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Posterior linearisation filter: principles and
implementation using sigma points

Ángel F. García-Fernández, Lennart Svensson, Mark R. Morelande, Simo Särkkä

Abstract—This paper is concerned with Gaussian approxima-
tions to the posterior probability density function (PDF) in the
update step of Bayesian filtering with nonlinear measurements. In
this setting, sigma-point approximations to the Kalman filter (KF)
recursion are widely used due to their ease of implementation and
relatively good performance. In the update step, these sigma-point
KFs are equivalent to linearising the nonlinear measurement
function by statistical linear regression (SLR) with respect to the
prior PDF. In this paper, we argue that the measurement function
should be linearised using SLR with respect to the posterior
rather than the prior to take into account the information
provided by the measurement. The resulting filter is referred to as
the posterior linearisation filter (PLF). In practice, the exact PLF
update is intractable but can be approximated by the iterated
PLF (IPLF), which carries out iterated SLRs with respect to the
best available approximation to the posterior. The IPLF can be
seen as an approximate recursive Kullback–Leibler divergence
minimisation procedure. We demonstrate the high performance
of the IPLF in relation to other Gaussian filters in two numerical
examples.

Index Terms—Kalman filter, Bayes’ rule, nonlinear filtering,
sigma-points, statistical linear regression

I. INTRODUCTION

The estimation of the state of a dynamic Markov process
from noisy observations is of interest in many problems
in science and engineering, for example, target tracking,
navigation, audio signal processing or finance [1], [2]. In
the Bayesian framework, the process is characterised by the
dynamic and measurement equations and, in order to estimate
the current state in an optimal manner, we need the probability
density function (PDF) of the current state given the available
measurements. This PDF is referred to as the posterior PDF
and can be calculated recursively in two phases: prediction
and update.

If the process is non-linear/non-Gaussian, the posterior PDF
cannot be calculated analytically so approximations must be
used in practice. Particle filters are asymptotically optimal
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approximations although their computational burden can be
high [3]. If the posterior is unimodal, a Gaussian approxima-
tion can be of sufficient accuracy. Therefore, it is of interest
to develop computationally efficient Gaussian approximations.
In this case, the prediction step typically consists of calculat-
ing/approximating the first two moments of a random variable
that undergoes the possibly nonlinear transformation of the
dynamic equation. In the update step, which is the focus of this
paper, we use Bayes’ rule along with the current measurement
and the prior PDF, which is the output of the prediction step,
to obtain the posterior. In the following, we briefly describe
several algorithms to perform the update and our contributions.
This article is an extended version of the paper [4].

In the Gaussian filtering update step, one possibility is to
set the maximum a posteriori (MAP) estimator as the updated
mean and obtain the updated covariance matrix by linearising
the measurement function around the MAP estimate, as in the
iterated extended Kalman filter (IEKF) [5] or the sigma-point
Kalman optimisation algorithms in [6]. The previous filters
do not guarantee convergence to the MAP estimate but if it is
found, the posterior approximation is asymptotically optimal
as the measurement noise tends to zero [7]. Nevertheless, the
most widely used Gaussian filtering update step consists of
approximating the updated mean by the linear minimum mean
square error (LMMSE) estimator and the updated covariance
by its mean square error matrix. The LMMSE-based approx-
imation is usually more accurate than the MAP estimate one
as the metric to assess the filter performance is usually the
square error.

The LMMSE-based approximation is sometimes referred to
as (nonlinear) Kalman filter (KF) update [8, Sec. II.A] [9] or
Gaussian filter update [10]. This algorithm is equivalent to per-
forming statistical linear regression (SLR) of the measurement
function with respect to the prior PDF and calculating Bayes’
rule with the resulting linearised measurement model [11]. As
the KF is usually known in the literature as the solution to
the linear/Gaussian filtering recursion and the term Gaussian
filter can also refer to many other types of approximations
[12], we find it useful to refer to this algorithm as prior
linearisation filter (PrLF) in the context of this paper. The PrLF
update requires the calculation of some moments: the mean
and covariance matrix of the current measurement and cross-
covariance between the current state and the current measure-
ment [8]. In practice, these moments (PrLF moments) cannot
be calculated in closed-form so we require approximations. In
this paper, we refer to these approximations as approximations
to the PrLF. For instance, the extended Kalman filter (EKF)
approximates the PrLF moments using analytical linearisation



while the unscented KF (UKF) [8], [13], cubature KF (CKF)
[14] or linear regression KF [15] use sigma-points. The main
drawback of the PrLF and all its approximations is that they
often perform poorly with nonlinear measurement functions if
the measurement noise is low enough [9]. Therefore, more
accurate computationally efficient approximations must be
sought.

As we indicate in this paper, the above-mentioned ap-
proaches perform closed-form Bayesian updates once we
perform an enabling approximation in which the (nonlinear)
measurement function is represented by a linear function
plus Gaussian noise. We argue that, rather than selecting the
enabling approximation parameters using SLR of the measure-
ment function with respect to the prior as in the PrLF, SLR
should be performed with respect to the posterior. The intuition
behind this idea is that the approximation of the measurement
function should be accurate in the region of interest, which
is indicated by the posterior, not the prior [4]. The resulting
filter is referred to as the posterior linearisation filter (PLF).
However, the PLF is intractable as we would need to know
the posterior to approximate the posterior. Nonetheless, we
propose an approximation of the PLF by performing iterated
SLRs with respect to the best available approximation to the
posterior: the iterated PLF (IPLF). We show that the IPLF can
be seen, under certain approximations, as a minimisation of the
Kullback–Leilber divergence (KLD) of the joint density of the
state and a variable obtained by passing the state through the
measurement function. This criterion allows the approximated
posterior density to be used in an iterative manner while
ensuring that the approximation of the measurement function
remains accurate. The benefits of using the IPLF in relation to
other Gaussian filters are analysed in two numerical examples.

The rest of the paper is organised as follows. In Section II,
we formulate the problem. The PLF is introduced in Section
III. We derive the IPLF in Section IV. Numerical simulations
for assessing the filter performance are given in Section V.
Finally, conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

In this section, we explain the family of Gaussian approxi-
mations we consider in the update step of Bayesian filtering.
As we focus on the update phase, the time index of the filtering
recursion is removed for the sake of notational simplicity. The
state x ∈ Rnx has a Gaussian prior PDF px (x) = N (x;x, P )
with mean x and covariance matrix P . The measurement
equation is

z = h (x) + η (1)

where z ∈ Rnz is the measurement, h (·) is the measurement
function and η is a zero-mean Gaussian measurement noise
with covariance matrix R.

