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We investigate electron shuttling in three-terminal nanoelectromechanical device built on a mova-

ble metallic rod oscillating between two drains. The device shows a double-well shaped electrome-

chanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by

the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two

limit cycles, and (iv) single limit cycle. In the presence of perpendicular magnetic field, the

Lorentz force makes possible switching from one electromechanical state to another. The mecha-

nism of tunable transitions between various stable regimes based on the interplay between voltage

controlled electromechanical instability and magnetically controlled switching is suggested. The

switching phenomenon is implemented for achieving both a reliable active current switch and sen-

soring of small variations of magnetic field. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931458]

Nanoelectromechanical (NEM) systems arouse interest

not only due to diverse potential applications as nano-

devices but also as an efficient constituent of modern nano-

electronics.1,2 While the NEM coupling plays an important

part in electronic transport through nano-devices, the charge

transport associated with the nano-mechanical motion dem-

onstrates various interesting quantum effects such as

Coulomb blockade,3 resonant tunneling,4 current blockade,5

spin-dependent transport,6 Franck-Condon blockade,7 and so

on. Besides, strong NEM coupling provides very efficient

ways to control electronic and mechanical degrees of free-

dom of NEM-devices. The confined area of movable nano-

meter sized island of electron gas (quantum dot) is character-

ized by quantized energy spectrum. The quantum mechanical

tunneling between the source/drain and quantum dot is re-

sponsible for a one-by-one electron charge transfer. Such

electron transport by periodically moving quantum dot is

known as “shuttling phenomenon.”8,9 The signature of shut-

tling was experimentally demonstrated in Refs. 10–13.

Recent experimental work14 suggested a new type of a

three-terminal NEM-device as a current switch controlled by

shifting the frequency of input signal. The “Y-switch” device

consisted of three electric terminals and mechanical shuttle

component—metallic island on top of nano-pillar mechani-

cal resonator.14 The three-terminal device demonstrated tun-

able mechanical modes operating in radio-frequency (RF)

regime at room temperatures. The applications of this type

of NEM-based device for quantum information processing

potentially include (but not limited to) frequency dependent

RF switches and ultra low-power logic elements. In our theo-

retical work, we propose an idea of another three-terminal

device where mechanical resonator plays also a part of one

of electric terminals. We suggest a mechanism of controlling

the switching regime by magnetic field. The high sensitivity

of NEM resonator provides an opportunity to manipulate the

charge transfer in the situation when the state of device is

defined by out of equilibrium conditions. These systems are

referred as “active NEM devices.”

In this work, we consider a NEM system containing a

cantilever of length L as a source located at the symmetric

point between two vertical drains separated by the air gap of

width 2D as shown in Fig. 1(a). Equivalent circuit model for

tunnel junction (Fig. 1(b)) is combined with Newtonian dy-

namics of the cantilever. First, we describe mechanical

degrees of freedom of the cantilever by the displacement

u(z) characterizing the cantilever deflection from the straight

configuration at the point z (that is, the cantilever axis with

its origin at the fixed end, see Fig. 1(a)). Second, we intro-

duce the eigenmode representation for the cantilever dis-

placement15 and characterize the fundamental mode of the

FIG. 1. (a) Schematic figure of the system we consider. (b) Equivalent elec-

tric circuit (left panel) and electromechanical potential Ueff(x) in the pres-

ence of perpendicular magnetic field (right panel).a)Electronic mail: tsong@ictp.it
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vibration by the amplitude x. While two position-dependent

inverse capacitances C�1
6 ðxÞ of the parallel-plate capacitors

are given by a linear function of x, the tunnel resistances of

the air gap R6(x) exponentially depend on the width of the

barrier: C6ðxÞ ¼ C0D=ðD7xÞ;R6ðxÞ ¼ R0e7x=k. Here, C0

(R0) is capacitance (resistance) of air gap of the width D, and

k is a phenomenological tunneling length. The force acting

on the cantilever is the vector sum of electrostatic force

applied to the end of the cantilever and Lorentz force induced

by magnetic field ~B ¼ B0~ey. The current I through the cantile-

ver and the induced bias across the junction Vc satisfies the

Ohm’s law: I¼ (V � Vc)/Rw. We use following notations: Rw

is resistance of the cantilever, Vc¼Qc/C(x), Qc is total charge

accumulated inside the parallel-plate capacitors, and

C(x)¼Cþ(x)þC–(x). Time evolution of the charge accumu-

lated inside the parallel-plate capacitors can be written as

_Qc þ
1

sc xð Þ þ
1

sw xð Þ

� �
Qc �

V

Rw
¼ 0; (1)

where sc(x)¼R(x)C(x) is a position-dependent RC-time of

the tunnel junction, sw¼RwC(x). Here, RðxÞ ¼ ½1=RþðxÞ
þ1=R�ðxÞ��1 ¼ R0ð2coshðx=kÞÞ�1

