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Abstract:  Factor graphs and message passing allow the near-autodetebpment of
algorithms in many engineering disciplines, includingi@digcommunications. This paper
gives an overview of their possible use in optical commuiies.

OCIS codes: 060.1660 (Coherent communications), 060.4510 (Opticalroanications).

1. Introduction

A factor graph (FG) is a general type of graphical model thgtresses how a function (e.g., a probability density
function) factorizes in local functions [1]. This factoaizon is then harnessed to compute certain properties of the
original function, such as its mode or marginals. These agatins are performed using a variety of computationally
efficient message passing algorithms, the most well-kndwrhich is the sum-product algorithm (SPA, also known
as belief propagation). It can be argued that the power oflEGs$n their ability to nearly automatically solve a wide
variety of problems without supervision, once the proble® been formalized and factorized. In the particular cdntex
where the function in question is a distributip(x.y), in whichy is an observation andis a random unknown, the
factorization is based on conditional independence amuagiknown variables. Given a factorization that gives rise
to a cycle-free FG,message passing algorithms are able to exactly and efficaiermine the following fundamental
guantities in inference problems:

» The marginal posteriorg(x;|y), which can be used to make optimal (in terms of minimizingghebability of
making an error) decisions on the components;of

» The posterior mode& = argmax p(x|y), which is the optimal decision on the entire vectpand
» The (unconditional) likelihoodp(y), which is used to compare different models.

FGs find their roots in coding theory, statistics, and expgstems, combining the idea of representing a problem
as a graph and solving the problem on the graph. Since thg 2@00s, FGs have gained in popularity, and, due to
their ability to deal with extremely complex and large-scpfoblems, are now being applied in fields ranging from
bioinformatics over cooperative localization to user ifgee design. FGs are not only important for their ability to
automatically generate new algorithms for problems but fds the fact that they generalize many important optimal
algorithms in the fields of signal processing and statisfitgese include the Viterbi algorithm, the Kalman filter, as
well as many soft decoding algorithms [2].

2. An Example of an FG and Messages for a Simple CommunicatiocBcheme

To make the concepts described in the previous section noete, we provide a small artificial example. Consider
a communication system where 4 independently generatel bifb;, by, bz, bs] are mapped onto two QPSK symbols
using a mapping functiop(-): s= (s1,S)" = (@(by,b2), @(bs,bs))T, sent over a channél € R?*?, and subjected

to additive white Gaussian noige giving rise to an observation= Hs+ n. Assuming the receiver knows and the
noise variances? per real dimension, it can factorize (with= (b, s))

4
P(0.5) = p(6)p(s)iy1s) = ( [ b)) s = 0o 5o = oo, b)) s 00p(— 5 Iy —HSI ). (@)

in which I{-} is the indicator function (i.eJ{S} = 0 when the statement S is false and 1 otherwise). The cor-
responding FG is depicted in Fig. In order to compute, for examplgy(bsly), the SPA computes messages

1In the case the FG has cycles, the message passing algodttiyngive approximate solutions. The quality of these sohst depends on the
lengths of the cycles, the factors along the cycle, and thesage passing schedule. In many practical applicatioesegulting algorithms still
perform very well and include common decoding algorithmboaf density parity check codes and turbo codes.

2Superscripts R and L denote rightward and leftward messMgssages are distributions of variables (e.g., a messageiated with a binary
variable is a vector of length 2 with non-negative entrieg 8um up to one). An outgoing message from a factor vertelatamed by multiplying
the factor with the incoming message, and summing over glibies, except the outgoing variable.



uR(b1) = p(b1) (and similarlyuR(by)), thenpR(sy) = $p, b, I{s1 = @(b1,b2) } uR(by) uR(b2), followed by uR(s,) =

S, HR(s1) exp(— 55z |y — Hs||?), thenpR(bs) = S, s, 1{s2 = ¢(bs, ba)} uR(s2) " (ba), in which p"(ba) = p(ba). Fi-
nally, the desired marginal ig(bs|y) O uR(bs)u"(bs), based on which we can make an optimal decision regarding
bs.
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Fig. 1: An FG of the factorization ab(b,s,y), comprising one variable node for each variable ia (b1,b2,bs,bs,s1,52) and one factor node for
each factor in the factorization. Several messages, wheHiatributions of the associated variables, are alsactigi