The posterior PDF px|z (·) of the state after observing
measurement z is obtained by Bayes’ rule

px|z (x|z) ∝ pz|x (z|x) px (x) (2)

where ∝ means “is proportional to” and pz|x (·) is obtained
using (1)

pz|x (z|x) = N (z;h (x) , R) . (3)

In practice, the posterior does not admit a closed-form expres-
sion so it must be approximated. In this paper, we consider
the enabling approximation

h (x) ≈ h̃ (x) = Ax+ b+ e (4)

where h̃ (x) is the approximation of h (x), A ∈ Rnz×nx ,
b ∈ Rnz and e ∈ Rnz is a zero-mean Gaussian distributed
random variable with covariance matrix Ω. The variable e is
uncorrelated with x and η. Equation (4) approximates how the
random variable x is transformed through the deterministic
function h (·). As will be seen in Section II-A, linear ap-
proximations with additive Gaussian noise have already been
suggested in the literature. It should also be noted that affine
measurement functions with additive Gaussian noise are the
only functions for which the posterior is exactly Gaussian.
The class of functions in (4) is therefore of particular interest
since it allows us to represent all such measurement functions
of importance.

Once the enabling approximation in (4) is employed,
pz|x (z|x) ≈ qA,b,Ωz|x (z|x) = N (z;Ax+ b,Ω +R) and the
posterior becomes

qA,b,Ωx|z (x|z) = N (x;u,W ) (5)

where

u = x+ PAT
(
APAT + Ω +R

)−1
(z −Ax− b) (6)

W = P − PAT
(
APAT + Ω +R

)−1
AP (7)

and superscript T stands for transpose. Considering (6) and
(7), it is clear that the accuracy of the posterior approximation
depends on how we choose A, b, Ω. In practice, we are
interested in computing posterior moments so, ideally, we
would like that u and W match the first two moments of
px|z (·). We can achieve this by selecting A, b,Ω such that
they minimise the KLD [16]

arg min
A,b,Ω

D
(
px|z

∥∥∥qA,b,Ωx|z

)
= arg min

A,b,Ω

ˆ
px|z (x|z) log

px|z (x|z)
qA,b,Ωx|z (x|z)

dx. (8)

The solution to this problem can be approximately obtained
by the Gaussian particle filter [12]. However, in the context
of this paper, the solution to (8) is impractical as, in general,
it is not possible to evaluate integrals w.r.t. px|z (·) without
Monte Carlo methods, which we do not want to use due to
their computational burden. In this paper, we propose a new
way to select A, b, Ω. First, we proceed to explain previous
work on the selection of the linearisation.

A. Previous work

In the Gaussian filtering literature, there are three impor-
tant kinds of linearisations that are used in (4): analytical
linearisation at the prior mean, analytical linearisation at the
MAP estimate and SLR with respect to the prior PDF. As
the previous linearisations based on the MAP estimate or
SLR are not always tractable, different approximations to
these linearisations have been proposed. These give rise to



different filters but their foundation is the use of one of these
linearisations.

More specifically, if we select Ω = 0, and A and b
by analytical linearisation at the prior mean, the resulting
algorithm is the EKF. If we select Ω = 0, and A and b
by analytical linearisation at the MAP estimate, obtained by
a Gauss-Newton search, the resulting algorithm is the IEKF
[5]. If we select A, b and Ω using SLR with respect to the
prior, the resulting algorithm is the PrLF. If the PrLF moments
are approximated using sigma-points drawn from the prior,
the resulting algorithms are the widely used sigma-point KFs
like the UKF or CKF. We think it is worth clarifying that
even though the original UKF paper was motivated using
the argument that approximating a probability distribution is
simpler than a nonlinear function [13], the UKF performs
SLR of the mesurement function implicitly. This was already
pointed out in [15]. We also want to mention that another
interesting linearisation, though less popular than the previous
ones, is to set Ω = 0 and select A and b by SLR with respect
to the prior, which results in the statistically linearised filter
[1], [17].

Remark 1. It should be noted that all the previously men-
tioned filters belong to the assumed density filtering (ADF)
framework. In ADF, we make the approximation px|z (·) ≈
qA,b,Ωx|z (·) to evaluate quantities of interest such as integrals or
KLDs w.r.t. px|z (·) [1]. Otherwise, they are intractable and
we would need to resort to Monte Carlo methods, which we
want to avoid. For example, the mean of px|z (·) becomes

ˆ
xpx|z (x|z) dx ≈

ˆ
xqA,b,Ωx|z (x|z) dx = u.

1) Prior linearisation filter: Due to its relevance in this pa-
per, we proceed to explain the PrLF from a KLD minimisation
perspective. The parameters (A, b,Ω) of the PrLF, which are
denoted as (A+, b+,Ω+), are selected to minimise the KLD
over the joint variable (x, z). This is indicated by the following
proposition.

Proposition 2. The solution to(
A+, b+,Ω+

)
= arg min

(A,b,Ω)

D
(
px,z

∥∥qA,b,Ωx,z

)
= arg min

(A,b,Ω)

ˆ
px,z (x, z) log

px,z (x, z)

qA,b,Ωx,z (x, z)
dxdz

is given by SLR of h (·) w.r.t. px (·). That is,

A+ = ΨTP−1 (9)
b+ = z −A+x (10)

Ω+ = Φ−A+P
(
A+
)T

(11)

where

z =

ˆ
h (x) px (x) dx (12)

Ψ =

ˆ
(x− x) (h (x)− z)T px (x) dx (13)

Φ =

ˆ
(h (x)− z) (h (x)− z)T px (x) dx. (14)

Clearly, qA
+,b+,Ω+

x,z (·) matches the first two moments of
px,z (·) as is required to minimise the KLD considered in
Proposition 2 [16]. Integrals (12)-(14) can be approximated
using sigma-points [1].

In order to gain more insight into how the PrLF selects
(A, b,Ω), we also want to mention that [11](
A+, b+

)
= arg min

(A,b)

E
[
(h (x)−Ax− b)T (h(x)−Ax− b)

]
(15)

Ω+ = E
[(
h(x)−A+x− b+

) (
h (x)−A+x− b+

)T ]
(16)

where the expectation is taken w.r.t. px (·). In other words,
(A+, b+) represents the best linear approximation of h(·) in
the sense of minimising its mean square error (MSE) and Ω+

is the corresponding MSE matrix.

III. POSTERIOR LINEARISATION FILTER

As indicated in Section II-A, the PrLF selects the parameters
of approximation (4) using SLR with respect to the prior. In
Section III-A, we motivate why the SLR of the measurement
function should be done with respect to the posterior, instead
of the prior, to obtain a suitable approximation h̃ (x) in (4). In
Section III-B, we analyse the PLF from a KLD minimisation
perspective.

