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Abstract

Anomaly detection methods are used in a wide variety of fields to extract important information (e.g. credit
card fraud, presence of tumours or sensor malfunctions). Current anomaly detection methods are data- or
application specific; a general anomaly detection method would be a useful tool in many situations.

In this thesis a general method based on statistics is developed and evaluated. The method includes
well-known statistical tools as well as a novel algorithm (sensor profiling) which is introduced in this thesis.
The general method makes use of correlations found in complex sensor systems, which consists of several
sensor signals. The method is evaluated using real sensor data provided by Volvo Car Corporation. The sensor
profiling can be used to find clusters of data with similar probability distributions. It is used to automatically
determine the sensor performance across different external conditions.

Evaluating the anomaly detection method on a data set with known anomalies in one sensor signal results
in 94 % of anomalies detected at 6 % false detection rate. Evaluating the method on additional sensor signals
was not done. The sensor profiling revealed conditions where the sensor signal behaves qualitatively and
quantitatively different. It is able to do this in data where other commonly used methods, such as regression
analysis, fail to extract any information. Sensor profiling may have additional applications beyond anomaly
detection as it is able to extract information when other methods can not.

To conclude, this thesis presents a seemingly natural method and tool chain to automatically detect anomalies
in any sensor data that can be represented as a time series. The performance of this method is still to be
proven on a large set of general sensor data, but it shows promise, mainly for sensor systems consisting of
several sensor signals.

Keywords: Anomaly detection, Regression analysis, Sensor profile, Distribution clustering, Sensor validation,
Sensor model, ROC-curve

i



ii



Acknowledgements

First and foremost, I would like to thank my supervisor and examiner.
Lars Tornberg, for guidance, ideas, discussions and continuous feedback on all aspects of the project.
Krister Wolff, for feedback on the report and structure of the project.

Tony Heimdahl, for originating the project and introducing me to the subject.

Mikael Kjellgren and the rest of the Sensor Validation Group at Volvo for providing the data
together with useful insights regarding anomalies.

Fredrik Elofsson for feedback on the project and the report.

iii



iv



Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Related Work 3
2.1 Concept Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 What is an Anomaly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Handling Contextual Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Sensor Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Lack of Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Predicting Sensor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.1 Assumption Based Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Other Predictor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Detecting Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.1 Classification Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.2 Nearest Neighbour Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.3 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.4 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Proposed Method for Detecting Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Comparing Anomaly Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Method 10
3.1 Finding Normal Sensor Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Other predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Analysing the Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Finding Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Finding Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Comparing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Regression Analysis 14
4.1 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Regression Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Akaike Information Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Sensor Profiling 18
5.1 Motives behind Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Comparing sets of Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Finding the most suitable Sensor Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Finding a Decision Tree through a Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Evolving a Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Estimating Probability Density Function within each Sensor Profile . . . . . . . . . . . . . . . . . 27
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



6 Results 30
6.1 Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Defining Normal Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Creating a Dataset for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Evaluating the Performance of the Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Discussion 38
7.1 Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Most Suitable Anomaly Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Future Work 39
8.1 Evaluate the Anomaly Detection Method on General Data . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Evaluate True Sensor Performance with Sensor Profiles . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3 Use Methods to Create Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.4 Real Time Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Conclusion 40

References 41

vi



1 Introduction

A recent trend in the automotive industry is the development of autonomous driving and active safety functions.
Active safety functions can warn the driver or even take control of the vehicle when it senses that danger
is imminent. Active safety taken to the extreme allows the vehicle to drive autonomously in most or all
situations. In order to ensure the performance of the active safety functions the sensors which monitor the
traffic environment need to be reliable. Testing and evaluating the sensors is an important step needed for
the creation of these active safety functions. Especially as a false function intervention, caused by a sensor
malfunction, may cause an accident instead of preventing one.

Testing of sensors for active safety or autonomous driving implies long test driving with extensive data
collection. Failure of active safety functions may be an indication of the failure of the sensors. However,
these failures may not occur during field tests, even when the test is extensive. If the sensor performance is
degraded for some reason, this does not necessarily happen at the moment when danger is imminent and the
functions intervene which causes possible sensor malfunctions to go unnoticed. These malfunctions can be seen
as anomalies in the entire set of logged sensor data, at least if we use the general definition that anomalies
are points or patterns in a data set that differs from the expected, normal, behaviour. Analysing anomalies
in logged sensor data may lead to important insights in the behaviour of the sensors. Gaining such insights
may, in turn, lead to more accurate risk assessments and improved performance of the active safety functions.
Finding underlying factors and frequency of these anomalies can also be used for creating sensor models that
more accurately simulate real sensor behaviour. Since the logged sensor data is extensive and these anomalies
occur rarely, an automated anomaly detection method is needed to find them.

Anomaly detection methods are already used for detecting everything from network intrusion [1] and credit
card fraud [2] to the presence of malignant tumours [3] or sensor failure in space crafts [4]. The reason anomaly
detection methods are used in many fields is that anomalies, independent of cause, contain valuable information
and anomaly detection, both in logged signals and in real time, is needed to extract and utilise this information.

Since anomalies are present in many different types of signals and applications there is no exact notion of an
anomaly. Converting the general and abstract definition of an anomaly to a stringent definition that captures
all anomalies even within a single application may prove difficult. This is one of the reasons that most anomaly
detection methods used are based on machine learning. Another issue is that since anomalies are in general
rare, manually creating a data set large enough so that it captures all types of anomalies and normal behaviour
is both time consuming and difficult. Hence many anomaly detection methods have to operate in a so-called
unsupervised setting [5].

1.1 Purpose

The aim of this project is to develop scientifically sound methods to identify “normal working mode” and
“failure mode”, in large amounts of logged sensor data from field tests. Sensor failure can be seen as anomalous
sensor behaviour. The logged data only contains the sensor data and no external knowledge of the monitored
system is obtainable. The methods should be general enough to be used on any type of sensor signal, even if
some modifications has to be made.

1.2 Scope

After a literature study a general anomaly detection method is chosen and implemented. The chosen method is
evaluated using a single sensor signal. Comparing several methods using several sensor signals to draw general
conclusions would be interesting but is beyond the scope of this project.

1.3 Outline

This thesis is organised as follows. Chapter 2 contains background to anomaly detection as well as an
introduction to the concepts used and related work. It concludes with a short description of the method
proposed in this thesis and motives behind the selection of the method. Chapter 3 describes the selected
method and the needed components. Chapter 4 provides a deeper understanding of the first part of the anomaly
detection method, namely regression analysis. Chapter 5 describes the novel method i.e. sensor profiling,
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introduced in this thesis. Chapter 5 also includes motives behind the methodology, an extensive example and a
description of the algorithms used. In Chapter 6 the results from evaluating the method using a single sensor
signal are presented. These results, the general method and further uses of some of the individual methods
used are discussed in Chapter 7. Finally, future work and possible applications are presented in Chapter 8.

1.4 Contributions

This thesis provides a structured framework for a general anomaly detection method for time series data. The
method is general and can be applied to any type of time series data and is not limited to sensor data. In
this thesis a novel method for establishing relationships between variables and the distribution of a separate
stochastic variable is also introduced. This method can be viewed as a distribution clustering algorithm. The
applications of this method may extend beyond the field of anomaly detection and can, for example, be used to
determine the performance of a sensor under different conditions.
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2 Background and Related Work

The goal of this chapter is to establish a foundation for the understanding of the concepts and methods used
throughout the thesis, as well as giving the reader an understanding of the motive behind the selected method.
This is done by discussing the concepts and creating an overview of the methods used for detecting anomalies
in time series in general.

2.1 Concept Introduction

In this section concepts related to anomaly detection and sensor evaluation will be introduced and discussed.
This provides the basic understanding needed for remainder of the thesis.

2.1.1 What is an Anomaly?

Anomalies are points or patterns in a data set that differs from the expected, ”normal”, behaviour. The cause
and appearance of an anomaly varies depending on the data and application and there is no exact notion of an
anomaly. Converting the general and abstract definition of an anomaly to a stringent definition that captures
all anomalies even within a single application may prove to be too difficult. What can be done is to classify
anomalies into three different types as follows [5]:

Point anomalies

A point anomaly is a data point that lies outside the boundary of the normal regions. Hence it can be considered
anomalous with regard to all the other data points. An example would be measuring the outside temperature
in Sweden to be 50◦C.

Contextual anomalies

A contextual anomaly is a data point that is considered anomalous in a specific context, but not otherwise.
In order to define the context the data has to be structured in some way. A common example is time series,
where points close to each other in time are expected to have similar behaviour. An example of a contextual
anomaly would be measuring the outside temperature in Sweden to be 20◦C in December.

Collective anomalies

A subset of related data points that can be considered anomalous with regards to the entire set of points is
called a collective anomaly. An example would be measuring the outside temperature in Sweden to be 16◦C
constantly (day and night) during the entire month of May. Even though this temperature during May is not
considered anomalous by itself.

2.1.2 Handling Contextual Anomalies

Most anomaly detection methods found in the literature are focused on detecting point anomalies, the research
on contextual anomaly detection methods has been limited [5]. However, there are still several methods used to
handle contextual anomalies found in the literature, these can be crudely divided into two approaches.

The first approach is to define the possible contexts and apply point anomaly detection methods on each
context. Using the example with outside temperature, the data could be grouped by month and analysed
individually to find both point and contextual anomalies.

The second approach is to model the normal structure in the data, this model is then used to reduce
contextual anomalies to point anomalies. For example when finding anomalies in temperature readings a model
is learned from training data, which can predict expected temperatures, maybe based on previous temperatures
and month. If there is a large difference between the expected and the predicted reading, an anomaly is
declared.

The second approach is more suitable for time-series data, and other cases, where breaking up the data into
contexts is non-trivial [5]. As this is true for sensor data, the methods used in this thesis for anomaly detection
all fit into this second category.
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2.1.3 Sensor Data Characteristics

As different anomaly detection methods are used in widely different applications it is natural that these detection
methods have different prerequisites. The choice of the anomaly detection method depend on both the intended
use and the characteristics of the data that is analysed. Besides the possible restriction of detecting anomalies
in real-time or in logged data, the conditions can described using features and labels [6].

A single data instance, record, may consist of one or several features e.g. sensor data that includes the
sensor reading, a confidence value and the location of the sensor. In this example, the sensor data at a single
time step is the record. The sensor reading, confidence and location are the features of a record. Features used
for predicting future sensor readings are in this thesis called predictors [7], this terminology originates from
regression analysis, described in Chapter 4. Features can also be used to find regions in the feature space where
the sensor exhibits similar behaviour, these regions are, in this thesis, called sensor profiles.

