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Göteborg, Sweden 2015



Interaction between electronic and vibrational edge states in graphene
Anton Vikström
Department of Applied Physics
Chalmers University of Technology

Abstract

A sheet of graphene in a magnetic field perpendicular to the sheet has elec-
tronic edge states with nonzero velocities. These edge states are localized
to the edge of the sheet on the order of the magnetic length. In addition,
there are also vibrational edge states —mechanical waves which propagate
along the edge and decay exponentially into the bulk. These edge waves are
analogous to the well-known surface acoustic waves in 3D systems; the edge
being a 1D surface. This thesis considers a zigzag edge of a graphene sheet
in a perpendicular magnetic field and investigates the interaction of in-plane
vibrational edge waves with electronic edge states. It is found that prop-
agation of low-amplitude vibrational edge waves is significantly blocked for
certain acoustic wave vectors —those leading to resonant absorption due to
electronic-acoustic interaction. For a finite gate voltage and a fixed acoustic
frequency, tuning the magnetic field can bring the system through a number
of such electronic resonances. Considering vibrational edge waves of larger
amplitude, so that nonlinear effects become important, it is further demon-
strated that the coupled system of electronic and acoustic equations has
family of solutions in which the mechanical displacement is in the shape of
a localized and stable profile traveling along the edge —a soliton. This type
of acoustic soliton can attain velocities significantly higher than the speed of
sound.

Keywords: graphene, quantum Hall effect, edge waves, quantum acous-
tics, collective excitations, solitons.
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Chapter 1

Introduction

1.1 Graphene

Carbon is an element that comes in many forms. In one form, it is diamond,
the valued crystal famed for its hardness, in another form, it is graphite,
the black substance in your pencil which rubs off on paper to form words,
images and the casual doodle. Both diamond and graphite are entirely made
up of carbon; no atoms of any other element are present1. The difference
between them is that of structure. Both diamond and graphite are crystals,
i.e. they are made up of a vast number of atoms bonded to each other in a
repeating pattern, essentially forming one huge molecule. In diamond, the
carbon atoms are bonded to each other in a complicated three-dimensional
structure, but in graphite they form clearly separated and weakly connected
layers of hexagonal grids [1]. The long and relatively weak bonds between
these layers are what makes pencils work; when the pencil tip rubs against
the paper2, graphite layers are torn loose and end up affixed to the surface.
In diamond, there are no such weakly connected layers, which is one of the
reasons there are no diamond pencils. Different versions of the same element
that differ only by their crystal structure are referred to as allotropes of that
element, from Greek allos (“other”) and tropos (“form”).

There are many more allotropes of carbon than the two mentioned. In
fact, a new allotrope has been discovered almost on a decennial basis dur-
ing the last 30 or so years. Fullerenes, or “buckyballs”, are best described

1Or rather, if they are present, they are regarded as impurities.
2. . . or e.g., canvas, school desk, bathroom door.

1



1.1. GRAPHENE

as “carbon soccer balls” and became a popular field after their discovery in
1985 [2, 3]. A lecturer of mine once, somewhat jovially, described the zeit-
geist as “Everyone dropped everything and started doing fullerenes”. Not
long after, the fullerene hype was largely superseded by the discovery3 of
carbon nanotubes in 1991 [5]. Carbon nanotubes are best described, both
visually and mathematically, as a single graphite layer rolled up and con-
nected into a cylindrical tube. Because of this simple relation to graphite
layers, many results carried over from earlier theory. Graphite had long since
been modeled theoretically by, at least as a first step, considering just a single
layer, so a great deal was already known of single graphite layers [6, 7, 8]. To
model a carbon nanotube as a rolled-up sheet simply meant taking the old
theory and adding to the model that if you go far enough in one direction,
you end up where you started, since you moved around the circumference
of the tube [9]. Carbon nanotubes became a popular field and additions
were made to the old graphite-layer theory; additions which, in the next
paragraph, were modified to fit the rolled-up geometry of the nanotubes [10].

Then, in 2004, the now famous researchers and Nobel laureates A. Geim
and K. Novoselov demonstrated the isolation of individual graphite lay-
ers [11]. Yet another carbon allotrope had been discovered: a crystal only one
atom thick, the smallest thickness conceivable. While single graphite layers
had been studied theoretically for ages, the actual existence of a stable 2D
structure had always been considered infeasible [3, 12]. Moreover, the feat
had been accomplished by an astonishingly simple technique now known as
the “scotch-tape method”. Basically, they started with a piece of graphite,
put a piece of scotch tape on it, and tore it loose. The tape was now thinly
coated with graphite. By again using tape to tear loose graphite from that,
an even thinner graphite coating was obtained. By repeating this several
times, they ended up with a piece of tape covered by an extremely thin coat-
ing of graphite. They were then able to confirm the presence of isolated,
single-layer graphite, thus proving that what had been a useful theoretical
construct for decades, was actually a practical reality [11]. Because of its
earlier use in describing other allotropes, the theory of graphene predates its
discovery, and thus gave the new material a running start. Graphene was
born.

3Carbon nanotubes had actually been discovered already in 1952 [4], but since the
findings were published exclusively in Russian, in a Soviet journal, they were doubly
obscured from the global research community behind both a language barrier and an iron
curtain.
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1.1. GRAPHENE

Figure 1.1: The “honeycomb” atomic lattice of graphene. Each black dot
represents a carbon atom and the lines connecting them are atomic bonds.
Graphite is made up of several such layers stacked on top of each other,
connected by weak bonds.

As in the case of fullerenes and nanotubes, “everyone dropped every-
thing and started doing graphene”. This time, the hype was, perhaps, more
warranted than ever. Graphene is a two-dimensional material in a three-
dimensional world, so the electrons within are restricted to movement in a
plane. However, graphene is also flexible; it can not just contract and ex-
pand, but can vibrate out of plane [13], so the electrons actually move in a
a contracting and curving two-dimensional plane. And because of the way
the carbon atoms are arranged, it turns out that the equations describing
electrons in graphene are identical to those used to describe certain relativis-
tic particles of zero mass [14]. The appeal of the material goes even further.
Graphene is a superior conductor of electricity [11, 15], and despite being as
thin as physically possible, it is incredibly strong [16]. Its strength has been
illustrated by the cartoon picture of a cat sitting safely on a square-meter
sheet of graphene supported only at the edges. The graphene would bend,
but it would not break, and the mass of that graphene sheet would be roughly
that of one of the whiskers of the cat [17]. The strength of graphene is due to
the strength of the bonds between the carbon atoms and the hexagonal crys-
tal structure. The hexagonal configuration of carbon atoms is actually the

3



1.2. BRIEF DESCRIPTION OF THE THESIS

densest possible, since hexagonal tiling (Fig. 1.1) is the optimal way to par-
tition a surface into equal geometrical shapes; this known as the honeycomb
conjecture [18], so named because of its application by bees in honeycombs4.
This dense structure also makes graphene highly impermeable to gasses and
liquids [19]. In contrast, its negligible thickness makes it highly transparent
to light [20], which is why researchers are currently using it in development
of the next generation of touch screens [21].

Graphene is the thinnest [22], densest, strongest [16], most electrically
conductive material in the world [11, 15], and a two-dimensional, flexible,
transparent [20] membrane with remarkable electronic behavior to boot [13].
For this reason it has been nicknamed “the material of superlatives”. This
thesis is an investigation into one particular phenomenon possible in this
material, or to be specific, on the edges of graphene sheets. So, having taken
a wide view of this growing field, I will now turn my eyes from the horizon,
down to the desk, and focus on my recent contributions to it.

1.2 Brief Description of the Thesis

Before going into detail, I would now like to give a brief, simplified, and
hopefully intuitive, description of the research presented in this thesis.

I consider a sheet of graphene suspended in a perpendicular magnetic
field. Electrons in a magnetic field experience a force which is perpendicular
to both their own motion and the field, the Lorentz force, which causes them
to move in circular orbits whose radii decrease with magnetic field strength
(since the force increases and makes them do sharper turns); this is also
true for the electrons inside the graphene sheet. If we look at the behavior
near an edge of the sheet, we can think of the electrons “bouncing” against
the edge, causing them to “skip” along it (see cover). We call this image
of electron behavior skipping orbits and note that the further we move the
center of an electron orbit toward and outside the edge, the more tightly the
orbits are squeezed against the edge, so the paths of the electrons become
straighter, thereby increasing their effective velocity along the edge. This
näıve picture does in fact capture many of the features of the system. A
net flow of electrons consistutes a current, so we can conclude that there are

4Bees developed their engineering technique by a long, evolutionary process of trial and
error, and never presented a rigorous mathematical proof, opting instead for an implicit
proof by survival.
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1.2. BRIEF DESCRIPTION OF THE THESIS

currents running along the edge, but not inside the bulk of the sheet since
the electrons there just move in circles. Also, the more tightly the electrons
are squeezed against the edge, the higher their velocity.

The very same edge can also exhibit mechanical vibrations. In a solid
material, there are many different types of waves [23, 24]. There are waves
of longitudinal motion —sometimes called “compression waves” —there are
waves with vibrations perpendicular to the direction of propagation —trans-
verse waves (imagine a wave on a string) —and there are more complicated
waves which move along the surfaces of objects: surface acoustic waves5. If
we assume that the graphene sheet does not vibrate out of plane but remains
perfectly flat, it can be seen as a two-dimensional solid with the edge its one-
dimensional surface. Therefore, there are surface (or edge) waves propagating
along the edge. Naturally, the edge being deformed by vibrations affects the
electrons there. In the skipping-orbit picture described above, imagine the
edge against which the electrons bounce being deformed, altering how the
electrons bounce against it. Reciprocally, the electron collisions also affect
the mechanical vibrations (see cover). The edge electrons and the acoustic
edge waves interact with each other.