A. Motivation of the PLF

As we mentioned in the previous section, the SLR of a
function with respect to a PDF provides us with the best
linear approximation of the function in the region where the
PDF lies. This fact is widely used in the update step of
Bayesian filtering to get an enabling approximation of the
form (4). The conventional way to apply SLR in the update
step is given by the PrLF, see Proposition 2, in which we
approximate the measurement function using SLR with respect
to the prior. It should be highlighted that the PrLF does not
make use of the measurement, which we know, to perform the
enabling approximation. As the PrLF does not use all available
information to perform the enabling approximation, we should
expect that its performance deteriorates in some cases. It was
proved in [9] that the PrLF and therefore all of its approxima-
tions do not work well with nonlinear measurement functions
if the measurement noise is low enough. In the following,
we provide one possible interpretation of this drawback of
the PrLF in terms of the accuracy of the approximation (4).
This interpretation motivates the introduction of the posterior
linearisation filter (PLF).

If the measurement noise is low enough, the posterior PDF
is considerably narrower than the prior PDF. Then, if the
measurement function is nonlinear and we have performed
SLR with respect to the prior, it is likely that the linear
approximation of the measurement function is not accurate
in the region where the posterior actually lies, which is our
region of interest. That is, before we process the measurement,
the PrLF provides us with the best linear approximation of
the measurement function in our region of interest, which



is indicated by the prior. However, when we receive the
measurement, the region of interest changes according to the
posterior, and the linear approximation given by SLR with
respect to the prior is not necessarily accurate in the new
region.

Intuition tells us that we should approximate the measure-
ment function accurately in our region of interest. That is,
the enabling approximation (4) should be chosen by the SLR
w.r.t. the posterior PDF not the prior. The algorithm that uses
the SLR of the measurement function with respect to the
posterior in the enabling approximation (4) is referred to as
PLF. It should also be noted that the PLF is intractable because
it requires knowledge of the posterior to approximate the
posterior. Nevertheless, we can design an iterative procedure
to approximate the PLF as will be explained in Section IV.

1) Illustrative example: In order to clarify the concepts
of the previous discussion, we find it convenient to use the
following illustrative example. The prior PDF is Gaussian with
mean x = 3 and variance P = 4. The measurement equation
is

z = ax3 + η (17)

where η is the measurement noise with variance R = 0.1 and
a = 0.01. In this example, the required moments (12)-(14) can
be calculated analytically [18] so we can use the exact PrLF
instead of an approximation, such as the UKF or CKF.

We analyse the case where we measure z = 1.5. The prior
and posterior PDFs are shown in Figure 1. In this figure, the
posterior has been obtained by using a dense grid of points.
This method is not generally practical because of its high
computational burden. The PrLF approximates the posterior by
the enabling approximation (4) using SLR of the measurement
function with respect to the prior. The measurement function
and its PrLF approximation are shown in Figure 2. The
linearisation used in the PrLF would be the best linearisation
of h(·) if our region of interest were given by the prior, which
would be the case if we did not know the measurement. The
fact is that we know that z = 1.5 and we therefore argue
that the region of interest is now given by the posterior. The
linearisation of h(·) with respect to the posterior, which is the
enabling approximation of the PLF, is also plotted in Figure
2. It can be clearly seen that the PrLF linearisation is quite
different from the linearisation we would like to use in (4).
As the linearisation of the PrLF is not very accurate in our
region of interest, it is not surprising that the resulting PrLF
posterior approximation is poor, see Figure 3. On the contrary,
if we use SLR of the measurement function with respect to
the posterior (PLF), the resulting posterior approximation is
rather accurate.

B. KLD considerations

In this section, we explain the PLF from a KLD perspective,
which will be useful to motivate the iterated PLF in Section
IV. The general idea is that we want to see how well we
approximate the joint posterior density of the state and the state
transformed by the measurement function using the KLD. This
is of interest as the enabling approximation implicitly provides
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Figure 1: Prior and posterior for z = 1.5. The posterior is markedly
narrower than the prior.
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Figure 2: Measurement function and the PrLF and PLF approximations.
We plot the linearisations in the 2σ-regions of the PDF that was used in
SLR. The dashed lines indicate 2σ-regions of the error term in (4). The
PrLF approximation is quite different from the PLF approximation, which
gives us the best approximation of h(·) for the current measurement.

us with an approximation to h (x). To do so, we consider the
auxiliary variable

y = h (x) + ξ (18)

where ξ is a zero-mean Gaussian noise independent of η with
covariance matrix βInz , Inz is the identity matrix of size nz
and β > 0 is a parameter to ensure that y has a density given x
and we can therefore use the KLD. As β → 0, y → h (x), so
the joint posterior approximation of (x, y) given z in relation
to the true joint posterior of (x, y) tells us how well we have
approximated the distribution over the state transformed by
the measurement function as well as the state.

The true joint PDF of the variables (x, y) given z factorises
as

px,y|z (x, y|z) = px|z (x|z) py|x (y|x) . (19)

We make the approximation
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Figure 3: Posterior and the PrLF and PLF approximations. As the PrLF
linearisation of h(·) is not accurate, the PrLF approximation is inaccurate.
On the contrary, the PLF provides a quite accurate approximation.

• AP1:

qA,b,Ωx,y|z (x, y|z) ≈ qA,b,Ωx|z (x|z) qA,b,Ωy|x (y|x) (20)

with qA,b,Ωx|z (x|z) given by (5) and

qA,b,Ωy|x (y|x) =N (y;Ax+ b,Ω + βInz
) . (21)

As shown in Appendix A, AP1 is accurate if ‖Ω‖ is small
enough. Considering (x, y) jointly, the objective is to select
(A, b,Ω) which minimises the joint KLD of qA,b,Ωx,y|z (·) from
px,y|z (·). That is, we would like to solve

arg min
(A,b,Ω)

D
(
px,y|z

∥∥∥qA,b,Ωx,y|z

)
= arg min

(A,b,Ω)

[
D
(
px|z

∥∥∥qA,b,Ωx|z

)
+

ˆ
px|z(x|z)D

(
py|x

∥∥∥qA,b,Ωy|x

)
dx

]
(22)

where we have used (20). Instead, the PLF selects (A, b,Ω)
that minimises the second term in (22) as indicated by the
following lemma.

Lemma 3. The solution to

(A∗, b∗,Ω∗) =arg min
A,b,Ω

ˆ
px|z(x|z)D

(
py|x

∥∥∥qA,b,Ωy|x

)
dx

under AP1 is given by SLR w.r.t. the posterior px|z(·|z).

Lemma 3 can be easily proved by analogy with Proposition
2. We just have to simplify the KLDs in Proposition 2 and
Lemma 3 such that we only consider the terms that depend
on A, b,Ω.

The PLF therefore minimises a lower bound of
D
(
px,y|z

∥∥∥qA,b,Ωx,y|z

)
under AP1 as

D
(
px,y|z

∥∥∥qA,b,Ωx,y|z

)
≥
ˆ
px|z(x|z)D

(
py|x

∥∥∥qA,b,Ωy|x

)
dx.

