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a b s t r a c t

We have prepared novel [h4] and [h5]þ tricarbonyliron complexes from an unusual enantiopure cyclo-
hexadiene ligand that possesses a quaternary stereocentre; this in turn is prepared through biotrans-
formation of an aromatic ring. The cyclohexadiene ligand initially possessed two hydroxyl groups, both
of which could be substituted with other functionality by means of an overall
[h4] / [h5]þ / [h4] / [h5]þ / [h4] sequence. From six novel tricarbonyliron complexes which have
been prepared, three have been characterised by x-ray crystallography. The reaction sequence we
describe is potentially of relevance to the synthesis of analogues of the anti-influenza drug oseltamivir. In
addition, the failure of an attempted addition of a bulky nitrogen nucleophile to an [h5]þ complex sheds
light on the limits of reactivity for such additions. Thus, two bulky nucleophiles which are each known to
add successfully to unencumbered [h5]þ complexes seemingly cannot be added sequentially to adjacent
positions on the cyclohexadiene ligand.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dihydroxylation of an aromatic ring using a microorganism is a
useful synthetic method, insofar as such a transformation is very
difficult to achieve by conventional methodology [1]. This
biotransformation has been known since 1968 [2] and the cyclo-
hexadiene-cis-diol products of this reaction have found application
inmany branches of synthesis [3]. There are nowmany hundreds of
these cis-diols which have been reported, and several of them are
commercially available in significant quantities from suppliers such
as Almac group. The selectivity of the dihydroxylation process has
been extensively studied, and as shown in Scheme 1, a trend has
been discerned [4]. In the majority of cases, metabolism of a
monosubstituted arene 1 will afford the product 2, having the
stereochemistry shown, arising from dihydroxylation in the ortho
and meta positions (Scheme 1a). In contrast, certain organisms [5]
are able to metabolise benzoic acid 3 to give the product 4, a
r B.V. This is an open access articl
process exhibiting not only complementary regioselectivity (i.e.
ipso and ortho dihydroxylation) but also the opposite sense of ab-
solute stereoinduction (Scheme 1b). Unlike cis-diols of type 2, cis-
diol 4 possesses a quaternary centre, which makes 4 (and
substituted variants thereof) [6] a particularly useful chiral pool
starting material [3a]. cis-Diol 4 has seen uses in the synthesis of
natural products [7], carbohydrates [8], drug candidates [9], and
various novel architectures [10].

The organometallic chemistry of such cis-diols has been most
extensively explored for iron. Complexation of a diene as a [h4]
tricarbonyliron(0) complex can serve not only as a “protecting
group” for the diene, but also as a synthetically enabling trans-
formation that allows access to new reactivity that is not available
for the uncomplexed diene [11]. For cis-diols of type 2, it has been
demonstrated that treatment with Fe2(CO)9 indeed leads to the
formation of the [h4] tricarbonyliron(0) complex of the diene [12].
As shown in Scheme 2a, of the two possible diastereomeric prod-
ucts which could be formed, only the product with the diol endo is
obtained (i.e. the iron coordinates to the face of the cyclohexadiene
ring which bears the hydroxyl groups). This trend has been shown
to be consistent for various diene substituents (2 / 5) and also
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Scheme 1. Regio- and stereoselectivity of dioxygenase enzymes.

Scheme 2. Facial selectivity in the formation of tricarbonyliron complexes of 2.
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when the hydroxyl groups are derivatised as ethers or esters
(6 / 7). It has previously been proposed [13] that such selectivity
might be due to the incoming 16 valence-electron Fe(CO)4 fragment
coordinating to a hydroxyl oxygen in the first instance (8, Scheme
2b), before migration to form [h2] alkene complex 9, loss of
another carbonyl ligand and formation of 5.

We have previously studied the organoiron [14] and organo-
cobalt [15] chemistry of derivatives of ipso, ortho diol 4. Since 4
possesses Lewis basic groups on both faces of the cyclohexadiene
ring, formation of either diastereomer (diol endo or diol exo) could
be envisaged. In the event, complexation of methyl ester 10 gave
only complex 11 (diol endo), indicating that pre-coordination to the
Scheme 3. Facial selectivity in the formation of tricarbonyliron complexes of de-
rivatives of 4 (“LA” ¼ Lewis acid).
diol dominates over pre-coordination to the ester (Scheme 3a)
[14a]. In contrast, when the diol is protected as an acetonide (as in
12), a product 13may be isolated inwhich the (masked) diol is now
exo (Scheme 3b) [14b]. Unexpectedly, 13 was the product of a
“clockwise” acetonide migration, which we propose occurs via an
[h4] / [h5]þ / [h4] sequence [16]. Thus, the initially formed [h4]
complex 14 coordinates an unidentified Lewis acidic species to give
[h4] complex 15, in which the acetonide oxygen has been rendered
cationic (and hence a good leaving group). Extrusion of this leaving
group gives [h5]þ complex 16, which bears a tethered nucleophile.
Such [h5]þ cyclohexadienyl complexes are known readily to un-
dergo addition of nucleophiles at the termini of the dienyl ligand
[17]. For dienyl ligands bearing terminal esters (such as 16), a
marked preference has been noted for addition of nucleophiles u-to
the ester, as opposed to ipso to the ester [18]. Additionally, nucle-
ophiles generally add to [h5]þ dienyl ligands exo to the iron [19].
Therefore, recombination of the tethered nucleophile in 16will give
rise to [h4] complex 13.