This thesis considers this interaction quantum-mechanically, and shows
that, when parameters such as the magnetic field strength, the frequency of
mechanical vibration and an applied voltage meet certain conditions, this
interaction becomes significant. It is discovered in paper I that the inter-
action with electrons can cause low-amplitude mechanical vibrations to die
out. In paper II it is then shown that, for higher-amplitude vibrations, the
same effect can in some cases lead to the formation of acoustic solitons,
localized waves which move with constant velocity without changing shape.
These vibrational solitons can move with a speed greater than that of regular
vibrational edge waves.

5These surface waves should come as no surprise to anyone familiar with earthquakes.
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Chapter 2

Theory

The aim is to study the interaction between in-plane edge vibrations and
magnetically induced electronic edge states in a graphene sheet. With this in
mind, we consider the simplest possible system: a 2D semi-infinite graphene
half-plane with a single edge running along the x-axis at y = 0. We will
begin by describing the electronic subsystem, then the mechanical, and finally
connect the two with a model for the interaction.

2.1 The Electronic Subsystem

Ultimately, the graphene sheet will be treated as a continuous elastic medium,
so we are not interested in details on the atomic level. However, the stan-
dard electronic theory of graphene is based on the underlying honeycomb
lattice structure. It is in fact the hexagonal symmetry of the lattice which
gives rise to the special electronic behavior [13, 7]. Therefore, we will begin
this chapter at the atomic level and build up the constituents of the theory,
then gradually “zoom out” to a larger length scale in which the details of the
lattice structure are obscured.

2.1.1 The Low-Energy Hamiltonian

The standard description of electrons in graphene starts out from a tight-
binding model for the honeycomb lattice. It is then seen in the spectrum
that low-energy properties are well described by an effective model in which
the Schrödinger equation has a form reminiscent of the 2D Dirac equation

7



2.1. THE ELECTRONIC SUBSYSTEM

describing relativistic fermions, with the mass put to zero [13, 25]. To derive
this Hamiltonian, we begin by discussing the lattice itself.

Without any edge or magnetic field, let us simply consider an infinite
graphene sheet, or rather, say we are considering a point so far from any
edge that the sheet may be viewed as infinite. A graphene sheet consists
of a 2D hexagonal honeycomb lattice of atomic bonds, where each vertex
is occupied by a carbon atom. Thus each carbon atom is bonded to three
neighboring atoms, and it has one electron to spare after bonding, that of
the 2pz-orbital; these unbonded electrons are the dominant contribution to
transport properties [7]. In the hexagonal lattice, there are two inequivalent
atoms in each unit cell, A and B [13, 7]. The lattice formed by all the A-atoms
(B-atoms) is called the A-sublattice (B-sublattice). It must be stressed that
the honeycomb lattice itself is not a Bravais lattice, rather, we will choose the
A-sublattice as the Bravais lattice and include the B-atoms via a two-atom
basis. We define lattice vectors for sublattice A and nearest-neighbor vectors
linking the two sublattices as in Fig. 2.1a. The lattice vectors are

a1 = a

(
−1

2
,−
√

3

2

)
, a2 = a

(
1

2
,−
√

3

2

)
, (2.1)

where a = 2.46 Å is the lattice constant [13, 7], and the vectors from an
A-atom to its nearest neighbors are

δR1 = a

(
0,

1√
3

)
, δR2 = a

(
−1

2
,− 1

2
√

3

)
, δR3 = a

(
1

2
,− 1

2
√

3

)
. (2.2)

The reciprocal lattice vectors are

b1 =
2π

a

(
−1,− 1√

3

)
, b2 =

2π

a

(
1,− 1√

3

)
, (2.3)

and the reciprocal lattice is hexagonal, but rotated 90◦ with respect to the
real lattice (Fig. 2.1b).

Each carbon atom in the lattice has one unhybridized orbital, the 2pz-
orbital, associated with the free electron of that atom. We take these or-
bitals to be normalized and neglect any overlap between orbitals belonging
to different atoms, so that the set of all such 2pz-orbitals can be used as a
tight-binding orthonormal basis. We define the ket |2pz,R〉 as the atomic

8



2.1. THE ELECTRONIC SUBSYSTEM

(a) (b)

b1 b2

+1K0
-1K0

+1K1

-1K1
+1K2

-1K2

yk

xk

Figure 2.1: (a) The real-space lattice of graphene. There are two atoms per
unit cell, labeled A (grey) and B (black). The A-sublattice lattice vectors
are a1 and a2 (red) and each A-atom has three neighboring B-atoms, with
nearest-neighbor vectors δRn, n = 1, 2, 3 (green). (b) The reciprocal lattice
of graphene. The reciprocal lattice vectors are b1 and b2 (red) and the points

at the corners of the first Brillouin zone (blue hexagon) are labeled K
(τ)
σ , with

σ = 0, 1, 2 corresponding to a pair of inequivalent points τ = +1 (green) and
τ = −1 (magenta).

2pz-orbital of the carbon atom at lattice site R. If we consider only interac-
tion between nearest neighbors1, we can write a tight-binding single-electron
Hamiltonian in this basis as

Ĥ =
N∑
RA

3∑
n=1

−tn |R′A + δRn〉 〈2pz,RA|+ h.c., (2.4)

where −tn is the hopping energy between nearest neighbors [13, 7] and N is
the number of unit cells. There are no diagonal matrix elements of the form
〈2pz,R| Ĥ |2pz,R〉; they are equal to the energy of the 2pz-orbital, which we
put to zero by choosing it as our reference energy.

We now introduce a tight-binding basis set of Bloch functions for the

1We will justify the nearest-neighbor approximation and neglecting the orbital overlap
later in the section.
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2.1. THE ELECTRONIC SUBSYSTEM

single-electron state:

|A,k〉 =
1√
N

N∑
RA

eik·RA |2pz,RA〉 ,

|B,k〉 =
1√
N

N∑
RA

3∑
n=1

eik·(RA+δRn) |2pz,RA + δRn〉 . (2.5)

Using these definitions, the Hamiltonian in Eq. (2.4) becomes

Ĥ =
∑
k

F (k) |B,k〉 〈A,k|+ h.c., (2.6)

where we defined

F (k) ≡
3∑

n=1

−tne−ik·δRn . (2.7)

We assume that the hopping energy between nearest-neighbors does not de-
pend on the direction and write t1 = t2 = t3 ≡ t. The hopping energy
parameter is commonly taken as t ≈ 3 eV [13, 7, 9].

The Hamiltonian is easily diagonalized and we find that the energy spec-
trum is given by [13, 7]

E±(k) = ±|F (k)|t. (2.8)

The “±” corresponds to two energy bands, the valence and the conduction
band (Fig. 2.2). Given Born-von-Karman boundary conditions [1], the num-
ber of states in a band is equal to twice (due to spin) the number of unit cells
in the lattice. In graphene, there are two free electrons per unit cell, one per
carbon atom, and thus we find that in the ground state, the valence band
is completely filled and the conduction band is completely empty. The two
bands touch at the corners of the first Brillouin zone (Fig. 2.2). We denote

these points K
(τ)
σ where τ = ±1 labels opposite corners, and σ = 0, 1, 2 la-

bels the three pairs of opposite corners (Fig. 2.1b). For low energies, around
E < 2−3 eV, i.e. a temperature on the order of 104 K, the electronic system
is well described in the vicinty of these points, so we construct an effective
model [13, 9] for the case of low electronic energies by expanding the function

F (k) to first order, k = K
(τ)
σ + k′,

F (k) ≈
3∑

n=1

−te−iK
(τ)
σ ·δRn(1− ik′ · δRn). (2.9)
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5

akx

0

-5-5
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-10
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Figure 2.2: The nearest-neighbor tight-binding energy spectrum of graphene
with ε2p = 0, hopping energy t = 3 eV and zero atomic wave function overlap.
In the ground state, the conduction band (transparent mesh) is completely
empty and the valence band (orange-red) is completely filled. The two bands
touch at the corners of the hexagonal first Brillouin zone (blue) as defined in
Fig. 2.1b.

The small parameter in this expansion is |k′|a, so this amounts to the con-
tinuum limit where the lattice constant is small compared to the wavelength.
We now drop the prime on k′ and simply measure k from the closest point
K

(τ)
σ . Points K

(τ)
σ of the same τ can be shown to differ from each other by

a reciprocal lattice vector, and are thus equivalent, so we consider only one
such pair of opposite points, commonly called the K-point (τ = +1) and
the K ′-point (τ = −1). We expect that the spectrum will be independent
of our choice of σ. Considering the geometry of the reciprocal lattice (Fig.
2.1b) and using Eqs. (2.9) and (2.2), we get a low-energy Hamiltonian for
the K-K ′ pair denoted by σ [13, 9],

Ĥσ =
∑
τ=±1

e−iτσ
2π
3 ~vF τ(kx + iτky) |B,k, σ, τ〉 〈A,k, σ, τ |+ h.c., (2.10)
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2.1. THE ELECTRONIC SUBSYSTEM

where we used that τ 2 = 1 and introduced (what will be seen to be) the
Fermi velocity of graphene [13] as

at
√

3

2~
≡ vF ≈ 106 m/s. (2.11)

Considering different pairs of points σ merely introduces a phase factor
which does not affect the spectrum, as was expected. We arbitrarily choose
the pair σ = 0 and suppress the index. This corresponds to the points K(τ) =
(τKx, 0). As a matter of preference, we also make the unitary transformation
ÛĤÛ † ≡ Ĥel, where

Û =
∑
τ=±1

|A,k, τ〉 〈A,k, τ |+ τ |B,k, τ〉 〈B,k, τ | . (2.12)

The K- and K ′-points are not coupled and can be treated separately, Ĥel =∑
τ Ĥ

(τ)
el . The Schrödinger equation for the point K/K ′ (τ = +1/ − 1) can

then be written

~vF
(

0 kx − iτky
kx + iτky 0

)(
ψ

(τ)
A (k)

τψ
(τ)
B (k)

)
= E

(
ψ

(τ)
A (k)

τψ
(τ)
B (k)

)
, (2.13)

ψ(τ)(k) ≡ (ψ
(τ)
A (k), τψ

(τ)
B (k))T .