As a result, selecting the best linear approximation of the
measurement function given the measurement along with its

mean square error matrix, which is what the PLF does, is
equivalent to minimising a lower bound on the joint KLD.
However, this approach is also impractical because we cannot
evaluate integrals w.r.t. px|z(x|z). Nevertheless, in the next
section, we will see how useful criterion (22) is in the assumed
density filtering framework.

IV. ITERATED POSTERIOR LINEARISATION FILTER

We derive the iterated PLF in Section IV-A and provide an
illustrative example in Section IV-B. We discuss some aspects
of the algorithm in Section IV-C. Finally, a stopping criterion
for the iteration and a local convergence analysis are given in
Sections IV-D and IV-E, respectively.

A. Derivation

Even though the PLF is intractable, it is the foundation of
the IPLF, which iteratively minimises (22), under the usual
approximation of the ADF framework explained in Remark 1.
The idea is to build a sequence

(
Ai, bi,Ωi

)
i ∈ N such that at

each iteration we improve the posterior approximation. More
specifically, let us assume we have

qA
i,bi,Ωi

x|z (x|z) = N
(
x;ui,W i

)
(23)

at step i. The aim is to obtain
(
Ai+1, bi+1,Ωi+1

)
that min-

imises (22) taking into account Remark 1. As a result, we
approximate px|z(x|z) ≈ qA

i,bi,Ωi

x|z (x|z) in (22) to obtain

arg min
(Ai+1,bi+1,Ωi+1)

[
D
(
qA

i,bi,Ωi

x|z

∥∥∥qAi+1,bi+1,Ωi+1

x|z

)
+

ˆ
qA

i,bi,Ωi

x|z (x|z)D
(
py|x

∥∥∥qAi+1,bi+1,Ωi+1

y|x

)
dx

]
.

(24)

We can in principle iterate this recursion until we reach a
fixed point. Nonetheless, if we are sufficiently close to the
fixed point

D
(
qA

i,bi,Ωi

x|z

∥∥∥qAi+1,bi+1,Ωi+1

x|z

)
≈ 0.

As a result, the dominating term in (24) is the second one and
we can make the approximation
• AP2

D
(
qA

i,bi,Ωi

x|z

∥∥∥qAi+1,bi+1,Ωi+1

x|z

)
�
ˆ
qA

i,bi,Ωi

x|z (x|z)D
(
py|x

∥∥∥qAi+1,bi+1,Ωi+1

y|x

)
dx.

Under AP2 and applying Lemma 3, the solution to (24)
is given by selecting

(
Ai+1, bi+1,Ωi+1

)
using SLR w.r.t.

qA
i,bi,Ωi

x|z (·). This leads to an iterated algorithm, which is
referred to as iterated PLF, in which we recursively perform
SLR of h (·) w.r.t. the latest posterior approximation.

In practice, the required integrals of SLR, which are given
by (12)-(14), can be approximated using any sigma-point
method, e.g., the unscented transform (UT) [8]. We first select
m sigma points X i1, ...,X im and weights ω1, ..., ωm such that
they match the moments ui and W i. There are multiple
options to select these points and weights, which depend on



the specific sigma point method [8], [14]. The transformed
sigma points are

Zij = h
(
X ij
)

j = 1, ...,m (25)

and

zi ≈
m∑
j=1

ωjZij (26)

Ψi ≈
m∑
j=1

ωj
(
X ij − ui

) (
Zij − zi

)T
(27)

Φi ≈
m∑
j=1

ωj
(
Zij − zi

) (
Zij − zi

)T
(28)

where zi, Ψi and Φi correspond to (12)-(14) where we use
N
(
·;ui,W i

)
instead of px (·). The sigma point approximation

to SLR w.r.t. N
(
·;ui,W i

)
corresponds to substituting (26)-

(28) into (9)-(11). The recursion is initiated by performing
SLR with respect to the prior as in a (nonlinear) Kalman filter.
The steps of the IPLF are summarised in Algorithm 1. We
want to remark that, in contrast with the PrLF (which uses the
LMMSE estimator), the PLF and IPLF are not linear filters in
z.

Algorithm 1 The update step of the IPLF
Input: Prior moments u1 = x, W 1 = P .
Output: Posterior moments ui, W i.

- Initialise by setting i = 1.
repeat

• Approximate the SLR Ai, bi,Ωi:
– Select m sigma points X i1 , ...,X im and weights ω1, ..., ωm

that match ui and W i using a sigma-point method.
– Calculate the transformed sigma points Zij j = 1, ...,m

using (25).
– Approximate zi, Ψi and Φi using (26)-(28).
– Obtain Ai, bi,Ωi from (9)-(11) usingN

(
·;ui,W i

)
instead

of px (·).
• Compute the posterior approximation moments ui+1 and

W i+1:
– Use Ai, bi,Ωi in (6) and (7).

• i← i + 1
until convergence, see Section IV-D.

B. Illustrative example

In this section, we analyse how the IPLF works in the
illustrative example of Section III-A1. The integrals required
for the SLRs are calculated analytically and the results of the
IPLF recursion for the illustrative example are shown in Figure
4. The PrLF corresponds to the first step of the IPLF and is
not a good approximation of the posterior. As we continue
with the IPLF iteration, the posterior approximation becomes
closer and closer to the true posterior. It is appealing that the
improvement in performance of the IPLF with respect to the
PrLF is quite significant with just a few more iterations.

We also show the measurement function and the SLR used
at the final step of the IPLF in Figure 5. Comparison of this
figure with Figure 2 reveals remarkable similarity between
the measurement function approximations of the PLF and the
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Figure 4: Illustration of IPLF. The true posterior is shown in blue, the
prior in black, the PrLF posterior approximation in green and 3 more
iterations of the IPLF in red. A number on the maximum of each PDF
represents variable i in the IPLF recursion, see Algorithm 1. The PrLF
is simply the first step of the recursion and is not a good approximation
of the posterior. If we continue with the IPLF iteration, we attain an
accurate approximation.
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Figure 5: Comparison between the true measurement function and the
linearisations used by the PrLF and the IPLF. We plot the linearisations
in the 2σ-regions of the PDF that was used in SLR. The dashed lines
indicate 2σ-regions of the error term in (4). The SLR of the IPLF is
plotted with respect to the last posterior approximation, see Figure 4.

IPLF. Once we obtain the measurement, the PrLF linearisation
is not a good approximation of h (·) because the state is
expected to lie in a smaller area, which is given by the
posterior, and the SLR in this area is quite different from
the SLR with respect to the prior. On the contrary, IPLF
seeks to linearise the measurement function with respect to
the posterior. This is done by performing repeated SLRs with
respect to the best available approximation to the posterior,
which is given by the PDF at the last iteration. The resulting
posterior approximation is much more accurate than for the
PrLF as can be seen in Figure 4.