3. Factor Graphs in Digital Communications

The flexible nature of FGs was utilized in receiver designdigital communication systems in [3], in particular fo-
cusing on iterative receivers, where probabilistic infation flows between the different parts of the receiver. ¥hil
FGs can be applied to perform inference over entire netwav&sconstrain ourselves to single links between a trans-
mitter and a receiver. In such scenarios, FGs have beenmtieelfollowing aspects: computing information rates [4],
channel estimation [5], channel equalization [6], dematlah [7], decoding [1], phase noise tracking [8], and syn-
chronization [9]. This enables the use of probabilistid¢tjsoformation provided by the decoder to be used to improve
other receiver tasks (e.g., equalization, synchroninatio most of these aspects, the FG solution is among the most
powerful known approaches. However, this often comes agladomplexity cost, which has spurred intense research
in low-complexity approximations [6].

4. Factor Graphs in Optical Communications

FGs have had a more limited use in optical communicationis.@drtly because, in contrast to generic digital commu-
nication systems, there is no explicit data-aided chanstehation thus making an FG solution extremely complex.
Nevertheless, FGs can still be utilized in demodulation 110 (offering improved performance over the state of the
art) and decoding [12, 13] (where the need for proper codstoaction to accommodate the properties of message
passing is highlighted). Iterative schemes, with infolioratlow from the decoder to other receiver blocks (e.g., the
equalizer) have also been considered [14], but could leaddessive delays in current architectures. Other interest
ing applications of FGs arise in offline processing, suchaomputation of information rates [15] or the design of
near-optimal receivers [16].

5. An Application Example: Nonlinear Impairment Compensation

To demonstrate the potential of FGs, we consider a detegtaiviem for which no optimal receiver is known: detection
in the presence of fiber nonlinearity, dispersion, and ndisparticular, consider a scenario where a R matrix of

K PM-QPSK symbolsXg = (Xg.1,...,Xox) is transmitted over a system, comprising multiple fiber sp@ach of
which can be modeled through the Manakov model), separatedriplifiers. The received 2 L matrix (L > K)
after oversampling is denoted b Due to the interaction between the nonlinearity, dispersand noise, there is
no closed-form expression f@(Xo, Y), precluding making optimal decisions directly. Howevergdo the Manakov
model, we have a closed-form expression of the operati@ctifig the signal at each fiber segment, as well as models
for the amplifiers. By including the corresponding internagel variables (sayXn, modeling the sampled version
of an intermediate waveform after passing through a segorelered according to the indexfrom transmitter to
receiver), we can factorize(Xo, X1, Xz,...,Xn,Y) = p(Xo) [T, p(Xi|Xi_1)]p(Y|Xn). The corresponding FG is a
linear graph, on which we can execute the sum-product algoriUsing a particle representation of the messages with
P particles, as detailed in [16], we end up with a descriptibp'a(Xo) uR(Xo) = p(Xo,Y) in the form of P matrices

of length 2x K, say,Xél), . ,Xép). From this description, we can detect tath symbolxg as follows: approximate
P(Xok-w.,.. k+w, Y) with a multivariate Gaussian distribution, in whichkOV < P is the window size. Find, by trying
all combinations, the sequenggi_w;, - . ., Xok+w that maximizep(Xox-w;- - -, Xok+w, Y ), and take the center entry
Xok as the decisiokok. In Fig. 2, we show the performance of this approach, for a 28 GBauasysbmprising



42 spans of single-mode fiber (each of length 80 km with d&pemarameter 16 ps/(nm km)) followed by periodic
optical dispersion compensation using a fiber Bragg grdtiith 3 dB insertion loss) and an amplifier. We observe
that the FG-based receiver significantly outperforms aivecéased on digital backpropagation.
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Fig. 2: Symbol error rate performance for detection in trespnce of nonlinearity, dispersion, and noise. As a referare show digital back propa-
gation, along with the FG solution fo¥ = 0 andW = 1. For complexity reduction in our simulation, we only exatied sequence® k-1, Xok, Xok+1
for which xo k1 andxg 1 were fixed to the actual transmitted symbols. Actual gaing beasmaller.

6. Conclusions

Factor graphs present a unified, consistent, and near-atitoiramework for the design of inference algorithms. They
have had a significant impact in the design of digital comroaitidon receivers, and are a promising technique in optical
communications, especially in cases where traditiondiriegies are severely suboptimal and where complexity is a
secondary constraint.
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