where the 
values from the temperatures are readings from the measurements. In this case, the 
example consists only of three streams, one hot stream and two cold streams. Hot 
streams need to be cooled from the start temperature to the target temperature, in this 
case T16 and T14, respectively. Conversely, cold streams need to be heated from the 
start temperature to the target temperature. These changes can be achieved by using 
heaters or coolers. But since the purpose is to minimize the primary energy 
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consumption; what can be done instead is to use heat exchangers to recover heat from 
the hot stream to the cold stream, as in Figure 1.1.   

  
Figure 1.1 Simplified example of a Heat Exchanger Network. E_8104 and E_8120 
are representations of heat exchangers. The number of digits of the temperatures and 
heat loads does not reflect precision. 
 

If the losses to the surrounding are neglected, the amount of heat transferred from the 
hot stream must be equal to the amount of heat absorbed by the cold stream. For the 
case of the Figure 1.1, in the heat exchanger E_8104; 

Q10 =Q16,                   (1.1) 

and following the same reasoning in E_8120; 

Q11 = Q17                   (1.2) 

As can be seen, none of the energy balances, equations (1.1) and (1.2), are satisfied. For 
the HX E_8104 the absolute difference is small but comparing in relative terms, the 
heat transferred from the hot stream is 32,8% time larger than the heat absorbed by the 
cold stream. This variation is even more significant in the HX E_8120 the difference 
between both heat loads is 2.7 MW, and the relative variation reaches 49,3%, which is 
significant. The same principle can be applied for mass flows, e.g. assuming that there 
are no leaks in the system, the flowrate going into a heat exchanger must be the same 
as the flowrate going out.  

There are many causes that can lead to errors in the measurements, for instance, the fact 
that processes in industry are not steady-state but vary in time or time lags when changes 
in the process are performed. Both may contribute to increase the difference between 
the true value and the measurement. However, the main reason why this happens is 
because during the measuring, processing and transmission of the measured signal, 
process measurements are usually corrupted by errors.  

 



 

 

 

 

Industrial plant systems are complex, and a heat exchanger is just one of the multiple 
units involved in a process. Thus, identifying the errors in the measured data and 
mitigate their effects must be a priority.  

There are various methods to achieve this objective, from applying “engineering 
judgment” to balance the network manually, to building a computer model and using 
the values from the model instead of the measurements. The problem of the former is 
that it is difficult to do but is even more complicated to judge how reliable the solution 
is. And the problem of the second one is that it is expensive and requires many man-
hours. The solution proposed in this thesis is to apply statistical methods for detecting 
the presence of gross errors and reconcile the process variables using the resulting data 
set, which is free of gross errors. 

 

1.2 Purpose and objective 
The purpose of this thesis is to develop a Microsoft Excel tool for systematic analysis, 
identification and correction of the “raw” data obtained from process data 
measurements in order to acquire a consistent set of data. The aim is not to develop a 
tool for controlling the process but implement a systematic procedure to reconcile data 
that can be used for process integration studies. This involves processing data so that 
energy balances are satisfied for all relevant parts of the process system to be analysed. 
The analysis should also aim at identifying and eliminating “outliers”, i.e. data points 
that are most likely due to measurements errors. 

With this purpose a study about the different methodologies that rely on the test 
statistics for detecting the gross error has been conducted. It is also within the scope of 
the thesis, to achieve a general knowledge about the oil refining process and the 
processes performed in every stage, due to the data used as a test bench for the study is 
from the Preem refinery.  

 

1.3 Scope and limitations 
The set of process data that was used was collected from the Preem refinery in Lysekil 
five years ago, in 2010. The project only includes the analysis and error detection of the 
data and does not include collection of the data nor the final use of the reconciled data 
for process integration study purposes. The system studied was assumed to be at steady-
state, which means that all the system variables are constant, because there is a flow 
through the system. The task of this thesis was to implement a computer-based solution 
for data reconciliation and gross error detection using one of the existing methodologies 
and test it later for the data set collected from the refinery in Lysekil. This process 
includes specifying the inputs needed for the reconciliation problem, in other words, 
decide the measurements and define the constraints that characterize the process. 

Due to limited time resources not all the process units of the Preem Refinery was 
analysed. The study was restricted to Data Reconciliation and Gross Error Detection 
for a simplified sub-network of the Hydrocracker Unit (HCU). 

The commercial spread-sheet software Microsoft Excel was used for calculation 
purposes. 
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2 Preem Refinery 
Data Reconciliation and Gross Error Detection computer based tools were tested with 
data collected from the hydrocracker unit (HCU) of Preem refinery in Lysekil. For that 
reason, this chapter aims to present Preem as a company, provide a general overview 
of the refining processes, and finally focus on the studied unit. 

2.1 Introduction to Preem 
At the moment there are five refineries running in Sweden. Two of them owned by 
Nynäs, situated in Gothenburg and in Nynäshamn, another one in Goteborg owned by 
St1 and the other two owned by Preem. 

Preem is the largest fuel company in Sweden, supplying more than half of Sweden’s 
industrial companies and one third of the small companies with heating and energy 
products. With capacity of more than 18 million m3 of crude oil every year provided by 
two refineries; one in Gothenburg (125,000 bpd) and the other in Lysekil (220,000bpd), 
they account for 80 percent of the Swedish refinery capacity and 30 percent of the 
Nordic refinery capacity. Their market is basically Europe but Preem also exports to 
Africa and North America. They supply companies and customers with gasoline, diesel, 
lubricants, heating oil and renewable fuels. With a service network close to 600 fuelling 
stations they provide more than half of the fuel oil and diesel that is consumed in 
Sweden, and almost 40% of the gasoline, Preem (2015). 

 
Figure 2.1 The location of the two Preem refineries are indicated on the map  
(in blue)   
The raw data used for this thesis was collected in 2010 from the Preem refinery in 
Lysekil, which is the Scandinavia’s largest facility with capacity to refine 11,4 million 
tons of crude oil per year.   



 

 

 

 

2.2 Oil refining process 
Oil refining is the process whereby the extracted crude oil from the well, which at that 
moment is essentially unusable, is transformed into useful products for different uses.  

The development of the current oil industry dates from the middle of the 1800s, where 
an increasing need of producing large quantities of kerosene for lighting, which was 
cheaper and better than whale oil, stimulated the industry to adapt to the new demand. 
However, its importance increased with the invention of the combustion engine, and 
the urgency of new fuels for cars and planes. 

Nowadays, the production of transportation fuels is by far the most important fraction 
but other non-fuel products, such as sulphur, propane, propylene and some others 
feedstocks for the chemical and petrochemical industries are also produced. Figure 2.2 
shows the wide variety of products that are obtained from the oil refining. From the 
light gases within one to four hydrocarbons in length, to heavier fractions of large 
hydrocarbons chains, with large boiling points, is exploited. 

 

 

 
Figure 2.2  Range of products obtained from the oil refining.  (World Fuel Limited) 
 

Products from the top of the fraction column are the more volatile ones, with boiling 
temperatures around 20°C at atmospheric pressure, whereas the ones from the bottom 
are the heaviest, with boiling points up to 600°C. 
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The liquefied petroleum gas, or refining gas, is the one with smallest molecules and 
with such a low boiling point that is still a gas when it is removed from the fractionator. 
Propane and butane are some examples, and they are used for running barbecues or 
heaters, as they can be stored in bottles under high pressure. Moving down from the 
top, the next product is naphtha. It is not so useful as fuel as it is for the petrochemical 
industry, representing around 70% of the feedstock to that industry sector. Naphtha can 
be cracked to form alkynes that can be turn into polymers for making plastics. The 
middle lengths products are fuels; petrol, kerosene and diesel oil are obtained from the 
fractionator column in this order, and they are by large margin the ones with higher 
value in the market. Finally, the less volatile products are the lubricants oils and waxes, 
the fuel oil used for ships and factories as well as for central heating, and some solid 
residues as bitumen used for paving the roads and to cover the roofs.  

However, nowadays, one of the biggest challenges of the energy companies is how to 
reduce the environmental impact and meet environmental legislations, which are 
becoming more and more strict. It has become a priority need to develop and redesign 
the processes so that less pollutants are emitted. In the oil industry, the focus is on 
reducing the emissions of hydrocarbons, carbon monoxide, sulphur and nitrogen 
oxides, among others contaminants.  

Due to constant changes in the external conditions, every refinery is different regarding 
the market conditions, national legislation, feedstock, required products…etc.  Figure 
2.3 is a scheme of the major units operations and activities carried out in Preem refinery.  

 

 
Figure 2.3 Overview flow sheet of Preem’s Refinery in Lysekil.   
 



 

 

 

 

The process of refining crude oil into usable petroleum products can be explained by 
classifying the different process into two phases, Joint Research Centre (2013). The 
first phase consists on the separation of the different components from the crude oil 
using the difference in the volatility. The second phase, is where the molecular structure 
of the hydrocarbon is changed by breaking, combining and reshaping the molecules.  

The first phase is carried out in the Atmospheric Crude Distillation column (CDU) and 
in the Vacuum distillation (VDU). In the former unit, the crude oil is heated to elevated 
temperatures and exposed under atmospheric pressures to separate the various fractions 
according to the boiling range. From the overhead of the column is obtained the lighter 
and non-condensable refinery fuel gas which also contains hydrogen sulphide and 
ammonia gases. From the bottom of the column, the heavier non-vaporized components 
are sent to the vacuum distillation (second unit) for further separation. In this case, the 
feed is subjected to very low pressure in order to increase the volatilization and 
separation whilst avoiding thermal cracking.   

As stated previously, the most volatile product from the CDU contains sulphurs. For 
that reason this stream is sent to the Amine treatment unit where the hydrogen sulphide 
(H2S) and the carbon dioxide (CO2) are removed by the use of aqueous solutions of 
various alkyl-amines. Thereafter, the hydrogen sulphide is introduced in the Sulphur 
Recovery Unit (SRU) where the sulphur is recovered using the Claus process. The tail 
gases from the SRU that still contain hydrogen sulphur are introduced in the Tail Gas 
Treatment Unit (TGTU) that reduces the sulphur vapour and sulphur dioxide into 
hydrogen sulphur. This last one is returned to the SRU for further sulphur recovery. 
There is also some naphtha stream that is send directly to the Mercaptan Oxidation Unit 
(MEROX), where it is washed in a concentrated alkaline extraction column under 
elevated pressure in order to remove the mercaptans, and decrease the content of 
odorous and corrosive components.  

Intermediate products of the distillation column are processed in different units, 
depending on the impurities’ content. The most common ones are sulphur, nitrogen, 
oxygen, halides and metals. In order to remove them, the different products have to be 
exposed under a huge amount of hydrogen at high pressure and temperature and in 
presence of a catalyst, which depend on the feed composition. Those units can be 
identified in the Figure 2.3 with the following names: Naphtha Hydrotreating (NHTU), 
Synsat Unit (SSU), Mild Hydrocracker (MHC) and Hydrocracker (ICR or HCU). 
Moreover, almost all the units/processes described before also reduce the molecular 
weight by cracking and separating the light fractions from the heaviest ones.  

Thereafter, the most volatile fractions are sent to the Isomerisation (ISO) or to the 
Catalytic Reforming Platformer (CCR). The aim of these two processes is to increase 
the octane index. Whereas, the less volatile are send to the Fluid Catalytic Cracker 
(FCC) where the hydrocarbons molecules are cracked using zeolites catalysts. The 
mild-weight products from the last process are later sent to Polymerization Unit 
(POLY), where the propene and butene is converted to a high octane gasoline blending 
components.  Finally, the heaviest fractions resulting from the VDU are sent to the 
Visbreaker Unit (VBU) where its viscosity is reduced by breaking the large 
hydrocarbons molecules. At the end of all the processes the streams are mixed in the 
Product Mixer in order to obtain the final products which the compositions required in 
the market. 
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2.3 Hydrocracker unit (ICR/HCU) 
The hydrocracker unit, as indicated by its name, is a conversion process that combines 
the catalytic cracker and the hydrogenation. The former process uses a zeolitic catalyst, 
such as nickel, palladium or platinum, which tends to break alkanes chains into two or 
more alkane and alkene products, generally making molecules between five and ten 
carbons in chain length.  The second one is used for reducing or to saturate organic 
compounds with hydrogen. Thanks to the association of both processes, the heavy 
factions of distillate are decomposed through the breaking of carbon-carbon bounds and 
the subsequent or simultaneous hydrogenation, resulting in lighter products with higher 
commercial value. For instance, the dodecane can result in octane plus butene, decane 
and ethene, or butene, pentane and propane, see Figure 2.4. 

 

𝐶𝐶12𝐻𝐻26 ↔ 𝐶𝐶8𝐻𝐻18 + 𝐶𝐶4𝐻𝐻8 

𝐶𝐶12𝐻𝐻26 ↔ 𝐶𝐶10𝐻𝐻22 + 𝐶𝐶2𝐻𝐻4 

𝐶𝐶12𝐻𝐻26 ↔ 𝐶𝐶4𝐻𝐻8 + 𝐶𝐶5𝐻𝐻12 + 𝐶𝐶3𝐻𝐻6 
Figure 2.4  Possible resulting components from the braking of a dodecane 
molecule.    
 

In general terms, the hydrocracking is conducted under substantial pressure, between 6 
and 12 MPa, and between 300 and 450°C, Joint Research Centre (2013). Depending on 
the size of the unit, the feedstock and the desired products, three type of units can be 
defined; single-stage once-through, single-stage recycle and two-stage recycle. The first 
mentioned only uses fresh feed and is able to achieve rates of conversions between 80-
90%, whereas the second one, that differs from the former due to it recycles the 
unconverted oil, achieve bigger rates around 97-98%. The two-stage recycle 
hydrocracker has same conversion rate as the previous, but it is especially indicated for 
feedstocks with a very high refractory such a deasphalted oil, since it uses two reactors 
in series. In the present case, Preem is using a single-stage hydrocracker unit, as the one 
in the Figure 2.5.   

The main feeds of process are Vacuum Oil Gas (VGO) from the heavy products of the 
crude distillation column, referred as fresh feed in the Figure 2.5, and substantial 
quantities of hydrogen. As stated previously, in order to break and split the large carbon 
chains, the VGO must be heated. Thereby it is passed through various heat exchangers 
in line in order to preheat the feed before it is introduced into the Reactor Heater, where 
the temperature is increased markedly. Afterwards, it is sent to the first reactor, where 
the impurities are removed. Sulphur and the nitrogen reacts with hydrogen resulting in 
sulphuric acid (𝐻𝐻2𝑆𝑆) and ammonia. In order to accelerate the reaction, metallic catalysts 
containing for example platinum and nickel are used. In the first beds of the reactor also 
takes places the saturation of olefins and partial saturation of Polycyclic Aromatic 
Hydrocarbons (PHA). The second reactor is where the cracking takes place. Large 
hydrocarbons molecules break resulting in smaller and lighter compounds. Thanks to 
the introduction of the hydrogen the free bonds are filled by hydrogen molecules. In 
this case, the cracking process depends on an acid catalyst. The most commonly used 
are the zeolites.    