Finally, we want to show that the improvement indicated
by Figures 4 and 5 results in a lower error in state estimation.



We estimate the root mean square error (RMSE) of several
estimators averaged over the state and the measurement [19,
Chap. 12], which is given by√ˆ ˆ

(x− u (z))
T

(x− u (z)) px,z (x, z) dxdz (29)

where u (z) is the updated mean for the algorithms and we
have written explicitly that it depends on z. We use Monte
Carlo simulation to estimate (29) using 105 samples from
px,z (·) and the results are: posterior mean 1.12, IPLF 1.18,
PrLF 1.80. As expected, the IPLF outperforms the PrLF. The
posterior mean produces the lowest error as it is the minimum
MSE estimator.

C. Discussion

We proceed to discuss several characteristics of the IPLF
as well as a possible modification of the algorithm. In order
to derive the IPLF we have defined a new objective function,
which is given by (22), instead of the ideal one, which is given
by (8), and made several approximations. As indicated in Re-
mark 1, in ADF, we use approximation px|z (·) ≈ qA,b,Ωx|z (·). If
we used the objective function (8) and the ADF approximation
px|z (·) ≈ qA,b,Ωx|z (·) to improve the selection of A, b,Ω as in
(24), we would get that the KLD is minimised for the same
values of A, b,Ω. Therefore, the objective function (8) is not
useful for iterated improvements. In contrast, we realise that
by making the enabling approximation (4), we are implicitly
approximating the distribution over the state and the state
transformed by measurement function. Consequently, we use
auxiliary variable (18) to see how well the posterior density
of the state and the measurement function is approximated.
Approximation AP1 implies that the true posterior and its
approximation factorise in the same form and allows us to
perform iterated optimisations. As analysed in Appendix A,
AP1 is accurate if ‖Ω‖ is small. In principle, if ‖Ω‖ is large,
which implies that the measurement function nonlinearities are
severe, the algorithm is making a big approximation so it does
not necessarily work well. On the contrary, Approximation
AP2 is always accurate if we are close to the fixed point. If we
are far from the fixed point, it might be useful to relax Approx-
imation AP2 and develop damped versions of the algorithm
as the first term in (24) pulls the values of Ai+1, bi+1,Ωi+1

closer to Ai, bi,Ωi. However, the development of this idea is
beyond the scope of this paper.

Iterated sigma-point filters have previously been proposed
in [20] and [21] but with ad-hoc approaches. In [20], only
one set of sigma-points is generated and used to approximate
the prior moments. Using these prior moment approximations
the iteration proceeds similarly to the IEKF [5]. However, the
analytical linearisation of the IEKF is replaced by an ad-hoc
linearisation that mixes SLR with respect to the prior and
analytical linearisation at the current MAP estimate. In [21],
the iteration requires several ad-hoc parameters and conditions
and the overall effect of the iteration is that several corrections
are performed with the same measurement even though we
observe it only once. Furthermore, the underlying philosophy
of the filters in [20] and [21] is also different from ours as

they attempt to find the MAP estimate while our objective is
to minimise (22).

D. Stopping criterion

In this section, we propose a stopping criterion to deter-
mine when we should stop the IPLF iteration. The idea is
that the IPLF recursion should finish if the change in the
posterior approximation at a given iteration is small enough.
In this section, we denote the ith Gaussian approximation
as Ni (x) = N

(
x;ui,W i

)
. A usual method to evaluate the

similarity between PDFs is the KLD. Therefore, we stop the
recursion if

D (Ni ‖Ni+1 ) < γ (30)

where γ is a threshold and [22]

D (Ni ‖Ni+1 ) =

ˆ
Ni (x) log

Ni (x)

Ni+1 (x)
dx

=

[
tr
((
W i+1

)−1
W i
)
− log

( ∣∣W i
∣∣

|W i+1|

)
− nx

+
(
ui+1 − ui

)T (
W i+1

)−1 (
ui+1 − ui

) ]
/2.

In principle, we could have also chosen the KLD
D (Ni+1 ‖Ni ) rather than (30). However, in the examples
of Section V, (30) works better. The main reason why this
happens is that the KLD in (30) is large if Ni+1 (·) is small in
the region where Ni (·) is large [16]. As exemplified in Figure
4, Ni+1 (·) is expected to be more concentrated than Ni (·)
until the algorithm converges. Therefore, in order to increment
the value of the KLD before the algorithm converges, it is
convenient to use the KLD (30) rather than D (Ni+1 ‖Ni ).

E. Convergence analysis

In this section we provide a discussion about the conver-
gence properties of the IPLF. Clearly, if the measurement
function is linear, the algorithm converges in one iteration
to the solution, which is the PrLF update. If the moments
(12)-(14) are approximated by the EKF instead of a sigma-
point method, the IPLF is equivalent to the IEKF, which is
Gauss–Newton method [5] and is not guaranteed to converge.
The same happens if at some point W i → 0 (e.g. this could
happen if R→ 0) as in this case the SLR w.r.t. the ith posterior
approximation is in fact equal to the analytical linearisation at
ui, which sets Ωi = 0, so we obtain again a Gauss–Newton
method.

For the general case, we provide a local convergence anal-
ysis in Appendix B. The result is that the algorithm converges
if it is initiated sufficiently close to the fixed point and the
eigenvalues of matrix Ξ, which is given by (78), are lower
than one. Matrix Ξ has a very complex form and depends on
the derivatives of (12)-(14) with respect to the components
of the mean and covariance matrix at the ith iteration and
at the optimal point. Clearly, convergence is also affected
by the accuracy of the sigma-point method that is used to
approximate integrals (12)-(14).



Despite the interesting properties of the IPLF, the conver-
gence analysis also shows some drawbacks that should be
mentioned. If the algorithm is not sufficiently close to the
fixed point, the algorithm could diverge although a damped
version of the algorithm, which was mentioned in Section
IV-C, could help. In addition, the algorithm could converge
to a bad fixed point, i.e., one PDF that does not represent the
posterior accurately.

V. NUMERICAL EXAMPLES

In this section, we analyse the performance of the IPLF in
two tracking scenarios. Specifically, we compare it with the
following approximations of the PrLF: EKF, UKF and CKF.
The UT of the UKF and IPLF has been implemented with
Ns = 2nx + 1 sigma-points and the weight of the sigma-
point located on the mean is 1/3. The threshold γ = 10−1 for
IPLF1 and 10−5 for IPLF2. The prediction step of the IPLF is
performed as in the UKF. In addition, we have also tested the
IEKF (with 30 iterations) [5] and the Levenberg–Marquardt
Kalman optimisation filter (LMKOF) [6], which are based on
the MAP estimate.