A record can also have labels, an example would be an e-mail being labelled as ”spam” or ”non-spam”. A
more relevant example would be sensor data labelled as ”anomalous” or ”normal”, perhaps along with either
the label ”simulated” or ”logged” depending on the origin of the data. Certain anomaly detection methods
require labelled data to train a classifier to distinguish between anomalous and normal data instances. This
is called supervised learning and is often done using a classifier algorithm. The case with missing labels is
called unsupervised learning and is often achieved through clustering algorithms. There are also algorithms
that operates in a semi-supervised setting where some of the records are labelled. Labelling sensor data as
”anomalous” or ”normal” is most often a manual task, and since the data sets are in many cases extensive,
most anomaly detection methods used are unsupervised [5].

2.2 The Lack of Ground Truth

Finding anomalies in the sensor output by comparing the output to the true reading, ground truth, is of
course an accurate and intuitive method. In field tests, access to ground truth can be limited or missing. In
this case, other methods must be used. In this thesis it is proposed that the sensor output is compared to
a predicted sensor output. The accuracy of the model that creates the predicted output, the predictor, is
of great importance to correctly evaluate the sensor performance. In general, any predictor could be used
as long as it predicts normal sensor behaviour correctly. The choice of possible predictors ranges from the
simple assumption-based predictors, such as the näıve predictor or a constant velocity model, to more complex
predictors, like an extended Kalman filter or predictors based on artificial neural networks [5]. The most
suitable ”predictor” for logged sensor data may include future readings, an example is using a moving average
as ”predictor”. This type of predictor may be the best suited for logged data, but is unable to predict sensor
readings in real time. Hence, the best choice of predictor will depend not only on the normal behaviour of the
sensor but also its applications.

2.3 Predicting Sensor Output

Predicting the sensor output and computing the prediction error, i.e. the difference between the predicted
sensor output and the measured sensor output, is not a necessary step for all anomaly detection methods. It is,
however, a way to compute an additional feature that is useful for many anomaly detection methods. Note
that several predictors could be used to compute several additional features as well.

2.3.1 Assumption Based Predictors

Some simple predictors can be constructed from assumptions regarding the signal to be analysed. Assuming
a stationary reading, a constant change (velocity) or a constant acceleration results in one of the following
prediction models.

The Näıve Predictor

One of the simplest predictors imaginable is the näıve predictor, where the predicted sensor output, Ŷi is equal
to the previous measured sensor output,Yi−1, i.e. Ŷi = Yi−1. For a sensor measuring stationary entities this
predictor is sufficient since using this predictor is equivalent to looking at the difference between two sequential
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readings to find anomalies. If the end goal is to find anomalies magnitudes above normal variations, this is
probably a good choice for the predictor.

The Constant Velocity Model

As the name suggests the constant velocity model works under the assumption that the velocity will remain
constant between two sequential readings, i.e Ŷi = 2Yi−1 − Yi−2. The accuracy of this predictor will stand or
fall with the validity of the assumption. Hence this predictor may be suitable for certain sensor readings while
being too inaccurate for others.

The Constant Acceleration Model

The final assumption-based model is the constant acceleration model, Ŷi = 3
2Yi−1 − Yi−2 + 1

2Yi−3. It is more
complex, for better or worse, than the other models and may also be suitable for certain sensor readings.

2.3.2 Regression Analysis

Regression analysis is the most commonly used method for predicting time series [5]. Regression analysis is
a general statistical set of techniques used for finding relationships among variables, more specifically the
relationships between a set of predictor variables, X1

i , X
2
i , . . . , X

m
i , and one or more output variables, Yi. The

result is a regression model for expressing the predicted sensor reading at single time step as a function of
the predictor variables, Ŷi = f(X1

i , X
2
i , . . . , X

m
i ). Worth noticing at this point is that if the previous sensor

reading, the discrete derivative and the discrete acceleration is included in the predictor variables the regression
analysis will result in the most suitable of the three assumption-based models as long as there is no other
predictive model that is more statistically accurate.

2.3.3 Other Predictor Models

Other predictive models are used in the litterature as well. A Kalman Filter is a recursive filter that approximates
the state of a system based on noisy measurements [8]. Dynamic Bayesian Networks can be seen as generalized
Kalman filters or Markov models and estimates the probability of an output based on the state of a system. It
can also predict the most likely output based on the estimated state [9]. Artificial Neural Networks can also be
used to predict time series when trained using historical data. Such networks are able to capture non-linear
relationships and are used for predicting financial time series [10]. Simpler methods for approximating the true
value based on a noisy signal are smoothing filters. Using the moving average or spline interpolation will not
predict future output, but can still be used to estimate the expected sensor output in logged data [11].

2.4 Detecting Anomalies

In this section, various anomaly detection techniques will be presented and their strengths and weaknesses will
be discussed. This will stand as a foundation for the choices made in this thesis. For a more thorough review
of the different anomaly detection methods and their uses, consider one of the survey articles available within
this field, for instance [5].

2.4.1 Classification Based

Methods based on classification tries to directly classify a record as either ”normal” or ”anomalous”. Examples
of classifiers are Artifical Neural Networks, most often Feed-Forward Perceptron Networks, Bayesian Networks,
Support Vector Machines and rule based classifiers, where the rules may be set using either machine learning
or human expertise. Most often the classifiers train on a data set that represents all possible normal behaviour,
without containing any anomalies. If new records can not be classified into any one class of normal behaviour it
is classified as an anomaly. A classifier can also be trained using a data set consisting of normal and anomalous
records labeled accordingly to create a classifier able to accurately classify future record as either normal or
anomalous directly. The main drawback of these methods is that they all, except from the ”human-decided-
rules”-based, need large labelled data sets. Since these labelled data sets often needs to be created manually
they are often non-existing.
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Strengths

• Fast testing phase

• Can be used in real-time

• Many powerful algorithms

Weaknesses

• Requires labelled data

• Computationally heavy training phase

• Anomaly detection is secondary goal

• Most determines the class of the record in a
binary fashion, without any certainty score at-
tached

2.4.2 Nearest Neighbour Based

Anomaly detection methods based on Nearest Neighbour analysis relies on the following assumption: normal
records occurs in dense neighbourhoods, while anomalies occur far from their neighbours.

The main issue, that needs to be resolved, is to determine a suitable distance (similarity) measure. Simple
Euclidean distance in a sub-space of features is often used but other measures exists as well. Almost any
similarity measure can be used, however it is usually positive-definite and symmetric even if it does not satisfy
the triangle inequality. The analysis often consists of either analysing the distance to the k nearest neighbours
or analyse the number of records within a specific distance d of the record that is to be tested. This is usually a
computationally heavy task and the performance relies on the distance measure. Defining the distance measure
may also be challenging, especially when the data is large or complex.

Strengths

• Unsupervised

• Data driven (no assumptions regarding distribu-
tion of the points)

• Easily implemented

Weaknesses

• Computationally heavy testing phase

• Defining distance between points may be chal-
lenging

• Some methods needs large and representative
training set without anomalies

2.4.3 Clustering Methods

Clustering-based anomaly detection methods defines clusters for the normal data instances and compares new
records to these clusters. There are two main approaches for finding anomalies using cluster analysis. The first
is to cluster the entire data set and analyse the density of each cluster, normal records are assumed to belong
to large and dense clusters while anomalous records belong to sparse or small clusters. The second approach is
based on the assumption that anomalous records are located further from the center of the cluster they belong
to than normal records.

Clustering techniques often need a distance measure in the same way as Nearest Neighbour analysis, the
main difference between the two is that in Cluster analysis a record is compared to the different clusters and
not each record. This makes Cluster analysis faster when it comes to the testing phase.

Strengths

• Unsupervised

• Fast testing

• Can be used in real-time

Weaknesses

• Optimised to find clusters, not anomaly detection

• Computationally heavy to train

• Same challenges with the distance measure as
nearest neighbour analysis

• Significant anomaly cluster may be undetected

6



2.4.4 Statistical Methods

The key assumption behind any statistical anomaly detection technique is: Normal records are located in high
probability regions of a stochastic model and anomalies occur in the low probability regions of the model [5].

Statistical anomaly detection methods consists of two steps, first a statistical model (usually only for the
normal behaviour) is fitted to the data. In the second step new data instances are tested against this model in
order to determine the probability of the occurrence of that particular record. In time-series, the statistical
model used is often a regression-based model, and anomaly detection methods has been applied to a number of
regression models: Autoregressive, AR, [12, 13] Autoregressive Moving Average, ARMA, [14] and Autoregressive
Integrated Moving Average, ARIMA [15, 16]. However, models using external predictors, ARX, ARMAX and so
on, has not been as thoroughly investigated in the litterature.

A (Dynamic) Bayesian Network can be used for finding anomalies in time-series as well [9]. Bayesian
Networks, often claimed by machine learning, are statistical models that can be used both for predicting
outputs or determining the probability of a specific output. They can be seen as generalised Kalman Filters or
even generalised Hidden Markov Models and is a way to apply Bayes’ Rule [17] on complex problems [18].

Other statistical methods are more suitable for detecting point anomalies, such as those that estimate the
distribution of normal records directly in some way and then compare the record to the distribution, examples
of this is Gaussian Models or histogram-based techniques.

Strengths

• Results are given with a confidence

• If assumptions about data distribution holds,the
results are statistically justifiable

• Can be unsupervised

Weaknesses

• Rely on assumptions about the data distribution
that may not hold true

• Selecting the most appropriate statistical test is
nontrivial

• Multi-variate contextual anomalies can slip
through

2.5 Proposed Method for Detecting Anomalies

In this section a proposed general method for detecting sensor malfunction is introduced and the motives
behind selecting this method is discussed. The work flow of the method is shown in Figure 2.1.

Using Linear Regression Analysis to find the Predictive Model

As regression analysis is a fast and general method that produces a model that can be statistically evaluated
using proven methods [7, 19], it is proposed as a general prediction method that can be applied to any sensor
reading. The predictive model is used to compute a predicted sensor output. The predicted sensor output is
compared to the measured sensor output to compute the prediction error.

As sensors for active safety become more advanced the amount of available sensor data increases. There can
be statistically significant correlations between sensor readings from one or several sensors that are unforeseen
or even, in human eyes, illogical. These correlations can be found by regression analysis and be used to more
accurately predict the sensor output. The resulting model can be analysed, understood and applied in other
contexts leading to insights about the sensor system that may otherwise pass undetected.