The electronic states are now described by two-component vectors, ψ(τ)(k),
called pseudospinors for their resemblance to usual spinors. However, the
components indicate the sublattice, not spin. Note that k is always measured
from the point in question, and that ψ

(τ)
A (k) and ψ

(τ)
B (k) are the components

of the wave function in the basis given by Eq. (2.5).
The spectrum in this effective model is, for both K and K ′,

E
(τ)
± (k) = ±~vF |k|, τ = ±1, (2.14)

i.e. two mirrored cones on top of each other [7], with coinciding zero-energy
apexes at the K-point (K ′-point) (Fig. 2.3). The spectrum around the
K-point (K ′-point) is sometimes referred to as the K-valley (K ′-valley), a
spectrum of this kind is known as a Dirac cone, and the point where the cones
touch is called a Dirac point. The vanishing density of states at the Dirac
point has lead to graphene being labeled a “zero-gap semiconductor” [26, 11].
It is remarkable that Eq. (2.13) is identical to the 2D Dirac equation for

12
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Figure 2.3: The effective-model (low-energy) spectrum of graphene around a
K- or K-point, at a corner of the first Brillouin zone (blue), cf. Figs. 2.2

and 2.1b.

massless fermions [25], but with the speed of light replaced by vF [13], the
Fermi velocity2.

In deriving Eq. (2.13) we neglected the overlap of atomic orbitals and
kept only nearest-neighbor interaction. It can be shown that both the over-
lap and the second-nearest-neighbor interaction enters into the spectrum to
second order in |k| [9], so in this regard, neglecting the overlap and the
second-nearest-neighbor interaction is subsumed by the approximation made
in doing a linear expansion in k. In addition, the second-nearest-neighbor
interaction introduces a constant energy shift on the order of the associated
hopping energy. This hopping energy is however at least an order of mag-
nitude lower than t [13]. Moreover, since we will eventually consider only a

2This is a crucial point. Too often in popular science writing are electrons in graphene
described as “moving with the speed of light”. However, it is not the speed that is similar
to relativistic particles (vF � c), but the shape of the spectrum.
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2.1. THE ELECTRONIC SUBSYSTEM

narrow energy region near a finite chemical potential, such an energy shift
can be compensated for by adjusting the gate voltage.

We now have a Hamiltonian for the electronic subsystem which in itself
makes no reference to the lattice structure. The pseudospinor components
are envelope functions for the tight-binding Bloch functions corresponding
to the two inequivalent sublattices, and we express the components with a
continuous position variable, neglecting the fact that the A- and B-atoms
are in different positions. In our continuum model, the sheet is continuous
and at each position r = (x, y) the wave function has both an A- and a B-
component. The Hamiltonian in Eq. (2.13) is often used as a starting point in
calculations without reference to the underlying lattice structure in the cases
where the discreteness of the lattice can be safely neglected [27, 28, 29].

We conclude this subsection by noting that the electronic Hamiltonian
can be rewritten in terms of sublattice-space Pauli matrices σi as

Ĥ
(τ)
el = vF (σxp̂x + τσyp̂y), (2.15)

where we took ~ki → p̂i.

2.1.2 The Zigzag Edge

We have so far only considered an infinite sheet. To introduce an edge into our
system, we must construct suitable electronic boundary conditions. As was
the case for the electronic Hamiltonian, the electronic boundary conditions
are derived from the lattice structure.

In theoretical graphene physics we typically neglect the disordered and
uneven edges of real graphene sheets, and distinguish between only two types:
zigzag and armchair edges [13]. Here we will consider the graphene half-
plane to be bounded by a zigzag edge of B-atoms along the x-axis at y =
0 (Fig. 2.4). All atoms on the zigzag edge belong to the B-sublattice,
so at the edge the electronic wave function must vanish on the “missing”
A-sublattice, meaning that the effective-model pseudospinor A-component
must be zero. Considering the (position-space) wave function, the electronic
boundary condition is [30, 13, 28]

ΨA(x, y)(x, 0) = eiKxxψA,+1(x, 0) + e−iKxxψA,−1(x, 0) = 0, (2.16)

which includes terms from both Dirac points. Since the system is transla-
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A

B

y

xy=0

Figure 2.4: A graphene zigzag edge of B-atoms (black) along the x-axis at
y = 0. At the edge, there are no A-atoms (grey), hence the wave function
should vanish on the A-sublattice.

tionally invariant along x, we must have

ψτ,kx(x, y) = eikxx
(
φA,k,τ (y)
φB,k,τ (y)

)
, (2.17)

which, together with Eq. (2.16), means that we must have

φA,k,τ (0) = 0, τ = ±1. (2.18)

Eq. (2.18) is the electronic boundary condition of our system: the pseu-
dospinor A-component must vanish at the edge for both valleys separately.
The fact that zigzag boundary conditions do not mix valleys means that the
K- and K ′-points can still be treated individually. This is in contrast to an
armchair edge, which can be shown to mix valleys [30, 13, 28]. In fact, the
edge was chosen as zigzag on account of this simplifying property.

2.1.3 Magnetically Induced Edge States

Here, we will derive the electronic spectrum and energy eigenfunctions in the
presence of a magnetic field, perpendicular to the graphene half-plane, i.e.

B = −Bez, (2.19)
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2.1. THE ELECTRONIC SUBSYSTEM

where ez is the z-direction unit vector, normal to the sheet, and B > 0 (see
cover). We represent this field by a vector potential in the Landau gauge,

ÂB = Bŷex, (2.20)

where ŷ is the position operator for the coordinate y. We ignore spin, which
we will comment on later, and simply introduce the vector potential into the
electronic Hamiltonian of Eq. (2.15) via the minimal coupling p̂ → p̂i + eÂi
(the electron charge is −e < 0). In this way, the magnetic vector potential
of Eq. (2.20) couples the position in the y-direction and the x-component of
the momentum. We will eventually find that the energy eigenfunctions corre-
sponding to large enough positive momentum in the x-direction are localized
near the edge and have a finite velocity along it. This has a correspondence
to the classical skipping orbits discussed in section 1.2, whose paths became
straighter, thus gaining speed, when the y-position of the orbit center is
moved further toward and even over the edge.

The magnetic field introduces a characteristic length scale into the system,
the magnetic length

lB ≡

√
~
|eB|

≈ 26 nm/
√
B[T ], (2.21)

where B[T ] (dimensionless) is the magnetic field strength in Tesla. We use
this length to nondimensionalize the problem by defining x̃ ≡ x/lB, k̃x ≡ lBpx
and the analogous definitions for the y-coordinate. The scaled operators then
obey the commutation relations[

ˆ̃x, ˆ̃kx

]
= i,

[
ˆ̃y, ˆ̃ky

]
= i. (2.22)

Similarily, we define a dimensionless energy as

Ẽ =
E

EB
, EB ≡

√
2~vF
lB

. (2.23)

It will also prove useful to introduce the sublattice index σ, where σ = +1
indicates the pseudospinor A-component and σ = −1 the B-component,
to represent many equations simultaneously3, as well as highlight certain

3Note that this σ is not the same was that which was introduced in a previous subsec-
tion.
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2.1. THE ELECTRONIC SUBSYSTEM

symmetries with the valley index τ . With these rescalings and definitions,
Eq. (2.15) with the magnetic vector potential of Eq. (2.20) included can be
written as two coupled equations,

(ˆ̃kx + ˆ̃y + iστ ˆ̃ky) 〈σ, τ |ψ〉 =
√

2Ẽ 〈−σ, τ |ψ〉 , σ = ±1. (2.24)

We now distinguish between two cases: energy Ẽ = 0 and Ẽ 6= 0. In the
first case, the equations for the two components A and B decouple, while in
the second case we may divide by Ẽ to solve for one component and insert
it into the other equation. We project the states into position space and
note that due to translational invariance in the x̃-direction, the pseudospinor
must be of the form of Eq. (2.17) with k̃x ≡ k̃ a good quantum number, so
the equations are now in the single variable ỹ with k̃ just a number.

For Ẽ = 0 we get the two decoupled equations

(k̃ + ỹ + στ∂ỹ)φ
(τ)

σ,k,Ẽ=0
(ỹ) = 0, σ = ±1. (2.25)

which we try to solve using the Gaussian ansatz (we omit normalization until
the end of this subsection)

φ
(τ)

σ,k,Ẽ=0
(ỹ) = e−α(k̃+ỹ)2 , α > 0. (2.26)

Substituting, we find α = 1/2 and see that we must have σ = τ , which
couples the sublattice and valley indices. We have thus found a solution for
Ẽ = 0 in both valleys, but only the solution σ = τ = −1 can fulfill the
boundary condition in Eq. (2.18) so the solution in the K-valley must be
rejected. Therefore the only Ẽ = 0 solution is

Ẽ = 0 ∼ ψ
(−1)

k̃,Ẽ=0
(x̃, ỹ) = eik̃x̃

(
0

e−
1
2

(k̃+ỹ)2

)
. (2.27)

Bizarrely, this solution satisfies the boundary condition everywhere and seem-
ingly behaves as if there was no edge present. This zero-energy level has been
the subject of several research papers [31, 32, 33, 27] and will not be discussed
further in this thesis, as we will ultimately consider low-energy transitions
where this state is far below a finite chemical potential and thus rendered
inert.

