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Abstract: Factor graphs and message passing allow the near-automateddevelopment of
algorithms in many engineering disciplines, including digital communications. This paper
gives an overview of their possible use in optical communications.

OCIS codes: 060.1660 (Coherent communications), 060.4510 (Optical communications).

1. Introduction

A factor graph (FG) is a general type of graphical model that expresses how a function (e.g., a probability density
function) factorizes in local functions [1]. This factorization is then harnessed to compute certain properties of the
original function, such as its mode or marginals. These computations are performed using a variety of computationally
efficient message passing algorithms, the most well-known of which is the sum-product algorithm (SPA, also known
as belief propagation). It can be argued that the power of FGslies in their ability to nearly automatically solve a wide
variety of problems without supervision, once the problem has been formalized and factorized. In the particular context
where the function in question is a distributionp(x,y), in whichy is an observation andx is a random unknown, the
factorization is based on conditional independence among the unknown variables. Given a factorization that gives rise
to a cycle-free FG,1 message passing algorithms are able to exactly and efficiently determine the following fundamental
quantities in inference problems:

• The marginal posteriors:p(xi|y), which can be used to make optimal (in terms of minimizing theprobability of
making an error) decisions on the components ofx;

• The posterior mode:̂x = argmaxx p(x|y), which is the optimal decision on the entire vectorx; and

• The (unconditional) likelihood:p(y), which is used to compare different models.

FGs find their roots in coding theory, statistics, and expertsystems, combining the idea of representing a problem
as a graph and solving the problem on the graph. Since the early 2000s, FGs have gained in popularity, and, due to
their ability to deal with extremely complex and large-scale problems, are now being applied in fields ranging from
bioinformatics over cooperative localization to user interface design. FGs are not only important for their ability to
automatically generate new algorithms for problems but also for the fact that they generalize many important optimal
algorithms in the fields of signal processing and statistics. These include the Viterbi algorithm, the Kalman filter, as
well as many soft decoding algorithms [2].

2. An Example of an FG and Messages for a Simple CommunicationScheme

To make the concepts described in the previous section more concrete, we provide a small artificial example. Consider
a communication system where 4 independently generated bitsb= [b1,b2,b3,b4] are mapped onto two QPSK symbols
using a mapping functionφ(·): s= (s1,s2)

T = (φ(b1,b2), φ(b3,b4))
T , sent over a channelH ∈ R

2×2, and subjected
to additive white Gaussian noisen, giving rise to an observationy = Hs+n. Assuming the receiver knowsH and the
noise varianceσ2 per real dimension, it can factorize (withx = (b,s))

p(b,s,y) = p(b)p(s|b)p(y|s) =
( 4

∏
i=1

p(bi)

)

I{s1 = φ(b1,b2)}I{s2 = φ(b3,b4)}
1

(2πσ2)2
exp

(

−
1

2σ2‖y−Hs‖2
)

, (1)

in which I{·} is the indicator function (i.e.,I{S} = 0 when the statement S is false and 1 otherwise). The cor-
responding FG is depicted in Fig.1. In order to compute, for example,p(b3|y), the SPA computes messages2

1In the case the FG has cycles, the message passing algorithmsonly give approximate solutions. The quality of these solutions depends on the
lengths of the cycles, the factors along the cycle, and the message passing schedule. In many practical applications, the resulting algorithms still
perform very well and include common decoding algorithms oflow density parity check codes and turbo codes.

2Superscripts R and L denote rightward and leftward messages. Messages are distributions of variables (e.g., a message associated with a binary
variable is a vector of length 2 with non-negative entries that sum up to one). An outgoing message from a factor vertex is obtained by multiplying
the factor with the incoming message, and summing over all variables, except the outgoing variable.



µR(b1) = p(b1) (and similarlyµR(b2)), thenµR(s1) = ∑b1,b2
I{s1 = φ(b1,b2)}µR(b1)µR(b2), followed byµR(s2) =

∑s1
µR(s1)exp(− 1

2σ2‖y−Hs‖2), thenµR(b3) = ∑b4,s2
I{s2 = φ(b3,b4)}µR(s2)µL(b4), in whichµL(b4) = p(b4). Fi-

nally, the desired marginal isp(b3|y) ∝ µR(b3)µL(b3), based on which we can make an optimal decision regarding
b3.
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Fig. 1: An FG of the factorization ofp(b,s,y), comprising one variable node for each variable inx = (b1,b2,b3,b4,s1,s2) and one factor node for
each factor in the factorization. Several messages, which are distributions of the associated variables, are also depicted.