Sensor Profiling

The evaluation of the sensor performance can also be extended beyond analysing the raw difference between
the predicted and the measured sensor reading. An additional step is to determine so-called sensor profiles,
that is feature regions where the sensor behaviour is similar within the sensor profile and different across sensor
profiles. Different measuring conditions may result in different noise levels in the measurement of a sensor,
for instance, a thermometer for outdoor use may be more accurate when measuring temperatures between
−15◦C and +30◦C than when measuring temperatures below −30◦C. Accuracy may also depend on the rate
of change of the temperature or other conditions, such as the humidity or whether or not wind or sun light
hits the sensor. Finding these sensor profiles can be done manually, using expertise in the specific sensor, or
automatically using the novel method introduced in this thesis.
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Figure 2.1: The general method for detecting anomalies. The sensor model is used to predict sensor output.
This predicted output is compared to the measured output to compute the prediction error. Sensor profiles are
used to find regions where the normal prediction error behaves differently. The probabilities of the prediction
errors is then computed within each profile and if the probability is lower than a certain threshold that record
corresponds to an anomaly, otherwise it is considered normal.
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Finding Anomalies

The predictive model is used to compute the prediction error. Sensor profiling is used to determine the expected
distribution of the prediction error under the specific set of conditions. This is used to compute the probability
of the occurrence of the particular prediction error under a certain set of conditions. Anomalies will result in a
low probability compared to normal data instances. In this thesis each anomaly detection method will assign
an anomaly score to each record, where a larger anomaly score should correspond to a more anomalous record.
The anomaly score for this method is directly proportional to the computed probability of the occurrence
of the prediction error. If the anomaly score is larger than a certain threshold the corresponding record is
automatically classified as an anomaly, otherwise it is classified as a normal record.

2.6 Comparing Anomaly Detection Methods

Comparing and evaluating results from anomaly detection methods can be done in the same way as for any
binary classifier. A data set consisting of data points accurately labelled as either normal or anomalous can be
compared to the output of the anomaly detection method. The result of this comparison is defined as follows:

True Label Anomaly Detection Result
Output

Anomaly Anomaly True Positive
Normal Normal True Negative
Normal Anomaly False Positive

Anomaly Normal False Negative

From this the following measures are defined as [20]:

True Positive Rate, TPR =
# True Positive

Total # of anomalies

True Negative Rate, TNR =
# True Negative

Total # of normal data points

False Positive Rate, FPR =
# False Positive

Total # of normal data points
= 1− TNR

False Negative Rate, FNR =
# False Negative

Total # of anomalies
= 1− TPR

(2.1)

The anomaly detection methods evaluated in this thesis all assign some form of anomaly score to each data
point. If this score is higher than a specific threshold, α, the data point is classified as an anomaly. The true
positive rate and the false positive rate can be computed for a range of thresholds to create a parametric curve
that visualises the dependance between TPR and FPR. This curve is called a receiver operating characteristic
(ROC)-curve and is typically used to visualise the performance of a binary classifier as the threshold varies [20].
In this thesis the anomaly detection methods will be compared to each other and evaluated on a data set with
known anomalies using ROC-curves.
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Figure 3.1: A flow chart of the general method for finding and training the components needed for the suggested
anomaly detection technique.

3 Method

This chapter aims to provide an overview of the anomaly detection method proposed in this thesis. The
implementation specific details in thesis are also stated here, such as names of high level native functions and
parameter choices. A deeper understanding of the parts that make up the method is found in Chapter 4 and
Chapter 5.

Introduction

An anomaly is defined as an unexpected sensor reading, with the assumptions that they are rare and significantly
different from normal behaviour. Using this simple definition, anomaly detection can be divided into two parts,
first find prediction model that define expected, normal, sensor behaviour and secondly an analysis of the
difference between the predicted sensor reading and the actual sensor reading: the prediction error. The second
part can be extended further by dividing the data into different sensor profiles. This will allow for natural
differences in the prediction error between sensor profiles, which can be expected. A summarised description
of the method for finding the components needed for this anomaly detection technique is visualised as a flow
chart in Figure 3.1.

3.1 Finding Normal Sensor Behaviour

Finding expected sensor readings, Yi, can be done in many ways. Assuming Y ′i = 0 or Y ′′i = 0 are simple
approaches, using different types of filtering, e.g. Kalman filters or moving average, can also be effective [8].
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But the goal was to find a general method that can be used for any sensor reading, both with or without
physical units and relations, and also coming from both advanced ”top level”-sensors as well as simple ”single
measurement”-sensors. Hence regression analysis was used, a general statistical method for finding relationships
between variables.

3.1.1 Regression Analysis

A list of variables, X1, . . . , Xn′ , that have a high chance of being related to the sensor reading of interest,
Y , is used as candidates in the regression analysis. Stepwise regression analysis is then used together with
cross-validation on a representative data set to find a regression model for the sensor, Ŷ = f(X1, . . . , Xn), that
only includes the statistically significant predictor variables, X1, . . . , Xn.

Finding predictor variables

For the signals considered in this thesis the sensor reading, Yi, is part of a time series. Hence, including the
previous reading, Yi−1, the discrete derivative, Yi−1−Yi−2, and the discrete second derivative, Yi−1−2Yi−2+Yi−3,
in the set of predictor candidates is a given choice. If the sensor reading is related to a physical measure,
finding other sensor readings that is expected to be related to Y , can be done as well. However, finding the
most suitable sets of candidate prediction variables, X1, . . . , Xn′ is by no means easy and will depend on not
only the particular sensor reading, Y , but also the configuration of both the particular sensor and the other
available sensors [21]. With good understanding and insights in the particular sensor this can hopefully be done
in a few tries by a group of experts. Finding suitable predictor variables will be a manual, sensor-dependent
step that can not be fully automated when using regression analysis as a predictor model.

Removing outliers from training set

When the candidate predictor variables are decided a representative data set is constructed. As the goal of the
predictor is to accurately predict normal sensor reading, the data set should only include such readings. As
the data is not labelled the training set will initially include anomalies that should be removed [19]. This is
done by creating a regression model using stepwise regression on the entire set and removing points that has a
Cook’s distance larger than Dmax = 4

n , where n is the number of data points in the data set. See Section 4.1
for more details. The regression model was created and Cook’s distance calculated using the built-in function
stepwiselm() in MATLAB.

Using stepwise regression with cross-validation

The trimmed data set is now divided into two parts, the training - and the validation set. Two thirds of the
points, selected at random, is in the training set and the remaining one third is in the validation set. The
regression model trained using the training set is initially empty and terms are added one by one using AIC
(described in Section 4.3), until there are no more statistically significant terms to add. At each step the
adjusted R2-value for the new regression model is calculated for both the training and the validation sets. The
regression formula is taken from the regression model that corresponds to the highest adjusted R2-value for the
validation set. This is done to avoid over fitting to the training set and find the regression model that most
accurately predicts new sensor readings [22].

Finding the final regression model

A final step is performed to further eliminate the influence of possible remaining anomalies in the data set.
That is to perform robust regression on the entire trimmed data set using the regression formula found using
cross-validation. Robust regression is robust with regards to outliers in the data set and will result in the
regression model that most accurately predict the normal sensor behaviour [23]. Examining the diagnostics of
the regression analysis will reveal, statistically, how well the model fits the data and how much of the variance
explained by the model. These diagnostic measures should be used to evaluate the choice of candidate predictor
variables and can be used directly to determine whether the regression model should be used as the predictor
or not [19].
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3.1.2 Other predictors

To evaluate the performance of the regression model with respect to anomaly detection, a subset of predictive
models from Section 2.3 were also implemented. The models based on assumptions, i.e the näıve predictor,
the constant velocity - and constant acceleration model where all implemented along with using the moving
average as predictor. The Kalman filter, Dynamic Bayesian Networks and Artificial Neural Network based
predictors are other possible predictors that where not implemented and compared to the other predictors used
in this project.

3.2 Analysing the Prediction Error

Even for normal records the sensor reading will probably differ from the predicted sensor reading, resulting in a
prediction error, εi = Yi − Ŷi, where εi will have a certain distribution, P̂ . P̂ can be stationary but it can also
be related to a number of measurable features, ξ1, . . . , ξm. This can also be true for the predictive model, but
in this thesis a single predictive model is used. A relationship between some set of features and P̂ is probable
for many sensor readings as sensors are usually optimised for certain working conditions, and will therefore
exhibit different behaviour in different conditions.

Finding the relation between ξ1, . . . , ξm and ε is no simple task and can be approached in different ways.
Regression analysis could be used, but describing the relationship might not be possible using smooth functions.
Especially as ε may also depend on unmeasured factors that may have some relation to the features ξ1, . . . , ξm
as well, this can result in very complex relationships between ξ1, . . . , ξm and ε. Another approach would be to
try to divide ε into a few groups with similar appearance and try to map these groups to different regions in
ξ-space, so called sensor profiles. As we want a method that is as general as possible the latter approach was
used, as it has higher potential to be effective on a larger number of sensor readings. The problem now lies in
determining the method for clustering ε, finding good similarity measures, finding the most suitable number
of groups, finding a method for mapping areas in ξ-space to the different groups and finally estimating the
probability distribution of ε in each group. One could also create and use different regression models for each
group, which might be easier if the original sensor signal, Y , is used to create the sensor profiles instead of the
prediction error, ε.

To conclude, there are many method and parameter choices available, and when the best set of choices
depends on the sensor, among other things, scientifically determining the optimal choices for any general sensor
is far beyond the scope of this thesis. Finding a good candidate that works well for at least some set of sensors
is considered a great result.

3.2.1 Finding Sensor Profiles

Sensor Profiles are used to determine the normal behaviour of the sensor under different conditions. The overall
goal of the method is to divide the feature space (ξ-space) into regions, sensor profiles, where the distributions
of the prediction error between sensor profiles are as different as possible. Each sensor profile should, at the
same time, contain as many points as possible. It can be seen as a method for clustering distributions of a
stochastic variable using dependent variables. As normal clustering or statistical techniques were proven to
be unable to find these regions a novel method was used to perform the sensor profiling. The procedure is
described in detail in Chapter 5 and the result of the method is a decision tree that is used to classify data
points into the according sensor profile.