We subsequently sought deliberately to exploit
[h4] / [h5]þ / [h4] transformations from complex 11 for the
purposes of diversifying the cyclohexadiene ligand [14c]. Such re-
action sequences have been reported previously for tricarbonyliron
complexes derived from arene cis-diols of type 2 [12aed,f,g]. In
such complexes, the hydroxyl groups (or derivatives thereof) may
be lost one of two ways. Treatment with Brønsted acid and CeO
bond cleavage gives an [h5]þ complex, or alternatively, dehydrox-
ylation/dealkoxylation with trityl salts can be used, although this
latter method can suffer from competing hydride abstraction
(leading to oxidation to a ketone). Once the [h5]þ complex has been
formed, in the absence of an intramolecular nucleophile, the
complexes may be isolated and characterised. Subsequent addition
of a nucleophilic species then results in nucleophilic addition to
give a new [h4] complex. Of course, when tricarbonyliron com-
plexes formed from arene cis-diols are used, a regioselectivity issue
may occur: since there are two hydroxyl groups, either of which
might be lost, two regioisomeric [h5]þ complexes may arise. It has
been determined that for complexes of types 5 or 7 (derived from
ortho,meta-diols of type 2), the nature of the substituent influences
the regioselectivity in [h5]þ complex formation (for example, a
highly electron-withdrawing trifluoromethyl substituent on the
diene leads to highly selective extrusion of the distal hydroxyl
group when forming the [h5]þ complex). However, for complex 11
(derived from ipso, ortho-diol 4), the ester substituent is not con-
jugated to the diene, so low regioselectivity was anticipated.

In the event, upon treatment of 11 with HBF4 in acetic anhy-
dride, two cations 17 and 18 were indeed formed (17:18 z 1:4)
[14c]. Acetic anhydride was used as solvent in order to effect in situ
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O-acetylation [20], since [h5]þ cyclohexadienyl complexes with a
free endo hydroxyl group at C6 are known to be unstable [13b].
When the resultant mixture of cations was then treated with
various nucleophiles, the two regioisomeric [h4] complexes 19 and
(±)-20were obtained, with (±)-20 as themajor product (Scheme 4).
In the formation of 19 from 17, complete selectivity for addition of a
nucleophile u-to an ester is once again observed. In the formation
of (±)-20, racemic products were always obtained despite the fact
that 11 is a single enantiomer. This is due to the fact that [h5]þ

complex 18 possesses a plane of symmetry and is therefore achiral.
The reaction sequence 11 / 18/20 is a homochiral [h4]/ achiral
[h5]þ/ racemic [h4] process; comparable sequences for other tri-
carbonyliron cyclohexadiene complexes have been disclosed [21].
All of the products 19 and (±)-20 smoothly underwent oxidative
decomplexation of the tricarbonyliron fragment (except 20,
Nu ¼ H), so giving a range of novel cyclohexadienes for use in
synthesis.

Both 19 and (±)-20 possess a residual acetoxy group, which
could be induced to leave by treatment with Brønsted acid; this
would lead to formation of another [h5]þ complex, which in turn
could be treated with another nucleophile to give a further [h4]
complex. By this approach, both hydroxyl groups of the original
arene cis-diol could be substituted with any desired nucleophile.
Overall, therefore, a highly versatile
[h4]/ [h5]þ / [h4]/ [h5]þ / [h4] sequence could allow for rapid
diversification of the initial tricarbonyliron complexes. One
example of such a sequence employing an arene cis-diol starting
material has been reported, namely Stephenson's approach to
hippeastrine [22]. One motivation for wishing to employ such a
sequence with a complex derived from ipso, ortho-diol 4 was to
effect a formal synthesis of oseltamivir 27 (Tamiflu®). This anti-
influenza medication has been the subject of a great many syn-
thetic studies [23], including several that utilise arene cis-diol
starting materials [24]. Additionally, one of us had already reported
a total synthesis of (�)-oseltamivir that utilised tricarbonyliron
methodology [18b]. A combination of this synthesis with an
[h4] / [h5]þ / [h4] / [h5]þ / [h4] sequence from 4 allowed for a
formal synthesis of (±)-oseltamivir, as shown in Scheme 5[14c].

As oseltamivir possesses an ethyl ester side chain, the required
[h4] complex 22was prepared in analogous fashion to 11. Treatment
of 22 with Brønsted acid in acetic anhydride gave the expected
regioisomeric mixture of [h5]þ complexes. Treatment of this
mixture with sodium borohydride then gave isomeric [h4] 23 and
(±)-24, each with a methylene unit in the ring. The major product
was the desired complex (±)-24, which was treated with Brønsted
acid once again (this time in dichloromethane) to effect loss of the
second acetyl group and formation of the second [h5]þ complex in
the sequence, (±)-25. Finally, treatment of (±)-25 with the second
nucleophile (tert-butylcarbamate) and base gave (±)-26, an inter-
mediate previously reported in our 2007 synthesis of oseltamivir
[18b].