We now return to Eq. (2.24) and consider the other case, Ẽ 6= 0. We
solve one of the equations for the right-hand-side pseudospinor component
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2.1. THE ELECTRONIC SUBSYSTEM

and substitute it into the other equation, yielding the two coupled equations

((k̃ + ỹ)2 − ∂2
ỹ − (2Ẽ2 + στ))φ

(τ)

σ,k,Ẽ 6=0
(ỹ) = 0,

1√
2Ẽ

(k̃ + ỹ + στ∂ỹ)φ
(τ)

σ,k,Ẽ 6=0
(ỹ) = φ

(τ)

−σ,k,Ẽ 6=0
(ỹ), (2.28)

where it should be understood that σ = +1 or σ = −1, depending on which
pseudospinor component we chose to solve for. We then consider the K-valley
(τ = +1) only. Choosing σ = +1 (i.e. we solved for the A-component), we
get an equation for φA,+1,k,Ẽ 6=0(ỹ) which we can write

∂2
ξφ

(+1)

A,k,Ẽ 6=0
(ξ) + (ν +

1

2
− 1

4
ξ2)φ

(+1)

A,k,Ẽ 6=0
(ξ) = 0 (2.29)

where the new variable is ξ =
√

2(k̃ + ỹ) and ν = Ẽ2. Eq. (2.29) is a
well-known equation, the independent solutions of which are the so-called
parabolic cylinder functions Dν(ξ) and D−ν−1(iξ), of which only the first goes

to zero as ξ → +∞. We therefore find that φ
(+1)

A,k,Ẽ 6=0
(ỹ) = Dν(

√
2(k̃+ỹ)) (note

that we omit normalization until the end of the subsection) [34, 29, 27, 35].
The other line in Eq. (2.28) gives us an expression for the other component,

φ
(+1)

B,k,Ẽ 6=0
(ỹ) =

1

Ẽ
(
1

2
ξ + ∂ξ)Dν(ξ). (2.30)

Using the relation (∂ξ + ξ/2)Dν(ξ) = νDν−1(ξ) [34, 35] we get the B-
component and thus the full pseudospinor solution in the K-valley,

Ẽ 6= 0 ∼ ψ
(+1)

k̃,Ẽ
(x̃, ỹ) = eik̃x̃

(
Dν(
√

2(k̃ + ỹ))√
νDν−1(

√
2(k̃ + ỹ))

)
. (2.31)

To find the solutions in the K ′-valley, we note that σ and τ always appear as
the product στ , so when interchanging valleys, τ → −τ , we can retain the
form of the equations by also interchanging sublattices, σ → −σ. We can
therefore restart from Eq. (2.28) but now consider the K ′-valley (τ = −1) and
compensate by instead choosing σ = −1 (meaning that we solved Eq. (2.24)
for the B-component). We then find the same Eqs. (2.29) and (2.30) but
with τ → −1 and A↔ B, so in the K ′-valley we find

Ẽ 6= 0 ∼ ψ
(−1)

k̃,Ẽ
(x̃, ỹ) = eik̃x̃

(√
νDν−1(

√
2(k̃ + ỹ))

Dν(
√

2(k̃ + ỹ))

)
. (2.32)
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Figure 2.5: The A- and B-components of the (normalized) K-valley pseu-

dospinor component φ
(+1)
ν (y/lB) (see Eq. (2.37)), where ν = (1+

√
2)/2. The

wave vector is klB = −1.29 (a) and klB = 0.36 (b), respectively.

The energy is given in terms of ν, and by substituting the wave functions
into the boundary condition of Eq. (2.18) we find equations for the spectrum.
For the K-valley we find the allowed energies by solving

E(+1)
ν (k̃) = ±

√
ν, Dν(

√
2k̃) = 0, (2.33)

and for the K ′-valley we instead solve

E(−1)
ν (k̃) = ±

√
ν, Dν−1(

√
2k̃) = 0. (2.34)

These equations can be solved numerically [36]; the resulting spectrum is
plotted in Fig. 2.6 together with the dispersionless Ẽ = 0 level we found when
deriving Eq. (2.27). Due to the quadratic dependence of ν on Ẽ, the spec-
trum is electron-hole symmetric. At large negative k̃, the allowed energies
±
√
ν tend to ±

√
n, n being an integer; the bands asymptotically approach

dispersionless Landau levels [37, 13] and the functions Dν(ξ) approach the
energy eigenfunctions of the unconfined quantum harmonic oscillator [35, 38],
centered at ỹ = −k̃. These are localized wave functions with zero velocity,
and cannot produce a current. In the classical skipping-orbit picture, this
corresponds to electronic orbits with orbit center far from the edge. As k̃
increases, the orbit center moves toward and over the edge, and the en-
ergy levels become dispersive bands with a finite velocity along the edge. We
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Ẽ

Figure 2.6: The nondimensionalized electronic spectrum for the considered
system, with a zigzag edge and a perependicular magnetic field. The solid
green (dashed red) lines are states in the K-valley (K ′-valley). The K ′-valley
has a dispersionless level at Ẽ = 0 which effectively replaces the band missing
due to the offset in the index between the pseudospinor A-components of the
two valleys (Dν−1(ξ) vs Dν(ξ)). The bands will be labeled according to their
corresponding bulk Landau level, i.e. κ = +1 (κ = −1) for positive-energy
(negative-energy) levels, and n = 0, 1, 2, . . . counted from Ẽ = 0.

therefore see a clear correspondence between the quantum mechanical and
skipping-orbit results. The bulk Landau levels are commonly labeled by an
integer n, starting from n = 0 at zero energy. We will use the index n to
label the energy band whose energy approaches the energy of Landau level
n as k̃ → −∞. Another index, κ = ±1, will denote the positive (+) and
negative (-) energies.

We may then summarize the spectrum and energy eigenfunctions as

Ẽ(τ)
κ,n(k̃) ∼ ψ

(τ)

k̃,κ,n(x̃, ỹ) = N (τ)
ν (k̃)eik̃x̃φ

(τ)

k̃,ν
(ỹ),

ν =
(
Ẽ(τ)

κ,n(k̃)
)2

, (2.35)
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where N
(τ)
ν (k) is a normalization constant which ensures that∫∫

dx dyψ
(τ)∗
k̃,κ,n(x/lB, y/lB) ·ψ(τ)

k̃,κ,n(x/lB, y/lB) = 1. (2.36)

Note that −∞ < x <∞ but 0 ≤ y <∞. The energies Ẽ
(τ)
κ,n(k̃) are presented

in Fig. 2.6. The ỹ-dependent vector part of the wave function is, in the
K-valley:

φ
(+1)

k̃,ν
(ỹ) =

(
Dν(
√

2(k̃ + ỹ))√
νDν−1(

√
2(k̃ + ỹ))

)
. (2.37)

In the K ′-valley we have instead, for nonzero energies so that ν 6= 0,

φ
(+1)

k̃,ν
(ỹ) =

(√
νDν−1(

√
2(k̃ + ỹ))

Dν(
√

2(k̃ + ỹ))

)
. (2.38)

(As previously mentioned, we will not be considering the zero-energy states.)
These are the energy eigenfunctions of the electronic Hamiltonian in the
presence of a magnetic field. Returning to the unscaled variable, y = ỹlB, we
see that the wave functions are localized to edge on the order of the magnetic
length (see Fig. 2.5).

The energy spacing between the bands is on the order of EB ≈ 26 meV ·√
B[T ], corresponding to a temperature of 298 K ·

√
B[T ]. In order to

have distinct energy bands, the temperature must be much lower than this
value. In comparison, the Zeeman splitting corresponds to a temperature
of 0.67 K · B[T ] [29]. Therefore, we may consider the bands as distinct and
spin degenerate as long as the temperature T satisfies

0.67 K ·B[T ]� T � 298 K ·
√
B[T ]. (2.39)

With this, we conclude the description of the electronic subsystem.

2.2 The Acoustic Subsystem

The vibrational motion of the graphene sheet will be modeled using the the-
ory of elasticity. To do so is to treat the sheet as a completely continuous
medium, ignoring all details on the atomic level. This requires that the sepa-
ration between individual carbon atoms in the graphene sheet, which is on the
order of single Ångströms [13], is much smaller than any other length scale
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we consider. For the acoustic (electronic) subsystem, that length scale is
the acoustic wave length (the magnetic length). First we present a classical
acoustic Hamiltonian, then we use it to derive the Rayleigh edge waves which
are the object of study. Finally, we outline how to quantize the acoustic field
and expand it in different types of waves.

2.2.1 The Acoustic Hamiltonian

The theory of elasticity, or continuum mechanics, deals with the behavior of
continuous bodies in the framework of classical mechanics. Applying pres-
sure, bending, stretching, or heating a solid, causes each tiny piece of the
material in the body to be displaced from its equilibrium position. We de-
scribe this displacement by a 2D displacement field,

u(r) ≡ r′ − r, (2.40)

where r = (x, y) is the equilibrium position of an infinitesimal piece of mate-
rial and r′ is the displaced position [23]. A related quantity is the strain ten-
sor, defined as uij = (∂iuj +∂jui)/2. By modeling the sheet as a 2D medium,
we have completely neglected flexural (out-of-plane) motion. By introducing
a momentum π(r) conjugate to u(r), we can write a classical Hamiltonian [24]
as4

Hac =

∫∫
π2(r)

2ρgr

− ρgr

2
u(r) · Lu(r) dx dy (2.41)

where ρgr = 7.6 · 10−7 kg/m2 is the 2D mass density of graphene [39], and L
is an operator acting on u(r) defined as

L = s2
l grad div−s2

t curl curl (2.42)

where sl = 2.1 · 104 m/s and st = 1.4 · 104 m/s are the longitudinal and
transverse sound speeds in graphene [40]. Hamilton’s equations then yield
the equation of motion for u(r) as

∂2
t u(r; t) = Lu(r; t). (2.43)

The ith component of the right-hand side of this equation can be shown [24]
to be equal to ρ−1

gr ∂jσij, where σij is the stress tensor, which describes the

4Note that the integration is over the half-plane: −∞ < x <∞, 0 ≤ y <∞.
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y=0 x

-ey

Figure 2.7: The graphene sheet is treated as a continuous 2D half-plane
occupying y ≥ 0. The edge is considered stress-free and the normal to the
edge is the negative unit vector in the y-direction, −ey.

internal restorative forces generated by the strain [23]. Explicitly, the stress
tensor can be written in terms of the strain tensor as [24]

ρgrσij(r) = (s2
l − 2s2

t )ukk(r)δij + 2s2
tuij(r). (2.44)

