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Introduction: Technologies able to augment human communication, such as smartphones, are increasingly pres-
ent during all daily activities. Their use while driving, in particular, is of great potential concern, because of the
high risk that distraction poses during this activity. Current countermeasures to distraction from phone use are
considerably different across countries and not always widely accepted/adopted by the drivers. Methods: This
study utilized naturalistic driving data collected from 108 drivers in the Integrated Vehicle-Based Safety
Systems (IVBSS) program in 2009 and 2010 to assess the extent to which using a phone changes lateral or
longitudinal control of a vehicle. The IVBSS study included drivers from three age groups: 20–30 (younger),
40–50 (middle-aged), and 60–70 (older). Results: Results from this study show that younger drivers are more
likely to use a phone while driving than older and middle-aged drivers. Furthermore, younger drivers exhibited
smaller safety margins while using a phone. Nevertheless, younger drivers did not experiencemore severe later-
al/longitudinal threats than older andmiddle-aged drivers, probably because of faster reaction times.While ma-
nipulating the phone (i.e., dialing, texting), drivers exhibited larger lateral safety margins and experienced less
severe lateral threats than while conversing on the phone. Finally, longitudinal threats were more critical soon
after phone interaction, suggesting that drivers terminate phone interactions when driving becomes more de-
manding. Conclusions: These findings suggest that drivers are aware of the potential negative effect of phone
use on their safety. This awareness guides their decision to engage/disengage in phone use and to increase safety
margins (self-regulation). This compensatory behavior may be a natural countermeasure to distraction that is
hard tomeasure in controlled studies. Practical Applications: Intelligent systems able to amplify this natural com-
pensatory behavior may become a widely accepted/adopted countermeasure to the potential distraction from
phone operation while driving.
© 2015 The Authors. National Safety Council and Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last decade, mobile phone use has led to rising concerns about
distraction during driving. Although phone use while driving has been
widely addressed by researchers (McCartt et al., 2006) and legislative
actions in several countries, a comprehensive examination of its effect
on driving performance in real traffic has not been performed. Agree-
ment on the most promising countermeasures to address potential dis-
traction posed by phones and legislation is even farther away. In
addition, current countermeasures are not always widely accepted or
adopted by the drivers. For example, bans on phone use have been
shown to provoke unsafe driving behaviors (Gauld et al., 2014).

Current legislation related to phone use while driving ranges from
total prohibition, as in Japan, to ban of hand-held devices, as in most
of Europe and several states in the United States, to no limits on
.

il and Elsevier Ltd. This is an open
conversation, as in Sweden. In some jurisdictions, special restrictions
apply to specific types of drivers (e.g., young or professional drivers).
The variety of legislations around the world may, in part, reflect the
lack of a common understanding about the effect of cell phone use on
vehicle control.

Research on phone use while driving employs several types of data,
both subjective and objective. These include questionnaires (Backer-
Grondahl & Sagberg, 2011), interviews (Brusque & Alauzet, 2008),
crash databases (Redelmeier & Tibshirani, 1997; Violanti, 1998;
McEvoy et al., 2005), driving simulators (Horberry et al., 2006), real traf-
fic observations (Taylor et al., 2007, Vivoda et al., 2008), test tracks
(Hancock et al., 2003), and naturalistic studies (Hickman & Hanowski,
2012). With the exception of naturalistic driving studies, most of the
other aforementioned studies report that all uses (including talking)
of cell phones while driving increase risk.

Different types of data may suffer from different biases and conse-
quently produce results that are difficult to reconcile. For instance, sub-
jective data from interviews and questionnairesmay be guided by crash
access article under the CC BY-NC-ND license http://creativecommons.org/licenses/
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databases, in which only crash-involved drivers are included. Research
also shows that driverswho use the phonewhile driving aremore likely
to have a prior history of citation and crash involvement (Beck et al.,
2007), thus potentially biasing crash databases. In addition, phone
users may be inclined, correctly or not, to attribute the crash to mobile
phone use when asked after the fact (Backer-Grondahl & Sagberg,
2011).

Data from driving simulators and test tracks offer the unique oppor-
tunity to safely and repeatedly provoke critical situations. However,
participants in these controlled conditions may accept higher levels of
risk than they would in reality, especially if asked to do so by the re-
searcher before they are fully acquainted with the environment
(Hancock et al., 2003). In contrast, Schömig and Metz demonstrated
that participants in driving simulators select lower levels of risk if they
are allowed to compensate for phone distraction by, for instance, stop-
ping the vehicle (Schömig & Metz, 2012); furthermore, Shinar showed
that repetition reduces the negative interference of distraction due to
phone use (Shinar et al., 2005).