3. Factor Graphs in Digital Communications

The flexible nature of FGs was utilized in receiver design fordigital communication systems in [3], in particular fo-
cusing on iterative receivers, where probabilistic information flows between the different parts of the receiver. While
FGs can be applied to perform inference over entire networks, we constrain ourselves to single links between a trans-
mitter and a receiver. In such scenarios, FGs have been used in the following aspects: computing information rates [4],
channel estimation [5], channel equalization [6], demodulation [7], decoding [1], phase noise tracking [8], and syn-
chronization [9]. This enables the use of probabilistic (soft) information provided by the decoder to be used to improve
other receiver tasks (e.g., equalization, synchronization). In most of these aspects, the FG solution is among the most
powerful known approaches. However, this often comes at a high complexity cost, which has spurred intense research
in low-complexity approximations [6].

4. Factor Graphs in Optical Communications

FGs have had a more limited use in optical communications. This partly because, in contrast to generic digital commu-
nication systems, there is no explicit data-aided channel estimation thus making an FG solution extremely complex.
Nevertheless, FGs can still be utilized in demodulation [10, 11] (offering improved performance over the state of the
art) and decoding [12, 13] (where the need for proper code construction to accommodate the properties of message
passing is highlighted). Iterative schemes, with information flow from the decoder to other receiver blocks (e.g., the
equalizer) have also been considered [14], but could lead toexcessive delays in current architectures. Other interest-
ing applications of FGs arise in offline processing, such as in computation of information rates [15] or the design of
near-optimal receivers [16].

5. An Application Example: Nonlinear Impairment Compensation

To demonstrate the potential of FGs, we consider a detectionproblem for which no optimal receiver is known: detection
in the presence of fiber nonlinearity, dispersion, and noise. In particular, consider a scenario where a 2×K matrix of
K PM-QPSK symbolsX0 = (x0,1, . . . ,x0,K) is transmitted over a system, comprising multiple fiber spans (each of
which can be modeled through the Manakov model), separated by amplifiers. The received 2× L matrix (L > K)
after oversampling is denoted byY. Due to the interaction between the nonlinearity, dispersion, and noise, there is
no closed-form expression forp(X0,Y), precluding making optimal decisions directly. However, due to the Manakov
model, we have a closed-form expression of the operation affecting the signal at each fiber segment, as well as models
for the amplifiers. By including the corresponding intermediate variables (say,Xn, modeling the sampled version
of an intermediate waveform after passing through a segmentordered according to the indexn from transmitter to
receiver), we can factorizep(X0,X1,X2, . . . ,XN ,Y) = p(X0)[∏N

i=1 p(Xi|Xi−1)]p(Y|XN). The corresponding FG is a
linear graph, on which we can execute the sum-product algorithm. Using a particle representation of the messages with
P particles, as detailed in [16], we end up with a description of µL(X0)µR(X0) = p(X0,Y) in the form ofP matrices

of length 2×K, say,X(1)
0 , . . . ,X(P)

0 . From this description, we can detect thek-th symbolx0,k as follows: approximate
p(x0,k−W,...,k+W ,Y) with a multivariate Gaussian distribution, in which 0≤W ≪ P is the window size. Find, by trying
all combinations, the sequencex0,k−W , . . . ,x0,k+W that maximizesp(x0,k−W , . . . ,x0,k+W ,Y), and take the center entry
x0,k as the decision̂x0,k. In Fig. 2, we show the performance of this approach, for a 28 GBaud system comprising



42 spans of single-mode fiber (each of length 80 km with dispersion parameter 16 ps/(nm km)) followed by periodic
optical dispersion compensation using a fiber Bragg grating(with 3 dB insertion loss) and an amplifier. We observe
that the FG-based receiver significantly outperforms a receiver based on digital backpropagation.
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Fig. 2: Symbol error rate performance for detection in the presence of nonlinearity, dispersion, and noise. As a reference we show digital back propa-
gation, along with the FG solution forW = 0 andW = 1. For complexity reduction in our simulation, we only evaluated sequencesx0,k−1,x0,k ,x0,k+1
for which x0,k−1 andx0,k+1 were fixed to the actual transmitted symbols. Actual gains may be smaller.

6. Conclusions

Factor graphs present a unified, consistent, and near-automatic framework for the design of inference algorithms. They
have had a significant impact in the design of digital communication receivers, and are a promising technique in optical
communications, especially in cases where traditional techniques are severely suboptimal and where complexity is a
secondary constraint.
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