The sequence depicted in Scheme 5 has the potential to allow
for the introduction of substituents at C6, by use of a different
nucleophile in the first [h4] / [h5]þ / [h4] sequence, instead of
simply effecting a reductive “defunctionalisation” with
Scheme 4. Formation of [h5]þ complexes from 11 and their reacti
borohydride. Although many analogues of oseltamivir have been
prepared and evaluated, substitution at C6 has been comparatively
underexplored. The original drug discovery programme which led
to the development of oseltamivir also evaluated an analogue
bearing a methyl group at C6, anti to the amine at C5 [25]. This
substitution was found to be deleterious (>103 weaker binding to
influenza A neuraminidase); a subsequent modelling study sug-
gests this is due to undesirable steric interactions [26]. However,
due to the aforementioned tendency for nucleophiles to add to
tricarbonyliron [h5]þ dienyl complexes exo to the metal, our
methodology would allow for the introduction of C6 substituents
syn to the C5 amine, not anti. Indeed, more recent work from Pinto
et al. has shown that a substituent at C6 syn to the C5 group is not
only tolerated, but may impart particular benefits [27]. Specifically,
a substituent with this configuration at C6 is able to interact with
the so-called “150 cavity”, a potential additional binding site
located near the active site of neuraminidase [28]. On the basis of
the above rationale, we sought to synthesise an analogue of osel-
tamivir with a substituent at C6; this paper describes our results in
this regard.
2. Results and discussion

Ethyl ester [h4] complex 22 was synthesised as previously
described [14c]. Treatment of 22with tetrafluoroboric acidediethyl
etherate in acetic anhydride led to formation of cations 28 and
(achiral) 29. NMR analysis of the reaction mixture indicated these
to be present in the ratio 28:29z 1:14 (Scheme 6). Whereas in our
previous work we had never attempted the separation or charac-
terisation of 28 and 29, in the current case we were able to develop
a protocol to effect the removal of unwanted 28. This exploited the
seemingly lower solubility of 28 than 29. Thus, dilution of the re-
action mixture with diethyl ether led to formation of a precipitate.
Filtration and analysis of the solid showed it to consist of a mixture
of 28:29z 2:3, whereas concentration of the filtrate under reduced
pressure gave pure 29. The yield of pure 29 varied between 50% and
80% upon repetition of this procedure. The [h5]þ complex 29 was
crystalline and an x-ray crystal structure was obtained (Fig. 1).

Inspection of the crystallographic data shows the [h5] dienyl
fragment in 29 to be almost coplanar, as expected (with dihedral
angles of C2eC3eC4eC5 ¼ 2.6(3)� and C3eC4eC5eC6 ¼ 1.4(3)�;
numbering as per Fig.1). The “pucker” of the cyclohexadienyl ring is
clearly visible, with C1 more distant from the metal centre than the
other ring carbons (and with dihedral angles of
C1eC2eC3eC4 ¼ 24.9(3)� and C1eC6eC5eC4 ¼ 27.3(3)�). The FeeC1

distance (i.e. between the sp3-hybridised ring carbon and the metal
centre) is 2.725(2) Å. To our knowledge, there is a single previous
literature report of a crystal structure of a cationic tricarbony-
liron(0) cyclohexadienyl complex where the sp3 carbon is a qua-
ternary carbon [29]. In this report, the FeeC1 distance is 2.670 Å. In
contrast, some fourteen crystal structures have been reported for
analogous complexes where the sp3 carbon is not a quaternary
carbon [30]. For these structures, the reported FeeC1 distances
range from 2.456(4) Å to 2.733(9) Å. Therefore, the presence of the
endo acetoxy group in 29 does not appear to distort significantly the
on with nucleophiles. Nu ¼ PhSe, He (from NaBH4), N3
e, HOe.



Scheme 5. Our previously reported formal synthesis of (±)-oseltamivir 27.

Scheme 6. Synthesis of [h5]þ complexes 28 and 29.
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geometry of the cyclohexadienyl ligand. The bond lengths FeeC3,
FeeC4 and FeeC5 are all equivalent within 3s, whereas the bonds to
the dienyl termini (FeeC2 and FeeC6) are longer. Inspection of the
NMR data for 29 clearly illustrates its achiral nature, since for the
Fig. 1. Solid state structure of 29. Ellipsoids are represented at 30% probability. H atoms are s
see the supporting information.
dienyl ligand, only three proton resonances are observed (in a 1:2:2
ratio), indicative of the plane of symmetry in the molecule.

Having fully characterised 29, we next examined the addition of
a nucleophile other than hydride. We opted to use
hown as spheres of arbitrary radius. CCDC #1405160. For tables of crystallographic data,



Scheme 7. Synthesis of phosphonates.
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trimethylphosphite, as this would lead to installation of a phos-
phonate at C6 and there is some precedent for use of such a func-
tional group in oseltamivir analogue design [24f,31]. Phosphites are
among the less commonly used nucleophiles for addition to [h5]þ

cyclohexadienyl tricarbonyliron(0) complexes [18e,32], but are
nevertheless synthetically useful, insofar as the adducts formed
readily undergo a MichaeliseArbuzov reaction [33] to provide the
corresponding phosphonates [32a]. With a view to preparing both
possible novel isomeric [h4] complexes, we exposed the crude
mixture of [h5]þ complexes 28 and 29 to trimethylphosphine in
THF, followed by addition of sodium bicarbonate (Scheme 7). As
expected, the major product was the desired (±)-33, arising from
intermediate (±)-31. A small amount of isomeric 32, arising from
30, was also isolated. Products 32 and (±)-33 were separated and
fully characterised; crystals of (±)-33 suitable for x-ray diffraction
were obtained and the crystal structure is shown in Fig. 2.