A. Maneuvering target tracking

We consider an air-traffic control scenario, where an aircraft
executes a maneuvering turn in a horizontal plane at a height
h with respect to the radar. The state vector at time k is xk =[
pkx, ṗ

k
x, p

k
y , ṗ

k
y ,∆

k
]T

where ∆k is the turn rate at time k and,[
pkx, p

k
y

]T
and

[
ṗkx, ṗ

k
y

]T
are the position and velocity vector

in the x and y coordinates at time k respectively.
The prior at time 0 is

p(x0) = N
(
x0; x̄0,Σ0

)
(31)

where x̄0 =

[130 (m) , 25 (m/s) ,−20 (m) , 1 (m/s) ,−4π/180 (rad/s)]
T

and Σ0 = diag
([
σ2
px , σ

2
ṗx
, σ2
py , σ

2
ṗy
, σ2

∆

])
, with σ2

px = 5 m2,
σ2
ṗx

= 5 m2/s2, σ2
py = 2 · 104 m2, σ2

ṗy
= 10 m2/s2, σ2

∆ =

10−7 rad2/s2.
The kinematics of the turning motion are modeled by

xk+1 = F
(
∆k
)
xk + vk (32)

where

F (∆) =


1 sin ∆τ

∆ 0 −
(

1−cos ∆τ
Ω

)
0

0 cos ∆τ 0 − sin ∆τ 0
0
(

1−cos ∆τ
∆

)
1 sin ∆τ

∆ 0
0 sin ∆τ 0 cos ∆τ 0
0 0 0 0 1

 (33)

and τ is the sampling period and vk is the zero-mean Gaussian
process noise at time k with covariance matrix

Q =


q1
τ3

3 q1
τ2

2 0 0 0

q1
τ2

2 q1τ 0 0 0

0 0 q1
τ3

3 q1
τ2

2 0

0 0 q1
τ2

2 q1τ 0
0 0 0 0 q2τ

 (34)

Table I: Measurement noise parameters

σ2
r,i

(
m2

)
σ2
ϕ,i

(
rad2

)
σ2
θ,i

(
rad2

)
σ2
ṙ,i

(
m2/s2

)
i = 1 1000 (30π/180)2 (30π/180)2 100
i = 2 1000

(
10−3π/180

)2
(30π/180)2 10−4

where q1 and q2 are parameters of the motion model. As is
usually assumed in tracking, vk is independent of vm if m 6=
k. The dynamic parameters we use are τ = 0.2 s, q1 = 0.5
m2/s3, q2 = 10−6rad2/s3 and h = 50m. The total number of
time steps in the simulation is 130.

The sensor produces range, bearings, elevation and range
rate measurements modelled by

zk =



√
(pkx)

2
+
(
pky
)2

+ h2

atan2
(
pky , p

k
x

)
atan

(
h√

(pkx)2+(pky)
2

)
pkxṗ

k
x+pky ṗ

k
y√

(pkx)2+(pky)
2
+h2


+ ηk (35)

where atan2 (·, ·) is the four-quadrant inverse tangent and ηk

is the zero-mean Gaussian measurement noise at time k such
that ηk is independent of ηm if m 6= k.

In order to illustrate how the filter performances vary
with the accuracy of the measurements, we consider a sce-
nario where the tracking system has two measurement modes
with different accuracies. Sensors with different accuracies
are usually used in sensor management applications. In the
first type of measurement, the covariance matrix of ηk is
R1 = diag

([
σ2
r,1, σ

2
ϕ,1, σ

2
θ,1, σ

2
ṙ,1

])
and, in the second, R2 =

diag
([
σ2
r,2, σ

2
ϕ,2, σ

2
θ,2, σ

2
ṙ,2

])
. In this example, measurements

of the second type are performed every M time steps. In
the simulations, we use the parameters shown in Table I and
M = 60 and the first accurate measurement is taken at k = 2.

In order to evaluate the filter performance, we use 1000
Monte Carlo runs with 20 different trajectories, which have
been drawn from (31) and (32). The trajectories are shown in
Figure 6. EKF and IEKF diverge in all Monte Carlo runs so
they are not further considered. The rest of the filters do not
diverge. The root mean square (RMS) error for the position
is provided in Figure 7. The IPLF and LMKOF have similar
performance and clearly outperform the UKF and CKF.

We show the average number of iterations of the IPLF
against time in Figure 8. Although the two versions of IPLF
with different γ roughly provide the same error, the required
number of iteration differs. IPLF2 has a lower threshold so it
takes more iterations to converge. As expected, the number of
iterations increases when the accurate measurements are taken.
It should be noted that at most time steps IPLF1 corresponds to
the UKF update as only one iteration is performed. Therefore,
in this scenario, simply carrying out few more iterations at
the right time steps can provide a significant increase in
performance with a low increase in computational burden.

We also plot the normalised estimation error squared
(NEES) of the position in Figure 9. While the UKF and
CKF are optimistic filters in this example, the IPLF with
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Figure 6: Turning target tracking scenario. The trajectories of the target
are represented in blue. The target position every ten time steps is
represented by a blue circle and its initial position by a filled blue circle.
The sensor position is represented by a red cross.
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Figure 7: RMS position error against time for turning target example.
IPLF and LMKOF provide a much lower error.

the two considered threshold and LMKOF provide consistent
approximations to the posterior PDF.

The execution times in milliseconds of a non-optimised
Matlab implementation of the algorithms on a Intel Core i7
laptop are shown in Table II. Obviously, the UKF and CKF
are the algorithms with lowest computational burden. The
IPLF algorithms and LMKOF have the same performance in
this scenario. Nevertheless, the computational burden of the
IPLF is much lower than the LMKOF. In addition, the IPLF
is straightforward to implement while the LMKOF is more
laborious due to the need of computing more matrices and a
square root sigma-point implementation [6].

B. Tracking with a sensor network

This example deals with target tracking using a sensor
network. The state vector at time k is xk =

[
pkx, ṗ

k
x, p

k
y , ṗ

k
y

]T
.

Table II: Execution times for maneuvering target tracking scenario

UKF CKF LMKOF IPLF1 IPLF2
Time (ms) 38 38 104 49 73
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Figure 8: Average number of iterations of the IPLF against time for
turning target example. For accurate measurements, more steps are
carried out in the recursion.
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Figure 9: NEES of the position for turning target example. Two horizontal
black lines indicate the 95% probability region.