If we assume that the edge of the graphene sheet is free to vibrate and not
subject to any external forces, the boundary condition is given in terms of
the stress tensor as ∑

j=x,y

σij(x, 0)nj = 0, i = x, y, (2.45)

where n = −ey is a unit vector normal to the edge (Fig. 2.7) [23].
The displacement field u(r; t) can, like any vector field, be separated into

the sum of a zero-divergence field and a zero-curl field, which we will call
ul(r; t) and ut(r; t), respectively. By doing this in Eq. (2.43) and taking the
curl and divergence of the full equation, we arrive at two wave equations [23],

∂2
t ui(r; t) = s2

i∇2ui(r; t), i = l, t. (2.46)

The displacements ul(r; t) and ut(r; t) are said to describe longitudinal and
transverse waves. “Longitudinal” (“transverse”) is here meant in the sense
of having zero curl (divergence). In the case of an infinite medium, the two
wave equations are uncoupled and the longitudinal and transverse waves
propagate independently. However, the introduction of an edge via the
boundary condition of Eq. (2.45) couples the two fields so that only cer-
tain linear combinations of longitudinal and transverse motion are possible.
This leads to the appearance of different types of waves in a system.
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2.2.2 Rayleigh Waves

Infinitely far from the edge, at y → ∞, the solutions to the equations of
motion must either approach those of the infinite-bulk system (plane waves)
or simply disappear. In the latter case, the solutions are localized to the
vicinity of the edge. We will here seek such solutions, and the solutions we
find are called Rayleigh waves, a well known type of surface wave. Since
Rayleigh waves oscillate in the plane spanned by the surface normal and the
propagation direction, they are 2D objects even in 3D systems, and typically
the 3D Rayleigh-wave solutions are found by a 2D calculation which neglects
the third dimension due to symmetry [23, 41, 24]. However, our system is
actually 2D and the “surface” is the edge of the graphene sheet.

Since the calculations will involve only linear operations on the displace-
ment field, we choose to work with complex fields ū, knowing that we can
eliminate the imaginary part at the end of calculations. We consider fields
with a harmonic time dependence, exp(−iωt), and the translational invari-
ance in the x-direction immediately implies an x-dependent factor exp(iqx),
with q the wave vector x-component. Since we seek localized solutions, we
assume that the y-dependent part of the displacement field vanishes into the
bulk. I.e. we have

ūi(x, y; t) = ūi(x, y)e−iωt = fi(y)ei(qx−ωt), i = l, t (2.47)

which, when inserted into Eq. (2.46), yields

∂2
yfi(y) =

(
q2 − ω2

s2
i

)
fi(y), i = l, t. (2.48)

The localized solution of which is

fi(y) = Aie
−κiy, i = l, t (2.49)

where Ai is a constant vector, and

κi =

√
q2 − ω2

s2
i

, i = l, t, (2.50)

is a real number which determines the magnitude of decay into bulk of the
waves, i.e. the localization to the edge. Note that the transverse and longi-
tudinal components have different degrees of localization since κt 6= κl; this
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is a general feature of Rayleigh waves [23, 41]. The localization also depends
on q. Since ūl(r) (ūt(r)) has zero curl (divergence), we must have

At,y
At,x

=
iq

κt
,

Al,y
Al,x

=
iκl
q
. (2.51)

The boundary condition of Eq. (2.45) gives the ratio

Al,x
At,x

= −κ
2
t + q2

2κlκt
. (2.52)

and the equation

s2
t

κ2
t + q2

2κlκt

(
κ2
l

q2
− 1

)
+ s2

t

(
κ2
t + q2

κlκt
− 2

)
= 0 (2.53)

Thus the edge connects the longitudinal and transverse fields. Eqs. (2.51)
and (2.52) can eliminate three of the four constants Ai,j (i = l, t, j = x, y);
the overall amplitude u0 is not specified by the theory. Eq. (2.53) relates q to
ω (throught κl and κt) and will thus lead to a dispersion relation. Making the
ansatz of a linear dispersion, ω(q) = ζst|q|, creates a fourth-degree equation
in the unknown ζ, which we solve numerically. In order for ω, κl and κt to
be real, we must have ζ real and 0 < ζ < 1. These restrictions leave only one
root, ζ ≈ 0.89. This leads to the dispersion relation for 2D Rayleigh waves,

ωR(q) = sR|q|, (2.54)

where sR ≡ ζst = 1.2 · 104 m/s is the speed of sound of such waves and we
introduced the index R for “Rayleigh”. We define constants λt and λl in
terms of ζ such that that κi = λi|q|, and rewrite the (complex) displacement
field as

ūR,q(x, y) = u0 fq(y)eiqx, (2.55)

with

fq(y) =

(
e−λl|q|y − Cxe−λt|q|y

−i sgn(q)
(
−λle−λl|q|y + Cye

−λt|q|y
)) , (2.56)

where we appended q as an index [23, 41]. The constants introduced all
depend on the ratio sl/st only (or equivalently, on the Poisson ratio [23]) and
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are close to unity. Specifically, we find

λl =
√

1− ζ2 ≈ 0.81,

λt =
√

1− (st/sl)2ζ2 ≈ 0.46,

Cx =
2λlλt
λ2
t + 1

≈ 0.61, (2.57)

Cy =
Cx
λt
≈ 1.3.

We can make the displacement field real by adding the complex conjugate of
the complex field (now including the harmonic time dependence),

uR,q(x, y; t) ≡ ūR,q(x, y)e−iωR(q)t + ū∗R,q(x, y)eiωR(q)t =

= 2u0

( (
e−λl|q|y − Cxe−λt|q|y

)
cos(q[x− sRt])

sgn(q)
(
−λle−λl|q|y + Cye

−λt|q|y
)

sin(q[x− sRt])

)
. (2.58)

The Rayleigh waves move slower than bulk waves, sR < st < sl, and there
is a phase difference between the x- and y-components. The waves take the
shape of a “rolling” in-plane motion propagating along the edge (Fig. 2.8)
and the motion is retrograde near the edge but prograde further into the
bulk. The higher the frequency, the more strongly localized they are to the
edge; the penetration depth of the waves into the bulk sheet is on the order
of the wavelength.

2.2.3 Quantization

To quantize the acoustic subsystem, we can simply replace the displacement
field and its conjugate momentum with operators, û(r) and π̂(r), which
obey the canonical commutation relation [ûi(r), π̂j(r

′)] = i~δ(r− r′)δij. The
Hamiltonian (cf. Eq. (2.41)) is then simply

Ĥac =

∫∫
π̂2(r)

2ρgr

− ρgr

2
û(r) · Lû(r) dx dy , (2.59)

and the equations of motions in the Heisenberg picture replicate the classical
equations of motion, Eq. (2.43). However, eventually we will consider only
Rayleigh waves of specific wave vectors. For this reason will we now proceed
to describe an expansion of the fields û(r) and π̂(r) in different wave types
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Figure 2.8: A snapshot of Rayleigh waves along an edge (at y = 0). The
displacement field is according to Eqs. (2.55) and (2.56), with arbitrary units.

and wave vectors. We will begin the description of this expansion with the
classical fields, u(r) and π(r), and then introduce quantization.

We will be expanding the two fields in a complete basis of “eigenwaves”
and then show that the canonical commutation relation implies that the ex-
pansion coefficients are creation and annihilation operators of phonons [24].
We once again work with complex fields ū, and begin by noting that if we con-
sider only fields with a harmonic time dependence, ū(r; t) = ūJ(r) exp(−iωJt),
Eq. (2.43) becomes an eigenvalue equation,

−ω2
J ūJ(r) = LūJ(r). (2.60)

We define the space of complex fields ūJ(r) (where J is only a symbolic
index5.) which satisfy the boundary condition of Eq. (2.45), and equip this
space with the inner product

〈ū(r), v̄(r)〉 ≡
∫∫

ū∗(r) · v̄(r) dx dy , (2.61)

where the integration is over the half-plane y ≥ 0. It can be shown, using
integration by parts and Eq. (2.45), that 〈ū(r),Lv̄(r)〉 = 〈Lū(r), v̄(r)〉, i.e.

5Summation over J may even imply integration over continuous labels.

27



2.2. THE ACOUSTIC SUBSYSTEM

L is a Hermitian operator in this space [24]. Therefore, we can use the
“eigenwaves” of L to construct a complete orthonormal basis {ūJ(r)}. We
can then expand any displacement field in this basis,

u(r) =
∑
J

√
~

2ρgrωJ
(bJ ūJ(r) + b∗J ū

∗
J(r)) , (2.62)

where we added the conjugate term to make the field real, and the paren-
thesis prefactor has been factored out of the expansion coefficients b

(∗)
J . We

find the corresponding expression for the conjugate momentum by first att-
aching the harmonic time-dependencies exp(−iωJt) to the terms ūJ(r), and
analogously for the conjugate terms; this gives us an expansion of the time-
dependent field u(r; t). We then insert that expansion into Hamilton’s equa-
tion, ρgr∂tu(r; t) = π(r; t). Removing the time-dependencies again, we find
an expression for the conjugate momentum which is consistent with the equa-
tions of motion:

π(r) = −i
∑
J

√
~ρgrωJ

2
(bJ ūJ(r)− b∗J ū∗J(r)) . (2.63)

We now use the expansions in Eqs. (2.62) and (2.63) to express the expansion
coefficients bJ and b∗J in terms of u(r) and π(r) [42, 24, 43]. If we now quantize

the fields u(r) and π(r), as well as the expansion coefficients, b
(∗)
J → b̂

(†)
J ,

we see that the canonical commutation relation implies that [b̂J , b̂
†
J ′ ] = δJJ ′ .

These are the creation and annihilation operators of phonons of type J , which
correspond to displacement fields ūJ(r). Using the expansions in Eqs. (2.62)

and (2.63), the commutation relations of b̂
(†)
J , and Eq. (2.60), it can be shown

that the Hamiltonian in Eq. (2.59) can be reduced to a sum over J of quantum
harmonic oscillators with frequencies ωJ , which is a familiar result [1, 42].