 



 

 

 

 

 
Figure 2.5  Overview flowsheet of an hydrocracker unit. 
After that, the product is cooled down and sent to a high pressure separator where the 
lighters gases are extracted. The heavier fractions are directly sent to the low pressure 
separator but the lighter ones previously passed through a cold high pressure separator. 
Since hydrogen is fed to the reactors in excess with the purpose of purifying the 
hydrogen rich gas from impurities, there is much unconverted hydrogen in the outflows 
from the reactors. The purpose of the cold high pressure separator is to extract the pure 
hydrogen for recycling it. The resulting stream from the low pressure separator is sent 
to a propane/butane stripper for further separation. From this column, as an overhead 
product, light naphtha is obtained. As a side-steams, kerosene and diesel are obtained 
and from the bottom, and unconverted oil as a residual.   

In order to break and crack the molecules, the feedstock needs to be heated until high 
temperatures and cooled down again before supplying the next unit or sending to store 
some of the products. This double variation in the temperatures makes it a suitable 
process for performing process integration. With that purpose, some of the process 
variables were measured. The reader is referred to the Appendix 1 for consulting the 
data collected. 
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3 Data Reconciliation and Gross Errors Detection. 
As stated in the introduction, data collected is often corrupted by errors produced during 
the measuring, resulting in a difference between the measured value and the true value. 
This difference can be expressed as the sum of random errors and systematic errors,  

𝑦𝑦 = 𝑥𝑥 + 𝜀𝜀 + 𝛿𝛿                       (3.1) 

where x is the true value of the measured variable, 𝜀𝜀 is the unknown random error and 
𝛿𝛿 corresponds to the systematic error.  
The information explained in this chapter is mostly based on the following sources: 
Carl Knopf F (2012) and Natasimhan S.,Jordache C. (1999). 

 

3.1 Random Errors (𝜺𝜺) 
Random errors are small in magnitude, and neither the value nor the sign can be 
predicted with certainty. As their name indicates, they are unpredictable and 
unavoidable and basically depend on the method and the instrument used for measuring.  
Examples of causes of random errors are, for instance, the intrinsic accuracy of the 
measurement tool, the electric noise in the circuit of an electrical instrument or the 
environment conditions. Random errors are fluctuations scattered around the true value, 
as the sample is affected by almost the same amount of negatives and positives errors. 
Therefore, random errors add variability to the data but since the arithmetic mean (E) 
tend to approach zero, they don’t rebound on the average performance.  

It can be assumed that random errors follow a Gaussian Normal Distribution with 
average 0. 

𝐸𝐸(𝜀𝜀) = 0 

𝑣𝑣𝑣𝑣𝑣𝑣(𝜀𝜀) = 𝐸𝐸(𝜀𝜀2) = 𝜎𝜎2                 (3.2) 

In the equation (3.2), σ is the standard deviation of the measurement, which quantifies 
the amount of variation and dispersion of the data set. If σ approaches 0, data points are 
really close to the mean, whereas, if the value of σ is large, data points are spread out 
over a wide range and away from the true value.  

Unfortunately, the standard deviation is unknown so, in most of the cases, the estimated 
standard deviation from a sample is used instead. The sample standard deviation is 
calculated according the equation (3.3), where N is the number of observations, 𝑦𝑦𝑖𝑖 is 
the value of the ith observation and 𝑦𝑦� is the arithmetic average of the N observations.  
 

𝑠𝑠 = � 1
𝑁𝑁−1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1                  (3.3)  

𝑐𝑐𝑐𝑐𝑐𝑐�𝜀𝜀𝑖𝑖, 𝜀𝜀𝑗𝑗� = 𝐸𝐸�𝜀𝜀𝑖𝑖, 𝜀𝜀𝑗𝑗� = 0                 (3.4) 

It is also assumed that random errors present in the measurements of two different 
process variables, for instance i and j, are statistically independent, so the correlation 
between both variables equals to 0, equation (3.4).  

Although random errors do not represent a big problem, there are some techniques for 
improving the accuracy of measurements and reduce the effect of them when the 



 

 

 

 

measured data is used in further studies. Data Reconciliation (DR) is one example. This 
method makes use of process model constraints and obtains the estimates of process 
variables by adjusting the process measurements so that estimates satisfy the 
constraints. In other words, it is a constrained optimization problem where the objective 
function is the equation (3.5) and the constraints are the energy and mass balances 
equations, see equation (3.6). For the specific case of this thesis work, as one will see 
later, the reconciled values are only constrained by energy balances. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑  �𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)�
2

𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

                 (3.5) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 ℎ𝑘𝑘�𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑗𝑗� = 𝑏𝑏 𝑘𝑘 = 1, … . ,𝐾𝐾               (3.6)
  

For the above equations, 𝑦𝑦𝑖𝑖 refers to the measured variable, 𝑥𝑥𝑖𝑖 is the reconcile value, 𝑤𝑤𝑖𝑖 
is a weight that reflects the measurement’s accuracy, ℎ𝑘𝑘�𝑥𝑥𝑖𝑖,𝑢𝑢𝑗𝑗� are the constraints, 
generally mass and energy balances, and 𝑢𝑢𝑗𝑗  is the estimated value of non-measured 
variable, which will be discussed later on. Finally b refers to the independent terms of 
the constraints, generally it is equal to zero. 

It must be highlighted that data reconciliation assumes that no gross errors are present 
in the measured data. Otherwise, the reconciled values can be very inaccurate and even 
unfeasible. 

 

3.2 Gross Errors (𝜹𝜹)  
Gross errors, also called systematic errors, are significant and systematic deviations 
from the true value caused by non-random events. Unlikely random errors, their sign 
must be considered, which means that if the measurement is repeated under identical 
conditions, the value obtained will be the same and so the contribution of the gross error 
too. Gross Errors are caused by instrument malfunctioning as bias or drift, 
miscalibration, corrosion of the sensors, or even process leaks. The most common gross 
errors are represented in the Figure 3.1. 

It is important to detect and remove them from the data, otherwise, the reconciled values 
will be corrupted and therefore, the balanced network invalidated. For that reason, a 
tool for analysing, detecting, and removing the errors must be used. Thereby, the 
adjustments are smaller and the quality of the resulting reconciled values is higher. With 
this purpose, a wide range of algorithms that include gross error detection as a preceding 
step to data reconciliation have been developed. Some of them are presented on the 
Section 3.4 
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Figure 3.1  Most common Gross Errors caused by instrument type’s faults. 
(Natasimhan S.,Jordache C,1999) 
 

3.3 Process Variable types. 
Adding complexity to the problem, not always all the variables from a data set are 
measured and even when they are, sometimes the reconciled value cannot be computed. 
Data collection is a complex procedure that is considered out of the scope on the present 
thesis work because of limited time. However, understanding the different types of 
variables depending on the data available is essential for applying data reconciliation 
and gross error detection.  

In processing plants, hundreds of process data such as flow rates, temperatures, 
pressures, stream compositions… are present, and depending on the point of interest of 
the study, one data or another is measured. However, not all the data is accessible, in 
most cases there are some process variables whose measurement could not be 
performed and the values are unknown. The usefulness of data reconciliation depends 
on the proportion between the measured variables and the unmeasured, and where these 
last are located in the grid diagram.  

When computing the reconciled network for a data set where unmeasured variables are 
present, it is necessary to divide the calculation process in two steps. Firstly, it is 
performed a reduced reconciliation problem where only the measured variables are 
involved, removing the unmeasured variables from the objective function and the 
constraints. The second step consists of estimating the values for the unmeasured 
variables using the original set of constraints and the reconciled values obtained in the 
first step.  In this case, when all the unmeasured variables can be estimated, the 
unmeasured variables are called observable. However, there is the possibility that 
infinite values can satisfy the constraints making impossible to calculate the estimates. 
In this case, the unmeasured variables are called unobservable.  

In fact, the reconciled values can only be successfully computed for the process 
variables for which measurement are known and, at the same time, are constrained by 
usable material or energy balance. These process variables are called redundant 



 

 

 

 

measured variables. Conversely, the reconciled values for non-redundant variables, 
which are the ones whose measured value is known but they don’t appear in a usable 
process constraint, cannot be calculated. Since they are not constrained the reconciled 
value will be always equal to the measured value.  

To sum up, a variable is observable when it can be estimated by using the measurements 
and the process constraints. Thus, measured variables are always observables. Derived 
from this concept, a measured variable is redundant when it is observable even when 
its measurement is removed.  

 

3.4 Multiple Data Reconciliation and Gross Error 
Detection strategies 

The problem of data reconciliation was first introduced in 1961 by Kuehn and 
Davidson. Since then, multiple researchers have published their studies among which 
Mah, R.S.H.(1976), and Narasimhan S.(1999) stands out. This section aims to present 
some strategies for data reconciliation and gross error detection which apply to steady-
state systems and linear constraints. It is also included within this section to give a 
general outlook of the main differences and note the similarities and differences in their 
performances.  

In order to compare the system on the same basis, it has been assumed that only gross 
errors caused by biases are present in the data set. Moreover, since the aim of this thesis 
work is to develop a generic methodology that can be apply in any data set collected is, 
the methodologies that are going to be studied are designed for Multiple Gross Error 
Detection.  

The vast majority of strategies for identifying and locating gross errors made use of test 
statistics, and are based on the principle that gross errors on measured data result in the 
violation of the model constraints. However, as stated before, the measurement contains 
also some random errors so it cannot be expected that the constraints are strictly 
satisfied. In order to detect just the outliers resulting from the gross errors, since random 
errors are small in value and do not represent a problem for data reconciliation 
mechanisms, a concept called normalized error has been defined. The normalized error 
is the difference between the measured value and the expected mean divided by its 
standard deviation. In order to identify gross errors, a confidence interval of the 
normalized errors can be defined. So that the values that fall outside (1-α) the 
confidence interval, where α is the level of significance, are identified as outliers and 
thus, likely to contain a gross error.  

Hypothesis testing is the chosen methodology in all cases to perform the analysis. Two 
hypotheses are defined; the null hypothesis, Ho, is that no errors are present in the data, 
whereas the alternative hypothesis, H1, is that one or more gross errors are present. 
However, depending on the strategy, the calculation of the test statistic and the threshold 
criterion value varies.  

Basically, multiple gross error detection strategies can be classified within the following 
categories: simultaneous, serial or combinational. All this methods are further 
explained in Chapter 7, Natasimhan S.,Jordache C. (1999). 
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Simultaneous error detection strategies 
In this case, the algorithm attempts to identify all the gross errors present in the data 
simultaneously or in a single iteration. For these algorithms the corresponding test 
statistics for each variable are calculated simultaneously and tested against the test 
criterion. Those measurements whose test statistics exceed the test criterion are likely 
to contain errors. The Measured Test (MT) applied for all the measurements and the 
Generalized Likelihood Ratio Test (GLR), are the main ones within this category,   

Serial error detection strategies 
In contrast to the simultaneous strategy, serial techniques identify the errors one by one 
by doing multiple iterations of the same procedure. Within this group, the different 
techniques can be sub-classified depending on whether the principle is elimination or 
compensation. In the former, every time that a gross error is detected, the corresponding 
measurement is removed before calculating again the new estimates and new stats. The 
Iterative Measured Test (IMT), or its powerful version Modified Iterative Measurement 
Test (MIMT), which allows also setting bounds to the variables, are an example. In the 
second one, as its name indicates, instead of eliminating the wrong measurement from 
the data set, it uses a compensation system based on the identified type error, location 
and the estimated magnitude. Simple Serial Compensation Strategy (SSCS), Modified 
Serial Compensation Strategy (MSCS), and Bounded Generalized Likelihood Ratio 
(BGLR) are included within this group. In the last one, the bounds of the variables can 
be included as inequality constraints, turning it into a complex quadratic programming 
optimization method.  

Combinational error detection strategies 
Last but not least, there is the combination strategy, which is based on nodal imbalanced 
tests. The method consists of reducing the system into small subsystems by aggregating 
two or more nodes (in a process graph, the nodes are generally units, tanks and junctions 
in the process flow sheet). In that manner, the process variables that are in between the 
merged nodes are deleted. In that way, less variables are involved in each test. This 
procedure is done many times until all the process variables have been tested.  If the 
nodal test is rejected, it means one or more of the incident streams, i.e. the ones going 
in or out from the node, have a gross error, whereas if the test is not rejected it can be 
considered that all incident streams are free of errors. Unlike previous strategies, the 
method identifies the measurements that according the criterion are correct. The 
remaining ones, those that cannot be confirmed, are the ones suspected of having a 
gross error. In this case, no judgment can be made for the process variables in the 
streams that are interconnecting the aggregated nodes, and so when the hypothesis is 
rejected, no information is obtained regarding which process variables contain the error. 
For that reason, multiple nodal combinations must be done. The Linear Combination 
Technique (LCT), Method of Pseudonodes (MP), and Modified Method of 
Pseudonodes (MMP) are examples of combinational methods.   

Not all the mentioned techniques have the same efficiency or accuracy, and most of the 
time, their performance also depends on the characteristics of data set. Although several 
articles and studies have been conducted comparing their performances, unfortunately; 
none of them provides a clear answer. But they do give some advices and conclusions 
that are presented in the following. However, before that, it must be pointed out that not 
only not detecting a gross error in a measured data when it is present is a problem (Type 
II error), but also the opposite, falsely detecting a gross error when there actually none 



 

 

 

 

(Type I error), is a sign of bad performance In fact, a method that detects all the gross 
errors present in a data set but that also end up in some false alarms is not useful. 
Therefore, when designing a methodology, the power of the test, which is the 
probability of correct detection, must be balanced against the probability of false 
detection.  

According to Natasimhan S.,Jordache C. (1999) simultaneous techniques seem to be 
the less accurate, resulting in too many mispredictions. That happens because the 
variables are all related through the constraints and the test statistics make use of the 
constraints residuals. In this way, a gross error can be spread among other variables and 
may cause the test statistic of a good measurement to exceed the test criterion. Or what 
is even worse, test statistics of good measurements exceed the test criterion but the one 
containing the gross error does not. This is known as smearing effect. 

Serial and Combinational algorithms perform better because the test statistics are 
calculated again after each error detection. Nevertheless, combinational strategies 
results in less mispredictions than serial ones, but in return, Type II errors are more 
frequent due to partial or complete cancellation. Moreover, since combinatorial 
methodologies involve multiple nodal combinations, a methodology reducing the 
number of combinations is required. On top of that, computational time is longer 
compared to the serial strategies and combinational algorithms are more difficult to 
apply to non-linear systems.  