To our knowledge, the crystal structure of (±)-33 constitutes the
Fig. 2. Solid state structure of (±)-33. Ellipsoids are represented at 30% probability. H atoms
data, see the supporting information.
first crystal structure of an [h4] diene tricarbonyliron complex
bearing a phosphonate at an adjacent carbon. In this structure, the
FeeC3 and FeeC4 bonds are unambiguously shorter than the FeeC2

and FeeC5 bonds. The [h4] portion of the ligand is almost planar,
with a C2eC3eC4eC5 dihedral angle of 1.9(4)�. In the 1H NMR
spectrum of (±)-33, the diastereotopic nature of the phosphonate
methyl groups is clearly visible, as they give rise to two discrete
doublets, each exhibiting 3JCP coupling. Additionally, the proton at
C6 resonates as a doublet of doublets, with 2JHP ¼ 24.5 Hz and
3JHH ¼ 3.0 Hz. All proton and carbon resonances were unambigu-
ously assigned on the basis of 2D NMR experiments (see
Supplementary information), with the exception of the diaster-
eotopic methyl groups and also the protons at C3 and C4 (whose
resonances overlap).

With the desired phosphonate (±)-33 in hand, we then sought
to undertake the second [h4] / [h5]þ / [h4] sequence. Accord-
ingly, (±)-33 was treated with HBF4 in ether, giving rise to [h5]þ
are shown as spheres of arbitrary radius. CCDC #1405159. For tables of crystallographic



Scheme 9. Serendipitous synthesis of (±)-37.
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cyclohexadienyl complex (±)-34 (Scheme 8). Since only one leaving
group remained in substrate (±)-33, there was no regiochemical
ambiguity upon [h5]þ complex formation and (±)-34 was the sole
product. Unlike [h5]þ complex 29, the [h5]þ complex (±)-34 pos-
sesses no plane of symmetry, and the inequivalence of all positions
on the cyclohexadienyl ligand is visible in the crude NMR spectra. It
was our intention to effect the addition of tert-butylcarbamate to
(±)-34 in order to access (±)-35. As (±)-35 is an analogue of (±)-26
(Scheme 5), we planned to elaborate (±)-35 to an analogue of
oseltamivir, (±)-36, using the same methodology as was employed
for converting (±)-26 into (±)-oseltamivir 27. However, when [h5]þ

cyclohexadienyl complex (±)-34 (used crude) was treated under
the same conditions used to convert (±)-25 to (±)-26 (i.e. tert-
butylcarbamate as nucleophile, Hünig's base, dichloromethane,
0 �C to room temperature, c.f. Scheme 5), we were surprised to find
that (±)-35 was not formed (Scheme 8).

After work-up, a new product was found to have been formed,
but rather than the expected (±)-35, instead alcohol (±)-37 was
isolated in 46% overall yield from (±)-33 (Scheme 9). This could be
rationalised on the basis of [h5]þ complex (±)-34 remaining inert
towards the nitrogen nucleophile, yet reacting with water during
the aqueous work-up. It has previously been reported that in cases
where an [h5]þ complex has failed to react with a particular
nucleophile, another type of byproduct may be isolated after
aqueous workup, namely an ether arising from one molecule of
water and twomolecules of the [h5]þ complex [34]. We cannot rule
out the formation of such an ether in the present case, as trace
amounts of a material less polar than (±)-37were observed by TLC,
but were not isolated. Crystals of novel [h4] complex (±)-37 suitable
for x-ray diffraction were obtained and the crystal structure of
(±)-37 is shown in Figs. 3 and 4.

In the crystal structure of (±)-37, the FeeC3 and FeeC4 bonds
are unambiguously shorter than the FeeC2 and FeeC5 bonds, as
was the case for (±)-33 also. However, in (±)-37, the FeeC2 bond
is also unambiguously longer than the FeeC5 bond. This is
possibly a consequence of the fact that in (±)-37, the ester group
is conjugated to the diene (unlike in 29 and (±)-33), resulting in
electronic perturbation of the h4 ligand to some extent. Inter-
estingly, a comparable lengthening is not observed in other re-
ported crystal structures of h4 cyclohexadiene tricarbonyliron(0)
complexes bearing an ester on the diene terminus [14b,35]. The
h4 ligand in (±)-37 also deviates slightly further from planarity
than in (±)-33, with a C2eC3eC4eC5 dihedral angle of 3.3(2)�.
The solid state structure of (±)-37 shows intermolecular
hydrogen bonding, with the hydroxyl hydrogen forming a bond
to the P]O motif of an adjacent molecule (Fig. 4). In the 1H
NMR spectrum of (±)-37, the inequivalence of the two diaster-
eotopic phosphonate methyl groups is not as obvious as for
(±)-33, due to a degree of peak broadening, but the inequiva-
lence of the two diastereotopic protons of the ester methylene is
clearly visible.