The index J labels the solutions of Eq. (2.60). These solutions can be
categorized into different vibrational modes, for which we introduce the index
m. Within each mode m, the solutions can be further categorized by the
wave vector q. The Rayleigh waves described in subsection 2.2.2 constitute
one such mode, m = R. Unlike other modes, it is localized in the y-direction
with wave vector q = (q, 0) parallel to the edge. Rayleigh waves are thus
labeled by the scalar q only [24]. A quantized acoustic field consisting only
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2.3. ELECTRON-STRAIN INTERACTION

of the Rayleigh mode can then be written as the expansion

ûR(r) =

∫
dq

2π

√
~

2ρgrωR(q)

(
b̂R(q)ūR,q(r) + b̂†R(q)ū∗R,q(r)

)
, (2.64)

where ūR,q(r) is given by Eq. (2.55) but must be normalized with respect to

the inner product defined in Eq. (2.61). The operator b̂R(q) (b̂†R(q)) is the
annihilation (creation) operator for Rayleigh waves with wave vector q.

2.3 Electron-Strain Interaction

Strain in a graphene sheet causes deformations of the lattice which affect the
electrons. The electron-strain interaction in graphene (presented below) was
first calculated by Suzuura and Ando in 2001 when considering strain effects
in carbon nanotubes [10].

The most straight-forward effect is that of hydrostatic deformation chang-
ing the size of the unit cell. The trace of the strain tensor, uxx + uyy, cor-
responds to a pure compression or dilation of the sheet, and thus of the
individual unit cells. Changing the size of the unit cell changes the concen-
tration of carriers, and thereby causes an energy shift. We model this effect
by introducing a scalar potential proportional to the change in area due to
deformation,

H
(τ)
int,AA = H

(τ)
int,BB = g1(uxx + uyy). (2.65)

The coupling constant has been estimated to g1 ≈ 20 eV [10]. The diagonal
Hamiltonian matrix given by the above expression is invariant under the
unitary transformaton defined by Eq. (2.12) and will be included in the full
interaction Hamiltonian below.

In addition to changing the size of the unit cell, sheet deformations can
also alter the shape of the lattice, such that the distance betwee nearest-
neighbor atoms changes. This is usually modeled by assuming that the de-
formation simply changes the hopping energy between the atoms. In subsec-
tion 2.1.1 we assumed that the hopping energies to different nearest neighbors
were equal, t1 = t2 = t3 ≡ t. If we instead assume that the hopping ener-
gies between the nearest neighbors differ by a small amount, tn = t + δtn,
δtn � t, and neglect terms ∝ δtnk since both |k| and δtn are assumed small6,

6The fact that the interaction is an approximation to zeroth order in k means that, in
this model, strain cannot change the Fermi velocity.
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an additional term appears in the off-diagonal elements:

H
(τ)
int,BA =

1

2

(
τ(δt2 + δt3 − 2δt1) + i

√
3(δt2 − δt3)

)
. (2.66)

In the above, we have already included the effects of the unitary transforma-
tion defined by Eq. (2.12). In order to express the changes in hopping energy
δtn in terms of strain, we assume that

δtn = −tβδRn · (uB,n − uA)

(a/
√

3)2
, (2.67)

where uA is the displacement of an A-atom and uB,n is the displacement of its
nearest-neighbor B-atom (n = 1, 2, 3). The hopping energy t and interatomic
bond length a/

√
3 (a being the lattice constant) scales the energy and lengths,

and β ≈ 2 is a Grüneisen parameter [10]. In the theory of elasticity, we treat
graphene as a continuous medium, not a discrete lattice, so we take the
vector difference in Eq. (2.67) to the continuous limit and get

uB,n − uA → κ(δRn · ∇)u(r), (2.68)

where κ is a proportionality constant relating the discrete lattice to the con-
tinuous limit, and u(r) is the continuous 2D displacement field as defined in
Eq. (2.40). The differentiations on the components of the displacement field
lead to the introduction of the strain tensor as defined in subsection 2.2.1,
and we arrive at

H
(τ)
int,BA = g2 (−τ(uxx − uyy) + 2iuxy) , (2.69)

where we defined the coupling constant

g2 ≡ ~vF
√

3βκ

2a
, (2.70)

which has been estimated to g2 ≈ 2 eV [10]. Comparing Eq. (2.69) with
Eq. (2.13), we see that the strain interaction enters into the full electronic
Hamiltonian similarily to a magnetic vector potential, k→ k+A(τ). For this
reason, the interaction elements given by Eq. (2.69) are sometimes referred to
as a strain-induced pseudomagnetic field [44]. However, unlike a real magnetic
field, strain does not break time-reversal symmetry7.

7Since the wave vectors of the K- and K ′-points are related by a sign reversal, the two
valleys are related by time reversal [13]. The preservation of time-reversal symmetry is
guaranteed by the interplay of the τ in Eq. (2.69) and those in Eq. (2.13).
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We now include both the off-diagonal “pseudomagnetic field” of Eq. (2.69)
and the scalar deformation potential of Eq. (2.65) in an electron-strain in-
teraction Hamiltonian which we write using sublattice-space Pauli matrices
as

H
(τ)
int [u(x, y; t)] = g1(uxx + uyy)I + g2(−τ(uxx − uyy)σx + 2uxyσy). (2.71)

Here, we have explicitly written the dependence of the interaction Hamilto-
nian on the displacement field u(x, y; t). In the case of a quantized acous-
tic field, the strain-tensor components are operators, uij → ûij, defined in
terms of their associated displacement-field operator û(x, y; t).
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Chapter 3

Results & Discussion

In this chapter we summarize and discuss the appended papers, and also clar-
ify certain points, e.g., the derivation of the 1D Hamiltonian in paper II. In
both papers, we consider a zigzag edge of a graphene sheet in a perpendicular
magnetic field and investigate the interaction between mechanical Rayleigh
edge waves and electronic edge states, as modeled in Chapter 2.

3.1 Resonant Interaction

A gate voltage is applied to the graphene sheet so that at least two elec-
tronic bands of edge states cross the chemical potential (see Fig. 2.6). We
then consider the interaction between an acoustic field of Rayleigh waves and
the electronic subsystem. We will initially model the acoustic field as purely
classical. We will investigate how interaction with the acoustic field cou-
ples electronic states, and show that resonant interaction can occur between
different bands, at points near the chemical potential.

In the presence of the acoustic field, the interaction between it and the
electronic subsystem causes the the electronic edge states to no longer be
true eigenstates of the Hamiltonian. Thereby the electronic edge states are
coupled to each other by the interaction. Since the acoustic field is smooth
on the scale of the lattice spacing, q � |K−K′| ∼ a−1, it cannot mix valleys,
so we only need to consider intravalley coupling. The electronic state i (f)
can be specified by the valley index τ , the wave vector k̃i (k̃f ) and the band
indices ni (nf ) and κi (κf ). The energy of a state is then given by Ẽi(k̃i)
as shown in Fig. 2.6, where i represents the set of indices {τ, ni,κi} (and
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3.1. RESONANT INTERACTION

analogously for f). The matrix element1 coupling the states i and f is given
by

〈f | Ĥ(τ)
int [ūR,q(r; t)] |i〉 =

= l2B

∫∫
dx̃ dỹψ†

k̃f ,f
(x̃, ỹ)H

(τ)
int [uR,q(x̃lB, ỹlB; t)]ψk̃i,i(x̃, ỹ)eiEB∆Ẽt/~, (3.1)

where νj = Ẽ2
j (k̃j) (j = i, f), and ∆Ẽ ≡ Ẽf (k̃f ) − Ẽi(k̃i). The interaction

Hamiltonan H
(τ)
int is given by Eq. (2.71), and the acoustic field uR,q(x, y; t)

which enters into it is given by Eq. (2.58). The electronic pseudospinors
are given by Eqs. (2.35), (2.36), (2.37), and (2.38). Carrying out the x̃-
integration and rewriting, we get

〈f | Ĥ(τ)
int [ūR,q(r; t)] |i〉 = 2πlBδ(k̃f − k̃i − q̃)Vfi(q̃)eiEB(∆Ẽ−s̃R|q̃|)t/~+

+ 2πlBδ(k̃f − k̃i + q̃)Vfi(−q̃)eiEB(∆Ẽ+s̃R|q̃|)t/~, (3.2)

where the scaled speed of sound is s̃R ≡ sR/(
√

2vF ), and

Vfi(q̃) =
iq̃

lB
u0(F1g1 + F2g2). (3.3)

The quantities F1 and F2 (which have had their indices suppressed for brevity)
contain the nondimensionalized ỹ-integrals of the interaction terms propor-
tional to the coupling constants g1 and g2, respectively. We will refrain from
giving the explicit expression for these quantities here; they can be found in
the appendix to paper I.

From Eq. (3.2) it is clear that the interaction is strongest when q̃ =
±(k̃f − k̃i) and simultaneously ∆Ẽ = ±s̃R|q̃|, i.e. when the acoustic field is
at a resonance with two electronic states f and i. The two terms in Eq. (3.2)
then correspond to two different possible resonances, one where ∆Ẽ > 0 and
one where ∆Ẽ < 0. Because the speed of sound s̃R is much smaller than
the typical electronic velocities, it can be shown that energy and momentum
conservation causes intraband matrix elements to vanish. The exception to
this is the case in which one of the states is an edge state and the other is at
large negative k̃, essentially a bulk state. In this case the matrix element will

1In paper I, we used the notation Λτ
k̃f ,k̃i

for this matrix element and explicitly extracted

the momentum conserving factor.
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3.1. RESONANT INTERACTION

vanish due to the different regions of localization. Thus we may conclude
that it is sufficient to consider interband coupling, ni 6= nf .