. Then, the electrostatic

force applied to the cantilever is given by ~Fc ¼ �ðQcÞ2
ð@C�1ðxÞ=@xÞ=2 �~ex, and the effective Lorentz force induced

by the current is ~Fb ¼ L~I � ~B. Thus, the equation of

motion for the vibrating cantilever within the air gap along

x̂-direction is given by

€x þ 2c0 _x þ x2
0x ¼ a1

Q2
c

C0D2m
xþ a2

LB0

mRw
V � Vcð Þ; (2)

where m is the effective mass, x0 is a frequency of funda-

mental mechanical mode, and c0 is its damping coefficient.

Here, a1 and a2� 1 are geometrical factors.

In order to present a system of coupled equations

describing both mechanical motion and charge distribution

in compact form, we introduce dimensionless variables,

denoted by tilde, which are defined by re-scaling the

displacement with k, the time with x�1
0 , the current with

ex0, the voltage with e/C0, and the force with mx2
0k

(~x ¼ x=k; ~t ¼ x0t; ~qc ¼ Qc=e; ~I ¼ I=ex0; ~v ¼ C0V=e, and
~F ¼ F=mx2

0k)

€~x þ 1

Q0

_~x þ ~x ¼ a
d2

~q2
c ~x þ pb/B

s0rw
~v � ~qcð Þ; (3)

_~qc þ
1

s0rw
rwcosh ~xð Þ þ 1ð Þ~qc ¼

~v
s0rw

; (4)

with s0 ¼ x0R0C0; d ¼ D=k; rw ¼ Rw=R0; 1=Q0 ¼ 2c0=x0.

Here, /B ¼ kLB0=ðh=eÞ is dimensionless flux through the

area of triangle with linear sizes determined by the length of

the cantilever and amplitude of mechanical vibration meas-

ured in the units of flux quantum /0 ¼ h=e. The dimension-

less parameters a and b correspond to the charging energy

Ec¼ e2/C0, and oscillator (zero point motion) energy Eosc

¼ �hx0 measured in units of elastic energy Ee ¼ mx2
0k

2 : a
¼ a1Ec=ðmx2

0k
2Þ; b ¼ a2Eosc=ðmx2

0k
2Þ. Note that dimen-

sionless RC-time s0 appears in Eq. (3) due to rescaling of

voltage with the charging energy which is a “natural” unit

for rescaling in Eq. (4). We ignore the bending effects of the

cantilever inside the area between source and drain(s), and,

assuming that the condition ~x=d � 1 is satisfied, disregard

the corrections of the order of ð~x=dÞ2 in Eqs. (3) and (4).

Two terms in the r.h.s. of Eq. (3) account for the retarda-

tion effects due to redistribution of charge and the Lorentz

force acting on the moving cantilever. In the adiabatic limit

s0� 1, we assume that the dynamics of the charge distribu-

tion is determined by RC-time, which is much faster com-

pared to the time scales responsible for dynamics of

mechanical degrees of freedom. The approximate analytic

solution of Eq. (4) describes the position-dependent charge

distribution, ~qcð~xÞ

~qc ~xð Þ ¼ ~v

rwcosh ~xð Þ þ 1
: (5)

As one can see from Eq. (5), the charge accumulated at the tip

of the cantilever decreases exponentially with the amplitude ~x.

First, let us consider the setup in the absence of

perpendicular magnetic fields, B¼ 0 (see also Ref. 16). Then,

the effective electromechanical potential can be written as

Ueffð~xÞ ¼ 1
2

~x2 � a
d2 ~v2

Ð
ðrwcoshð~xÞ þ 1Þ�2d~x. The values of

two local minima ~x6 are found by solving equation @xUeffð~xÞ
¼ 0. The solution reads ~x6 ¼ 6cosh�1 ðð~v

ffiffiffiffiffiffiffiffiffiffi
a=d2

p
� 1Þ=rwÞ.

The emergence of ~x6 gives us the condition for threshold bias

(~v1) necessary for formation of a double-well shaped Ueff,

which is written as ~v1 > ðrw þ 1Þ=
ffiffiffiffiffiffiffiffiffiffi
a=d2

p
.

Nonadiabatic correction to the adiabatic charge

~qna
c ¼

~vr2
ws0sinh ~xð Þ

rwcosh ~xð Þ þ 1ð Þ3
_~x (6)

generates effective “negative” friction in the vicinity of the

minima of the double-well potential. As a result, further

increase of bias gives rise to instability of the static state.