Estimating probability distribution of ε

The method used in this thesis for estimating the error distribution, P̂ (ε), is kernel density estimation, with
the Gaussian kernel function. This method can be used on any data set, coming from either a specific group
found by clustering and classification or a complete data set. The resulting probability density function (PDF)
is parameter free and fully data-driven, however when created the bandwidth has to be set. The bandwidth
used when creating the PDFs for the investigated sensor readings was decided using the estimated resolution
of the particular sensor. For instance, a thermometer that measures the outside temperature may have the
estimated resolution, and therefore the bandwidth, equal to 0.1◦C. The chosen bandwidth should result in a
PDF that captures the behaviour without being over-fitted to the particular data set. The method used for
this was the built-in Matlab-function fitdist(...,’pdf’,’Kernel’,’BandWidth’,h).
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Figure 3.2: A flow chart showing how the components are used to calculate the anomaly score using sensor
profiles.

3.3 Finding Anomalies

Both the prediction error, ε, and the estimated probability of the prediction error, P̂ (ε), either with or without
first determining sensor profiles, can be used as anomaly scores, ai. Computing the anomaly scores using a
prediction model, sensor profile classifier and estimated probability distributions discussed above is visualised
in Figure 3.2. Classifying data points as either anomalous or normal is done by comparing an anomaly score to
a decision threshold, α. If we define anomaly scores so that a higher value corresponds to a larger probability
of being an anomaly, the class of data point i is anomalous if ai > α or normal if ai ≤ α. The optimal decision
threshold, α, depends on the specific sensor, which anomalies you are interested in and how many false positive
values that can be accepted.

As we expect a large prediction error, ε, when anomalies occur, |ε| can be used directly as the anomaly
measure. We can also make use of the sensor profiles, as P̂ (ε) is the estimated probability of the prediction
error ε, 1− P̂ (ε), can be used as the anomaly measure.

3.4 Comparing Methods

A labelled evaluation set is needed to compare different combination of methods, parameter choices and anomaly
measures and to find the optimal value of α. This is created manually using a simple GUI, where intervals are
marked as either anomalous or normal. If the anomaly detection method marks at least one point in one of
these areas as anomalous the entire area is flagged as anomalous. Otherwise it is flagged as normal. The result
from the anomaly detector is compared against the labels from the GUI in order to compute the true positive
rate and the true negative rate.

A ROC-curve is created by varying the anomaly threshold, α, between −∞ and ∞. By manually comparing
the appearance of the ROC-curves, created using the different anomaly detection methods, the most suitable
detection method can be determined [20].

13



4 Regression Analysis

This chapter supplies the reader with a basic understanding of regression analysis and typical statistical
diagnostics used to evaluate the resulting predictive model. Regression analysis is a powerful statistical tool
with many applications, but very limited understanding of regression analysis is needed to understand this
thesis. To the interested reader, who may want to gain a deeper understanding, it is recommended to look at
one of the many books written within this subject, for example [7].

Introduction

In statistics regression analysis is used for modeling the relationship among variables. Regression analysis
includes many techniques that are commonly used for prediction of time series with or without anomaly
detection as the end goal [7]. Linear regression models are used to establish the relation between a response
variable, Y and a number of predictor variables, X1, ..., Xn. The case when n = 1 is called simple linear
regression, opposed to multiple linear regression when n > 1. Both are different from multivariate linear
regression, where Y consists of several variables.

4.1 Multiple Linear Regression

Using several predictor variables to predict a single variable is called multiple linear regression analysis. The goal
is to find a function that is used to predict the response variable, Y , using the predictor variables, X1, ..., Xn.
A general example is given below:

Ŷ = β0 + β1X1 + β2θ1(X1) + β3θ2(X1, X2) + ...+ βmθp(Xn), (4.1)

where βi, i = 1, . . . ,m are constants found through the regression analysis and θi could be any function of one
or more variables. The function found through regression analysis is not necessarily linear in the predictor
variables, but linear in the coefficients βi. Regression analysis found in statistical tools, packages and specialised
softwares, do not only calculate the values of βi that minimises the distance between Y and Ŷ but also calculates
diagnostic measures that can be used for determining the significance of each prediction term and for the entire
model. This gives the user the possibility to determine the regression model that is most suited for predicting
future values and also makes it possible to easiliy compare models using statistically proven methods. Often
these tools also let you perform stepwise regression which is a method where terms are added to or removed
from the model based on their significance and some pre-set criteria. This gives the user the possibility to find
a statistically significant regression model more or less automatically [7].

4.2 Regression Diagnostics

Finding and understanding measures to gauge the significance and the fit of the regression model is essential
both for finding the most suitable model and when evaluating the final result. The measures and tests used in
this thesis are listed and briefly explained below.

Coefficient of Determination

The coefficient of determination, R2, is a measure that indicates how well a statistical model fits the data
[17]. This is one of the measures used for analysing and comparing regression models and is defined as the
ratio of the explained variance in the data, which is defined as follows. With n data instances, yi, i ∈ [1, n],
mean value as in Equation (4.2) and modeled data, ŷi, we denote the total sum of squares as in Equation (4.3),
the explained sum of squares as in Equation (4.4) and the residual sum of squares as in Equation (4.5). The
definition of the coefficient of determination is seen in equation (4.6).

ȳ =
1

n

n∑
i=1

yi (4.2)
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SStot =

n∑
i=1

(yi − ȳ)2 (4.3)

SSreg =

n∑
i=1

(ŷi − ȳ)2 (4.4)

SSres =

n∑
i=1

(yi − ŷi)2 (4.5)

R2 = 1− SSres
SStot

(4.6)

One issue that occurs when looking at R2 is that it will always increase with an increase in the number of
predictor variables as long as their coefficients are non-zero. Thus using R2 as the only diagnostic measure
when preforming regression analysis may result in an overly complicated model [19].

Adjusted R2

To avoid an overly complicated model the adjusted R2 can be used instead. The adjusted R2 penalises the
number of predictor variables, p, and will only increase when an added variable improves the model more than
would be expected by chance [17]. It is defined by

R2
adj = 1− SSres/dfe

SStot/dft

dfe = n− p− 1

dft = n− 1

(4.7)

where n is the sample size.

The adjusted R2 is useful when deciding what predictor variables to include in the model.

F-statistic

To assess the statistical significance of the regression model an F -test is usually performed. This compares the
model Ŷ = f(X1, .., Xn) to the constant model Ŷ = c. The F -statistic is defined as:

F =
SSres/(p− 1)

SSreg/(n− p)
(4.8)

The probability of this value is found for the F -distribution, f(F ; d1, d2), with parameters d1 = p− 1 and
d2 = n− p and compared to the selected significance level (usually 0.05) in order to determine the significance
of the regression model [17].

T-statistic

To determine which predictor variables to include in the regression model, the t-statistic is used to test the
significance of a single coefficient, βi. If the estimated value of βi is bi, which has a standard error of SE(bi),
the t-statistic is

t =
bi

SE(bi)
(4.9)

The null hypothesis (βi = 0) is rejected at significance level, a, if P (t) < a [17]. When performing stepwise
regression a coefficient typically has to pass the t-test at significance level a = 0.05 in order to be included in
the model and an already included coefficient has to fail the t-test at significance level a = 0.10 in order to be
excluded [19].
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Leverage

Leverage is a measure used to identify observations that are outliers with regards to the predictor variables.
These points may affect the regression model more than closely clustered points. In general, the farther the
point is from the center of the predictor variables, the more leverage it has. The leverage score of a data point
i is defined as:

hii =
dŶi
dYi

(4.10)

Points with high leverage indicate that the region of predictor variables they are in is sparse and more
observations with similar predictor variable values can help to create a more suitable regression model [17].

Cook’s Distance

Cook’s distance can be used in the same way as leverage but also measures the effect of deleting the observation.
The effect that deleting an observation has on the regression model may come from a high leverage score and/or
large residual, ri = Yi − Ŷi. The Cook’s distance is defined as:

Di =
r2i

p ·MSE
(

hii
(1− hii)2

), (4.11)

where p is the number of coefficients included in the model, MSE is the mean squared error of the regression
model [17]. Deleting highly influential observations that has Cook’s distance above a certain threshold, Di >
Dmax, is a way to stablilise the resulting regression model. Selecting the threshold, Dmax, can be done in several
ways: simply Dmax = 1, Dmax = 4

n , where n is the number of observations, or Dmax = 3×the mean value of Di

[19]. In this thesis Dmax = 4
n is used as it resulted in more accurate regression models for several sensor signals.

Other measures and tests

Other measures and tests may be of equal or greater importance when regression analysis is used outside
the application of anomaly detection in time series. For example the Durbin-Watson test is used to find
auto-correlation within the residuals, which, if present, can result in an under-estimated variance. This can
ultimately in some cases render the F-statistic useless. However in auto-regressive models, where one predicts
Yi using Yi−1, one is expected to have auto-correlation in the residuals and its existence does not affect the
predictive power of the model itself [19].

4.3 Akaike Information Criterion

The Akaike information criterion (AIC) is a measure of the relative quality of any statistical model on a data
set [24]. As AIC can be used to estimate the relative quality of each model it can be used for model selection
[25]. AIC is based on information theory and defined as:

AIC = 2k − 2 log(L), (4.12)

where k is the number of estimated parameters in the model and L is the maximised value of the likelihood
function for the model. The likelihood function is a function of the parameters in a statistical model. The
likelihood of a set of parameters, θ, given outcomes, x, is the probability of outcomes x given the parameters θ:

L(θ|x) = P (x|θ). (4.13)

The maximum of L is found by finding the statistically most likely parameter values, θ∗ [17]. As AIC is a
general measure used for comparing statistical models it can be used for finding the most suitable regression
model through stepwise regression, but its use is not limited to regression analysis. AIC can also be used, for
example, for finding the best matching Gaussian mixture model or finding the best parameters for exponential
smoothing.

Summary

The summarised workflow and uses of the different statistics is visualised in Figure 4.1.
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Figure 4.1: A flow chart of the general method for finding the most suitable prediction model through robust
regression. The diagnostic measures is used to evaluate the final model. The optimal formula of the model is
found through stepwise regression and cross-validation on a data set without outliers. The outliers are found
through Cook’s distance and are removed from the original data set.
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5 Sensor Profiling

In this chapter sensor profiles and sensor profiling will be introduced and the motives behind it, together with
the suggested methods for finding the profiles, will be discussed. As this is a novel method introduced in this
thesis, the chapter includes detailed descriptions of the algorithms used. Understanding the main results and
the overall method for detecting anomalies does not require a deeper understanding of sensor profiles or the
methods used to find them. Knowledge of the motives behind sensor profiling and understanding the resulting
classifier should suffice.