We note that we must have that the initial (final) state i (f) is occupied
(unoccupied). At equilibrium, this corresponds to the initial (final) state
lying below (above) the chemical potential. Since the speed of sound is much
smaller than the electronic velocities, it follows that resonances can occur only
in a narrow region of energies near the chemical potential. This conclusion is
still valid for the case when the electrons are initially at equilibrium but are
allowed to build up a nonequilibrium through interaction with the acoustic
field, since states far from the chemical potential are out of reach of the
interaction and thus remain at equilibrium. It follows that resonant coupling
occurs only between the bands that cross the chemical potential.

At equilibrium, unoccupied states have higher energies than occupied
states, so resonances where ∆Ẽ < 0 can be neglected. In what follows,
we will only consider the first (∆Ẽ > 0 resonance) term in Eq. (3.2). The
condition for resonance between a pair of electronic states at k̃i,r and k̃f,r
(index r for “resonance”) and the acoustic field with wave vector q is

q̃ = k̃f,r − k̃i,r ≡ ∆k̃,

s̃R|∆k̃| = Ẽf (k̃f,r)− Ẽi(k̃i,r). (3.4)

We will now assume that this condition is fulfilled for some states at k̃i,r and
k̃f,r, and write

k̃j = k̃j,r + δk̃j, δk̃j � 1, j = i, f, (3.5)

i.e. we are considering near-resonant states. We may now linearize the
electronic spectrum around the resonant states so that

Ẽj(k̃j) ≈ Ẽj(k̃j,r) + δẼj(δk̃j),

δẼj(δk̃j) = ṽjδk̃j, j = i, f. (3.6)

The dimensionless electronic velocity appearing in the linearization is ṽj =
vj/(
√

2vF ) (cf. s̃R above), where vj is the physical velocity at the correspond-
ing point in the unscaled spectrum. As an approximation, we may evaluate
the integrals F1 and F2 in Vfi(∆k̃) only at the resonant states (as defined by
Eq. 3.4). Then Vfi(∆k̃) is just an energy which is specific to each resonance.

Since only states near the chemical potential are involved in the process,
it follows that the resonant electronic wave vector k̃i,r (k̃f,r) can be approx-
imated by the wave vector where the band ni (nf ) crosses the chemical po-
tential, which we define to be k̃F,i (k̃F,f ), and the energies as Ẽi ≈ Ẽf ≈ µ̃.

35



3.2. WEAK PERTURBATION (PAPER I)

(µ̃ ≡ µ/EB.) As a further approximation, we can also perform the lineariza-
tion of the spectrum at the chemical potential, and take the resonant acoustic
wave vector to be ∆k̃ ≈ ∆k̃F , where ∆k̃F ≡ k̃F,f − k̃F,i is the wave vector
separation of the bands nf and ni at the chemical potential2.

3.2 Weak Perturbation (Paper I)

We investigate the case when the acoustic field has a low enough ampli-
tude that the system dynamics are well described by first order perturbation
theory during the time before the electronic system relaxes to equilibrium.
For these small vibrational amplitudes, we find that the coupling between
resonant electronic states can cause an attenuation of the acoustic field.

We consider a resonance of the type described in Section 3.1 and introduce
a finite electronic relaxation time τel (due to e.g., edge defects, impurities);
then the electronic subsystem will only evolve dynamically for a time on the
order of τel before it relaxes to equilibrium. Therefore, if the vibrational
amplitude u0 is small enough that Vfi ∝ u0 fulfills

|Vfi(∆k̃)| � ~
τel

, (3.7)

then we may use linear perturbation theory. Specifically, we will use Fermi’s
golden rule to get the probability of transition per unit time —the “transition
rate” —from a specific (resonant) initial state i to a continuum of final states
f (all near-resonance states in the band nf ) via interaction with the acoustic
field. This is given by

Wfi =
2π

~
|Vfi(∆k̃)|2ρf (Ef ) (3.8)

where ρf (Ef ) is the density of final states, and transitions must respect con-
servation of energy [45]. We can represent the energy conservation by intro-
ducing an integration over final energies δEf = δẼfEB, and a delta function.
If we linearize the spectrum of near-resonance states f as described in Sec-
tion 3.1, we get the density of final states per unit length (note that this is

2In paper I, we never made a distinction between the resonant states and the states at
the chemical potential. The difference is negligible when considering the transition rate,
but is made here for the sake of completeness.
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written using unscaled quantities):

ρf (Ef ) =
1

2π~|vf |
. (3.9)

We now consider the transition rate from all near-resonance initial states i to
all near-resonance states f (for ∆Ẽ > 0). We introduce a δk̃i-integration over
initial states and keep the momentum-conserving delta function in Eq. (3.2).
We get the transition rate per unit length,

W =

∫∫
dδk̃i dδẼf δ((δẼf/ṽf )− δk̃i)Wfiδ(δẼf − ṽiδk̃i). (3.10)

It is here assumed that all initial (final) states lie below (above) the chemical
potential3.

We combine Eqs. (3.10), (3.9) and (3.8) and carry out the integrations
using the delta functions. We find

W =
|Vfi(∆k̃)|2

~2|vf − vi|
. (3.11)

The matrix element Vfi(∆k̃) is given by Eq. (3.3), and may be evaluated at
the chemical potential.

Eq. (3.11) describes the transition rate per unit length between two res-
onant electronic populations in different bands. The energy for each such
transition, EB∆Ẽ = ~ωR(∆k) > 0 (∆k = ∆k̃/lB), is taken from the acoustic
field, thus causing it to attenuate. The total energy of the acoustic field is
given by Eac = ρgrω

2
R(∆k)〈uR,q,uR,q〉, where the inner product is just the po-

sition integral, as defined in Eq. (2.61) [24]. If we multiply the transition rate
by the proportion of energy lost in each transition, ~ωR(∆k)/Eac, we get an
expression for the decay rate of acoustic energy,

Γ =
|Nac|2|∆k|2|F1g1 + F2g2|2

2~|vf − vi|ρgrsR
, (3.12)

where Nac is

Nac =

(∫ ∞
0

f∗q (y) · fq(y) d(|q|y)

)−1/2

≈ 1.2, (3.13)

3If this was not the case, we would have to include a factor fF (Ei)(1− fF (Ef )) in the
integrand, where fF (E) is the Fermi distribution function. With the given assumption,
this factor is approximately equal to one (assuming low temperature).
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independent of q (see Eq. (2.56))4. Instead of the decay rate Γ, we can use its
reciprocal, the decay time τD = 1/Γ. In terms of the decay time, the energy
of the acoustic field decays as ∼ exp(−t/τD).

As an example, we consider the case when the chemical potential is po-
sitioned precisely in the middle of the gap between bulk Landau levels 1
and 2, and consider the transition rate from energy band ni = 1 to nf = 0
(the wave functions in Fig. 2.5 correspond to these states). At equilibrium,
this is the only possible resonance due to the “missing” band in the K ′-
spectrum (see Section 2.1.3). We find F1g1 +F2g2 ≈ −1.3 eV. The electronic
velocites vi can be estimated from the slope of the energy bands in the spec-
trum (Fig. 2.6). We then get an acoustic decay time τD ≈ 3.4 ns/B[T ]. It
should be noted that these calculations did not include a factor 2 for the spin
degeneracy. Inclusion of this factor would halve the decay time.

We then consider the case when the gate voltage and the frequency of the
acoustic field is kept fixed but the magnetic field B is modulated, and cal-
culate Γ as a function of magnetic field numerically. Changing the magnetic
field alters the separation energy EB (E1 in paper I) between bulk Lan-
dau levels, causing the levels to change position with respect to the chemical
potential as long as there is a finite gate voltage. E.g., decreasing B causes
the energy levels to drop below the chemical potential, thus increasing the
number of energy bands crossing it. This effect becomes simplified when con-
sidering the scaled energy spectrum (Fig. 2.6). Since the shape of the scaled
spectrum is independent of the magnetic field, the only effect is a change in
the position of the (scaled) chemical potential µ̃ = µ/EB ∝ 1/

√
B.

We gradually reduce B, causing the chemical potential µ̃ to rise through
the scaled spectrum. For each value of B, we then rescale the acoustic
wave vector, q̃ = qlB, and calculate Γ due to any and all transitions between
the electronic bands. We do this for both the K- and K ′-valley spectra and
plot the result against 1/

√
B[T ]. In addition, for each included transition,

we plot a line in the spectrum between the resonant states, with the line
opacity proportional to Γ. The lines in the spectrum, from lowest energy
to highest, then correspond to the absorption peaks from lower to higher
1/
√
B[T ]. We can thus easily identify the contribution from each transition

to the absorption of acoustic energy. The plots are presented in paper I,
Figs. 4 and 5. In this numerical calculation, we introduced a small, finite

4This is actually the material-parameter part of the normalization constant of ūR,q,

which is Nac

√
|q| (see Subsection 2.2.3).
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temperature and linearized the spectrum around the resonant states instead
of at the chemical potential (this is more accurate, but the difference is
negligible). We did not include the factor 2 for spin degeneracy.

3.3 Nonlinear Regime (Paper II)

We now consider acoustic amplitudes large enough that the linear theory
(e.g., Fermi’s golden rule) breaks down, i.e. Eq. (3.7) is no longer true. We
then consider the full nonlinear system of equations describing the resonant
coupling between the electronic and acoustic subsystems. We solve the sys-
tem self-consistently, and find that it admits solutions where the acoustic
field consists of a hypersonic soliton. In contrast to paper I, we start with a
quantized acoustic field of Rayleigh edge waves (see Subsection 2.2.3). Note
that we will not be using scaled quantities in this section5.

For simplicity, we consider the case when the chemical potential is posi-
tioned in the middle of the gap between bulk Landau levels 1 and 2. There are
then two electronic bands intersecting the chemical potential in the K-valley,
and only one in the K ′-valley. Since the acoustic field cannot mix valleys,
we only need to consider the resonant coupling between the two bands in
the K-valley. We linearize the spectrum near the chemical potential (as de-
scribed in Section 3.1) and reduce our 2D system to an effective 1D model
for the edge by taking the y-dependent parts of electronic wave functions as
equal for all states in the same resonant population, i.e. we neglect their
k-dependence (these functions of y are those depicted in Fig. 2.5).