Due to these arguments, it was decided not to implement a combinational strategy 
within the present work. Therefore, the discussion is between the different serial 
strategies. According to Natasimhan S.,Jordache C. (1999), identical results are 
obtained from using the serial elimination strategy in conjunction with the measured 
test or in conjunction with GLR test, both use the same principle. Thus, the modified 
serial compensation performs equal to serial elimination, and both will lead to the same 
results. For the purpose of the present work, the MIMT appears to be the best option 
due to its simpler implementation.  

The final discussion is between the MIMT and the modified serial compensation 
(MSCS). The only difference between both is that MSCS also is capable of detecting 
leaks, i.e. the measurement differs from the true value not because the process variable 
has been wrong measured but because there is a leak in the process. However, this 
benefit does not make a difference in the present study since it has been assumed that 
there are no leaks and that the flow is always constant. In accordance, both algorithms 
can be considered as good choices. This conclusion is also ratified by Shert R.W., 
Heenan A. W, (1986) which conclude that the MIMT and the SC algorithms are the 
more accurate ones, detecting around 80% of the gross errors and achieving a reduction 
of total errors around 60%. 

There is one advantage of the modified iterative measurement test that has not been 
taken into consideration until now, but that has made the MIMT the algorithm of choice 
in the present work; the method allows also defining bounds for the measurements. In 
that manner, the reconciled values will be inside the range defined by the bounds, 
avoiding the optimal but infeasible solutions.  
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3.4.1 Modified Iterative Measurement Test (MIMT) 
The Modified Iterative Measurement Test (MIMT) is a serial elimination algorithm for 
Data Reconciliation and multiple Gross Error Detection. As its name indicates it is 
based on the iterative use of the Measurement Test (MT) outlined by Mah and Tamhane 
(1982).  

The whole procedure can be divided into two parts. The first part consists of performing 
error detection and deleting the wrong measurements from the collected data set. The 
second part is to perform data reconciliation using this new data set.  

Therefore, the data set used for reconciling the network has only random error, and so, 
equation (3.5) and equation (3.6) defined in the Section 3.1 can be used. The difference 
is that in this case, both equations are used in its matrix form.  

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑦𝑦 − 𝑥𝑥)𝑇𝑇𝑊𝑊(𝑦𝑦 − 𝑥𝑥)                         (3.7) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡    𝐴𝐴𝐴𝐴 − 𝑏𝑏 = 0,                 (3.8) 
where y is the vector of the measured values, x is the vector of the reconciled values 
and W is a diagonal weighted matrix. In equation (3.8), A is the incidence matrix for 
the linear constraints and b is the vector of the independent terms of the linear 
constraints. The incident matrix A shows the relationship between the process variables 
(each column), and the energy or mass balances that constraint the system (each row). 
If the entry is equal to zero, that means that the process variable is not affected by that 
constraint. In this case, A is a full rank matrix since all the constraints are linearly 
independent.  

As explained before, random errors follow a normal distribution with mean zero and 
known variance σii

2. If it is assumed that the measurements of the process variables are 
independent, it is logical to say that their random errors are independent too. In 
accordance, the Covariance Matrix of Measurements Σ, equation (3.9) can be defined.  

Cov(y)= Σ= 

⎣
⎢
⎢
⎡𝜎𝜎11

2 0
0 𝜎𝜎222

… 0
… 0

… …
0 0

… 0
0 𝜎𝜎𝑖𝑖𝑖𝑖2⎦

⎥
⎥
⎤
                (3.9) 

The standard deviation σi is a measure that quantifies the degree of dispersion of a data 
set. If the standard deviation is close to zero, it means that the data points tend to be 
together, in other words, the precision is higher. In contrast, a higher value of standard 
deviation implies larger variation on the measurements, so less precision. The weighted 
matrix W defined on the equation (3.7) attempt to give higher weight to the accurate 
measurements and lower to the inaccurate ones. Therefore, the weighted matrix is 
inversely proportional to covariance matrix, and Data Reconciliation problem can be 
expressed from a statistical point of view as:  

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑦𝑦 − 𝑥𝑥)𝑇𝑇𝛴𝛴−1(𝑦𝑦 − 𝑥𝑥)               (3.10) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡    𝐴𝐴𝐴𝐴 − 𝑏𝑏 = 0               (3.11) 
By using Lagrange multipliers methodology, which is not going to be explained here, 
but is briefly summarized in Appendix 2, the analytical solution to the data 
reconciliation problem can be calculated using the equation (3.12). 

𝑥𝑥 = 𝑦𝑦 − 𝛴𝛴𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇)−1(𝐴𝐴𝐴𝐴 − 𝑏𝑏)              (3.12) 



 

 

 

 

The reconciled values obtained from the equation (3.12) are only valid if the collected 
data set is free of gross error.  For that reason, a preceding step detecting and deleting 
the measures suspected to contain gross errors is necessary. And it is exactly what the 
Modified Iterative Measurement Test algorithm attempts to do by performing multiple 
Measurement Tests as a preceding step to data reconciliation. 

The Measurement Test is a technique for detecting systematic errors derived from the 
basic principle of normalized error explained in Section 3.4.1. In this case, instead of 
using the normalized errors, it uses the vector of measurement adjustments, defined as 
the difference between the measured value and the reconciled value.  But the core 
principle is exactly the same.  

Assuming that no systematic errors are present in the data, i.e. the H0 is true and the 
adjustment vector follows a Normal distribution with mean zero and covariance 𝑊𝑊� . 
Equation (3.13) and equation (3.14) show two different forms for computing the vector 
of measurements adjustments, and also for computing its covariance matrix 𝑊𝑊� .  

𝑎𝑎 = 𝑦𝑦 − 𝑥𝑥                 (3.13) 

𝑎𝑎 = 𝛴𝛴𝐴𝐴𝑇𝑇𝑉𝑉−1𝑟𝑟                 (3.14) 

𝑊𝑊� = cov(a) =  𝛴𝛴𝐴𝐴𝑇𝑇𝑉𝑉−1𝛴𝛴               (3.15) 

𝑟𝑟 = 𝐴𝐴𝐴𝐴 − 𝑏𝑏                 (3.16) 

𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟) = 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇                (3.17) 

𝑍𝑍𝑎𝑎,𝑖𝑖 = |𝑎𝑎𝑎𝑎|
�𝑊𝑊� 𝑖𝑖𝑖𝑖

    j=1,2,..n                (3.18) 

In the stated equations, r is the vector of balance constraint and V is the covariance 
matrix of r, and 𝑊𝑊�𝑖𝑖𝑖𝑖 is the diagonal value from 𝑊𝑊�  for each measurement.  
Applying equations (3.12)-(3.17), which are using the defined adjustment vector and 
its covariance, a test statistic with normal distribution N(0,1), under the assumption of 
H0, is drawn using the equation (3.18) for each measurement i. Nevertheless, with the 
purpose of maximizing the power of detecting a single gross error a modification of the 
equation. (3.18) is done.  The modification consists of pre-multiplying the vector of 
adjustments by the invers of the covariance matrix of measurements Σ, resulting in the 
following equations:  

𝑍𝑍𝑎𝑎,𝑖𝑖 = |𝑑𝑑𝑑𝑑|
�𝑊𝑊𝑖𝑖𝑖𝑖

    i=1,2,..n                           (3.19) 

𝑑𝑑𝑗𝑗 = 𝛴𝛴−1𝑎𝑎                 (3.20) 

𝑊𝑊 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) = 𝐴𝐴𝑇𝑇𝑉𝑉−1𝐴𝐴𝑇𝑇               (3.21) 
To perform the Measurement Test, is also necessary to calculate the threshold criterion        
Z1-α/2, defined as the critical value of the standard normal distribution for a given level 
of confidence α (generally α = 5%). This implies that it is acceptable to have a 5% 
probability of incorrectly rejecting the null hypothesis. However, according to 
Natasimhan S.,Jordache C. (1999), as multiple tests are performed using the same 
critical value, the probability of rejecting the test even though there are  no gross errors 
present in the sample (Type I Error) is higher than the one defined by α.  
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In order to keep the probability lower or equal to α, a modified level of significance β 
is used (Z1-β/2). This parameter is calculated using equation (3.22), where m is the 
number of simultaneous multiple tests computed in each iteration. Note that the value 
of m will decrease every time a variable is removed from the data set. 

𝛽𝛽 = 1 − (1 − 𝛼𝛼)
1
𝑚𝑚                (3.22) 

With the m test statistics and the modified threshold criterion computed, the 
measurement test can be performed. All the test statistics, one for each process variable 
that has been measured, are tested against the modified threshold criterion. The ones 
that exceed the later are those with a high probability of containing a gross error. The 
higher value of the measurement statistic test, the greater the probability of having a 
gross error.  

In other words, if one or more tests statistics are above the threshold the collected data 
has at least one gross error and it is located in any of the measurements whose test 
statistic exceeds the threshold. But since a measurement with gross error sometimes can 
affect the nearby measurements, causing their test statistics to exceed the criterion, it 
would be a big mistake to say that all the measurement whose  test statistic is higher 
than the threshold are wrong. For that reason, if there are more than one test statistics 
that exceeds the criterion, the test statistics can be used as indicators, but never to 
confirm the location of a gross error, without doing another test.  

In order to not commit such an error, only the measurement with the highest test statistic 
that is suspected to contain gross error is removed from the data set each iteration. Then, 
using the reduced data set, the reconciled values, the measurements test statistics and 
the threshold criterion are calculated again, and a new measurement test is conducted. 
The algorithm terminates when the maximum measurement test statistic does not 
exceed the test criterion, which means that, the resulting network is free of gross errors. 
Since only one measurement is eliminated at each stage the possibility of make a Type 
I error decreases. 

The Modified Iterative Measurement Test includes also another improvement for 
avoiding infeasible reconciled values. Lower and Upper bounds can be included in the 
algorithm. In that way, when a measured value with gross error is removed from the 
data set, the resulting estimated values must be inside the bounds. Otherwise, the 
measurement will be re-incorporated into the data set and the next one with the highest 
test statistics will be removed. The whole procedure is schematised in the Figure 3.2. 

 

 



 

 

 

 

 
Figure 3.2  MIMT scheme, adapted from Kim, I., Kang, M. S., Park, S., Edgar, T. 
F. (1996) 
 

For easy understanding, the procedure explained is described step by step below.  

Step 1: Solve the initial reconciliation problem. Compute the reconciled values 𝑥𝑥, the 
vector of adjustments 𝑎𝑎, and the modified vector  𝑑𝑑.  

Step 2: Compute the measurement test statistics 𝑍𝑍𝑖𝑖 for all the measurements in the data 
set 

Step 3: Calculate the threshold criterion Z1-β/2 using the 2-tailed t test and compare it 
with the maximum measurement test statistics (𝑍𝑍max ) from the step above.  

 If  𝑍𝑍max ≤ Z1-β/2 no gross errors are detected. Go to Step 5. 

 If 𝑍𝑍max >Z1-β/2 the measurement corresponding to 𝑍𝑍max  is likely to contain 
gross error. Take it out from the data set by using nodal aggregation (treated as 
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unmeasured variable). If two or more 𝑍𝑍max  are equal select the one with lower 
i index. 

Step 4: Compute again the vectors 𝑥𝑥, 𝑎𝑎, and  𝑑𝑑.  

 If   𝑙𝑙𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑢𝑢𝑖𝑖 the measurement is confirmed to have a gross error. Return 
to Step 2 for the reduced set of measurements 

 If  𝑙𝑙𝑙𝑙𝑖𝑖 ≥ 𝑥𝑥𝑖𝑖 𝑜𝑜𝑟𝑟 𝑥𝑥𝑖𝑖 ≥ 𝑢𝑢𝑢𝑢𝑖𝑖 so the reconciled values are unrealistic, put back the 
deleted measurement and return to Step 3. Identify next 𝑍𝑍max   among the 
remaining measurements 

Step 5:  The presence of a gross error is confirmed for those measurements that have 
been permanently removed from the data set. In this case, the final reconciled values 
are those obtained from the Step 4. In case there is no gross error or was not able to 
verify its presence, the reconciled values are the ones obtained in Step 1. 

If the test statistics of the last iteration are all below the threshold criterion, the last 
reconciled values, which are the solution to data reconciliation, are correct and can be 
used in further studies. In contrast, if any of the test statics exceeds the threshold 
criterion, the algorithm was not able to remove all the measurements with gross errors, 
so the reconciled values are corrupted. In this case, in order to detect the remaining 
gross errors in the collected, further investigation around the measurements with test 
statistics above the criterion needs to be done.  

 
3.4.2 Limitations of the method 
The Modified Iterative Measurement Test unfortunately has some limitations.  

Limitation 1 comes from the fact that the method uses nodal aggregation for deleting 
those measurements that are likely to contain gross errors or for working with 
unmeasured variables. The procedure consists of eliminating the process variable from 
the objective function and also from the constraints, resulting in a reduced 
reconciliation problem where it is no present. This is done by aggregating the nearest 
neighbour nodes of the process variable.  

For instance, if the measurement T15 (Figure 3.3 on the left), which is equal to 266.7ºC 
is suspected to have a gross error, a reduced network as the one represented in the image 
on the right will be obtained by eliminating the flow which contains the suspected 
process variable and merging both heat exchangers. For the original network the energy 
constraints are 𝑄𝑄10=𝑄𝑄16 and 𝑄𝑄11 =𝑄𝑄17.  By aggregating both heat exchangers, the 
constrained equations are reduced to 𝑄𝑄10′ =𝑄𝑄16 +𝑄𝑄17. The reconciled values will be those 
resulting from solving the reduced network, in which the wrong temperature does not 
appear in the objective function nor in the constraints.  Thanks to nodal aggregation, 
the reconciled values can be calculated anyway, without being corrupted by the wrong 
measurements.   

However, if a gross error is detected in the measurement T23, as it is the start 
temperature, and so it is located in one of the sides of the network, it is not possible to 
do nodal aggregation since the flow where the process variable is cannot be eliminated, 
as it is not within two units or nodes.  



 

 

 

 

          
Figure 3.3  Detail of the network from the HCU before (left) applying nodal 
aggregation and the resulting network afterwards (right). 
 
Limitation 2 is not specific to this methodology, but it should be also taken into 
consideration and reminded in this point. Neither reconciled values nor gross error can 
be computed and detected in non-redundant variables. As mentioned before, since they 
do not appear on the constraints, the reconciled value is always equal to the measured. 
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4 Methodology  
The aim of this thesis work is to implement an application in Excel to perform data 
reconciliation and gross error detection and test it with the data collected from the 
hydrocracker unit of Preem refinery in Lysekil. This chapter starts with presentation of 
the study case, then it is explained why and how the tools have been developed, and 
finally, using two simply test cases, the tool’s performances have been compared. It is 
also included within this chapter an explanation of the assumptions made for adapting 
the data collected to the requirements of the tools.   

 

4.1 Case study: Heat exchanger network from HCU 
Stream data was collected from the Hydrocracker unit at Preem refinery in Lysekil with 
the purpose of studying process integration possibilities. However, the presence of 
many inconsistencies made it difficult to use “engineering judgement” for balancing 
the heat exchanger network manually.  