The dynamic model of the target is the nearly-constant velocity
model:

xk+1 =Fxk + vk (36)

F =

(
1 τ
0 1

)
⊗ I2 (37)

where ⊗ is the Kronecker product and vk is the process noise
at time k. The process noise is zero-mean Gaussian distributed
with covariance matrix

Q = q

(
τ3/3 τ2/2
τ2/2 τ

)
⊗ I2 (38)

where q is a parameter of the model.
The deployment of the sensor network and the target tra-

jectory used in this example are shown in Figure 10. There
are M = 25 sensors and the measurement vector at time
k is zk =

[
zk1 , ..., z

k
M

]T
where zkj is the measurement of

the jth sensor at time k. Sensor j is located at [ξx,j , ξy,j ]
T

and measures an acoustic signal emitted by the target and the
measurement model is

zkj =hj
(
xk
)

+ ηkj (39)
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Figure 10: Tracking with a sensor network scenario. The trajectory of
the target is represented in blue. The target position every ten time steps
is represented by a blue circle and its initial position by a filled blue
circle. The sensor positions are represented by red crosses.

Table III: Parameters for the turning target example

Parameter Value
τ 0.5 s
q 0.04 m2/s3

σ2
s 0.1 W
P0 1000 W
d0 1 m

where

hj
(
xk
)

=


√

P0d20
d2j (xk)

d2
j

(
xk
)
> d2

0
√
P0 d2

j

(
xk
)
≤ d2

0

and ηkj is an independent zero-mean Gaussian noise with
variance σ2

s , P0 is the saturation power, d0 is the distance
at which this saturation power is produced and d2

j

(
xk
)

is the
square distance from the target xk to the jth sensor

d2
j

(
xk
)

=
(
pkx − ξx,j

)2
+
(
pky − ξy,j

)2
. (40)

The prior at time 0 is given by (31) with Σ0 =

diag
([
σ2
px , σ

2
ṗx
, σ2
py , σ

2
ṗy

])
, with σ2

px = 49 m2, σ2
ṗx

=

4 m2/s2, σ2
py = 1 m2, σ2

ṗy
= 2 m2/s2 and x̄0 is chosen

randomly from a Gaussian PDF with mean identical to the
true initial state and covariance matrix Σ0. The parameters
employed in this example are those given in Table III.

The RMS position errors against time for the filters are
shown in Figure 11. On the whole, IPLF outperforms the rest
of the filters. UKF and CKF attain the same error as IPLF
after roughly 70 time steps. MAP-based algorithms, IEKF and
LMKOF, are far from the performance of the IPLF. EKF is the
filter that performs worst. In this scenario, the measurement
model is quite nonlinear and, in general, the IPLF needs more
iterations to converge as shown in Figure 12.

The execution times in milliseconds of our Matlab imple-
mentations of the algorithms are shown in Table IV. IPLF1 has
the best trade-off between performance and execution time.
EKF, UKF and CKF have lower computational complexity
than IPLF1 but their performance is lower. IEKF and LMKOF
have a higher execution time than IPLF1 and worse perfor-
mance.
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Figure 11: RMS position error in the sensor network scenario with σ2
s =

0.1. IPLF performs better than the rest of the algorithms.
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Figure 12: Average number of iterations of the IPLF against time for the
sensor network scenario.

It is known that under some conditions, MAP filters tend
to be optimal as the measurement noise tend to zero [7] but,
otherwise, good performance is not ensured. This is probably
the reason why IEKF and LMKOF do not perform as well as
IPLF in this example. If we lower the noise variance to σ2

s =
0.01, the performance of the MAP filters should increase. This
is what happens as shown in Figure 13. Now, IPLF, IEKF and
LMKOF roughly provide the same error. Prior linearisation
filters such as EKF, UKF and CKF have worse performance
than the rest at the beginning but all the filters achieve the
same error as time goes on.

VI. CONCLUSIONS

In this paper, we have developed an algorithm for the update
step of Gaussian nonlinear filtering with additive Gaussian
noise: the iterated posterior linearisation filter (IPLF). The
IPLF iteratively improves the selection of the parameters
in the enabling approximation by approximately minimising
a Kullback–Leibler divergence. The result is that these pa-
rameters are chosen by statistical linear regression of the

Table IV: Execution times for tracking with a sensor network scenario

UKF CKF IEKF LMKOF IPLF1 IPLF2
Time (ms) 57 57 280 480 95 213
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Figure 13: RMS position error in the sensor network scenario with σ2
s =

0.01. IPLF and MAP filters perform better than prior linearisation filters.

measurement function with respect to the current posterior ap-
proximation. Due to the iterated improvements in the enabling
approximation, the IPLF should outperform the prior lineari-
sation filter and its approximations, e.g., EKF, UKF and CKF.
This is of special importance when the measurement noise is
low enough and nonlinearities of the measurement function are
non-negligible [9]. Moreover, the IPLF is straightforward to
implement using sigma-points and the first step of the iteration
corresponds to the usual sigma-point Kalman filters.

We want to remark that the IPLF is a new framework to
perform Bayesian filtering and there are many possible ways
to devise algorithms based on it, for example, design of sigma-
point methods tailored to the IPLF problem or use of Gaussian
processes, Fourier–Hermite series or Monte Carlo methods to
approximate the required integrals. In addition, we have also
indicated that, in principle, it is possible to develop damped
versions of the IPLF.

Future work will address the extension of the IPLF to
smoothing problems and Bayesian graphical models.

APPENDIX A

In this section, we see when Approximation AP1, see
(20), is accurate. Under the enabling approximation (4), the
posterior of (x, y) can be obtained from (1) and (18) using
the linear KF equations.

qx,y|z (x, y) = N
([

x
y

]
;

[
u
uy

]
,

[
W Wxy

WT
xy Wy

])
(41)

where u and W are given by (6) and (7), respectively, and

uy = Ax+ b+
(
APAT + Ω

) (
APAT + Ω +R

)−1

× (z −Ax− b) (42)

Wxy = PAT − PAT
(
APAT + Ω +R

)−1 (
APAT + Ω

)
(43)

Wy = APAT + Ω + βInz

−
(
APAT + Ω

) (
APAT + Ω +R

)−1 (
APAT + Ω

)
.

(44)

We can also write uy , Wxy and Wy in terms of u and W as

uy = Au+ b+ Ω
(
APAT + Ω +R

)−1

× (z −Ax− b) . (45)

Wxy = WAT − PAT
(
APAT + Ω +R

)−1
Ω (46)

Wy = AWAT + Ω + βInz

−APAT
(
APAT + Ω +R

)−1
Ω

− Ω
(
APAT + Ω +R

)−1
APAT

− Ω
(
APAT + Ω +R

)−1
Ω. (47)

If ∥∥∥Ω
(
APAT + Ω +R

)−1
∥∥∥� ‖Au+ b‖

‖(z −Ax− b)‖
(48)∥∥∥(APAT + Ω +R

)−1
Ω
∥∥∥� ∥∥WAT

∥∥
‖PAT ‖

(49)∥∥∥Ω
(
APAT + Ω +R

)−1
Ω
∥∥∥� ∥∥AWAT + Ω

∥∥ , (50)

we get that

uy ≈ Au+ b (51)

Wxy ≈WAT (52)

Wy ≈ AWAT + Ω + βInz
, (53)

which results in (20) and (21). Conditions (48) and (49) are
met if ‖Ω‖ is sufficiently small. For example, if we use the
PLF to select A, b,Ω, these conditions imply that the nonlinear
function h(·) should be mildly nonlinear (in the sense that
its nonlinearities represented by ‖Ω‖ are small) in the region
indicated by the posterior.