5.1 Motives behind Sensor Profiles

Intuitively, a sensor may behave differently under different circumstances. For example, consider a simple
thermometer. Depending on the intended use it may be optimised for certain temperature ranges. A thermometer
intended to be used for measuring the outdoor temperature may show a very small error when the temperature
is between e.g. −15◦C and +30◦C and fairly constant over time. When the temperature is outside this range
or changing very rapidly the thermometer may exhibit a larger error. If there is large difference between the
errors in the different regions it can probably be found using regression analysis. However, small differences
or changes in the appearance of the distribution of the measuring errors may not be so simply found. These
changes may however be of interest when assessing the sensor or when finding anomalies.

The thermometer example will now be used to show how sensor profiles can be used to characterise the
performance of a sensor. There are two features, the measured temperature, T , and measuring error, ε. The
temperature is used as an input feature and the measuring error is used as the response feature. Having two
features makes it possible to visualise the data in a 2D scatter plot. In real thermometer data the error might
be correlated to other features as well, for example, the average wind speed, rainfall, temperature change rate,
air pressure, humidity or incoming sunlight. A scatter plot of 100 000 records together with histograms of the
features are shown in Figure 5.1. The temperature was drawn from a rough estimate of the distribution of
temperatures in Gothenburg. The measuring error is drawn from one of two distributions depending on whether
the temperature is within the range, R = [−15◦C,+30◦C], or not. The two different distributions are visualised
in Figure 5.2. Notice that about 99% of the temperatures drawn from the distribution of temperatures fall
within the range, R, and the errors in those records will come from the narrow distribution.

The two distributions of the measuring error both have a mean value of zero, which should be the case for
any good sensor, but their shapes are quite different. This, together with the distribution of temperatures and
the large number of data points, makes it difficult to see a direct relation between temperature and error in
the scatter plot in Figure 5.1. It also makes it difficult to extract any information using common statistical
or machine learning tools, e.g. regression analysis or clustering. In this case these methods will not help us
understanding the sensor and some other method must be used to determine the normal behaviour. What is
suggested in this thesis is that a set of input features (temperature in this example) is used to divide the points
into regions where the distribution of the response feature (measuring error) are as different as possible. In this
thesis the different regions found are called Sensor Profiles. Finding such regions can hopefully be used to
capture the normal behaviour of the response feature and will help analysts to gain insights about the data.
The main challenge now lies in comparing and quantifying different divisions that results in different sensor
profiles. This can then be used to find a sensor profiler which will actually divide the data into sensor profiles.

5.2 Comparing sets of Sensor Profiles

The main goal of sensor profiling is to find regions where the distributions of the response feature are as different
as possible. The distributions in each region is estimated using a histogram and selecting the appropriate range
and bin size is the first step.

Evaluating the difference, or distance, between two histograms is a field in itself [26]. There are many ways
to compute the distance between two histograms. In this thesis Earth Mover’s Distance (EMD) or Chi-squared
Distance (χ2) is used. χ2 uses the difference in bin counts at each bin to compute the distance (bin-to-bin
comparison). EMD uses the distance between the bins as well as the difference in bin counts when computing
the distance (cross-bin comparison) [27]. Both distance measures requires normalised histograms that both
cover the same region, D, and has the same bin locations.
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Figure 5.1: In the top the measured temperature and measuring error from 100 000 simulated data instances
are shown along with the distribution of the measuring error and the distribution of the temperature.

Figure 5.2: The two different distributions the measuring errors are taken from. As 99% of the points have
a temperature between −15◦C and +30◦C the total distribution of measuring errors is very similar to the
solid-lined blue distribution, even though the appearance of the two distributions are quite different.
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Computing the EMD between two one-dimensional histograms, i and j, with equidistant bins is a simple
special case and equal to:

EMD(pi, pj) =

n∑
k=1

∣∣∣∣ k∑
l=1

pil −
k∑
l=1

pjl

∣∣∣∣,
where p is a vector containing the normalised frequency for each bin over region D and has n elements. In
general, two histograms can be seen as two ways of piling up probability over region D. If so, the EMD is the
minimum cost of turning one pile into the other. Cost, in this case, is the amount of probability multiplied
with the distance it is moved. This makes the EMD symmetric and the distance between two equal histograms
is zero. In any case, the EMD will depend on the choice of the region D and the number of elements in pi. I.e.
the EMD between two sets of data heavily depends on the bin locations and the total number of bins.

EMD is a cross-bin comparison since distance between bins is taken into account. Chi-squared distance is a
bin-to-bin comparison that sums up the relative difference between the estimated densities in each bin. It is
defined as:

χ2(pi, pj) =
∑
k

{
(pik−p

j
k)

2

2(pik+p
jk)

if pik > 0 or pjk > 0

0 else,

where k is the index in p that contains the estimated probability for bin k.
Only using a distance measure (EMD or χ2) to evaluate a set of sensor profiles will give rise to unwanted

results as a histogram containing few records may have a large distance to another histogram even if all the
records comes from the same distribution. This occurs as the estimated distribution is inaccurate when based
on few data instances. What we really want is to find ways to divide the data so that as many records as
possible are divided into as different probability densities as possible. With this in mind, the profiling score, S,
of a certain set of sensor profiles is defined as

S =
∑
i

∑
j

wiwjdi,j , (5.1)

where wi is the fraction of records that are in sensor profile i, with an estimated probability of pi and di,j is the
distance (EMD or χ2 in this thesis) between pi and pj . The estimated probability is the normalised histogram
in this case but can be estimated in other ways. The choice of distance measures has not been evaluated in
this thesis and it is quite possible that another measure is more suitable for evaluating sensor profiles. The
profiling score, S, can be computed for any set of sensor profiles containing any number of different sensor
profiles. Using this score makes it possible to compare different sets of sensor profiles to each other which is
crucial when trying to find the best way to divide the records.

One issue that arises when comparing sets of sensor profiles using the profiling score in Equation (5.1) is
that a higher number of different sensor profiles always allows for higher profiling score. This originates from
the fact that the estimated probabilities becomes slightly different leading to an increased distance between
them. Consider a large set of points drawn from the same distribution. Using this as a single sensor profile
gives us a profiling score S = 0, as di,i = 0. In this set there exists a small subset that, if put into a separate
sensor profile, will increase the profiling score. This is true as long as not all the original points are placed
in the same bin when estimating the probability distribution. It may only be a single record in the second
sensor profile and still the profiling score will increase. This issue can be addressed in several ways, for example
setting a lower limit on wi or introduce a penalty for the number of different sensor profiles. In this thesis it is
solved by finding different sets of sensor profiles using either EMD or χ2 and an upper limit on the number of
sensor profiles allowed. These different sets are then compared against each other manually to find the most
suitable set. The best choice of the number of sensor profiles may depend on the distance measure used.

5.3 Finding the most suitable Sensor Profiler

Now that sets of sensor profiles can be compared against each other the final step is to find the optimal divider
i.e. sensor profiler. Two different algorithms are implemented that both aim to produce a sensor profiler. The
resulting sensor profiler shall optimise the profiling score for the resulting sensor profiles for a given dataset
while fulfilling the constraint on the number of profiles.

The sensor profiler can be any type of classifier and is used to determine the sensor profile of each data
instance. As one of the goals is to gain insights in the normal sensor behaviour a classifier that can be
understood easily by a human is preferred over a ”black-box”-classifier.
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A decision tree was chosen as a classifier as it is a fast and simple classifier that can be analysed by a human.
Each tree is also easily expanded by adding additional branches, which means that a straight-forward greedy
algorithm can be used to find a solution.

Finding the best possible decision tree is however probably impossible for real data, especially if it includes
a large number of features. This as the decision tree can be of any size and include any combinations of features
and values making it possible to put almost any point in any group in an infinite amount of different ways. A
stochastic algorithm may be more suited for finding a decision tree in this case as the mapping from decision
trees to S is rather complex. The complex mapping makes it impossible to determine gradients and even if it
were possible S will consist of a large amount of local optima.

Heuristic algorithms may fail to reach the global optimum, but may result in a locally optimal solution
that can be considered satisfactory. Stochastic algorithms can find better solutions than other algorithms and
even has the potential of finding the global optimum. The main drawback is that stochastic algorithms usually
require more computational time than heuristic algorithms to find better solutions [28].

Two different algorithms are developed to find the sensor profiler, one heuristic (greedy) algorithm and one
stochastic (genetic) algorithm. These will be described and evaluated as follows.

5.3.1 Finding a Decision Tree through a Greedy Algorithm

A greedy algorithm finds a solution to a problem by iteratively making locally optimal decisions [29]. A greedy
algorithm may not find the global optimum but it is a fast algorithm that will, for many problems at least, find
a locally optimal solution. To demonstrate a greedy algorithm, consider the change-making problem: how can
a given amount of money be made with the least number of coins of given denominations?

A greedy algorithm will pick the largest denomination that is not greater than the remaining amount and
withdraw it from the amount until the remaining amount is equal to zero. For certain coin systems, like the
one used in Sweden, this will produce the optimal result. For example, the solution for 17 SEK = 10 + 5 + 1 +
1 will be found by this greedy algorithm. For other coin systems, for example if the coin denominations were
1, 3 and 4 and the amount of money was 6, the greedy algorithm would produce 6 = 4 + 1 + 1, whilst the
optimal solution is 6 = 3 + 3.

Greedy algorithms are, however, commonly used for training decision trees where one has labelled data
[30]. The common approach used when training decision trees on labelled data is to optimise the splitting
criterion at each node and use some form of pruning criterion to avoid creating a too large and complex tree.
This inspired the algorithm used in this thesis, but as we have unlabelled data and the goal is to maximise the
profiling score, S, some modifications are made.

The greedy algorithm created for finding a decision tree that maximises S consists of two main steps. The
first step is to find the locally optimal division of a group of records. This division turns one group into two
sub-groups. The second step is to combine sub-groups, this is done either to maximise S or to ensure that the
upper limit of the number of groups is not violated. The first step is the greedy step, where S is computed for
a number of splitting criteria and the best one is selected.

Let us return to the example with the thermometer, visualised in Figure 5.1. If we run the greedy algorithm
for two iterations, with a maximum number of groups equal to two and χ2 as the distance measure, the steps
can be exemplified and the intermediate results can be evaluated. The results at each step is visualised in
Figure 5.3 and the procedure is described as follows:

1. The first step is to divide the records into two groups. One group will have T ≤ κ and the other will have
T > κ. The locally optimal choice of κ is found by computing S for several values of κ and choose the
threshold that maximises S. If there are more than one input feature they are all evaluated with different
thresholds in order to find the splitting criterion that maximises S.