The starting point of this thesis is the imbalanced heat exchanger network from the 
Hydrocracker Unit. But, in order to simplify the study, only half of the streams involved 
have been taken into account. For the complete data set the reader is referred to the 
Appendix 1.  

The simplified network consists of a total of 10 streams, 5 hot stream and 5 cold 
streams, 9 heat exchangers, 3 coolers and 1 heater. Based on the data provided 
(measurements of the temperatures, total heat loads of the streams and heat flow 
capacities) the simplified network has been represented, see Figure 4.1. To facilitate the 
identification, a reference number from top to bottom and left to right has been assigned 
for the temperatures and heat loads of the heat exchangers and utilities. 

As the reader can see from the data attached in the Appendix 1, temperatures T5, T7, 
T14 and T26 have been measured more than one time. For these cases, the value used 
is the average of the measurements available. Moreover, measurements of temperatures 
T2, T28, T29 and T32 were not performed and the values used are instead estimations. 
For this reason, a second study has been conducted. The aim of this second analysis is 
to minimize the weight of the adjustment, which is the difference between the estimate 
and the reconciled value, for the estimates in the objective function.  

 



 

 

 

 

 
Figure 4.1  Scheme of the imbalanced heat exchanger network from the data set 
provided. All exchangers and utilities are referenced with a letter and a number. Letter 
C is used for the coolers, E for the heat exchangers and H for the heaters.  
 

To simply the study only temperatures are assumed to be adjustable variables. Mass 
flows and the corresponding heat capacity flow rates, are assumed to be fixed. 
Therefore, the network will only be balanced from an energetic point of view, which 
means that the only constraints of the system will be the energy balances in the 9 heat 
exchangers. With that purpose, the heat losses have been neglected, and so it has been 
considered that heat transferred from the hot stream must be equal to heat absorbed by 
the cold stream, in the nine heat exchangers. The heat transferred can be calculated 
using the equation. (4.1) between both sides of the heat exchanger:  

𝑄𝑄 = 𝛥𝛥𝛥𝛥 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,                  (4.1) 

where 𝛥𝛥𝛥𝛥 is the enthalpy change  (MJ/s), F is the flow rate (Kg/s) , Cp is the heat 
capacity (MJ/ Kg˚C)  and 𝛥𝛥𝛥𝛥 is the difference between target temperature and start 
temperature (˚C) . 
In this case it has been assumed that there are no leaks in the network or changes in the 
stream composition. Thus, the value of the heat flow capacity (FCp) is constant and the 
same for the overall flow. This assumption might lead to an over or under detection of 
the gross errors but had to be made in order to be able to implement the Modified 
Iterative Measurement Test.  
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Given all the above considerations, the constraints for the new network are specified 
below, equations (4.2)- (4.10):  

 

HX E_8101: 0.027415*(T8 − T7) + 0.21169* (T18 − T19) = 0            (4.2) 

HX E_8102: 0.06099*(T11 − T10) + 0.21169* (T19 − T20) = 0            (4.3) 

HX E_8103: 0.422219*(T4 − T3) + 0.21169* (T20 − T21) = 0            (4.4) 

HX E_8104: 0.100707*(T15 − T14) + 0.21169* (T21 − T22) = 0            (4.5) 

HX E_8106: 0.400011*(T2 − T1) + 0.323954* (T24 − T25) = 0            (4.6) 

HX E_8108: 0.100707*(T14 − T13) + 0.039409* (T27 − T28) = 0            (4.7) 

HX E_8120: 0.100707*(T16 − T15) + 0.323954* (T23 − T24) = 0            (4.8) 

HX E_8121: 0.422219*(T5 − T4) + 1.152982*(T29 − T30)  = 0            (4.9) 

HX E_8122: 0.100707*(T17 − T16) + 0.132771*(T31 − T32)  = 0          (4.10) 
 

As one can see, temperatures T6, T9, T12 and T26 do not appear in the constraints. 
Therefore, in accordance to what is explained in the Section 3.4.2 its reconciled value 
will be always equal to the measured value (limitation 2), there is no redundancy.  

Unfortunately, the studied network is also affected by limitation 1, more than half of 
the measured process variables are start or target temperatures, and so nodal 
aggregation cannot be performed.  Thus, only intermediate measurements T4, T14, T15, 
T16, T19, T20, T21 and T24 can be removed from the data set, which means that, the 
MIMT can only confirm the presence of a gross error in these 8 measurements.  

With the aim of not leaving the rest measurements away from the analysis, the test 
statistic has been used as indicator of the probability of containing a gross error. The 
probability is higher the further above the corresponding test statistic is from the 
threshold criterion. However, as mentioned before, since all the process variables are 
inter-connected by the constraints a gross error in one measurement can affect the test 
statistic of a good measurement, so by doing this, one assume the risk of ending up in 
wrong conclusion. Having the test statistic above the threshold criterion is a necessary 
criterion but not sufficient for confirming the presence of a gross error.  

 

4.2 Implementation of the tools with Excel 
Microsoft EXCEL is a spreadsheet application used mostly for storing datasheets, do 
systematic calculations and basic graphic representations. However, EXCEL includes 
some other powerful features, converting it in a cheaper, competitive and more user 
friendlier alternative to the high-level technical computing language of Matlab, 
especially for unfamiliar users with the latter.  

When the project started, the main purpose was to implement the Modified Iterative 
Measured Test using VBA in order to get a systematic and fast solution for the data 
reconciliation and gross error detection problem. However, the VBA, which stands for 
Visual Basic for Applications, is an event-driven programming language that enables 
to automate task by building user-defined functions, creating macro-driven applications 
or developing customs add-ins, but which requires some time to get familiar with. In 



 

 

 

 

contrast, Excel has an add-in tool called Solver, which is especially designed to 
determine the optimal solutions that satisfy a set of constraints. This feature is already 
implemented and thus, much easier to use for solving data reconciliation. The only 
drawback is that within this tool error detection is not included.  

For the reasons stated before, it was decided to develop both computer based tools; a 
program for reconcile the raw data set using Solver, and the program wanted from the 
beginning, based on the MIMT methodology and which is able also to detect the gross 
errors present in the data set.  

The aim of this chapter is to present and explain the two computer-aided solutions 
implemented with EXCEL. Explain how they work, which are the inputs and outputs 
for each, and the modifications made in order to adapt the tools for meeting the 
requirements of the case study. 

 

4.2.1 Tool 1 for Data Reconciliation  
As mentioned above Solver is a simply and helpful tool for the optimization of 
engineering procedures where the user just needs to specify the objective function and 
define the constraints, whether if these are linear or not. This simply-to-use technique 
became even more powerful in conjunction with VBA. Thereby, the whole procedure 
can be automated.  

The computer-based tool has been designed with the aim of providing with a reconciled 
network based on the assumption that gross errors are not present on the measurements. 
The objective function is defined by default and cannot be modified, since it is always 
minimizing the weighted least square difference between the measured value and the 
reconcile value for all the measured variables, equation (3.10).  

For using the tool, the input needed is: the measurements for all the process variables, 
the weight of the measurement, and the constraints. The weight works as a criterion of 
importance, a higher weight must be defined for the measurements that are more 
trustable and a lower weight for the ones less reliable. In this manner, the adjustment 
of the process variables with higher weight will be smaller and so the reconciled value 
closer to the measurement. 
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Figure 4.2   Main screen of the computer-based solution for Data Reconciliation 
(Tool1).  
 

As stated before, one of the main advantages of this tool is that almost any kind of 
constraints can be defined. For that reason, it is important to read carefully the 
instructions on the left of the worksheet before defining the constraint. It is also crucial 
to write the constraints referred to the reconciled values and not to the measured, since 
the first are the variables of the problem. For instance, for introducing the constraint of 
the HX E_8101, which is equal to 0,027415*(T8 − T7)+0,21169* (T18 − T19) =0, the 
left side of  the equation must be written in the column called cell reference on the left,  
and the right side in the column called constraint in the right. The column in between 
is for defining the relation type. In this specific case the relation type is an equality and 
according to the instructions, the number 2 must be written. See Figure 4.3 

 

 
Figure 4.3   Detail of the input data columns of the Tool 1. As an example, the 
constraint for the heat exchanger E_8101, equation (4.2), has been defined.   
 

Once the input data is all introduced, it is enough to press the blue button called “Get 
the reconcile values” on the left side of the screen. Thanks to a simply Visual Basic 
code, the input data is transferred to Solver, where the reconciled values are calculated 
and transferred again to the main screen of the tool, where they are listed in the 



 

 

 

 

corresponding output column. The method chosen in Solver is the GRG (Generalized 
reduced Gradient), which is suitable for linear and nonlinear constraints.  

 

4.2.2 Tool 2 for Data Reconciliation and Gross Error Detection 
As stated on Section 3.4.1, the Modified Iterative Measurement Test algorithm is a 
reliable and effective method for data reconciliation and gross error detection.   

Using the VBA programming language, the algorithm shown in the Figure 3.2 has been 
implemented. As a first step, the user only has to enter in the program the measured 
values and its bounds. And then, define the constraint matrix. The aim is to obtain the 
reconciled values for the balanced network, using a data set where the process 
measurements with gross errors have been deleted.  

 

 

 
Figure 4.4   Main screen of the computer-added solution for Data Reconciliation 
and Gross Error Detection with MIMT (Tool2).  
 

The Figure 4.4 shows the main screen of the Tool 2. There are in total seven columns. 
The three of the left are the inputs, and the four of the right the outputs, separated in the 
middle by an extra column, where extra information about the corresponding 
measurement, e.g. indicate if the measurement corresponds to a temperature, flow, 
composition etc… can be added. 
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Figure 4.5 Examples of some message boxes that are shown during the simulation 
of the Tool 2.  
 

Since MIMT is a complicated methodology the tool is also more difficult to use than 
the first one. For that reason, detailed step-by-step instructions, are provided below. 

Step1- Fill the input columns with the measured values and their lower and 
upper bound. 

Step2- Press the button called “Define the Constraint Matrix” on the left side. 
Enter the number of constraints in the Input box that is shown and press OK.  

Step3- Write the constraints following the instructions that appear in the 
message box. See Figure 4.5 in the left. 

Step4- Return to the main screen sheet and press “Get the reconciled values 
(DR&GE)”. 

The reconciled values computed in the step 1 using the original data set, and the 
reconciled values computed in the last iteration using a reduced data set, which are the 
final solution, will appear on the corresponding output columns. As stated before, the 
solution proposed by this methodology must be taken as a recommendation and must 
be always interpreted before its use. Because depending on the data set (input), three 
different situations can occur: 

If the data set is free of gross error, the reconciled values calculated on the first step are 
already the solution to the data reconciliation problem, and the same values are listed 
in the solution column (“Final Reconciled Values”). For this case, all the test statistics 
will be below the threshold criterion. 

If the data set has some gross errors, two different solutions can be obtained: 

- The first, is when the tool is able to detect and eliminate all gross errors from 
the data set. In this case, the statistics of the last iterations are all below the 
threshold, and the tool only provides the reconciled values for the correct 
measurements.  

 

- The second one, which is the worst case, happens when the MIMT is not able 
to detect the exact location of the gross errors. Therefore, the reconciled values 



 

 

 

 

will be calculated using a data set with gross error and so the values provided 
are corrupted. In this case, one or more test statistics of the last iteration exceed 
the threshold. 

As one can see, it is highly important to follow the performance of the method and 
especially to know the values of the test statistics. For that reason, an information box 
appears every time a new statistic is compared with the threshold criterion (Figure 3.2 
step 3) and also every time that a measurement is removed from the data set and the 
new reconciled values are calculated. See the examples on the right in Figure 4.5. With 
the same purpose, there is an extra sheet, called Data, when the adjustments, its 
covariance, the test statistics from the first iteration and the test statistics from the last 
iteration can be consulted.  

 

Assumptions for this specific thesis work 
In contrast with the Tool 1, since this method also performs gross error detection based 
on statistical test, it is necessary to specify the values of the standard deviation for all 
the measurements. However, as the reader can see from the data attached in the 
Appendix 1, the standard deviation of the measurements is not available, and cannot be 
calculated because in almost of the cases, there is only one measurement for each 
process variable. In order to solve the problem and achieve the initial goal, a method 
for estimating the standard deviation has been developed based on the definition of 
standard deviation.  

The standard deviation is an estimation of the dispersion of the measurements, in other 
words, an indicator of how wide is the range of values that the measurement can take. 
Based on the theory, the measurements of a process variable follow a Normal 
Distribution N (μ, σ) with mean μ and standard deviation σ. According to this, and as it 
is shown on the Figure 4.6, the 68% of the measurements will fall within the range 
defined by plus-minus one standard deviation, and the 95% within the range defined by 
plus-minus two times the standard deviation.  

 

 
Figure 4.6   Plot of a normal distribution, where each band has a width of 1 
standard deviation (Wikipedia) 
 
Based on the operating conditions of the different process units and the accuracy of the 
measuring instruments, a lower and upper bound for each measurement has been 
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estimated. Outside this range, assuming a confidence level of 95%, the measurement is 
considered incorrect. It has been considered as true, that this range is the same as the 
one defined by plus minus two times the standard deviation, equation 4.11. 
Accordingly, standard deviation can be calculated as the upper bound minus the lower 
bound divided by four. 

 [𝜇𝜇 −  2𝜎𝜎,  𝜇𝜇 +  2𝜎𝜎] = [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]                        (4.11) 
This rough estimation tends to relax the system and under detect the gross errors (Type 
II Error), since the ranges defined are wider and so the values for the standard deviation 
are higher. However, considering that same procedure is used for all the measurements, 
it will not lead to incorrect detection of the error location.  

This developed procedure might be very useful also in further studies because most of 
the times, as in this case, the values of the standard deviation for the measurements are 
unknown. Nevertheless, process variables are always constrained by the requirements 
of the process, thereby, is easier to have an estimation of the bounds than of the standard 
deviations.  

  

4.3 Comparison of the two tools. 
After the implementation and before their use with the real data set from Preem 
Refinery, both tools have been tested. With that purpose, two test cases based on an 
example from teaching material from the National University of Singapore were 
performed. The wordings and the solutions are attached in the Appendix 3. The stream 
network in both cases is the same, the only difference is that in the first case the data 
set is free of gross errors, whereas in the second one, a gross error has been introduced 
in stream 2. The process includes five units and ten streams, and the aim is to reconcile 
the stream values so the mass balances are satisfied. The results of both performances 
are shown in the Table 4.1 and Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

Table 4.1 The table show the results obtained from the two computed based tools 
where the data set is free of gross errors (test case 1). 