Finite energy pumping generates limit cycle at the vicinity of

two local minima depending on the initial condition. With

growing bias voltage, the two limit cycles evolve into one

large limit cycle enveloping two local minima. This happens

when the energy pumping allows the system to overcome the

barrier between two local wells. Since there are two charac-

teristic voltages controlling the number of limit cycles of the

system, it is convenient to introduce two other critical vol-

tages, ~v2 and ~v3, for two limit cycles and one limit cycle,

respectively. General expressions for ~v2 and ~v3 are unavail-

able, however, we evaluate the characteristic voltages with

assuming rw� 1.17

The main focus of this paper is to demonstrate the

re-switching behaviour of active device in the situation when

the current injected mainly in the drain1 is eventually forced

to be injected to the drain2. This is why we will be interested

in the calculation of the difference between the current

injected from the source to each of the drains, calling

the current through the drain1 as Iþ and the drain2 as I– (Fig.

1(a)). The difference between these two currents, which we

call a “re-switching current” ~Idiff , can be fine-tuned by

applying external magnetic field. The current ~Idiffð~tÞ
¼ ~Iþð~tÞ � ~I�ð~tÞ fully describes switching properties of the

active device. It is convenient to characterize switching by
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the current averaged over a time interval T being large com-

pared to the period of mechanical vibrations (in the numeri-

cal calculations, we use T ¼ 1000 x�1
0 ). Another important

for switching dynamics time scale is associated with the

delay t after which we perform the time averaging ðt >
5000 x�1

0 Þ in the steady state (see Fig. 2(b)). For ~v1

� ~v � ~v3, the difference ~I
av

diff splits following the evolution

of the system and depending on the initial condition either to

the right (~xint > 0, black color in Fig. 2(b)) or to the left

(~xint < 0, red color) near one of two minima of the potential

Ueffð~xÞ. The shuttling regime (~v2 � ~v) is characterized by

non-zero fluctuations of the current difference,
~I

fluc

diff ¼ h~Idiffð~tÞ � ~I
av

diffi. The fluctuation strength continues to

increase after a sudden drop of ~I
av

diff at ~v3 (see the blue line in

Fig. 2(b)). The stationary Poincar�e map of various random

initial condition for ð~x; _~xÞ as a function of ~v is shown in Fig.

2(c). The one-to-one correspondence between the re-

switching current and displacement shown in Fig. 2(b) can

be used for position detection of the nano-device.

Next, we describe the setup in the presence of perpen-

dicular magnetic field applied in order to manipulate the

switching current between source and one of two drains, ~I6

in the ~v1 � ~v � ~v3 regime. We consider adiabatically vary-

ing time-dependent flux /Bð~tÞ¼b0

2

�
tanh

~t�~ts

sp

� �
�tanh

~t�~te

sp

� ��
,

under following condition for duration of the flux pulse

sd¼~te�~ts and saturation time sp compared to the RC-time

s0: 1/Q0<s0 � sd � sp. Figs. 3(a)–3(d) illustrate switching

dynamics of a system initially located in the left minimum.

We apply pulses sd¼200 and sp¼1000 at ~ts¼15000ð~te

¼35000Þ for stimulating jumps from the left well to the right

one and back. The voltage dependence of the lower/upper

critical fields is shown in Fig. 3(e). If the magnetic field

exceeds its upper critical limit, the double-well potential

transforms into the single-well potential (Fig. 4(b)). The

voltage dependence of the upper critical flux /max
B can be

obtained by evaluating the minima of confining potential

under condition that two stable minima transfer into single

stable minimum. The lower critical field /min
B have been

numerically defined as the minimal value of applied flux by

comparing ~x averaged over long time scale T before and af-

ter stimulation. In Fig. 3(e), red colored line shows log-

scaled current square average, hj~Iþð~tÞþ~I�ð~tÞj2i at the /min
B ,

which is directly proportional to current power. It is there-

fore demonstrated that there exist regimes when small

FIG. 2. (a) Charge distribution ~qc given by Eq. (5) (black dashed lines) and

Eqs. (3) and (4) (green dots). The parameter rw¼ 1, 0.1, 0.01, and, 0.001

(from top to bottom), we use ~v ¼ 1 and a/d2¼ 1.75. (b) The re-switching

current ~I
av

diff (black and red lines) defined as the current difference between

source-drain1 and source-drain2 and its fluctuations ~I
fluc

diff (blue line) averaged

over the time interval T ¼ 1000x�1
0 (two different colors for re-switching

current correspond to two different initial conditions: black—oscillation

near drain1 ~xint ¼ 0:1 and red—oscillations near drain2, ~xint ¼ �0:1) as a

function of bias. Inset: averaged displacement relative to symmetric position

of the cantilever and its fluctuations. (c) Poincar�e map of ð~x; _~x Þ for the

steady state at zero magnetic field B¼ 0 evaluated after delay time ðt
> 5000 x�1

0 Þ as a function of bias voltage. Inset: cross section of main plot

at the bias voltages ~v ¼ 0:8 (black dot), 0.85 (two red dots), 1.2 (two green

curves), and 1.6 (blue curve). The parameters are s0¼ 0.1, b¼ 0.01, and

Q0¼ 100. In order to calculate (a) and (c), we choose 150 random initial

conditions in the range of ð~xint; _~x int; ~qcintÞ 2 ½�5; 5�.