2. When a splitting criterion is found there are two subgroups, combining these will not lead to any
improvement of S.

3. This step will divide each sub-group into two sub-groups. This is done in the same greedy way as described
in step 1. This will result in four sub-groups. Numbering the groups is done as follows: sub-group 1 is
divided into sub-groups 1 & 2 and sub-group 2 is divided into sub-groups 3 & 4.

4. As the maximum number of groups is two, these four sub-groups must be combined into two subgroups
(1 & 2). This is done exhaustively i.e. all the viable combinations are tested and the combination that
yields the highest value of S is chosen. The combinations and resulting value of S are:
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Group 1 Group 2 S
1 2, 3, 4 0.0008
1, 2 3, 4 0.0033
1, 3 2, 4 0.0058
1, 4 2, 3 0.0040
1, 2, 3 4 0.0033
1, 2, 4 3 0.0066
1, 3, 4 2 0.0026

The final decision tree and the resulting histograms of the groups are shown in Figure 5.4. This tree divides
the records so that the records with T ∈ [−14.9◦C,+30.4◦C] is in one group and the other group consists of the
records with T outside this range. The profiling score for the decision tree found using the greedy algorithm is
S = 0.0066. The two sensor profiles are very similar to the original two distinct groups. In Figure 5.4 the two
distributions used to create the data are shown together with the histograms of the two sensor profiles. This
sensor profiler will classify 0.057% of new records into the incorrect sensor profile.
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Figure 5.3: The locally optimal splitting decisions in each iteration of the greedy algorithm together with
the resulting decision trees. Note that the final step is an exhaustive search, that will result in the optimal
combination given a constraint on the number of sensor profiles.
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(a) The sensor profiler found using the greedy algo-
rithm. (b) The resulting histograms for each sensor profile.

Figure 5.4: The chosen sensor profilers and the resulting histograms. The shape of the original distributions
match the histograms rather accurately. Using the known distribution of the temperature (figure 5.2) 0.057% of
data points will be classified into the incorrect sensor profile using this sensor profiler.

5.3.2 Evolving a Decision Tree

Another algorithm that can be used to find a decision tree is based on genetic programming. Genetic
programming, where the desired outcome is a program, in our case a decision tree, is a special case of genetic
algorithms. A genetic algorithm is an evolution-inspired optimisation technique that includes the driving forces
behind evolution. Those driving forces of evolution are:

• Selection: The individuals with the highest fitness are more likely to reproduce. In this case fitness is
defined to be the profiling score, S.

• Crossover: Two selected individuals are mixed in some way to produce two new individuals. The common
way of performing crossover in tree structures is to switch one branch in the first individual with a branch
from the second individual. This usually makes the crossover operator effective and results in individuals
that are different from their ”parents”.

• Mutation: This adds variety to the population by changing information in some nodes in some individuals.
In this case mutation will change either the value or the variable of the splitting criterion or the assigned
group of a node.

The work flow of a general genetic algorithm is shown in Figure 5.5. This visualises the main parts of the
algorithm used for finding a decision tree. Computing the fitness for a decision tree is done by dividing the
data using the tree and computing the profiling score, S. Computing S for a set of decision trees can be
computationally heavy for a large set of records and large decision trees. There are several different ways
of performing the selection based on the computed fitness [28]. In this thesis tournament selection was used.
Tournament selection is performed by repeatedly randomly selecting a group of individuals for a tournament
from which a single individual is selected. The tournament size, sT , determines how many individuals are
selected for each tournament. These individuals are ordered by their fitness value and the participant with the
highest fitness is selected to be the winner with a probability, pT . If the participant with the highest fitness does
not win the tournament the participant with the second highest fitness is declared the winner with probability
pT . This continues until a winner is declared or the individual with the lowest fitness is the only candidate
left, in which case, that individual is declared the winner. Let us order participants in one tournament so that
participant 1 has the highest fitness and participant st has the lowest. Now the probability that participant i
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will be selected, pi, is given as:

pi =

{
(1− pT )i−1pT if i < sT

(1− pT )sT−1 if i ≡ sT .
(5.2)

Tournament selection does not consider the actual difference in fitness between individuals, only the order.
Using a small value for pT and / or sT will result in more random selection, which generally leads to wider and
more stochastic search. In any case, one should always ensure that pT ≥ 0.5 so that individuals with higher
fitness never has a lower probability of being selected than individuals with lower fitness.

Crossover combines two individuals by switching a branch in the first individual with a branch in the second
individual. The branches are chosen randomly and can be of different sizes. This results in two new individuals
that can be very different from the original individuals.

There are three different types of mutation implemented in this algorithm, standard mutation, creep
mutation and prune mutation. Standard mutation changes either the variable, the value or the assigned group
to a random value within the valid range. Creep mutation can only affect the value of the splitting criterion
and will only perform a slight change in either direction. The size of the creep mutation depends on the density
of points in the region. A high density will result in a smaller change than a low density, which will allow for
a larger change. This is implemented by modifying the fraction of points fulfilling the criterion and not the
criterion itself. This also makes it possible to use the same creep mutation size for several different variables.
Prune mutation will cut branches. Performing prune mutation will decrease the size of the decision trees.
Mutation ,creep mutation and prune mutation occurs with certain probabilities or rates. Selecting these rates
is of course crucial. Unfortunately the theory behind genetic algorithms is limited and there exists only rules of
thumb to select these rates. Using a varying mutation rate, for example, may will lead to more diversity in the
population which may yield better results. A varying mutation rate is only used for the standard mutation,
while creep and prune mutation rates are kept constant. The algorithm used for finding the decision trees uses
a periodic mutation rate with three parameters: the minimum mutation rate, p−mut, the maximum mutation
rate, p+mut, and a period, P , measured in generations.

One challenge when using genetic algorithms is that it usually requires assigning a large set of parameter
values. This is true in our case as well, the name of the parameters, a short description and the value used is
given as follows:

Name Description Approximate value
Min. Mutation Rate Determines the min. probability of 1/30

mutation occurring at each node
Max. Mutation Rate Determines the max. probability of 1/10

mutation occurring at each node
Mutation Period Determines the period of the 60

varying mutation rate
Creep Mutation Rate Determines the probability of 1/10

performing creep mutation on
the value of the splitting criterion

Creep Mutation Size Determines the largest fraction of 0.01
points affected by the mutation

Prune Mutation Rate Determines the probability of 1/200
a node becoming a terminal node

Minimum Prune Depth Determines the minimum length of 3
a branch before prune mutation can occur

Crossover Probability The probability of performing crossover 0.6
on the selected individuals

Tournament Probability pT in equation (5.2) 0.75
Tournament Size sT in equation (5.2) 6
Initial Tree Sizes Sets the range of the number of nodes [3, 12]

in each tree in the initial population
Population Size The number of individuals in the population 120
Max. Generations The maximum number of generations 200
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Figure 5.5: A flow chart visualising a general genetic algorithm. Computing the fitness of each individual is
commonly the most computationally heavy step. This also holds true in this case. The driving forces behind
evolution (selection, crossover & mutation) can be implemented in different ways depending on the problem
and the structure of the individuals. Keeping the best individual through generations is called elitism, and will
often improve the performance of the genetic algorithm. Other termination conditions than setting a maximum
number of generations can be used. For example running until the fitness of the best individual has not improved
over n generations or terminating when the result of the best solution reaches a certain threshold.
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(a) A typical sensor profiler found using the evolution-
ary algorithm. (b) The resulting histograms for each sensor profile.

Figure 5.6: The chosen sensor profilers and the resulting histograms. The shape of the original distributions
match the histograms accurately. This sensor profiler will classify 0.015% of data points into the incorrect
sensor profile.

Let us return once again to the example with the thermometer visualised in Figure 5.1. Selecting the
upper limit of groups to two and running the algorithm, using the parameter values above, typically results in
similar decision trees between runs. A representative decision tree found using genetic programming is shown
in figure 5.6. This tree divides the records so that the records with T ∈ [−14.9◦C,+30◦C] is in one group and
the other group consists of the records with T outside this range. The profiling score for the decision tree
found using the evolutionary algorithm is S = 0.0069. The worst resulting profiling score found by running
the evolutionary algorithm five times on this problem with these parameters was S = 0.0068. This can be
compared to S = 0.0066 which was the result from the greedy algorithm. The typical sensor profiler displayed
in figure 5.6 will classify 0.015% of new records into the incorrect sensor profile; the corresponding result for
the greedy algorithm was 0.057%. Hence, even in this rather simple case the evolutionary algorithm finds a
better sensor profiler than the greedy algorithm. The main drawback of the evolutionary algorithm is that the
running time needed is at least 100 times the running time for the greedy algorithm in this example and for
more complex cases the difference might be even larger.

5.4 Estimating Probability Density Function within each Sensor
Profile

As the shape of the distributions within each sensor profile is unknown and may also differ between profiles a
non-parametric density estimation technique should be used. This as fitting a parametric probability density
function, pdf or density, with a specified shape to general data may result in a density dissimilar from the
distribution of the data. The most basic form of non-parametric density estimation is a normalised histogram,
used for calculating the distance between profiles earlier. A more advanced method that is commonly used for
estimating the density and will result in a smooth estimation is Kernel Density Estimation.

Kernel density estimation creates a non-parametric probability density estimate based on the data. This is
useful when data comes from an unknown distribution. The estimated distribution is similar to a histogram of
the data, but has been smoothed using a kernel function. The estimated probability density function is defined
as:

p̂dfh(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

where n is the number of data points, K(·) is the kernel smoothing function and h is the bandwidth. The
kernel smoothing function can be any non-negative function that has mean equal to zero and integrates to one.
Different kernel functions are commonly used and will result in different estimated distributions. Common
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Figure 5.7: The choice of bandwidth, h, and the choice of kernel smoothing function affects the estimated
density. The data comes from the dotted red distribution in figure 5.2 which corresponds to the measuring error
in the extreme temperature region. Each row corresponds to a different kernel function and each column a
different bandwidth. For this data set the best choice of bandwidth is h ≈ 0.2.

examples of a kernel smoothing function are the normal, Epanechnikov or box kernels [31]. However specifying
the correct bandwidth is more important with regards to the estimated distribution as seen in Figure 5.7.