APPENDIX B

In this appendix, we provide a local convergence proof
for the IPLF. This proof bears some resemblance to the
convergence proofs for Newton’s and Gauss–Newton methods
explained in [23].

First, we define ej ∈ Rnx×1 and ẽj ∈ Rnx+nz×1 as
the vectors whose components are zero except component j,
which is one. Then, we rearrange the elements of W i into a
vector as

wi =
[ (

W ie1

)T
, . . . ,

(
W ienx

)T ]T
(54)

and define yi =
[(
ui
)T
,
(
wi
)T ]T

. We also define

r
(
yi
)

=

[
Σ−1/2

(
yi
) (
z − z

(
yi
))

P−1/2
(
ui − x

) ]
(55)

J
(
yi
)

=

[
−Σ−1/2

(
yi
)
A
(
yi
)

P−1/2

]
(56)

where

Σ
(
yi
)

= Ω
(
yi
)

+R (57)

and z
(
yi
)
, Ω

(
yi
)
, A

(
yi
)

are obtained using (9)-(14) with
N
(
·;ui,W i

)
instead of px (·). We write

J̃
(
yi
)

=
(
JT
(
yi
)
J
(
yi
))−1

(58)



and the IPLF recursion becomes

yi+1 =

[
ui+1

wi+1

]
=


ui − J̃

(
yi
)
JT
(
yi
)
r
(
yi
)

J̃
(
yi
)
e1

...
J̃
(
yi
)
enx

 . (59)

We want to see when the recursion (59) converges.

A. Recursion for the mean

The fixed point of the recursion (59) is denoted as

y? =
[

(u?)
T

(w?)
T
]T

. We also denote hi =[
(hui )

T
(hwi )

T
]T

with hui = ui − u? and hwi = wi − w?.
We denote the jth row of J (·) as Jj (·) and its Jacobian
evaluated at yi as

Hj

(
yi
)

=
(
∇Jj (y)|y=yi

)T
. (60)

Then, the Taylor series expansion of JTj (·) around y? becomes

JTj (yi) = JTj (y?) +Hj (y?)hi +O
(
‖hi‖2

)
. (61)

Concatenating all the columns of JT (yi), we get

JT (yi) =
[
H1 (y?)hi . . . Hnz+nx

(y?)hi
]

+ JT (y?) +O
(
‖hi‖2

)
(62)

which can be written as

JT (yi) = JT (y?) +

nz+nx∑
j=1

Hj (y?)hiẽ
T
j +O

(
‖hi‖2

)
.

(63)

Multiplying by r (y?) on both sides of (63), we get

JT (yi)r (y?) =

nz+nx∑
j=1

(
ẽTj r (y?)

)
Hj (y?)hi +O

(
‖hi‖2

)
(64)

where we should note that ẽTj r (y?) is a scalar and, due to
(59),

JT (y?) r (y?) = 0. (65)

Using the Taylor series of r (·) around yi, we get

r (y?) = r
(
yi
)
−M(yi)hi +O

(
‖hi‖2

)
(66)

where the Jacobian M(yi) =
(
∇r (y)|y=yi

)T
. We also get

JT (yi)r (y?) = JT (yi)r
(
yi
)
− JT (yi)M(yi)hi +O

(
‖hi‖2

)
.

(67)

Substituting (64) into (67), we get
nz+nx∑
j=1

(
ẽTj r (y?)

)
Hj (y?)hi +O

(
‖hi‖2

)
= JT (yi)r

(
yi
)
− JT (yi)M(yi)hi. (68)

Multiplying by J̃
(
yi
)
, we get

J̃
(
yi
) nz+nx∑

j=1

(
ẽTj r (y?)

)
Hj (y?)hi +O

(
‖hi‖2

)
= ui − ui+1 − J̃

(
yi
)
JT (yi)M(yi)hi (69)

where we have used (59). We can write

M(yi) =
[
Mx(yi) Mw

(
yi
) ]

(70)

where Mx(yi) corresponds to the first nx columns and
Mw

(
yi
)

denotes the rest. We also define L(yi) = Mx(yi)−
J(yi) and, using (58), we write (69) as

J̃
(
yi
) nz+nx∑

j=1

(
ẽTj r (y?)

)
Hj (y?)hi +O

(
‖hi‖2

)
= −hui+1 − J̃

(
yi
)
JT (yi)

[
L(yi), Mw

(
yi
) ]

hi.
(71)

Then

hui+1 = N
(
y?, yi

)
hi +O

(
‖hi‖2

)
(72)

where

N
(
y?, yi

)
= −J̃

(
yi
)nz+nx∑

j=1

(
ẽTj r (y?)

)
Hj (y?)

+ JT (yi)
[
L(yi), Mw

(
yi
) ] . (73)

B. Recursion for the covariance

The Taylor series of J̃ (·) around y? is

J̃
(
yi
)

= J̃ (y?) +

nx∑
j=1

Tj (y?)hie
T
j +O

(
‖hi‖2

)
(74)

where J̃
(
yi
)
∈ Rnx×nx and Tj (y?) is the Jacobian of the

jth column of J̃ (·) evaluated at y?. Multiplying by ej , j ∈
{1, .., nx}, and using (59), we get

wi+1 =

 T1 (y?)
...

Tnx
(y?)

hi + w? +O
(
‖hi‖2

)
(75)

hwi+1 =

 T1 (y?)
...

Tnx (y?)

hi +O
(
‖hi‖2

)
. (76)

C. Final result

Concatenating (72) and (76), we get

hi+1 = Ξ
(
y?, yi

)
hi +O

(
‖hi‖2

)
(77)

where

Ξ
(
y?, yi

)
=


N
(
y?, yi

)
T1 (y?)

...
Tnx (y?)

 . (78)



Therefore,

‖hi+1‖ ≤
∥∥Ξ
(
y?, yi

)∥∥ ‖hi‖+O
(
‖hi‖2

)
. (79)

If the absolute values of the eigenvalues of Ξ
(
y?, yi

)
are lower

than one,
∥∥Ξ
(
y?, yi

)∥∥ < 1 and we get linear convergence
[24].
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