 

INPUT: case 1 OUTPUT 

Measured 
value  (yi) 

Standard 
deviation 
(σi) 

Reconciled values 
Tool 1  (xi)                          
DR with Solver  

Reconciled values Tool 2 (xi) 
MIMT  

1st Iteration 
(step 1) 

Last  Iteration 
(final solution) 

100 5 92.38546574 92.38546575 92.38546575 

90 2 92.38546574 92.38546575 92.38546575 

45 2 43.83285975 43.83285973 43.83285973 

50 2 48.55260599 48.55260601 48.55260601 

120 10 127.0063428 127.006343 127.006343 

40 5 39.67553776 39.6755378 39.6755378 

38 5 38.77819907 38.77819914 38.77819914 

10 5 11.42712354 11.42712354 11.42712354 

50 5 51.1026613 51.10266134 51.10266134 

100 10 89.88086037 89.88086048 89.88086048 

 

In the first test case (Table 4.1), reconciled values obtained with both tools are exactly 
the same. Since no errors are present, it is only a data reconciliation problem, and 
although the methodology is different, the principle behind both tools is the same, so 
the results must be also the same.  

In the second case (Table 4.2), Tool 1 calculates the reconciled values using all the data, 
consequently the gross error in the stream 2 is spread out, affecting all the reconciled 
values. However, in Tool 2, based on the reconciled values of the first step, the test 
statistics are calculated and Measured Tests are performed. The gross error introduced 
in the stream 2 is successfully detected and the corresponding measurement, in this case 
the flow rate, is removed from the data set. Using this new data set and the new 
reconciled values, the test statistics are calculated again (2nd iteration), since all of them 
are below the threshold criterion the simulation ends. For this simple example, the 
performance of Tool 2 is excellent. The final solution is more adjusted, the values of 
the reconciled flow rates are closer to the measurements.  
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Table 4.2 The table show the results obtained from the two computed based tools 
where an error in the flowrate of the stream 2 has been introduced (test case 2). 

INPUT: case 2 OUTPUT 

Measured 
value  (yi) 

Standard 
deviation 
(σi) 

Reconciled values 
Tool 1  (xi)                          
DR with Solver 

Reconciled values Tool 2 
(xi) 
MIMT 

1st Iteration 
(step 1) 

Last  
Iteration 
(final solution) 

100 5 104.3804579 104.3804579 95.95993355 

110 2 104.3804579 104.3804579 removed 

45 2 49.91866893 49.91866886 45.64641063 

50 2 54.46178897 54.46178901 50.31352291 

120 10 131.4219961 131.4219962 128.3221929 

40 5 39.02617705 39.02617703 39.48203045 

38 5 37.93403009 37.93403014 38.52663958 

10 5 11.88167602 11.88167608 11.56257869 

50 5 50.90785307 50.90785311 51.04460913 

100 10 88.84188316 88.84188325 89.57124872 

 

Both tools performed as expected, Tool 1 solves DR based on the data set provided, 
whereas Tool 2 detects gross errors and uses the resulting data set for solving DR. It 
must be highlighted that the detection of errors is doubly beneficiary because, on one 
side, incorrect measurements are detected, but on the other side, the quality of the 
reconciled values obtained is higher due to uncorrected values having been removed 
from the data set, so the reconciled values tend to be closer to the measured values.  

However, one of the biggest challenges is about how to deal with large sets of data and 
complicated networks, where many units and process are involved, and how to do it 
faster. This is where Tool 1 gains advantage. Solver add-in was exactly designed for 
solving an optimization function subjected to some constraints, which is exactly the 
core of data reconciliation. Although it does not guarantee an optimal solution, if the 
user has a basic knowledge about the process that has been measured, is less probable 
to commit a mistake. Moreover, it is effortless to use, more powerful, and less time 
consuming. Additionally, Solver accepts any kind of constraints; linear, non-linear and 



 

 

 

 

even inequalities, avoiding having to use complicated linearized methods as a previous 
step to data reconciliation. Finally, another advantage is that the standard deviation of 
the measurements neither the bounds are needed, it is enough with setting a weight for 
the measurements depending on its accuracy.  

In conclusion, any of the techniques met, in one way or another, the initial goal: develop 
a tool for systematically reconciliation of measured process data for its use in future 
process integration studies. The first is specially indicated for high quality and large 
data sets free of gross error, in which not all the constraints are linear. In contrast, the 
second one is more suitable for linear systems and smaller, bad or unknown origin of 
the data set.  
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5 Results and discussion 
In this chapter the results of the data reconciliation problem obtained by the two 
implemented tools are presented, analyzed individually and compared.  

In order to make the discussion easy and more understandable, this chapter also includes 
a summary of previous explanation about the simulations made and how the discussion 
of the results has been conducted. 

 

5.1 Illustration of use of the two tools based on the case 
study 

The need to create a systematic tool for analysing stream data arose from the purpose 
of studying opportunities for process integration in  the hydrocracker unit at Preem’s 
refinery in Lysekil. 

Since two different tools are used, two sets of reconciled values are obtained for a same 
set of data. The results obtained using Tool 1 are only the solution to the data 
reconciliation assuming that no gross errors are present on the data set, and may differ 
from the ones obtained with Tool 2 if any measurement with gross error is present. It is 
interesting to compare those differences and examine if same conclusions can be 
derived from the results obtained by the two tools, or in contrast, the deductions differ.  

In order to compare the solutions on the same basis, DR & GED, after obtaining the 
reconciled values from the Tool 1, a gross error detection study applying engineering 
judgment was performed. In order to do so, the attention was mainly focused in two 
parameters. First, it was considered that those temperatures whose reconciled value is 
outside of the range defined by the bounds could be suspected of containing an error. 
By definition, see Section 4.2.2, Figure 4.6, if the reconciled value is outside the range 
the measurement is incorrect. In addition, the resulting balanced network is infeasible. 
And secondly, special attention was paid to the variables whose reconciled value differs 
from the initial temperature (the measurement) by more than 5ºC. According to theory 
(see Sections 3.1 and 3.2), random errors are small in magnitude, whereby adjustments 
to data assumed to contain random errors only should also be small in magnitude. The 
choice of 5ºC as maximum allowable adjustment was judged to be a reasonable choice 
comparing it with the bounds defined. 

Based on these two standards some hypotheses were formulated. These hypotheses are 
compared with the results obtained using Tool 2. Hypotheses are verified or rejected 
based on the values of the test statistics.  

For setting the hypotheses, the Smearing Effect was taken into account. Process 
variables are all inter-related by the constraints, so an error in one of them might lead 
the test statistic of a good measurement to exceed also the test criterion (Type I Error). 
Thus, if the test statistics of two process variable that are connected by a heat exchanger 
are above the criterion, there is a high probability that one of them has a gross error, but 
not both. For this reason, measurements suspected that are directly connected by an 
energy balance were grouped together in the same hypothesis. 

Moreover, as it has been mentioned in Section 4.1, measurements of the temperatures 
T2, T28, T29 and T32 are estimates, meaning that the initial values used for these 
process variables are less accurate than the other ones.  In order to provide with a 



 

 

 

 

balanced network as closely as possible to the original one, a second analysis where a 
smaller weight in the objective function is given to the four estimated measurements 
was undertaken. In this manner, the difference between the initial value and the 
reconciled value has less repercussion than the same difference in the temperatures in 
which the initial temperature is measured.  

 

Table 5.1 Input data used for both analysis. The temperatures highlighted are the 
ones which bounds differ in both analysis (estimates measurements).  

Reference 
(ni) 

INPUT:  Analysis 1 Analysis 2 

Measured 
value  (yi) 
[˚C] 

Lower 
bound for 
yi [˚C] 

Upper 
bound   
for yi [˚C] 

Low 
bound for 
yi [˚C] 

Up bound   
for yi [˚C] 

T1 402.3 401.3 403.3 401.3 403.3 

T2 422 418 426 412 432 

T3 246.7 241.7 251.7 241.7 251.7 

T4 278.3 273.3 283.3 273.3 283.3 

T5 285.9 282.8 288.8 282.8 288.8 

T6 38.1 33.1 43.1 33.1 43.1 

T7 93.7 88.7 98.7 88.7 98.7 

T8 230.6 227.6 233.6 227.6 233.6 

T9 42.6 37.6 47.6 37.6 47.6 

T10 140.7 135.7 145.7 135.7 145.7 

T11 318.2 313.2 323.2 313.2 323.2 

T12 161.6 156.6 166.6 156.6 166.6 

T13 186 181 191 181 191 

T14 250.5 245.6 255.6 245.6 255.6 

T15 266.7 261.7 271.7 261.7 271.7 

T16 321.2 316.2 326.2 316.2 326.2 

T17 350.6 345.6 355.6 345.6 355.6 
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T18 76 71 81 71 81 

T19 99.4 94.4 104.4 94.4 104.4 

T20 161.5 156.5 166.5 156.5 166.5 

T21 222.1 217.1 227.1 217.1 227.1 

T22 227.9 224.9 230.9 224.9 230.9 

T23 193.3 188.3 198.3 188.3 198.3 

T24 218.6 213.6 223.6 213.6 223.6 

T25 254.1 249.1 259.1 249.1 259.1 

T26 366.3 363.3 369.3 363.3 369.3 

T27 59.9 54.9 64.9 54.9 64.9 

T28 193.2 183.2 203.2 183.2 203.2 

T29 230.6 225.6 235.6 220.6 240.6 

T30 233.2 228.2 238.2 228.2 238.2 

T31 297.7 292.7 302.7 292.7 302.7 

T32 320 315 325 310 330 

 

The final goal is to provide a list of the reconciled values and include a recommendation 
of which measurements should be repeated or removed because a gross error has been 
detected. The reader is encouraged to follow the discussion of the results and to 
understand the outputs of both tools, as the computer aided solutions implemented are 
intended to be used in further studies.   

 

5.2 Analysis 1: Original data set 
Table 5.2 lists the results obtained from both tools and their variation in temperature 
from the measured value. As can be seen, the reconciled process variables are 
practically the same in both cases. However, this can occur because no gross errors are 
present on the data set, or because the MIMT algorithm was not able to detect the exact 
location of the gross error, which is the current case. None of the suspected 
measurements are removed from the data set, therefore, the reconciled values of Tool 
2 are also calculated using the initial data set. 



 

 

 

 

Table 5.2 Results of the first analysis obtained for each tool. The values of the last 
column (ΔT), are the absolute variation between the measured values and the 
reconciled values from the Tool 1. Temperatures highlighted are the non-redundant 
ones. 

Rerence  
(ni) 

Measured 
value (yi)  
[˚C] 

Reconciled 
values (xi) [˚C] 
Tool 1 

Reconciled 
values (xi) [˚C] 
Tool 2 

ΔT [˚C] 

( |Tmeas-Ttool1| ) 

T1 402.3 402.019 402.014 0.3 

T2 422 426.519 426.573 4.5 

T3 246.7 245.776 245.774 0.9 

T4 278.3 279.199 279.200 0.9 

T5 285.9 285.917 285.909 0.0 

T6 38.1 38.109 38.100 0.0 

T7 93.7 92.824 92.792 0.9 

T8 230.6 230.941 230.927 0.3 

T9 42.6 42.612 42.600 0.0 

T10 140.7 138.287 138.248 2.4 

T11 318.2 320.711 320.652 2.5 

T12 161.6 161.637 161.600 0.0 

T13 186 190.705 190.721 4.7 

T14 250.5 246.491 246.499 4.0 

T15 266.7 263.928 263.991 2.8 

T16 321.2 322.934 322.826 1.7 

T17 350.6 350.968 350.963 0.4 

T18 76 83.044 83.011 7.0 

T19 99.4 100.931 100.900 1.5 

T20 161.5 153.489 153.453 8.0 

T21 222.1 220.152 220.123 1.9 
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T22 227.9 228.446 228.445 0.5 

T23 193.3 199.657 199.698 6.4 

T24 218.6 218.000 217.988 0.6 

T25 254.1 248.252 248.313 5.8 

T26 366.3 366.273 366.300 0.0 

T27 59.9 58.018 58.053 1.9 

T28 193.2 200.577 200.589 7.4 

T29 230.6 230.647 230.672 0.0 

T30 233.2 233.107 233.128 0.1 

T31 297.7 298.205 298.178 0.5 

T32 320 319.468 319.522 0.5 

 

Note that as foretold before, the non-redundant temperatures; T6, T9, T12 and T26 
(highlighted in Table 5.2) have the same reconciled value as the measurement. These 
temperatures cannot be reconciled nor checked for an error, thus, they are left out of the 
study.   

 

5.2.1 Discussion of the results obtained from Tool 1 
Reconciled temperatures obtained using Tool 1 are listed in the third column of Table 
5.2.  

The heat loads for the balanced network were calculated, the values are listed together 
with the ones from the imbalanced network in Table 5.3.  The highest relative variation 
is found in the cold stream of heat exchanger E-8104 with a relative variation of 43% 
from the imbalanced network. However, even though the percentage is high, the 
consequence for the network is small. The heat absorbed by the cold stream rises from 
1.227 MW to 1.756MW.  The gap between the temperatures of the heat exchangers is 
small, therefore any change in the temperatures, even if it is small, will affect in greater 
proportion. In fact, the reconciled start temperature (T21) differs by less than 2 ºC from 
the measured one, and the difference in the target temperature (T22) is even less, it is 
only 0.5 ºC.  

 

 

 

 



 

 

 

 

Table 5.3 The table shows the heat duties from the original network and the heat 
duties computed with the reconciled process variables for each side of the heat 
exchangers, and for the coolers and heaters. It is also calculated the relative variation 
between both values. Higher relative differences are highlighted. 

Utility Hot stream Cold stream 

Qmeas. 
[MW] 

Qrec. 
[MW] 

AQ [%] Qmeas. 
[MW] 

Qrec. 
[MW] 

AQ  [%] 

HX_8101 3.753 3.786 1% 4.954 3.786 24% 

HX_8102 10.826 11.126 3% 13.146 11.126 15% 

HX_8103 13.342 14.112 6% 12.828 14.112 10% 

HX_8104 1.631 1.756 8% 1.228 1.756 43% 

HX_8106 7.880 9.800 24% 11.500 9.800 15% 

HX_8108 6.496 5.618 14% 5.253 5.618 7% 

HX_8120 5.489 5.942 8% 8.196 5.942 27% 

HX_8121 3.209 2.836 12% 2.998 2.836 5% 

HX_8122 2.961 2.823 5% 2.961 2.823 5% 

C1 1.524 1.500 2%       

C2 5.983 5.835 2%       

C3 2.457 2.927 19%       

H1       36.348 38.233 5% 

 

The next significant relative change is equal to 28% and occurs in the cold side of heat 
exchanger E-8120. For this case the heat load varies from 8.196 MW to 5.942 MW, 
which means a decrease of more than 2.2 MW, which is the largest absolute change. In 
contrast with the previous case, the reconciled start temperature of the HX, T23, is 6 ºC 
higher than the measured value.  Since the reconciled value for T23 is outside the 
bounds, according to the criterion defined in the section 5.1, this measurement is 
suspected of having a gross error.   