The failure of (±)-34 to react with the tert-butylcarbamate
nucleophile cannot be attributed to the nucleophile itself, as this
Scheme 8. Synthesis of the second cyclohexadienyl co
has been shown previously to be capable of adding to [h5]þ dienyl
tricarbonyliron(0) complexes as desired [14c,18b,36]. Rather, we
attribute the lack of reaction to the nature of (±)-34 itself. The
phosphonate motif imparts steric bulk to (±)-34 in comparison to
(±)-26, and is located not only immediately adjacent to the desired
site of nucleophilic addition, but also on the same face of the ligand
the nucleophile would approach. As such it is plausible that the
bulky phosphonate can retard attack of a nucleophile; this effect
will be more significant when the nucleophile itself is sterically
demanding (such as tert-butylcarbamate, but not water). The re-
action outcome has some literature precedent; whereas
[h4]/ [h5]þ / [h4]/ [h5]þ / [h4] sequences are often successful
and high yielding for the homologous cycloheptadiene complexes
[37], for cyclohexadiene complexes the final step in this sequence
(i.e. addition of the second nucleophile to the [h5]þ complex already
bearing an exo substituent in the 6-position) can often be more
problematic.

Whilst (±)-37 was not the compound we sought, we never-
theless examined the decomplexation of the cyclohexadiene in this
species, as the organic fragment (±)-38 would be a novel and
potentially synthetically useful substance in its own right. This
decomplexation proved to be far from trivial, however, since the
free cyclohexadiene (±)-38 proved to be susceptible to dehydra-
tion/rearomatisation under many of the reaction conditions tried
(Scheme 10). In the first instance, cerium ammonium nitrate-
mediated decomplexation was attempted [38]. Unfortunately, the
desired (±)-38 was the minor product, and rearomatised 39 pre-
dominated. Use of an alternative oxidant to effect demetallation,
trimethylamine-N-oxide [39], still gave mostly aromatised mate-
rial. Finally, we employed basic hydrogen peroxide [40], noting that
it had previously been employed to effect demetallation of a similar
cyclohexadiene phosphonate complex (lacking a hydroxyl group)
without incident [18e]. Gratifyingly, this reaction proved both to be
exceedingly quick (5 min at 0 �C in EtOH) and also to provide (±)-38
as the major product (45%) and 39 as the minor product (41%). In
the 1H NMR spectrum of (±)-38, the b, g and d protons of the
mplex (±)-34 and attempted synthesis of (±)-35.



Fig. 3. Solid state structure of (±)-37. Ellipsoids are represented at 30% probability. H atoms are shown as spheres of arbitrary radius. CCDC #1408390. For tables of crystallographic
data, see the supporting information.
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uncomplexed a,b,g,d-unsaturated ester motif are clearly discern-
ible. The two diastereotopic methyl groups give rise to two distinct
resonances in the spectrum of (±)-38, whereas in the aromatic
byproduct 39, a single methyl environment is observed.
3. Conclusion

In conclusion, we have described a
[h4] / [h5]þ / [h4] / [h5]þ / [h4] sequence for a tricarbony-
liron(0) complex derived from 4, a product of microbial arene
oxidation. This sequence corresponds to (�)-22 / 29 / (±)-
33/ (±)-34/ (±)-37, and three of these five complexes have been
characterised crystallographically. The final [h4] complex obtained,
(±)-37 was not that which was targeted. Trimethylphosphine and
tert-butylcarbamate have previously both been shown to be
competent nucleophiles for addition to tricarbonyl [h5]þ cyclo-
hexadienyliron complexes in isolation. However, our current results
suggest that their sequential use in a
[h4]/ [h5]þ/ [h4]/ [h5]þ/ [h4] sequence to access a vicinal syn
b-amino phosphonate is not viable. We ascribe the lack of forma-
tion of the desired (±)-36 to steric hindrance of the approach of the
bulky nucleophile tert-butylcarbamate to the appreciably con-
gested electrophile (±)-34. Undesired product (±)-37 was never-
theless treated with oxidant to disengage the h4 ligand from the
metal centre; the resultant cyclohexadiene (±)-38 may find uses in
synthesis in its own right, possessing as it does stereodefined and
differentiated functionality for further elaboration. Further studies
in our groups will evaluate the addition of other nucleophiles to
(±)-34.
4. Experimental section

General procedures. Reactions were carried out under an atmo-
sphere of nitrogen; all subsequent isolation and purification pro-
cedures were performed in a fumehood, open to the atmosphere.
Solvents were dried and degassed by passing through anhydrous
alumina columns using an Innovative Technology Inc. PS-400-7
solvent purification system. Petrol refers to petroleum ether, bp
40e60 �C. TLCs were performed using aluminium-backed plates
precoated with Alugram®SIL G/UV and visualized by UV light
(254 nm) and/or KMnO4 or cerium ammonium molybdate stains,
followed by gentle warming. Flash column chromatography was
carried out using Davisil LC 60 Å silica gel (35e70 micron) pur-
chased from Fisher Scientifics. IR spectra were recorded on Per-
kineElmer 1600 FT IR spectrometer with absorbances quoted as n
in cm�1. NMR spectra were run in CDCl3 on Bruker Avance 300 or
400 MHz instruments at 298 K. Mass spectra were recorded with a
micrOTOF electrospray time-of-flight (ESI-TOF) mass spectrometer
(Bruker Daltonik). Specific rotations were recorded on an Optical
Activity AA-10 Automatic polarimeter with a path length of 1 dm.
Concentrations (c) are quoted in g/100 mL.