Studies based on crash databases and observational studies have the
great advantage of anchoring the results to the real world, and the dis-
advantage of dealing with complex biases while showing only correla-
tional, but not causal, relationships. For instance, naturalistic studies
only include volunteers who may not come from a random population.
Among others, one advantage of naturalistic driving studies is that they
allow drivers to be compared to themselves when on or off the phone
so that possible compensatory behavior when using a cell phone may
be assessed. Naturalistic data also offer the opportunity to analyze
different driver age groups and have been successful in explaining
how experience modulates driving behavior (Lee et al., 2011). Thus,
the analysis of naturalistic data seems to offer the best opportunity to
advance our understanding of the effect of using a phone while driving,
especially in very large datasets.

The present study used a large naturalistic driving data set to inves-
tigate (a) how changes in driver behavior might arise from two oppos-
ing components, distraction and driver compensatory behavior; and
(b) how these components are balanced.

2. Methods

The data used in this study, from the IVBSS Field Operational Test
(FOT) (Sayer et al., 2011), were collected from 108 randomly sampled
passenger-car drivers in 2009 and 2010. Drivers were equally distribut-
ed in three different age groups: 20–30 (younger), 40–50 (middle-
aged), and 60–70 (older). For each age group, the number of female
and male drivers was the same. In order to qualify for the study,
participantswere required to drive not less than 25% below theNational
Personal Transportation Survey reported average for their age and
gender category. Further, drivers who had any felony motor vehicle
convictions, such as driving while intoxicated or under the influence
of alcohol, within 36 months of recruitment were excluded from the
study. Data were collected using 16 Honda Accords, which were
equipped with several advanced safety systems, including forward col-
lision warning, lane departure warning, and blind-spot detection. The
vehicles were rotated among the drivers, and each driver was unsuper-
visedwhile pursuing her/his normal driving behavior for 40 days. In this
study, drivers used their personal phones, and records were not kept as
to the types of phones that drivers used. In 2006–2007 Honda Accords,
there was not an option to sync a driver's phone to the research vehicle.
If drivers did use their phones in a hands-free manner, they did so with
their personal hands-free equipment (e.g., a headset).

Throughout the study, driving and video data, including warning-
system triggers (silent alerts) from the vehicle's active safety systems,
were collected continuously. However, the safety warnings were not
presented to the drivers until after the 12-day baseline period had
elapsed. Data collected included longitudinal radar information (range
and range rate), vehicle dynamics (e.g., speed and lateral velocity),
and lane offset. Five video-cameras recorded forward scene, driver's
face, in-cabin view of the controls, and rear scene (two cameras).
Video data were recorded continuously at 10 Hz.

The present study only used IVBSS data from the baseline period, in
order to assess the effects of engaging in a conversation ormanipulating
a cell phone on driving performancewithout the safety warnings. Video
data for all drivers in the first week of data collection were manually
coded for cell phone use. A total of 3519 segments of data in which
the driver was either engaged in a phone conversation (Talk) or manip-
ulating a phone, that is, interacting visually and manually with a phone
(Manip),were identified in the dataset (Funkhouser & Sayer, 2011). The
average duration of these data segments was 70 s; 86% of the segments
were shorter than 2 min; 4% of the segments were longer than 5 min.
For all Manip and Talk segments, two matching baseline segments
were identified: the Pre-Phone segment, in the 5 min preceding the
phone segment; and the Post-Phone segment, in the 5 min following
the phone segment (Phone). Baseline segments had to have the same
duration as the corresponding phone segment, and an average vehicle
speed within 25% of the phone segment's average speed. This speed fil-
ter helped keep the context similar between phone and baseline seg-
ments and was not sufficiently selective to mask the possible effect of
cell phone use on speed. In fact, changes in speed from cell-phone use
are reported to be much smaller than 25% in several studies (Haigney
& Westerman, 2001; Jenness et al., 2002; Charlton, 2004; Shinar et al.,
2005). Baseline segments were not permitted to contain any phone
use. For 1033 of the identified Phone segments from91 different drivers,
it was possible to find the two comparison baselines. All other phone
segments (2487) were excluded from analysis. Of the three criteria,
the speed-match criterion was the most stringent, responsible for the
exclusion of most of the phone segments from analysis. The duration-
match criterion mainly precluded phone segments of longer duration;
however, since these segmentswere rare from the beginning, this selec-
tion is not likely to have biased the analysis. Exclusion of phone seg-
ments because the baseline periods also included phone use occurred
only rarely.