The hot stream of the heat exchanger E-8106 has also a relevant variation, around 25%. 
The heat recovered has increased by almost 2 MW. However, the start and target 
temperatures for this HX are T2 and T1, respectively, T2 being one of the estimated 
measurements. Therefore, if the adjustment is significant, it may be considered the 
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possibility that the estimation made is incorrect. According to Tool 1, the correct values 
is 426.573 ˚C, 4.5 ˚C higher than the estimate.  

The same relative variation is reached for the heat recovered by the cold stream in the 
heat exchanger E-8101, which decrease from 4.954 MW to 3.787 MW.  

The substantial differences found in the heat loads, suggest that there are one or more 
gross errors in the initial measurements. Five reconciled temperatures are outside the 
range defined by the bounds, which according to the standards defined, suggest the 
presence of gross errors.  T18 and T20 are the ones farthest from the limits, thus more 
likely to be wrong. However, as can be seen from the Figure 5.1, both temperatures are 
in the same stream and they are inter-connected by the energy balances of HX E-8101 
and HX E-8102 through the temperature T19. According to the theory about smearing 
effects, the presence of a gross error in the measurement T18 can affect the test statistics 
of the process variables near by the latest, and vice versa. Thereby, there is a high 
probability that one of the temperatures was wrongly measured, but not both. Following 
this reasoning hypotheses have been set out. 

The first hypothesis H1,A  made is that the measurement of T18 or T20 has a gross error. 
The same theory can be applied for the reconciled temperatures T2, T23 and T25, which 
are also outside the range. All three temperatures are inter-connected by the HX E-8106 
and for the temperature T24, thus an error in one of them may be spread out to the rest. 
The second hypothesis H 1,B is that any of the initials values for temperatures T2, T23 
and T25  contain a gross error.  

 

 
Figure 5.1   Balanced HX network proposed by the Tool 1. Values in grey 
correspond to the initial imbalanced HX network (starting point), and values in bold 
are the reconciled ones. 



 

 

 

 

Focusing on the differences found between the measured values and the reconciled 
values (second standard), similar hypotheses can be drawn.  The largest variation is 8 
ºC, and it is reached for the temperature T20, which is already included in the hypothesis 
H1,A . Measurements T18 and T28 have adjustments of around 7 ºC. The first is also 
included in H1,A, whereas, for the second one a new hypothesis should be added. Thus, 
hypothesis H1,C  is set out since the initial estimate value for T28 is wrong.  

The conclusions extracted from the first simulation are:  

- Hypothesis H1,A  : T18 or T20 has a gross error 

- Hypothesis H 1,B:  T2, or T23 or T25  has a gross error.  

- Hypothesis H1,C :  the estimated value for T28 is not correct. 

It is interesting to notice that, besides T28, the remaining suspected measurements and 
heat exchangers with higher relative variation in the heat loads are all concentrated in 
the first hot stream and in the first and second cold streams. This could mean that the 
probability of a gross error in any of the flow measurements is quite high.  

 

5.2.2 Discussion of the results obtained from Tool 2 
Reconciled values obtained using Tool 2 are exactly the same as the ones obtained using 
Tool 1. However, some of the final test statistics exceed the threshold criterion, thus it 
can be confirmed that the solution provided is affected by at least one gross error which 
means that the reconciled values are not valid.  

When the calculations are performed with Tool 2, a set of 10 measurement are 
suspected to contain errors. However, the presence of a gross error cannot be confirmed 
in any of them. The reason is because nodal aggregation can only be applied to T20, all 
the other measurements are affected by limitation 1, and the resulting reconciled values 
obtained for this case are outside the bounds, and so, the solution is unfeasible. Due to 
these reasons, the exact location of the gross error is unknown and none of the 
measurements suspected to contain errors are confirmed and eliminated from the data 
set. After 10 iterations, the final reconciled values are the same as the ones computed 
in the first step of the first iteration, and so, they are also the same as the ones provided 
by the Tool 1. In consequence, the analysis of the results is conducted using the values 
of the test statistics, Table 5.4. 
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Table 5.4 The table shows the values of the Measured Test for all the process 
variable. The test statistics from the first iteration are listed in the third and seventh 
column. The final test statistics, after all the iterations, are in the columns forth and 
eight. The word “check” means that the corresponding process variable was attempted 
to remove from the sample, and the number indicates the order.   

Reference 
(ni) 

Measured 
value  (yi) 

[˚C] 

Zi (1st 
iteration) 

Zi (last 
iteration) 

Reference 
(ni) 

Measured 
value  (yi) 

[˚C] 

Zi (1st 
iteration) 

Zi (last 
iteration) 

T1 402.3 3.714 check_4 T17 350.6 0.338 0.338 

T2 422 3.714 check_5 T18 76 3.476 check_
9 

T3 246.7 0.543 0.543 T19 99.4 0.740 0.740 

T4 278.3 0.524 0.524 T20 161.5 4.097 check_
3 

T5 285.9 0.042 0.042 T21 222.1 1.019 1.019 

T6 38.1 0.000 0.000 T22 227.9 0.768 0.768 

T7 93.7 3.476 check_7 T23 193.3 3.465 check_
10 

T8 230.6 3.476 check_8 T24 218.6 0.323 0.323 

T9 42.6 0.000 0.000 T25 254.1 3.714 check_
6 

T10 140.7 4.255 check_1 T26 366.3 0.000 0.000 

T11 318.2 4.255 check_2 T27 59.9 3.063 3.063 

T12 161.6 0.000 0.000 T28 193.2 3.063 3.063 

T13 186 3.063 3.063 T29 230.6 0.042 0.042 

T14 250.5 2.473 2.473 T30 233.2 0.042 0.042 

T15 266.7 2.563 2.563 T31 297.7 0.338 0.338 

T16 321.2 1.394 1.394 T32 320 0.338 0.338 

 

The measured test is performed for the modified level of significance β, using equation 
3.22 and setting α = 5% and m= 32.  Using these values, the threshold criterion Z1-β/2  
is equal to 3.155. Therefore, any of the measurements with a test statistic that exceeds 
Z1-β/2 is suspected to contain a gross error. The larger the measurement test statistic is, 



 

 

 

 

the higher the probability there is a gross error. Non-constrained measurements (T6, 
T9, T12 and T26) have a test statistic equal to zero since the reconciled value is the 
same as the measured, leading to an adjustment equal to zero.  

Therefore, for the conducted study measurements T10, T11, T20, T1, T25, T2, T8, T18, 
T17 and T23 are likely to contain a gross error. The stated order goes from larger to 
smaller measured test, thus, the first ones have a higher probability of containing a gross 
error than the last ones. These results confirm hypothesis H1,A. Test statistics for the 
process variables T18 and T20 exceed the threshold, so they are likely to contain a gross 
error. In the same line of reasoning as before, measurements T7 and T8 must also be 
included in this hypothesis since they are related to T18 and T20 by the heat exchanger 
E-8101. Hypothesis H1,B is also confirmed, T2, T23 and T25 have measured test above 
the criterion. In this case T1 must be added to H1,B , since it is directly connected with 
T2 by the HX E_8106.  Hypothesis H1,C is rejected, because the test statistic for T28 is 
below the criterion, and new hypothesis must be set out for the measurements T10 and 
T11. Hypothesis H1,D: T10 or T11 has a gross error.  

 

5.2.3 Comparison and conclusions of the first analysis 
Three hypotheses are set out in the section 5.2.1. Based on the test statistics from Tool 
2, two hypothesis are confirmed and one is rejected, H1,C. Moreover, three 
measurements have been included to the hypotheses already drawn, and a new 
hypothesis for T10 and T11 has been set out.  

- Hypothesis H1,A:  T18, or T20, or T8 or T7 has a gross error 

- Hypothesis H 1,B:  T1, or T2, or T23 or T25  has a gross error.  

- Hypothesis H1,D :  T10 or T11 has a gross error. 

Results showed that the data collected from the hydrocracker unit has at least one gross 
error located in any of the 10 measurements listed in the hypotheses. However, since 
the exact location is unknown it is not possible to formulate data for a balanced heat 
exchanger network. The reconciled values calculated with both tools are corrupted by 
the presence of gross errors and their use in process integration studies can lead to 
erroneous conclusions. 
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Figure 5.3   Temperatures suspected of having a gross error are squared.  Different 
color has been used for each hypothesis. 
 

 

5.3 Analysis 2: larger bound values for the estimate 
measurements 

The aim of this second analysis is to find the exact location of the gross error and to 
formulate data for a valid balanced network for process integration studies of the HCU. 
This is not a new study but a continuation of the former, in which a distinction between 
the temperatures whose initial value is a measurement and those four temperatures (T2, 
T28, T29 and T32) whose initial value is estimated was made. This second analysis is 
done by establishing a criterion of importance where the adjustment for the estimates 
have less weight in the objective function, equation (3.7),  than the adjustment of the 
measurements.  

According to the theory, the weight can also be understand as the inverse of the standard 
deviation. Thereby, setting a smaller weight is equal to defining a higher standard 
deviation. And as it is shown in Figure 5.4, a higher standard deviation means also a 
wider range. With this purpose, using equation (4.11), a variation of 10 K around the 
measured value was defined for the four variables whose measurements were estimated, 
while the original values were retained for the other variables. Temperature T28 is not 
affected since the width range by default was already equal to 20 K.  

 



 

 

 

 

 
Figure 5.4   Consequences of increasing the standard deviation for the estimates. 
The original range for the estimates is represented in blue and the new one in red. 
 

The range of values for which the reconciled value of a process variable is considered 
correct is now wider. Therefore, the reconciled value is less restricted and it can adopt 
a value further away from the estimates. If the adjustment, which is the difference 
between the estimate and the reconciled value, increases significantly, it is because the 
reconciled value tends to a value which is away from the estimate. In this case, it is 
highly probable that the estimation made was wrong. This is a way to validate the 
assumptions made for the estimates.  

The results of the simulations for both tools are detailed in Table 5.5. In this case, the 
reconciled values obtained in both simulations are not the same. 

 

Table 5.5 The table shows the reconciled values from the analysis 2 obtained from 
both tools. The rows highlighted correspond to the estimates temperatures. 

Rerence 
(ni) 

Measured 
value (yi)  

[˚C] 

Reconciled 
values (xi) 
[˚C] Tool 1 

Reconciled 
values (xi) 
[˚C] Tool 2 

ΔT [˚C] 

( |Tmeas-Ttool1| 
) 

ΔT [˚C] 

( |Tmeas-Ttool2| 
) 

T1 402,3 402,204 402,204 0,096 0,096 

T2 422 431,548 431,562 9,548 9,562 

T3 246,7 245,815 244,609 0,885 2,091 

T4 278,3 279,174 280,350 0,874 2,050 

T5 285,9 285,904 285,915 0,004 0,015 

T6 38,1 38,100 38,100 0,000 0,000 

T7 93,7 92,792 93,270 0,908 0,430 

T8 230,6 230,927 230,755 0,327 0,155 
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T9 42,6 42,598 42,600 0,002 0,000 

T10 140,7 138,251 140,398 2,449 0,302 

T11 318,2 320,648 318,502 2,448 0,302 

T12 161,6 161,598 161,600 0,002 0,000 

T13 186 190,750 190,689 4,750 4,689 

T14 250,5 246,550 246,442 3,950 4,058 

T15 266,7 264,472 264,632 2,228 2,068 

T16 321,2 322,493 322,503 1,293 1,303 

T17 350,6 350,731 350,734 0,131 0,134 

T18 76 83,005 79,322 7,005 3,322 

T19 99,4 100,894 97,127 1,494 2,273 

T20 161,5 153,445 removed 8,055  - 

T21 222,1 219,978 219,725 2,122 2,375 

T22 227,9 228,504 228,378 0,604 0,478 

T23 193,3 197,899 197,923 4,599 4,623 

T24 218,6 215,936 215,913 2,664 2,687 

T25 254,1 252,169 252,164 1,931 1,936 

T26 366,3 366,300 366,300 0,000 0,000 

T27 59,9 58,039 58,065 1,861 1,835 

T28 193,2 200,634 200,539 7,434 7,339 

T29 230,6 230,714 231,050 0,114 0,450 

T30 233,2 233,178 233,088 0,022 0,112 

T31 297,7 297,877 297,877 0,177 0,177 

T32 320 319,296 319,293 0,704 0,707 

 

 

 



 

 

 

 

5.3.1 Discussion of the results obtained from Tool 1 
Reconciled values obtained using Tool 1 are listed in Table 5.5. The heat loads have 
been also calculated and listed in Table 5.6.  

The heat exchangers with largest relative differences in the heat loads coincide with the 
ones highlighted in the first analysis. However, in this case, the largest variation, which 
is almost 50%, is found in the heat transferred by the hot stream in HX E-8106. More 
precisely, it is allocated between the temperatures T1 and T2, T2 being one of the 
estimated temperatures.  

 

Table 5.6 The table shows the heat duties from the original network and the heat 
duties computed with the reconciled process variables for each side of the heat 
exchangers, and for the coolers and heaters. It is also calculated the relative variation 
between both values. The largest relative variation have been highlighted. 

Utility Hot stream Cold stream 

Qmeas. 
[MW] 

Qrec. 
[MW] 

AQ [%] Qmeas. 
[MW] 

Qrec. 
[MW] 

AQ  [%] 

HX_8101 3,753 3,787 1% 4,954 3,787 24% 

HX_8102 10,826 11,124 3% 13,146 11,124 15% 

HX_8103 13,342 14,084 6% 12,828 14,084 10% 

HX_8104 1,631 1,805 11% 1,228 1,805 47% 

HX_8106 7,880 11,738 49% 11,500 11,738 2% 

HX_8108 6,496 5,620 13% 5,253 5,620 7% 

HX_8120 5,489 5,843 6% 8,196 5,843 29% 

HX_8121 3,209 2,842 11% 2,998 2,842 5% 

HX_8122 2,961 2,844 4% 2,961 2,844 4% 

C 1,524 1,499 2%       

C 5,983 5,834 2%       

C 2,457 2,936 19%       

H       36,348 36,973 2% 
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Following the standards defined, four measurements are now suspected of having a 
gross error. The number of reconciled temperatures that fall outside the bounds have 
been reduced from five to two. Only process variables T18 and T20 remain outside the 
bounds, which means that hypothesis H1,A is verified again.  

Measurements with largest adjustments (T2, T18, T20 and T28) are the same than in 
the previous analysis and even the reconciled values coincide, besides for T2. In this 
case, the reconciled temperature increases from 426.52 ˚C to 431.55 ˚C, reaching an 
adjustment of 9.5˚C, only 0.5 ˚C below the new upper bound. Therefore, an increase in 
the acceptable temperature range for T2 has led to a disproportionate increase in the 
reconciled temperature, which otherwise has helped to stabilize the network. Such 
behaviour confirms the hypothesis H 1,B, the estimation of the measured value of T2 is 
not correct. In this case anything can be stated from hypothesis H1,D.  