Selecting bandwidth, h

The optimal bandwidth is the one that creates an estimated distribution that is most similar to the original
distribution which the data comes from. However, since kernel density estimation is used when the original
distribution is unknown the optimal bandwidth will remain unknown as well. The bandwidth used is determined
based on a rule of thumb, manual trial-and-error or assumptions about the data. If a too small bandwidth is
selected the estimate produces a very rough curve, capturing the smallest features of the specific data. Selecting
a too large bandwidth produces a wide, overly smoothed, density that may destroy important features of the
underlying distribution. MATLAB uses the bandwidth that is optimal if the original distribution is the normal

distribution. Another rule of thumb for normal distribution is to use h = ( 4σ̂5

3n )
1
5 , where σ̂ is the estimated

standard deviation of the data [31]. In the application of anomaly detection in sensor readings one can examine
the scale of the sensor reading and select a bandwidth equal to the estimated resolution of the signal, this will
result in a distribution that at least is not unnecessarily rough [31]. In the example with the thermometer an apt
bandwidth choice would be ≈ 0.1◦C, if this can be considered the smallest scale that the outside temperature
is measured by the thermometer.
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5.5 Conclusions

In general, both the greedy and the evolutionary algorithm produced sensor profiles very close to the original
grouping in the data. This was however a constructed example and in real data the changes in distributions
will probably not be a sharp edge, but more likely a smooth transition. If this is the case records near the
splitting criteria in the decision tree may end up in the wrong profile no matter what the splitting criterion
is. This can occur due to hysteresis, if for example, transitions from profile 1 to profile 2 requires different
conditions compared to transitions from profile 2 to profile 1. It can also be a result of records near the borders
has some probability of belonging to either profile. In either case, records located close to splitting criteria may
require special attention depending on the application.

Uses for Sensor Profiles

Finding regions where a certain variable has different distributions can have many applications. It can be used
for sensor validation; to create more accurate descriptions of sensor performance across working conditions.
It can also be used to create data driven sensor models. Beyond the distribution of measuring errors the
auto-correlation within and between different sensor regions may also be needed for creating models. The
goal of this thesis is to find anomalies and sensor profiles can be used to separate normal sensor errors from
anomalous errors. A record with a certain error might be normal if placed in a one sensor profile, but anomalous
if placed in another. Accurately placing records in the correct sensor profile along with accurately estimating
the distribution of normal errors becomes important when finding anomalies through the use of sensor profiles.
This sensor profiling approach is not in any way limited to sensor data and there could exist applications in
other fields where one want to map a set of conditions to different distributions of a specific variable.
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Figure 6.1: The relationship between some sensor signals given by a sensor used by Volvo for active safety. The
longitudinal distance has been used to evaluate the anomaly detection method.

6 Results

The performance of the general anomaly detection method is evaluated using only a single sensor signal. This
chapter contains the results from the regression analysis, sensor profiling and the final anomaly detection
results for this single sensor signal. Evaluating the performance of the anomaly detection method across several
different sensor signals to form a general conclusion is beyond the scope of this thesis.

The sensor signal used to evaluate the method comes from the RaCam-system used in certain modern Volvo
cars and is the longitudinal distance from the host car (where the RaCam is mounted) to another vehicle. A
description of the sensor reading used and the relation to other distance measures is shown in Figure 6.1. This
signal was used because it is a physical measure (position) where you expect to find a linear relationship to
other physical measures (e.g. position at previous time step, velocity, acceleration). It should also be relatively
simple for a human to detect anomalies in a sensor signal containing physical measures. Last but not least,
being able to find anomalies in this signal is of interest to Volvo Car Corporation.

6.1 Predictive Model

To create a predictive model a number of possible predictors are used to predict a response variable, as described
in chapter 4. The response variable is the longitudinal position, xi, at time step i. The initial set of predictors
used are given below, together with a short description. The predictors marked with ∗ where not included in
the final model as the method deemed them not to be statistically significant.
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Index Name or Value Description
X1 xi−1 Long. position
X2 xi−1 − xi−2 Numeric velocity of long. position
X3 ẋi−1 Long. velocity
X∗4 ẍi−1 Long. acceleration
X5 yi−1 Lateral position
X6 ẏi−1 Lateral velocity
X∗7 ÿi−1 Lateral acceleration
X8 νi−1 Speed of the host car
X9 γi−1 Yaw rate of the host car
X∗10 αi−1 Acceleration of the host car
X11 xi−1 + xi−3 − 2xi−2 Numeric acceleration of long. position

The final model consists of 22 terms in 8 predictors and includes cross-terms, X2X3 for instance. As the
method can determine the significance of the predictors a large set candidate predictors can be included. It
is not required for predictors to have a physical relationship; the amplitude of the sound emitted by the car
stereo may be included in the model if it has a statistically significant relationship to the response variable.
This enables the statistical model to capture sensor behaviour that would be missed by a traditional physically
based model.

Most of the variance (≈99 %) is explained using only the previous position (X1) and the longitudinal
velocity (X2). The adjusted R2-value for this model on the total data set with the original outliers removed
is 1− 4 · 10−6. The adjusted R2-value for new data, still containing outliers, is 0.9997. This leaves only 0.03
% of the variance that is not explained by the predictive model, which suggests that the predictive model is
indeed very accurate. The accuracy may however not be constant. There could be conditions where the model
struggles to predict the sensor reading. For example, one can imagine that tracking a fast-moving object causes
a different prediction error compared to tracking an object at a constant distance from the host car. Sensor
profiles are used to find and describe such differences.

6.2 Sensor Profiles

The existence of sensor profiles is hypothetical at this stage. A natural first step is to visualise the data and
manually inspect it in search for any signs of structure in the prediction error. The prediction errors from
180 000 randomly selected records are shown in Figure 6.2. In this data one can see some structure. There are
two small bumps in the histogram centred around −0.5 m and 0.5 m and one can also see areas in the time plot
where the variance of the prediction error seems to be constant. Deciding the initial set of features, ξ, that may
affect the prediction error, εi, at time step i, was done by consulting engineers with experience of the sensor
data and by guessing. As the method (described in Chapter 5) makes use of the most useful features one may
include insignificant features as well. Since the running time depends on the number of features included it is
however recommended to only use features with a reasonable chance of being significant. The set of ξ is as
follows:

Index Name or Value Description
ξ1 xi Long. position
ξ2 ẋi Long. velocity
ξ3 |φi| Absolute angle to target
ξ4 |γi| Absolute yaw rate of the host car
ξ5 νi Speed of the host car
ξ6 αi Acceleration of the host car
ξ7 τi Tracking time of the target

The tracking time of the target measures for how long the object has been tracked by the RaCam and
is measured in seconds. To make sure that there actually are regions with differences in prediction error
present in the data, one can plot the prediction error against the initial set of features and inspect the data
manually. The two most interesting plots, prediction error versus longitudinal velocity and prediction error
versus tracking time, are shown in Figure 6.3. As seen in Figure 6.3a the behaviour of the prediction error
for negative longitudinal velocities differs from the behaviour where the longitudinal velocity is positive. In
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Figure 6.2: The prediction error as a time series and as a histogram. As seen in the histogram, the majority of
the data has a very low prediction error.

Figure 6.3b one can also distinguish an almost exponential decay in the variance of the prediction error as the
tracking time increases.

Determining the number of groups was done using trial and error. Both methods and both distance measures
described in Chapter 5 was used. The maximum number of sensor profiles allowed ranged from 2 to 7. The goal
was to find a sensor profiler that results in unique histograms in each sensor profile. The chosen sensor profiler
was found using the evolutionary algorithm, Earth Mover’s Distance and a limit on the number of sensor profiles
equal to 3. Additional sensor profiles all exhibited histograms very similar to one of the histograms present in
one of the existing sensor profiles. The chosen sensor profiler accompanied by the resulting histograms is shown
in Figure 6.4. Of the 3 sensor profiles 2 of them are obtainable through different sets of conditions. As seen in
Figure 6.4b the distributions of the errors in the different sensor profiles are all quite different from each other.
The different profiles corresponds to the structure visible in Figure 6.3.

6.3 Defining Normal Behaviour

Using the sensor profiler shown in Figure 6.4a one can establish the normal behaviour of the prediction
error within each sensor profile. Comparing new data to the estimated normal behaviour is the basis of the
anomaly detection technique. To ensure that the differences in the data set used to find the sensor profiler are
representative for new data, a new data set was created and the data points classified using the sensor profiler.
The resulting histograms and the estimated density for each sensor profile is shown in Figure 6.5.

Using the predictive model, the sensor profiler in Figure 6.4a and the estimated densities in Figure 6.5
allows us to assign any new record to a sensor profile and compute the probability density for the error to occur
within the sensor profile. The probability density value of the prediction error is used as a ’normality measure’,
ni of the record with index i. The anomaly score of the record, ai, is defined as

ai = 1− ni. (6.1)

Anomalies now correspond to records with ai > threshold. The remaining records are considered to be
normal. Selecting a suitable threshold is done simultaneously as evaluating the performance of the anomaly
detection method. To perform the evaluation and threshold selection a labelled data set is needed.

32



(a) Prediction error versus longitudinal velocity (b) Prediction error versus tracking time

Figure 6.3: There are some relation between the prediction error and both longitudinal velocity and tracking
time. This figure is used to justify the use of sensor profiles.
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(a) The chosen sensor profiler (b) The resulting histograms for each sensor profile

Figure 6.4: The chosen sensor profilers and the resulting histograms. This sensor profiler was found through
genetic programming and as you can see the appearance of the three histograms are qualitatively different and
corresponds to the structure seen in Figure 6.3a.
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Figure 6.5: The histograms and estimated densities for each sensor profile found through the use of the sensor
profiler in Figure 6.4a. The histogram for sensor profile 2 differs slightly from the corresponding histogram in
Figure 6.4b. The resulting histograms are however considered to be similar enough to ensure that the estimated
density is representative for the entire data set.
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Figure 6.6: A constructed example of a sensor signal containing anomalies. The records marked ’Unknown’ is
difficult to label as either normal or anomalous. Establishing the normal sensor behaviour at those time steps is
difficult since the sensor exhibits abnormal behaviour.