Fig. 4. Unit cell for (±)-37. Hydrogen bonds are shown as dashed lines.

Scheme 10. Demetallation of (±)-37.

M. ten Broeke et al. / Journal of Organometallic Chemistry 799-800 (2015) 19e2926
4.1. Tricarbonyl(h5-ethyl 6-(endo-acetyloxy)cyclohexadienyl-6-
carboxylate)iron(þ1) tetrafluoroborate(e1) 29, (þ)-(1S*)-
Tricarbonyl(h4-(5R*,6R*)-ethyl 6-(acetyloxy)-5-
(dimethoxyphosphoryl)cyclohexa-1,3-diene-1-carboxylate)iron(0)
(þ)-32 and (±)-(1S*)-Tricarbonyl(h4-(5R*,6R*)-ethyl 5-(acetyloxy)-
6-(dimethoxyphosphoryl)cyclohexa-1,3-diene-5-carboxylate)
iron(0) (±)-33

To a solution of diol 22 (625 mg, 1.92 mmol, 1.00 equiv) in acetic
anhydride (8.00 mL) was added tetrafluoroboric acid diethyl ether
complex (1.05 mL, 7.71 mmol, 4.00 equiv) at �10 �C. The reaction
mixturewas stirred at�10 �C for 1 h, after which pre-cooled diethyl
ether (60.0mL) was added, resulting in the formation of pale yellow
precipitate. The precipitate (shown by NMR to be a mixture of 28
and 29) was filtered and the filtrate concentrated under reduced
pressure and left standing for 16 h, allowing crystals of pure 29 to
form. The crystals were washed with diethyl ether (3 � 5 mL),
filtered, and dried. Crystals of 29 suitable for x-ray diffraction were
grown. Both solids were then combined and the mixture of 28 and
29 was redissolved in THF (10.0 mL) followed by the addition of
trimethylphosphine (238 mL, 2.02 mmol, 1.05 equiv) at rt. The
reaction mixture was stirred at rt for 1 h resulting in a pale yellow
to brown colour change. Saturated aqueous NaHCO3 (15.0 mL) was
added and the reaction mixture was left stirring for an additional
1 h at rt. The product was extracted using CH2Cl2 (3 � 30 mL), then
combined organic phases were dried over MgSO4 and filtered. The
filtrate was concentrated under reduced pressure, and purified by
chromatography on silica gel (20% acetone in Et2O) to give (þ)-32
(105 mg, 12%) and (±)-33 (730 mg, 83%) as pale yellow gums. 29:
Pale yellow crystals; mp ¼ 117e118 �C; 1H NMR (300 MHz, CD3CN,
numbering as per Fig. 1): d ¼ 6.90 (1H, tt, J ¼ 5.5, 1.0 Hz, H4), 6.00
(2H, dd, J ¼ 7.0, 5.5 Hz, H3, H5), 4.19 (2H, dd, J ¼ 7.0, 1.0 Hz, H2, H6),
3.97 (2H, q, J ¼ 7.0 Hz, H11), 2.18 (3H, s, H8), 1.08 (3H, t, J ¼ 7.0 Hz,
H12); 13C NMR (75.4 MHz, CD3CN): d ¼ 170.0 (C7), 165.0 (C9), 101.2
(C3, C5), 88.2 (C4), 74.7 (C1), 63.8 (C2, C6), 63.1 (C11), 20.0 (C8), 13.2
(C12); FTIR (neat): nmax ¼ 2128, 2082, 1746, 1451, 1374, 1266, 1234,
1078, 952, 892, 854 cm�1; HRMS (ESI): m/z calcd for C14H13FeO7:
265.0158 [Me(CO)3]þ; found: 265.0157. (þ)-32: Pale yellow gum;
Rf ¼ 0.33 (20:80 Acetone/Et2O); [a]D ¼ þ130 (c ¼ 0.1 in CHCl3); 1H
NMR (300MHz, CDCl3): d¼ 6.04 (1H, br s, CH]CeCOOEt), 5.64 (1H,
br s, ¼CHeCH]CeCOOEt), 5.39 (1H, br s, CH-OAc), 4.22e4.02 (2H,
m CH2CH3), 3.78 (6H, br d, J ¼ 20.5 Hz, PO(OCH3)2), 3.23 (1H, br s,
CH]CHeCH]CeCOOEt), 2.49 (1H, br s CHePO(OCH3)2), 2.09 (3H, s
OCOCH3), 1.23 (3H, t, J ¼ 7.0 Hz CH2CH3); 13C NMR (75.4 MHz,
CDCl3): d ¼ 170.5 (OCOCH3), 169.0 (COOEt), 90.9, 83.6, 67.5 (d,
J ¼ 23.0 Hz), 61.1 (CH2CH3), 54.1, 53.8, 52.9, 21.1 (COCH3), 13.9
(CH2CH3) ppm; 31P NMR (121.5 MHz, CDCl3): d ¼ 28.9 ppm; FTIR
(neat): nmax ¼ 2951, 2854, 2052, 1968, 1740, 1448, 1368, 1248, 1214,
1026, 959, 793, 677 cm�1; HRMS (ESI): m/z calcd for C16H19FeO10P:
480.9957 [MþNa]þ; found: 481.0053. (±)-33: Pale yellow crystals;
mp ¼ 107 �C; Rf ¼ 0.47 (20:80 Acetone/Et2O); 1H NMR (400 MHz,
CDCl3; numbering as per Fig. 2): d ¼ 5.54e5.47 (2H, m, H3 and H4),
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4.09 (2H, q, J ¼ 7.0 Hz, H11), 3.75 (1H, d, J ¼ 6.0 Hz, H2), 3.67 (3H, d,
3JHP ¼ 5.5 Hz, H13 or H14), 3.64 (3H, d, 3JHP ¼ 5.5 Hz, H13 or H14), 3.14
(1H, br s, H5), 2.63 (1H, dd, 2JHP ¼ 24.5 Hz, 3JHH ¼ 3.0 Hz, H6), 2.08
(3H, s, H8), 1.22 (3H, t, J ¼ 7.0 Hz, H12);13C NMR (75.4 MHz, CDCl3;
numbering as per Fig. 2): d ¼ 209.7 (C10/C20/C30), 169.7 (C7), 168.0
(d, 3JCP ¼ 4.0 Hz, C9), 85.7 (C3), 85.3 (d, 3JCP ¼ 4.0 Hz, C4), 84.1 (d,
2JCP ¼ 9.5 Hz, C1), 62.3 (C11), 61.6 (d, 3JCP ¼ 11.0 Hz, C2), 54.2 (d,
2JCP ¼ 9.0 Hz, C5), 53.0 (d, 2JCP ¼ 10.5 Hz, C13 or C14), 52.9 (d,
2JCP ¼ 10.5 Hz, C13 or C14), 47.9 (d, 1JCP ¼ 132.0 Hz; C6), 21.2 (C8), 13.6
(C12) ppm; 31P NMR (121.5 MHz, CDCl3): d ¼ 24.9 ppm; FTIR (neat):
nmax ¼ 2951, 2854, 2052, 1968, 1740, 1448, 1368, 1248, 1214, 1026,
959, 793, 677 cm�1; HRMS (ESI): m/z calcd for C16H19FeO10P:
459.0143 [MþH]þ; found: 459.0148; m/z calcd for C16H19FeO10P:
480.9957 [MþNa]þ; found: 480.9933.