As an example of this 2D → 1D method, let us consider the acoustic
subsystem. We begin by considering the quantized acoustic field given in
Eq. (2.64). If the wave vectors of the acoustic field are concentrated at the
resonant wave vectors, q ≈ ±∆k ≈ ±∆kF , we may split the q-integral into
two δq-integrals —one where q = ∆kF + δq, and one where q = −∆kF + δq.
As an approximation, we then take ωR(q) ≈ ωR(∆kF ) in the square root of
the prefactor, and fq(y) ≈ f±∆kF (y). The phononic creation and annihilation
operators now describe two different kinds of phonons, so we introduce a new
pair of commuting phononic operators: b̂R(±∆kF + δq) ≡ b̂±(δq). If we now

5And note especially that while ṽ in paper I represented a nondimensionalized velocity,
in the notation of paper II it would instead represent v in a moving reference frame.
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exploit the fact that f∗∆kF (y) = f−∆kF (y), we may reorder terms so that

ûR(r) =

√
~

2ρgrωR(∆kF )

[
f∆kF (y)ei∆kF x

(
û+(x) + û†−(x)

)
+

+f∗∆kF (y)e−i∆kF x
(
û†+(x) + û−(x)

)]
, (3.14)

where

û±(x) =

∫
dδq

2π
eiδqxb̂±(δq). (3.15)

These 1D operators fulfill the commutation relation[
û±(x), û†±(x′)

]
= δ(x− x′); (3.16)

all nonequivalent commutators being zero. As mentioned in Subsection 2.2.3,
the full acoustic Hamiltonian in Eq. (2.59) can be written as a summation
of harmonic oscillators, one for each mode and wave vector. For a field of
Rayleigh waves, we get (up to an additive constant energy)

Ĥac =

∫
dq

2π
~ωR(q)b̂†R(q)b̂R(q), (3.17)

where the number of Rayleigh-mode phonons are counted by the number
operator b̂†R(q)b̂R(q) for each wave vector q. We split this integral in the
same way as in the derivation of Eq. (3.14), and get

Ĥac =

∫
dδq

2π
~sR(∆kF + δq)b̂†+(δq)b̂+(δq)+

+

∫
dδq

2π
~sR(∆kF − δq)b̂†−(δq)b̂−(δq), (3.18)

and then use Eq. (3.15) to write this in terms of the operators û±(x). Re-
placing δq with derivatives ±i∂x, we get

Ĥac =

∫
~sRû†+(x)(∆kF − i∂x)û+(x) dx+

+

∫
~sRû†−(x)(∆kF + i∂x)û−(x) dx , (3.19)
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which is a 1D Hamiltonian with position-space operators. The electronic
subsystem and the interaction Hamiltonian can be reduced to 1D in a sim-
ilar way (see paper II). A constant, Λ, then appears in the 1D interaction
Hamiltonian6; it is related to the acoustic decay rate Γ (Eq. (3.12)) of this
resonance as Λ2 = |v0 − v1|Γ. We then proceed to derive and solve the
equations of motion for this 1D system.

At one point, we replace the quantized acoustic field û+ with a classical
field. The motivation for this is that a large amplitude corresponds to a huge
number of phonons. In this case, acting on the state with an operator b̂(†)

to add or subtract one phonon has a negligible effect on the state, but the
factor which emerges when the operator acts on the state is huge, since it is
proportional to the square root of the number of phonons. We may therefore
replace the operator with this number, thereby neglecting its effect on the
state.

Eventually, we arrive at a family of self-consistent solutions for the full
set of equations. The acoustic field in this type of solution is a traveling
hyperbolic secant profile modulated by the resonance frequency,

uT (r; t) =
λ

2π2

(
~veff∆kF

gR

)(
λ

L

)
sech

(
x− vt
L

)
·

·
(

(e−λl|∆kF |y − Cxe−λt|∆kF |y) cos (∆kFx− ωrt)
(−λle−λl|∆kF |y + Cye

−λt|∆kF |y) sin (∆kFx− ωrt)

)
, (3.20)

where veff =
√

(v0 − v)(v1 − v), gR = |F1g1+F2g2| ≈ 1.3 eV, λ is the acoustic
wave length, ωr = sR|∆k|, L = T · v, and the soliton velocity v is given by

v =
sR

1− 1
2
ΓT

. (3.21)

A parameter T , which we interpret as the duration of an acoustic pulse,
couples the velocity, amplitude and width of the profile, and we find that
increasing the amplitude reduces the velocity, and vice versa (see Fig. 3.1).
It is found that the speed of these solitons can significantly exceed that of
regular Rayleigh edge waves. For the solitons to exists, the pulse duration T
must satisfy

1

τel

� 1

T
� ωr. (3.22)

6Not the same as the quantity Λτ
k̃f ,k̃i

in paper I.
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Also, we must have that T < 2/Γ so that Eq. (3.21) does not diverge. An-
other restriction is that T must be such that the soliton velocity is less than
the electronic velocities, v < v1, v0, otherwise veff becomes imaginary. How-
ever, this restriction only amounts to a small correction to the one already
mentioned: T < 2/Γ(1− (sR/v1)) (since v1 < v0).
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Figure 3.1: The soliton amplitude (blue) and scaled velocity v/sR (red) plot-
ted against the pulse duration T for B = 1 T and ωr = 7.9 · 1011 s−1 (a) and
B = 10 T and ωr = 2.5 · 1012 s−1 (b).

43



3.3. NONLINEAR REGIME (PAPER II)

44



Chapter 4

Summary & Outlook

4.1 Summary

The aim of this thesis was to investigate the interaction between in-plane
vibrational edge modes and electronic edge states in a sheet of graphene
in a perpendicular magnetic field. The edge was taken to be zigzag and
the magnetic field was strong enough compared to the temperature to cause
formation of distinct electronic energy bands.

Depending on the gate voltage, several energy bands can cross the chem-
ical potential. If the acoustic field contains wave vectors that roughly match
the k-space separation of the points where the electronic bands cross the
chemical potential, then the acoustic field can resonantly interact with the
electrons. States far from the chemical potential are inert due to the small-
ness of the speed of sound compared to typical electron velocities. For low-
amplitude acoustic waves, the resonant interaction causes an attenuation of
the waves [46]. For higher vibrational amplitudes, when nonlinear effects
become important, the acoustic field can interact with the electrons in such
a way as to produce acoustic solitons, moving with speeds higher than the
regular speed of sound. The amplitude, velocity and width of such solitons
are coupled. E.g., an increase in the velocity is accompanied by a decrease
in the amplitude.

45



4.2. OUTLOOK

4.2 Outlook

4.2.1 Time-of-flight Experiment

If the modeled system would be realized experimentally, with the possibility
to both generate and detect mechanical edge waves, then it should be possi-
ble to test both of the described effects (attenuation and soliton formation)
in a time-of-flight experiment. The theory predicts that the propagation of
low-amplitude acoustic waves is blocked1 for certain combinations of mag-
netic field strength, gate voltage, and acoustic frequency. Therefore, varying
these parameters and measuring whether an acoustic pulse makes it to the
detector or not would corroborate or invalidate the theory. Since the acoustic
edge waves have an essentially 1D wave front, they do not attenuate during
propagation in the absence of defects [47, 41]. This could potentially make
the blocking effect more prominent, and thus easier to detect. The theory
further predicts that if the vibrational amplitude is increased, then acous-
tic soliton formation is possible. These solitons should appear for the same
conditions as those for which the propagation was blocked (i.e. when there
is a resonant interaction). These solitons can achieve velocities significantly
higher than the speed of sound. Therefore, they could be detected by mea-
suring the time it takes for an acoustic pulse to reach the detector. This also
helps distinguish these solitons from any acoustic solitons that may have
formed due to inherent nonlinearities in the sheet mechanics [48]. Varying
the length of acoustic pulses could test the predicted relationship between
pulse duration, soliton amplitude and velocity.

4.2.2 Electronic Relaxation Mechanism

In the experiment described above, acoustic pulses are generated intention-
ally, interacts with the electronic subsystem, and are then detected. It is
possible to conceive of the reverse situation. If one realized the system in
which the chemical potential is different for two electronic bands, the system
would seek to restore equilibrium by moving electrons from one band to the
other. Interaction with the acoustic subsystem could be one way in which
this could occur. Then the electronic subsystem could give rise to mechan-
ical Rayleigh edge waves, and possibly even hypersonic solitons. Then the

1If the time during which the waves propagate from their source to the detector is large
enough for them to have significantly attenuated.
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solitons would essentially be a mechanism for relaxation of the electronic
subsystem.

4.2.3 Sensor Applications

The Rayleigh edge waves themselves, without considering any interaction
with electrons, could have potential sensor applications. Surface acoustic
waves are widely used to detect surface adsorbants. This is done by measur-
ing the decay and velocity shift of the waves induced by the extra material on
the surface [49, 50, 51, 52]. In a graphene sheet, the only dangling bonds to
which an atom or molecule could attach are those at the edges. It is possible
that the presence of alien atoms or molecules on the edge could induce a
decay and/or a velocity shift in the edge waves, in a way analogous to the
surface wave case, thereby allowing for detection of the attached mass.

4.2.4 Additional Theoretical Work

The arguably most obvious improvement upon the theory would be to in-
clude flexural motion as well, since it is known that there are also flexural
edge vibrations [48]. Another possible improvement would be to consider
multi-soliton solutions as well. Such solutions are expected from comparison
with similar systems [53].

During the work on paper II, there was an attempt to treat the system
with the bosonization technique from 1D quantum theory. This attempt
ultimately led nowhere, and bosonization was soon abandoned in favor of
other methods. But it is well-known that the electronic edge states can be
treated using this theory [42], and the attempt initially seemed promising.
For these reasons, revisiting the bosonization technique could be a possible
continuation of the work in this thesis.
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