In general, the reconciled values calculated by Tool 1 are closer to the measurements, 
but for the ones that varies the differences are larger.   

 
Figure 5.5   Scheme of the reconciled HX network proposed by the Tool 1. Values 
in grey correspond to the initial imbalanced HX network, and values in bold are the 
reconciled ones. The four estimated temperatures are the ones highlighted in yellow. 
 

 

 

 



 

 

 

 

5.3.2 Discussion of the results obtained from Tool 2 
When setting wider ranges for the estimates, Tool 2 confirms the location of a gross 
error in the measurement T20. The solution provided is the balanced network 
represented in the Figure 5.6, for which the reconciled temperatures are suitable for 
further analysis of the HCU. 

As one can see from Table 5.7, when the first iteration of the simulation is performed, 
six measurements, T10, T11, T20, T7, T8 and T18, are suspected to contain a gross 
error. The test statistics of all of them, in the mentioned order, exceed the threshold 
criterion (Z1-β/2 = 3.155). Accordingly, the measurements T10 and T11 are the ones 
with a higher probability of being wrong. However, as before, both measurements 
cannot be removed from the data set due to limitation 1. For this reason, the following 
measurement in the list T20, which is the first suspected intermediate process variable, 
is removed. In contrast to what happens in the analysis 1, the reconciled values 
calculated using the reduced data set are within the new bounds. Therefore, the solution 
is feasible, and consequently, the measurement is permanently removed from the data 
set. The test statistics calculated for the next iteration using the new reduced data set, 
forth and eight columns of Table 5.7, are all below the new test criterion (Z1-β/2 = 3.043). 
Thereby, no more measurements are suspect of having a gross error, which confirms 
that the reduced data set is free of gross errors. At this point, the simulation ends. 

 

Table 5.7  The table shows the values of the Measured Test for all the process 
variables. Test statistics from the first iteration are listed in the third and seventh 
column. Final test statistics are listed in the columns forth and eight. The word 
“removed” means that the corresponding process variable has been removed from the 
sample. 
 

Reference 
(ni) 

Measured 
value  (yi) 

[˚C] 
Zi (1st 

iteration) 
Zi (last 

iteration) 
Reference 

(ni) 
Measured 
value  (yi) 

[˚C] 
Zi (1st 

iteration) 
Zi (last 

iteration) 

T1 402,3 2,145 2,149 T17 350,6 0,174 0,175 

T2 422 2,145 2,149 T18 76 3,474 1,840 

T3 246,7 0,522 1,254 T19 99,4 0,737 1,257 

T4 278,3 0,515 1,225 T20 161,5 4,103 removed 

T5 285,9 0,025 0,102 T21 222,1 1,094 1,226 

T6 38,1 0,000 0,000 T22 227,9 0,853 0,675 

T7 93,7 3,474 1,840 T23 193,3 2,632 2,646 

T8 230,6 3,474 1,840 T24 218,6 1,510 1,522 
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T9 42,6 0,000 0,000 T25 254,1 2,145 2,149 

T10 140,7 4,251 1,254 T26 366,3 0,000 0,000 

T11 318,2 4,251 1,254 T27 59,9 3,082 3,043 

T12 161,6 0,000 0,000 T28 193,2 3,082 3,043 

T13 186 3,082 3,043 T29 230,6 0,025 0,102 

T14 250,5 2,442 2,508 T30 233,2 0,025 0,102 

T15 266,7 2,134 1,983 T31 297,7 0,174 0,175 

T16 321,2 1,425 1,433 T32 320 0,174 0,175 

 

The reconciled value for T20 has been calculated using the constraint derived from the 
energy balance in the HX- E8102, see equation (4.3). 

10.8625 = 0.21169 ∗ (𝑇𝑇20 − 97.1266) 

𝑇𝑇20 = 148.44℃ 
 

 
Figure 5.6   Scheme of the reconciled HX network proposed by the Tool 2. 



 

 

 

 

The same procedure can also be done for HX_E8103, using equation (4.4), since T20 
is the target temperature for the HX_E8102 but also the start temperature of HX_E8103. 
The reconciled temperature obtained is obviously the same.  

15.0902 = 0.21169 ∗ (71.2845 − 𝑇𝑇20) 

𝑇𝑇20 = 148.44℃ 
The heat loads computed with the new reconciled values are quite similar to the ones 
discussed in the previous section. The biggest variations are found in the heat 
exchangers around the measurements T2 and T20. The heat transferred in the heat 
exchanger E-8106 by the cold stream is according to the reconciled temperatures 
11.096MW, 3.215MW more than the transferred in the original network. And the heat 
absorbed in the HX_E-8102 changes from 12.828 MW to 15.09MW.  

Besides this, the resulting balanced heat exchanger network, shown in the Figure 5.6, 
is perfect for our initial purpose, a process integration study of the hydrocracker. It is 
not corrupted with gross errors and besides it is feasible, since the reconciled 
temperatures are within the bounds. 

 

5.3.3 Comparison and conclusions of the second analysis 
The reconciled values obtained in both tools are quite similar, with the exception of 
T20, which has been computed as explained in Section 5.3.2. Only four temperatures 
have a reconciled value that differs significantly from those obtained using Tool 1. The 
biggest variation is equal to 5℃ and is obviously reached for the temperature T20. The 
rest are around 3.7℃  for measurements T19 and T18 and 2.1℃ for T10 and T11. In 
consequence, the heat loads are practically the same as the ones computed using Tool 
1 in the previous section. The largest relative variations are in the heat exchangers HX- 
E8102 and HX- E8103 next to the measurement T20. For the first, the heat absorbed 
has varied from 14.0844 MW to 15.0903 MW, and for the second, from 1.805MW to 
1.832 MW.  

The solution to data reconciliation and gross error detection confirms the hypothesis 
H1,A , and rejects the hypothesis H1,D, since the measured test statistics for T10 and T11 
are below the threshold once the measurement T20 is removed. This example illustrates 
perfectly the smearing effect and how an error in one measurement is spread out over 
the others, altering their statistic tests. In this case, the three temperatures are directly 
related by the heat exchanger E_8102.  According to the values of the test statistics, the 
Hypothesis H 1,B has also been rejected however, it is not ruled out the possibility that 
the estimation of T2 is incorrect. Within the four estimates; T2, T28, T29 and T32 only 
the temperature T2 presents a notable increase, almost reaching the extreme value of 
the range. Whereas for the rest, the reconciled values are practically the same as the 
ones obtained for the first analysis, even closer in the case of the temperature T29. 
Nevertheless, the reconciled temperature for T28 has also a significant adjustment, 
around 6 ℃. The reason why this process variable retains the same value is because the 
initial bounds where already defined as plus and minus 10 ℃ around the estimate. 
Therefore, the changes made for the second analysis has no effect in T28. But, in 
contrast with T2 the reconciled temperature for T28 is accepted since it is within the 
bounds provided. Thereby, from the four estimations, only the one for the temperature 
T2 is incorrect.  
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5.4 Final results 
The results of this thesis indicate that the data set from the hydrocracker unit from 
Preem refinery in Lysekil contains a gross error in the target temperature of the heat 
exchanger E_8102, T20.  Furthermore, the estimation made in the data collection about 
the value of the measurement T2 is incorrect.  

For this resulting network, the largest adjustments are in the intermediate process 
variables. Start and target temperatures have reconciled values quite close to the 
measurements, which means that the heat loads for the overall streams are more or less 
preserved. As one can see from the Table 5.7, besides the first hot stream (st_1) and the 
second-to-last cold stream, the rest relative variation on the heat loads are equal or 
below 5%. For both mentioned streams, the high rate can be easily explained. In the 
former the start temperature is T2, and as has been demonstrated the initial estimate is 
not correct, neither is the initial heat load. In the latest, the start temperature T29 is also 
an estimate and since the size of the heat exchanger is quite small, any variation will 
lead to a high relative difference.  Moreover, both streams have only one heat exchanger 
which means that the variation cannot be compensated. 

 
Table 5.7 The table shows the heat loads from the overall flows. The streams have 
been numbered from up to down starting in the number 1. 
 

Stream T start   
[˚C] 

Ttarget 
[˚C] 

Qmeas. 
[MW] 

Qrec. 
[MW] 

AQ 
[%] 

st_1 431.6 402.2 7.88 11.744 49% 

st_2 285.9 244.6 16.551 17.44 5% 

st_3 230.8 38.1 5.277 5.282 0% 

st_4 318.5 42.6 16.809 16.827 0% 

st_5 350.7 161.6 19.034 19.047 0% 

st_6 79.3 228.4 32.156 31.554 2% 

st_7 197.9 366.3 56.044 54.546 3% 

st_8 58.1 200.5 5.253 5.615 7% 

st_9 231 233.1 2.998 2.35 22% 

st_10 297.9 319.3 2.961 2.843 4% 

 

Therefore, this is the balanced heat exchanger network proposed for studying the 
process integration opportunities of the hydrocracker hydrogen unit. The values of all 
the reconciled temperatures and heat loads are shown the Figure 5.7. 



 

 

 

 

 
Figure 5.7  Scheme of the final reconciled network. The values in bold refers to the 
new reconciled values and the values in grey are the ones from the original data set 
(measurements).  
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6 Conclusions 
6.1 Tool 1 
The aim of Tool 1 is to provide a solution to the problem of data reconciliation, but 
taking into account the constraints and the boundaries of the system. If the initial 
condition is met, that is, none of the initial measurements contain a gross error, the 
reconciled values computed are correct and can be used in further studies without need 
of any other verification. The developed computer-based solution even allows the use 
of non-linear constraints, or inequalities. However, sometimes, when the quality of data 
from measurements is low, as is the case of this thesis work, this assumption could not 
be made. For this case, the reconciled values must be taken only as a guideline. 

In this study, based on the trend of the results and the significant differences between 
the original network and the reconciled one, three hypotheses have been drawn. The 
aim was to find out if the reconciled values obtained for the cases where there is an 
initial error, can serve as indicators of the origin of the error. For this particular case, 
the conclusions drawn are similar to the final conclusions, two of three hypothesis are 
afterwards confirmed. However, without the help of the Tool 2, it would have been 
impossible to reject or confirm any hypothesis. Furthermore, the hypotheses are worded 
in a very general manner, with a total of six measurements under suspicion, which 
hampers from taking any decision and reaching a final conclusion. 

 

6.2 Tool 2 
The purpose of Tool 2 is to find a solution to the problem of data reconciliation, but 
unlike the previous one, in this case, the tool must be able to provide with a valid 
solution even if the data collected contains gross errors.  

Before its use with the real data collected from the Preem refinery, the tool was tested 
using a simply mass flow network. The results obtained for this test case are excellent. 
The error introduced is detected and the reconciled flowrates are calculated with a 
reduced data set where the former has been removed. The simulation is fast and the 
final results are accurate, easy to interpret and can be directly used for process 
integration studies. But the same does not happen for the studied network. In the study 
case, error detection becomes more cumbersome. The final conclusion, is the resulting 
judgement of an iterative analysis, which includes two analyses and multiple 
intermediate hypotheses before arriving to the final result. The fact that the quality of 
the data collected is quite low, i.e. 4 of the measurements are estimates since the real 
value was not available, have further complicated the analysis.  

The performance of the MIMT for the study case is extremely limited. From the 32 
measured process variables, the existence of a gross error can merely be successfully 
confirmed in 8 intermediate measurements, which is only the 25% of the cases. The 
usefulness of the Tool is improved when including the values of the statistics test in the 
analysis, and when more than one simulation is performed. For that reason, it is crucial 
that the user has a good understanding of the tool and also of the network that is going 
to be studied in order to get a trustworthy outcome.  

 



 

 

 

 

The conclusions set out from the resulting network of HCU would probably had been 
a bit different if another error detection methodology had been used. However, some of 
the final conclusions seems to be supported. It has been confirmed that there is a high 
probability that the estimate value for T2, which corresponds to the outflow temperature 
from the first reactor, is not correct.  

In conclusion, if the data set is free of gross errors, the solution is accurate. Otherwise, 
the results must to be analysed in line with the test statistics of the last iteration. If all 
of them are below the threshold, the resulting reconciled network is free of gross errors 
and the measurements with gross errors are the ones deleted from the data set. However, 
if one or more test statistics from the last iteration exceed the threshold, this means that 
the reconciled network has been calculated using a data set with gross errors, thus, the 
reconciled network is invalid. In this case, test statistics can be used to find possible 
measurements with gross error, but they never can be used to confirm the exact location 
of the gross error.  

In contrast with the Tool 1, the potential advantage is that the user is aware of the 
existence or not of gross errors in the collected data. And therefore, whether or not the 
reconciled process variables are valid or corrupted because they have been computed 
using a data set with gross errors.  
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7 Future studies 
To fully understand the potential of both computer-based solutions developed in this 
thesis it is suggested to make further performance tests. 

In this case it has been demonstrated that Tool 1 performs excellently for reconciling 
networks where no gross errors are present and where all the constraints are linear. But, 
the main advantage of working with Excel Solver is that non-linear constraints, 
inequalities and even equations that only involve integers can be defined as constraints. 
It is highly recommended to further work into this area especially for reconciling 
networks where the composition of the streams varies and so the heat transfer 
coefficient is not constant. It could also be interesting to restrict the degrees of freedom 
by including the operating conditions as constraints of the reconciled temperatures. So 
if for instance, the feed temperature for the reactor has to be higher than 350 ºC, the 
corresponding reconciled value should also be higher than 350 ºC.  

This thesis work has shown that there is a relation between the likelihood that a variable 
contains a gross error and the fact that the corresponding reconciled value falls outside 
the range defined by the bounds. The same reasoning can be applied for the process 
variables with large adjustments.  It is suggested further investigation along this lines, 
in order to known how much related this ideas are. It could be helpful to define 
standards or a guideline for identifying measurements suspected of having a gross error 
by comparing them with their corresponding reconciled values.  

Tool 2 has even more potential of improvement. It has been shown that nodal 
aggregation is difficult to perform especially where there are so many streams and just 
a few constraints.  In order to solve this problem, the analyses conducted was performed 
using the test statistics and engineering judgement. In order to reduce resorting to 
engineering judgement as much as possible and drawing erroneous conclusions it is 
essential to have a deeper understanding of how the tool performs. Thus, it is 
recommended to test the tool with multiple data sets for which the user knows a priori 
where the gross errors are located. In that manner, it is easier to get familiar with the 
tool and gain a better understanding of how it works before using it with the collected 
data. Improving the actual tool, the efforts could also focus on developing a 
linearization methodology so that the tool can also be used for systems with non-linear 
constraints.  

For further investigations it is suggested to try to implement other algorithms such as 
the Modified Serial Compensation (MSC) or the Generalized Likelihood Ratio (GLR) 
as according to the literature review they are also good options. Both methodologies 
use a compensation strategy to neutralize the effect of the gross error instead of 
eliminating the corresponding measurement. Therefore, since almost all the limitations 
found were because nodal aggregation could not be performed, they are a potential 
alternative.  