4.2. (±)-(1R*)-Tricarbonyl(h5-(6S*)-ethyl 6-(dimethoxyphosphoryl)
cyclohexadienyl-1-carboxylate)iron(þ1) tetrafluoroborate(e1)
(±)-34

To a solution of phosphonate (±)-33 (126 mg, 0.275 mmol, 1.00
equiv) in dichloromethane (5.00 mL) was added tetrafluoroboric
acid diethyl ether complex (45 mL, 0.330 mmol, 1.20 equiv)
at �10 �C. The reaction mixture was stirred at �10 �C for 1 h, after
which pre-cooled diethyl ether (10.0 mL) was added, resulting in
the formation of pale yellow precipitate. The precipitate was
filtered and washed with further diethyl ether (3 � 10 mL), then
dried in air to give (±)-34 (crude product was used without puri-
fication) as a pale yellow gum; 1H NMR (300 MHz, CDCN): d ¼ 7.35
(1H, br s, h-CHeCHeCeCOOEt), 6.63 (1H, br s, h-CHeC-COOEt), 5.99
(1H, br s, h-CHeCHeCHeCeCOOEt), 4.63 (1H, app q, J ¼ 7.0 Hz, h-
CHeCHeCHeCHeCeCOOEt), 4.27 (2H, br d, J ¼ 6.0 Hz, CH2CH3),
3.58 (6H, br s, PO(OCH3)2), 1.25 (3H, t, J ¼ 6.5 Hz, CH2CH3); the
resonance for CHeP was not observed; 13C NMR (75.4 MHz, CDCN):
d ¼ 166.1 (COOEt), 103.7, 102.4, 91.4, 83.5 (visible in HSQC), 64.1
(CH2CH3), 54.8 (PO(OCH3)2), 13.6 (CH2CH3); two resonances were
not observed; 31P NMR (121.5 MHz, CDCN): d ¼ 16.6 ppm; FTIR
(neat): nmax ¼ 2960, 2927, 2860, 2131, 2087, 1725, 1462, 1379, 1273,
1122, 1072, 1040, 962, 855, 778, 743, 705 cm�1; HRMS (ESI): m/z
calcd for C14H16FeO8Pþ: 398.9927 [M]þ; found: 398.9974.

4.3. (±)-(1R*)-Tricarbonyl(h4-(5R*,6S*)-ethyl 6-
(dimethoxyphosphoryl)-5-hydroxycyclohexa-1,3-diene-1-
carboxylate)iron(0) (±)-37