6.4 Creating a Dataset for Evaluation

A labelled data set with known anomalies and normal records is needed to evaluate the anomaly detection
method and to select the threshold. The only way to accurately label a data set is to do it manually. Labelling
each individual record accurately was considered unreliable, even when performed manually. Even if a human
can accurately distinguish between most anomalies and normal readings, there can exist readings that are
’quite anomalous’, but maybe not anomalies. An example of this is shown in figure 6.6. Anomalies are in this
thesis defined as unexpected measurements. In regions where anomalies occur the expected measurements can
be difficult to assess. It becomes subjective and dependent on what records are included in the assessment.
Evaluating the performance of the anomaly detection method on subjectively (and possibly false) labelled
records may lead to inaccurate conclusions or choice of threshold.

An attempt to eliminate the risk of false labelling is to manually label regions instead of individual records.
It was found to be an easier task to manually label an interval where the sensor readings exhibit normal or
anomalous behaviour. The data set is divided into regions where a region that contains at least one anomaly is
labelled anomalous and regions that contain only normal records are labelled normal. Labelling the regions
in Figure 6.6 will result in two normal regions (Time ∈[1, 4] & Time ∈[12, 14]) and one anomalous region
(Time ∈[5, 11]). A region that consists of possible non-normal records but no record that can be considered an
anomaly is excluded from the data set to avoid false labels. An example of such a region is when there too few
data points to manually determine the normal behaviour.

Evaluating the performance of the anomaly detection using regions instead of individual records should not
compromise the accuracy of the evaluation. The future use of the anomaly detection method is to automatically
find sensor malfunctions. If the anomaly detection method marks a number of records located close together
that region will require further analysis. Missing a possible anomaly in that region, or falsely marking a possibly
normal record, will not affect the performance of the anomaly detector. Marking a single record as an anomaly
in a region containing only normal records will however have a negative effect on the performance.
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The Dataset

The dataset consists of 46 anomalous regions and 448 normal regions. 79 regions where excluded from the
original data due to difficulties labelling the regions. In general the normal regions are larger than the anomalous
regions. The data used to create the dataset comes from the same database as the data used for training the
anomaly detection methods but was not used during any training.

6.5 Evaluating the Performance of the Anomaly Detection

All variants of the anomaly detection method in this thesis assigns an anomaly score to each record. To convert
it to regions an anomaly score must be assigned to each region. This score is equal to the maximum anomaly
score found on the records which make up the region. The anomaly detection method is evaluated on the data
set by computing the true positive rate and the false positive rate for each of a set of thresholds to create a
ROC-curve for each of the anomaly detection methods.

The method resulting in the anomaly score in Equation (6.1) is compared against two simpler anomaly
detection methods. The first consists of assigning an anomaly score equal to:

ai = |εi|, (6.2)

where ε is the prediction error computed using the predictive model from section 6.1.
The other simple anomaly detection method, computes the moving average and defines the anomaly score

to be the difference between the sensor reading and the moving average:

ai =

∣∣∣∣xi − 1

5

i+2∑
k=i−2

xk

∣∣∣∣. (6.3)

The resulting ROC-curves is seen in Figure 6.7. The performance of the three anomaly detection methods
are rather similar, but using sensor profiling improves the result slightly. For a certain threshold this anomaly
detection method accurately classifies 94% of both the normal and the anomalous regions.

ROC-curves were created using other sensor profilers as well. The other profilers were found using other
parameters and had different numbers of sensor profiles. The performance of these were all very similar to
the performance of the method in Figure 6.7. Thus they were excluded from the report. A possible reason
that sensor profiling does not drastically improve the anomaly detection result is that almost all anomalies lie
outside the region where there is a significant difference between the different sensor profiles. Sensor profiling
will only improve the result when records are anomalous if within a certain sensor profile, but normal in another
profile. For this sensor signal almost all anomalies are considered anomalous no matter what sensor profile they
belong to.

The anomaly detection based on moving average has comparable performance to the other, more complicated,
methods. This is probably due the nature of the sensor signal and the anomalies. Moving average will be a
rather accurate predictor if the velocity is constant. Even if the moving average has a worse overall performance,
most anomalies are much larger than the typical error. This enables the moving average anomaly detection
method to be just as good as the best method for finding the most obvious anomalies. The predictive model is
also affected by errors in the predictor signals, whilst the moving average is immune to such errors and will
only be affected by errors in the response variable.
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Figure 6.7: The ROC-curves from 3 different anomaly detection methods created by varying the threshold of
the anomaly score. The optimal result is found in the top left corner and the most suitable threshold depends
on the application. The performance of the anomaly detection methods are comparable but the use of sensor
profiles yields a slightly better result.
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7 Discussion

In this chapter the general anomaly detection method and the results are discussed. Other uses for the methods
included in this thesis will also be presented. An attempt to describe the importance of suitable predictors and
how the behaviour of the sensor that is to be analysed affects the performance will also be made.

7.1 Predictive Model

The performance of the predictive model stands or falls with the statistical significance of the initial set of
predictors. The method for finding this model in this thesis will result in a good sensor model when given
access to significant external predictors. Typical external predictors are sensor signals which measure the same
entity or system. Advanced sensor or sets of sensors measuring the same entity may exhibit partial redundancy.
This can be used to validate a sensor reading through prediction. Without access to external predictors the
model may only explain the most basic behaviour of the sensor and will not account for dynamic changes
in the monitored entity. A sensor measuring the distance to objects surrounding the sensor may be effected
by the velocity of the sensor itself, the structure of the objects or the acceleration of the objects. Including
external predictors in a model can enable the model to foresee changes in a sensor signal that can not be
predicted using only the history of that signal. In extreme cases can a sudden and seemingly unpredictable
change in a signal be predicted by a model using external predictors; a large change in position and velocity is
predicted by observing a large difference in acceleration. If such a change is considered (by human analysts) to
be an anomalous event it may pass the anomaly detection method undetected. This as such an event do not
fit the definition of an anomaly being unpredictable. Analysing the predictive model to not only ensure the
future performance of the anomaly detection, but also to understand the behaviour of the sensor is therefore
important.

7.2 Sensor Profiles

Sensor profiles finds differences in the performance of the predictive model. These differences will originate
from differences in the behaviour of either the sensor signal that is to be analysed or one or several predictors.
The usage of sensor profiles can be extended beyond anomaly detection to sensor verification. Instead of the
prediction error the sensor can be compared to a reference sensor that is known to be very accurate. If this
error is used one can find sensor profiles where the true performance of the sensor differs. Automatically finding
regions where the sensor performance differs is useful when deciding uses of the sensor and also when evaluating
results based on senor readings. If an active safety function has a certain success rate using ideal sensor readings,
the perceived performance of the function in an actual car will also depend on the accuracy of the sensor signal
it relies upon. The method for finding sensor profiles is general and can be used on any dataset where the
behaviour of a stochastic variable is of interest. It can be seen as a method for clustering distributions and can
be used when other statistic and machine learning tools are unable to extract any information from the data.

7.3 Most Suitable Anomaly Detection Method

The accuracy of the predictive model and the differences between the distributions in the sensor profiles
determines whether sensor profiles will be useful for anomaly detection or not. Basically if a record is an
anomaly in one sensor profile and normal in another, sensor profiles may be useful, given that the regions are
separable. For the sensor signal used to evaluate the method in chapter 6 the use of sensor profiling improves
the result of the anomaly detection slightly. Using the prediction error directly as an anomaly measure will
yield almost identical results for this particular sensor signal. This as most anomalies are located outside the
region where there is a significant difference between the sensor profiles. In signals where anomalies occur in
regions where there is a large difference in density between senor profiles the use of sensor profiling may greatly
improve the results. However, it will only be able to do so if it can accurately map regions, where the behaviour
of the error differs, to the correct sensor profile. To achieve an improvement the access to features (ξ1, . . . , ξm)
that are related to the error is therefore crucial. Using sensor profiling when finding anomalies in other sensor
signals may yield a much better result than simply using the prediction error, the choice of methods depends
on the accuracy of the predictive model and the behaviour of the sensor signal.
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8 Future Work

8.1 Evaluate the Anomaly Detection Method on General Data

The aim of this project was to produce a general anomaly detection method for sensor data. Examining
how this method performs against other methods on several types of data, with different types and sizes of
anomalies, would of course be very interesting. The possibe need for access to external predictors can be seen
as a drawback, but the possibility of using correlated sensor signals may prove very useful in certain situations.

8.2 Evaluate True Sensor Performance with Sensor Profiles

The novel method introduced in this thesis used to determine sensor profiles might have several uses beyond
anomaly detection. Establishing ranges of conditions where the true sensor performance differs would be useful.
Having an accurate description of the sensor performance may, at least in the case regarding active safety in
vehicles, lead to lives being saved.

8.3 Use Methods to Create Sensor Model

Predicting measurements and knowing the distribution of prediction error takes you close to creating an accurate
virtual sensor model. Creating a model, using the statistical tools used in this thesis and real world data, could
result in a rather simple and statistically proven model. This model would be data-driven and not rely on
assumptions regarding the sensor or the traffic environment. Further analysis using other statistical methods
is probably needed to create such a model, estimating the auto-correlation to predict sequential readings for
instance. Also, instead of predicting sensor output based on predictors from the sensor itself true readings is
probably needed. The predictive model only produces the expected output of the sensor, it does not reveal any
information regarding the difference between sensor reading and the true reading. A sensor signal can behave
normally and still show extremely inaccurate readings. Constant errors can not be seen in the prediction error.
If one wishes to create a sensor model it will need to map a description of the measured entity to sensor outputs.
To create an accurate sensor model a data set containing a true description of the measured entity and the
measured sensor output is needed. An accurate sensor model could be used to virtually assess the performance
of active safety functions which would hasten the development of such functions.

8.4 Real Time Implementation

The anomaly detection method proposed in this thesis can be used in real time. Using it to flag anomalies as
they occur is of course also an interesting application. The main drawback of this anomaly detection method
is that it can not determine the correctness of the anomalous record. It may very well be the case that the
measurements leading up to the anomaly are incorrect and the anomalous measurement is accurate. A function
that can determine that something has gone wrong is not very useful without the abilities to determine when
the actual error occurred, why it has occurred or even what the correct result actually is.
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9 Conclusion

This thesis presents a method and tool chain to automatically detect anomalies in any sensor data that can be
represented as a time series. The performance of this method is still to be proven on a large set of general
sensor data, but it shown to perform well on the one signal it was evaluated on. The method should have
particularly good performance when used on sensor systems consisting of several sensor signals. This as it
makes use of partial redundancy and the statistical relationship between different signals.

Sensor profiling, that was introduced in this thesis, may prove useful in other areas as it is a general way to
describe the relationship between continuous variables and a continuous stochastic variable.
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