Another research could go through integrating both programs, so data reconciliation is 
solved using the Solver functionality whereas for the detection of the errors it is used 
the Modified Iterative Measurement Test. Indeed, this could be the easier manner for 
developing a data reconciliation and gross error detection tool for networks with non-
linear constraints.   
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9 Appendix 
Appendix 1: Raw data set from the HCU provided by Preem 

Appendix 2: Lagrange Multipliers, Carl Knopf F (2012) 
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9.1 Raw data set from the HCU provided by Preem 
This appendix contains the data set from the Hydrocracker Unit provided by Lysekil 
Preem´s Refinery.  Since there are a lot of streams and units involved on the system, 
for the purpose of this thesis not all of them are included in the analysis. A reduced 
network has been defined instead.  

Table 9.1 The table shows the heat duties for each stream involved in the HCU 
process. The streams highlighted are the ones included within the thesis work.  
 

Number 
of 
stream 

Name of stream Tstart 
[˚C] 

Ttarget 
[˚C] 

Q [MW] ΔT 
[˚C] 

FCP 
[MJ/Kg] 

810-1 Feed to V-8101 76 227.9 32.15567 15 0.21169 

810-2 R-8101 Feed 226.5 388.3 64.57364 10 0.399095 

810-3 R-8101 to R-8102 422 402.3 7.880214 15 0.400011 

810-4 R-1802 to V-8102 422.7 239.9 92.38248 10 0.505375 

810-5A V-8102 OH 224.4 163.9 14.93252 10 0.246819 

810-5B V-8102 OH. air he 130 56.8 23.36435 10 0.319185 

810-6 V-8103 OH 233.7 74.6 2.064449 10 0.012976 

810-7 T-8120 OH 82.3 38.2 11.18599 10 0.253651 

810-8 T-8120 to T-8121 193.3 367.8 56.5299 10 0.323954 

810-9  T-8121 OH 130.5 80.1 27.76428 10 0.550879 

810-10 Gasoil pump 
around 

285.4 246.7 16.33986 15 0.422219 

810-11 Kerosene to tank 230.6 38.1 5.277317 15 0.027415 

810-12 Diesel to tank 318.2 42.6 16.80884 15 0.06099 

810-13 UCO to tank and 
to FCC 

350.6 161.6 19.03361 15 0.100707 

810-14 UCO to tank  161.6 83.4 2.50653 15 0.032053 

810-15 V-8105 to T-8120 59.9 193.2 5.253278 15 0.039409 
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810-16 Hydrogen from 
compressors to 
R8101 

92.5 201.3 13.98158 15 0.128507 

810-17 T-8122 heater 230.6 233.2 2.997753 15 1.152982 

810-18 T-8123 heater 297.7 320 2.960784 15 0.132771 

 

Table 9.2 The table shows all the measured process variables involved in the study 
case. There stream highlighted are those whose measurements were unavailable and 
so the value used is an estimate.  
 

Name 
of the 
flow 

Name of 
the 
variable  

Measured 
temperatures 
from Preem (yi) 

Lower 
bound for yi 
[˚C] 

Upper bound   
for yi   
[˚C] 

FCP 
[MJ/Kg] 

810-3 T1 402.3 401.3 403.3 0.400011 

810-3 T2 422 418 426 0.400011 

810-10 T3 246.7 241.7 251.7 0.422219 

810-10 T4 278.3 273.3 283.3 0.422219 

810-10 T5 286.3 /285.4 282.8 288.8 0.422219 

810-11 T6 38.1 33.1 43.1 0.027415 

810-11 T7 93.8 /93.6 88.7 98.7 0.027415 

810-11 T8 230.6 227.6 233.6 0.027415 

810-12 T9 42.6 37.6 47.6 0.06099 

810-12 T10 140.7 135.7 145.7 0.06099 

810-12 T11 318.2 313.2 323.2 0.06099 

810-13 T12 161.6 156.6 166.6 0.100707 

810-13 T13 186 181 191 0.100707 

810-13 T14 248.9 /252.4 245.6 255.6 0.100707 

810-13 T15 266.7 261.7 271.7 0.100707 

810-13 T16 321.2 316.2 326.2 0.100707 



 

 

 

 

810-13 T17 350.6 345.6 355.6 0.100707 

810-1 T18 76 71 81 0.21169 

810-1 T19 99.4 94.4 104.4 0.21169 

810-1 T20 161.5 156.5 166.5 0.21169 

810-1 T21 222.1 217.1 227.1 0.21169 

810-1 T22 227.9 224.9 230.9 0.21169 

810-8 T23 193.3 188.3 198.3 0.323954 

810-8 T24 218.6 213.6 223.6 0.323954 

810-8 T25 254.1 249.1 259.1 0.323954 

810-8 T26 364.5 /364.1 /368.9 
/367.8 

363.3 369.3 0.323954 

810-15 T27 59.9 54.9 64.9 0.039409 

810-15 T28 193.2 183.2 203.2 0.039409 

810-17 T29 230.6 225.6 235.6 1.152982 

810-17 T30 233.2 228.2 238.2 1.152982 

810-18 T31 297.7 292.7 302.7 0.132771 

810-18 T32 320 315 325 0.132771 
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9.2 Lagrange Multipliers.  
Lagrange multiplier is a strategy for converting equality constrained optimization 
problem into an equivalent unconstrained problem.  For the purpose of this thesis, the 
Lagrangian function can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿(𝑥𝑥, 𝜆𝜆) = 𝑓𝑓(𝑥𝑥𝑖𝑖) −  ∑ 𝜆𝜆𝑘𝑘ℎ𝑘𝑘(𝑥𝑥𝑖𝑖),𝑘𝑘                (9.1) 

where 𝑓𝑓(𝑥𝑥𝑖𝑖) is the objective function, 𝜆𝜆𝑘𝑘 are the Lagrange multipliers, one for each 
equality constraint ℎ𝑘𝑘(𝑥𝑥𝑖𝑖).  
The aim of this appendix is to briefly explain how are computed the solution to the data 
reconciliation problem, i.e. the reconciled values. Therefore the starting point is the 
unconstrained data reconciliation equations presented in Section 3.5, and written down: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑦𝑦 − 𝑥𝑥)𝑇𝑇𝛴𝛴−1(𝑦𝑦 − 𝑥𝑥)                

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡    𝐴𝐴𝐴𝐴 − 𝑏𝑏 = 0                

Where y refers to the measured values, x to the reconciled values, 𝛴𝛴 to the variance-
covariance matrix, A is the incidence matrix for the linear constraints and b is the 
independent terms of the constraints. For the explanation, it is going to be assume that 
the vector of independent terms is zero (b=0), which is the general case. It is also 
convenient to define an adjustment vector a, which is the difference between the 
reconciled and measured value (a = y-x). Accordingly the data reconciliation problem 
can be written as: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑎𝑎)𝑇𝑇𝛴𝛴−1(𝑎𝑎)                             (9.2) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡    𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 = 0                 (9.3) 
Based on the last, and using the general Lagrange formulation equation (9.1), the data 
reconciliation problem can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎,𝜆𝜆 𝐿𝐿 = (𝑎𝑎)𝑇𝑇𝛴𝛴−1(𝑎𝑎) −  2𝜆𝜆𝑇𝑇  (𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴)               (8.4) 

Or: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎,𝜆𝜆 𝐿𝐿 = (𝑎𝑎)𝑇𝑇𝛴𝛴−1(𝑎𝑎) −  2𝜆𝜆𝑇𝑇𝐴𝐴𝐴𝐴  − 2𝜆𝜆𝑇𝑇 𝐴𝐴𝐴𝐴  

Using the transpose property 𝜆𝜆𝑇𝑇𝐴𝐴𝑎𝑎 = (𝐴𝐴𝐴𝐴)𝑇𝑇𝜆𝜆 = 𝐴𝐴𝑇𝑇𝑎𝑎𝑇𝑇𝜆𝜆, the formula before can be 
written as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎,𝜆𝜆 𝐿𝐿 = (𝑎𝑎)𝑇𝑇𝛴𝛴−1(𝑎𝑎) −  2𝜆𝜆𝑇𝑇𝐴𝐴𝐴𝐴  − 2𝐴𝐴𝑇𝑇𝑎𝑎𝑇𝑇𝜆𝜆              (9.5) 

In order to solve the equation (9.5) the conditions are: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                   (9.6) 

So for the first,  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 = 0                  (9.7) 

And for the second one, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2𝛴𝛴−1𝑎𝑎 −  2𝐴𝐴𝑇𝑇𝜆𝜆 = 0                 (9.8) 

 

 



 

 

 

 

Which results in, 

𝑎𝑎 = 𝛴𝛴𝐴𝐴𝑇𝑇𝜆𝜆                   (9.9) 
Combining both equations, and substituting equation (9.9) into equation (9.7), 

𝐴𝐴𝐴𝐴 = −𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇𝜆𝜆                (9.10) 

Solving equation (9.10) for λ, 

λ =  −(𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇𝜆𝜆)−1𝐴𝐴𝐴𝐴                (9.11) 
And finally by substituting equation (9.11) into equation (9.9), 

 𝑎𝑎 = −𝛴𝛴𝐴𝐴𝑇𝑇(𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇)−1𝐴𝐴𝐴𝐴 
And using the definition of the adjustment vector a, 

𝑥𝑥 = 𝑦𝑦 − 𝛴𝛴𝐴𝐴𝑇𝑇(𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇)−1𝐴𝐴𝐴𝐴               (9.12) 

If the assumption made at the beginning is not true, and the vector of the independent 
terms of the constraint matrix is different to zero, the equation (9.12) can be expressed 
as: 

𝑥𝑥 = 𝑦𝑦 − 𝛴𝛴𝐴𝐴𝑇𝑇(𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇)−1(𝐴𝐴𝐴𝐴-b)              (3.12) 
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9.3 Test cases  
With the purpose of testing the performance of the two developed computed-based 
tools, two test cases have been conducted. For the first, the measurements of the process 
variables are free of gross errors, whereas from the second one, a gross error on the 
process stream 2 has been introduced.  

These test cases were based on set homework problems for the Autumn 2012 offering 
of the elective course CN4205R “Process Systems Engineering” for 4th year Chemical 
Engineering Students at the National University of Singapore (NUS). 

The process network, which is the same for both test cases, includes 5 units and 10 
process variables. Since all the measurements are flowrates, data reconciliation is only 
constrained by mass balances. The scheme of the network is represented in Figure 9.1. 

 

 
Figure 9.1   Scheme of the process network studied. 
Accordingly, the mass balances constraints are: 

Unit 1: +𝑥𝑥1 −  𝑥𝑥3 − 𝑥𝑥5 − 𝑥𝑥8 + 𝑥𝑥10 = 0                        (9.13) 

Unit 2: −𝑥𝑥1 + 𝑥𝑥2 = 0                   (9.14) 

Unit 3: −𝑥𝑥2 +  𝑥𝑥3 + 𝑥𝑥4 = 0                   (9.15) 

Unit 4: −𝑥𝑥4 +  𝑥𝑥5 − 𝑥𝑥6 − 𝑥𝑥7 = 0                  (9.16) 

Unit 5: +𝑥𝑥6 +  𝑥𝑥8 − 𝑥𝑥9 = 0                   (9.17) 

Using equations (9.13)-(9.17) and following the same procedure that is defined in the 
Section 4.2.2 the incidence matrix A is: 

 
And the vector of independent terms is identically zero (b=0). 

 

Process

Unit 1 
(Reactor)

Unit 2 
(Pump)

Unit 3 
(Mixer)

Unit 4 
(Separator)

Unit 5 
(Tank)

1

2

3 4

5

6

7

810

+

1 0 -1 0 -1 0 0 -1 0 1
-1 1 0 0 0 0 0 0 0 0
0 -1 1 1 0 0 0 0 0 0
0 0 0 -1 1 -1 -1 0 0 0
0 0 0 0 0 1 0 1 -1 0



 

 

 

 

9.3.1 TEST CASE 1: Data Reconciliation 
Table 9.3 Measurements of the process variables  

Stream yi σii 

1 100 5 

2 90 2 

3 45 2 

4 50 2 

5 120 10 

6 40 5 

7 38 5 

8 10 5 

9 50 5 

10 100 10 

 

From the data above, matrixes y and Σ and can be defined: 

 

  

y =  

 

 

 

 

 

 

 

Σ = 

 
 

 

 

25 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 25 0 0 0 0
0 0 0 0 0 0 25 0 0 0
0 0 0 0 0 0 0 25 0 0
0 0 0 0 0 0 0 0 25 0
0 0 0 0 0 0 0 0 0 100
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And using equation (3.12), the reconciled values are calculated: 

 

 

 

x =  

 

 

 

 

 

9.3.2 TEST CASE 2: Data Reconciliation and Gross Error Detection 
Same data set is used for the test case 2 with the only difference that a gross error has 
been introduced in the stream number 2.  

Table 8.4 Measurements of the process variables  

Stream yi σii 

1 100 5 

2 110 2 

3 45 2 

4 50 2 

5 120 10 

6 40 5 

7 38 5 

8 10 5 

9 50 5 

10 100 10 

 

 

 

 

 



 

 

 

 

The constraint matrix A and the covariance matrix Σ are the same as before. The new 
measured vector y is: 

 

 

 

 

y =  

 

 

 

 

The first step is to solve the reconciled values with the new data set and compute the 
adjustment vector a, and the modified vector d  

 

 

 

a =   d=   

 

 

 

 

 

and then the covariance  wii 
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Then, the next step is to calculate the test statistics: 

 

 

 

Zstats = 

 

 

 

 

And the threshold value Z1-β/2 = 2.8 for α = 0.05. Za,2 is the largest test statistic that 
exceeds the threshold value. 

So the measurement 2 is temporarily removed from the data set, by aggregating node 2 
and node 3. The constraint matrix for the reduced system is: 

 

A = 

 

 

Using the same procedure before, the reconciled values are calculated for the reduced 
reconciliation problem, leading to: 

 

 

 

a =        x =                   

 

 

 

 

  

1 -1 0 -1 0 0 -1 0 1
-1 1 1 0 0 0 0 0 0
0 0 -1 1 -1 -1 0 0 0
0 0 0 0 1 0 1 -1 0



 

 

 

 

Since no information about bounds is provided, it is assumed that these values are 
realistic (there are no negative flows which is the only possible indication of an 
unrealistic reconciled value). In order to be sure that no more errors are present, the new 
test statistics are computed. It is also computed again the threshold value (see below) 
since the number of measurements in the data set is now equal to 9. For α = 0.05, β = 
0.005683 and so Z1-β/2 = 2.76.  None of the test statistics exceeds the value so, the 
procedure is terminated.  

 

 

 

 

 
 
 
za,j =  

 

 

 

 

In conclusion, serial elimination strategy detect correctly the error location introduced 
in the process stream number 2. 
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