To a suspension of (±)-34 prepared as described above (assumed
to be 0.275 mmol, 1.000 equiv) and tert-butylcarbamate (48.0 mg,
0.413 mmol, 1.50 equiv) in dichloromethane (3.00 mL) at 0 �C was
added dropwise diisopropylethylamine (72.0 mL, 0.413 mmol, 1.50
equiv). The reaction mixture was stirred at 0 �C for 15 min, after
which it was allowed to warm to rt over 2 h whilst stirring. The
reaction mixture was diluted with dichloromethane (10.0 mL) and
washed with 10% w/v aqueous citric acid solution (3 � 10 mL). The
organic phase was dried over MgSO4 and filtered. The filtrate was
concentrated under reduced pressure and purified by chromatog-
raphy on silica (20% acetone in Et2O) to give (±)-37 (53 mg, 46%
from (±)-33) as a pale yellow gum; Rf ¼ 0.30 (20:80 Acetone/Et2O);
1H NMR (300MHz, CDCl3, Numbering as per Fig. 3): d¼ 6.24 (1H, br
s, H3), 5.42 (1H, br s, H4), 4.65 (1H, br s, H6), 4.27e4.19 (1H, m, H8),
4.13e4.05 (1H, m, H8), 3.81e3.68 (7H, m, H1, H11, H12), 3.40e3.30
(2H, m, H5, OH), 1.27 (3H, t, 7.0 Hz, H9); 13C NMR (75.4 MHz, CDCl3,
Numbering as per Fig. 3): d ¼ 210.9 (C10/C20/C30), 170.7 (C7), 86.4
(C3), 85.8 (C4), 71.4 (C6), 64.0 (C5), 60.8 (C8), 55.8 (br, C2), 53.1 (br, C11

or C12), 53.0 (br, C11 or C12),14.2 (C9) (the resonance for C1 was not
observed); 31P NMR (121.5 MHz, CDCl3): d ¼ 29.2 ppm; FTIR (neat):
nmax ¼ 3327, 2956, 2058, 1985, 1709, 1449, 1276, 1213, 1066, 1033,
824, 792, 666, 610 cm�1; HRMS (ESI): m/z calcd for C14H17FeO9P:
438.9852 [MþNa]þ; found: 438.9875.

4.4. Ethyl (5S*,6R*)-6-(dimethoxyphosphoryl)-5-
hydroxycyclohexa-1,3-diene-1-carboxylate (±)-38 and Ethyl 2-
(dimethoxyphosphoryl)benzoate 39

To a solution of (±)-37 (23 mg, 0.045 mmol, 1.0 equiv) in ethanol
(1.5 mL) at 0 �C was added 35% aqueous hydrogen peroxide (310 mL,
3.53 mmol, 79.0 equiv), followed by the dropwise addition of 1 M
NaOH (270 mL, 0.27 mmol, 6.0 equiv). The reaction mixture was
stirred for 5 min at 0 �C, after which 1.0 M aqueous sodium thio-
sulfate (10 mL) was added and the product was extracted using
dichloromethane (3 � 10 mL). The combined organic phases were
dried over MgSO4 and filtered. The filtrate was concentrated under
reduced pressure and purified by chromatography on silica (20%
acetone in Et2O) to give (±)-38 (5.6 mg, 45%) and 39 (4.8 mg, 41%).
(±)-38: colourless gum; Rf ¼ 0.24 (20:80 Acetone/Et2O); 1H NMR
(500 MHz, CDCl3, numbering as per Fig. 3): d ¼ 7.08 (1H, t, J ¼
5.8 Hz, H5), 6.22 (1H, d, J¼ 10.6 Hz, H3), 6.05e6.02 (1H, m, H4), 4.95
(1H, dd, 2JHP ¼ 55.5 Hz, 3JHH ¼ 8.0 Hz, H1) 4.31e4.20 (2H, m, H8),
3.81 (1H, d, J ¼ 11.3 Hz, OH), 3.77 (3H, d, 3JHP ¼ 11.0 Hz, H11 or H12),
3.70 (3H, d, 3JHP ¼ 11.0 Hz, H11 or H12), 3.64 (1H, dd, 3JHP ¼ 21.5 Hz,
3JHH ¼ 8.8 Hz, H6), 1.32 ppm (3H, t, J ¼ 7.1 Hz, H9); 13C NMR
(125.76 MHz, CDCl3, numbering as per Fig. 3): d ¼ 165.4 (C7), 141.0
(d, 3JCP ¼ 7.6 Hz, C3), 134.7 (d, 3JCP ¼ 10.2 Hz, C5), 125.8 (d,
2JCP¼ 12.6 Hz; C2), 123.4 (C4), 69.1 (d, JCP¼ 9.0 Hz, C6), 61.1 (C8), 53.5
(d, 2JCP ¼ 6.6 Hz, C11 or C12), 52.6 (d, 2JCP ¼ 6.3 Hz, C11 or C12), 14.2
(C9) ppm (the resonance for C1 was not observed); 31P NMR
(121.5 MHz, CDCl3): d ¼ 29.5 ppm; FTIR (neat): nmax ¼ 3339, 2960,
1709, 1274, 1216, 1030, 1062, 826, 768, 626 cm�1; HRMS (ESI): m/z
calcd for C11H17O6P: 299.0655 [MþNa]þ; found: 299.0677. 39: pale
yellow gum; Rf ¼ 0.61 (20:80 Acetone/Et2O); 1H NMR (300 MHz,
CDCl3): d ¼ 8.01e7.94 (1H, m, AreH), 7.79e7.74 (1H, m, AreH),
7.64e7.54 (2H, m, AreH), 4.41 (2H, q, J ¼ 7.0 Hz, CH2CH3), 3.81 (6H,
d, 3JHP ¼ 11.5 Hz, PO(OCH3)2), 1.41 (3H, t, J ¼ 7.0 Hz, CH2CH3); HRMS
(ESI):m/z calcd for C11H15O5P: 281.0549 [MþNa]þ; found: 281.0613.
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