FIG. 3. Switching behavior of the device controlled by magnetic pulses.

Time scanning of /B (a), ~x (b), ~Iþ (c), and ~I� (d) at the bias voltage
~v ¼ 0:85, b0¼ 1 (black), and ~v ¼ 1:2; b0 ¼ 4 (red). (e) Critical magnetic

field /min
B (black) and /max

B (blue) for switching phenomenon as a function

of bias and the mean-square of the total current averaged at the critical value

of magnetic field (red). (f) Position-dependent effective friction under differ-

ent values of dimensionless flux /B from its minimal valued 0 (black) to

maximum value 5 (magenta) with the step D/B ¼ 1.

FIG. 4. Phase diagram for bi-stability in the parameter domain ð~v; a=d2Þ
under /B ¼ 0 for (a) and ð/B; a=d2Þ with ~v ¼ 1 for (b) by using adiabatic

approximation (Eq. (5)). The brown colored area in (a) represents the

shuttling-promoted switching regime, ~v2 < ~v < ~v3. Thick lines denote nu-

merical solution of Eqs. (3) and (4) describing the evolution of critical vol-

tages ~v1 (black), ~v2 (red), and ~v3 (blue) as a function of applied bias ~v. The

shape of electromechanical potentials in (b) corresponds to the points /B

¼ 0 (black), �0.5 (red), and 0.5 (blue) at a¼ 1.75, and /B ¼ �0:75

(magenta), 0.75 (green) at a¼ 1.5.
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magnetic field can switch large currents in the active regime

of nano-device due to amplification of device sensitivity by

the preceding signal. As is seen from Fig. 3(e), small flux

switches between two different regimes both at the voltages

around ~v1 and ~v3. We emphasize the high sensitivity of

Y-switch device to small variation of the magnetic field close

to critical voltages ~v1 and ~v3.

The switching mechanism based on magnetic fields in

the device can be considered by using position-dependent

effective dissipation coefficient. Since the device shows

position-dependent charge distribution, the Lorentz force

involves non-adiabatic corrections to charge dynamics.

Consequently, position-dependent effective dissipation has

been emerged in the equation of motion

ceff ~xð Þ ¼ c0 þ
pbx0~v/Brwsinh ~xð Þ

rwcosh ~xð Þ þ 1ð Þ3

� 2ax0s0

d2

~v2r2
w~xsinh ~xð Þ

rwcosh ~xð Þ þ 1ð Þ4
:

Fig. 3(f) shows position-dependent ceffð~xÞ as a function of

varying magnetic field. Unlike the Lorentz force, which is an

odd function of the coordinate ~x, flux /B, and voltage ~v, the

non-adiabatic contribution to the electrostatic force being

even function of both coordinate ~x and bias voltage ~v always

reduces the dissipation near stationary position.

Using adiabatic approximation, we calculate the phase

diagrams of bi-stability regime (see Fig. 4), from which the

potentialities of current switch can be seen. We use the fol-

lowing color scheme in Fig. 4(a): gray color is used for

“passive” switching regime ð~v1 < ~v < ~v2Þ and brown color

denotes the “active” switching regime based on the shuttling

instability ð~v2 < ~v < ~v3Þ.
In conclusion, we have reported current-switching de-

vice promoted by shuttling phenomenon based on magneti-

cally controllable bi-stability based on strong NEM

coupling. In contrast to Ref. 14 implementing the static

3-terminal Y-switch, our 3-terminal system containing mov-

able source possesses one more fine-tuning parameter,

namely, magnetic field controlling the switching regime. The

NEM coupling gives rise to double-well shaped electrome-

chanical potential controlled by bias voltage. We have per-

formed both numerical and analytical analysis and found

regime of shuttling instability. In the above analysis, we

ignore the fluctuations of displacement and voltage, which

can be generated by both mechanical and electrical noise.

The fluctuations of the cantilever displacement should be

essentially smaller than the inter-valley distance, which

should be of the order of tunneling length to have a high

on/off ratio. Our analysis shows that as this condition is ful-

filled, the voltage fluctuation are negligible compared to

~v � ~vc � ~vc. At the typical experimental parameters, the cor-

responding restriction reads T � 100 K. At high tempera-

tures, the fluctuation become important and can generate a

number of phenomena similar to noise-enhanced stabil-

ity18,19 and stochastic resonance.20,21
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