For the Pre-phone, Phone, and Post-Phone segments, four indicators
of driver performance were selected. Two indicators were related to
the longitudinal control of the vehicle: minimum time-to-collision
(MinTTC) and median headway (MedHW). The two remaining indica-
tors were related to the lateral control of the vehicle: minimum time-
to-lane-crossing (MinTLC) and maximum lane offset (MaxLO). Time-
to-collision is a longitudinal safety indicator used in commercial safety
systems and collision mitigation systems to issue forward collision
warnings and initiate autonomous braking (Kaempchen et al., 2009).
Thus, MinTTC represents the highest longitudinal risk taken by the driv-
er during each data segment or, in other words, the limit of the driver's
longitudinal safety margin. Time-to-collision was computed as the ratio
of the distance between the driver's vehicle and the one ahead and their
relative speed; both these measures were obtained from a forward-
looking radar. MedHW, an indicator of driver car-following behavior,
has been successfully used to compare driver performance across differ-
ent driving and distraction conditions (Rakauskas et al., 2008). MedHW
complemented MinTTC by indicating the usual longitudinal safety
margin of the driver.

Time-to-lane-crossing is a lateral safety indicator used in commer-
cial safety systems to initiate lane departure warnings and, in current
research projects, to control automated steering (Mammar et al.,
2006). ThusMinTLC represents the highest lateral risk taken by thedriv-
er during each data segment or, in other words, the limit of the driver's
lateral safety margin. Time-to-lane-crossingwas computed as the offset
from the center of the lane divided by the lateral velocity, using car
width, lane width, lateral offset, and lateral velocity. Time-to-lane-
crossing was calculated only when lateral speed was available and
greater than 0.2 m/s in either direction. The direction of the lateral
velocity determined whether to use the distance to the left or to the
right lane edge to compute lateral offset.



Fig. 1.Manip and Talk time segment histograms.
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MaxLO is an indicator of driver lane-keeping behavior, measuring
how closely the driver keeps the car in the middle of the lane. MaxLO
was preferred to the more common standard deviation of lane position
because the latter is very sensitive to the segment duration when seg-
ments are as short as the ones analyzed in this paper (Dozza et al.,
2013). Further, MaxLO is more sensitive than standard deviation of
lane position in showing whether the drivers position themselves dif-
ferently in the lane and less affected by overtaking maneuvers. MaxLO
was processed using the lane offset information from the IVBSS lane de-
parture system. Larger values of MaxLO are associated with positions
closer to the road curb in that data segment.

Correlation analysis was performed to verify the extent to which the
dependent measures MinTTC, MedHW, MinTLC, andMaxLOwere asso-
ciatedwith each other. Linearmixedmodels (LMM)were used tomodel
each dependent measure as a function of predictors. For each analysis,
three predictors were considered: age group (Younger, Middle-aged,
Older), task type (Talk vs. Manip), and time (Pre-Phone, Phone, and
Post-Phone). Because non-central measures tend to vary with the
length of the segment, segment duration was used as a covariate in
the model.

Data were analyzed using Matlab © and the NatWare software
(Dozza 2013). Statistical analysis was performed using SAS PROC
MIXED. In each mixed model, driver, interactions between driver and
within-driver predictors (e.g., task), and events nested in driver were
treated as random effects. Denominator degrees of freedom were esti-
mated using the Kenward–Roger method (Kenward & Roger, 1997).
This approach ensures that comparisons aremade amongmatched seg-
ments and that within-driver correlation is accounted for. Threshold for
significance was set to p = 0.05. Four mixed models, one for each de-
pendent measure, were developed using PROC MIXED. Each model
started with age group, task, time, and all interactions among those
variables as fixed effects. Segment duration and interactions with each
predictor were included as covariates. Random effects included driver,
interactions between driver and all predictors except age group, and
event nested in driver. Non-significant fixed effects and their corre-
sponding random effects were removed one at a time in backwards-
stepwise fashion.
Table 1
Correlation matrix for four dependent variables in the 3099 segments.

MinTTC MedHW MinTLC MaxLO

MinTTC 1.00 0.16 0.11 −0.14
MedHW 1.00 −0.05 −0.05
MinTLC 1.00 −0.40
3. Results

3.1. Descriptive statistics

Of the 91 drivers in the analysis, 35 were younger, 34 middle-aged,
and 22 older. Younger drivers contributed 65% of the analyzed tasks,
middle-aged driver 29%, and elderly drivers 6%. 69% of the analyzed
tasks were phone interactions (Manip) and 31% were phone conversa-
tions (Talk). Young subjects were responsible for 71% and 51% of the
Manip and Talk tasks, respectively; for middle-aged drivers the figures
were 25% and 38%, and for older drivers, 4% and 11%. Average Talk dura-
tion was 42.8 s, and average Manip duration was 39.8 s; both demon-
strated monotonic decreasing distributions (see Fig. 1). 90% of Talk
tasks and 93% of Manip tasks were shorter than 2 min.

Correlations among dependent variables across all segments are
shown in Table 1. Only the two lateral control measures (MinTLC and
MaxLO) are correlated to any degree. The raw correlation between
these two measures is −0.40. Although results of analyses of these
two measures are likely to be similar, both were analyzed separately
since there was substantial unshared variance remaining (84%).

Not all indicators were available for all segments. Specifically,
MinTTC and MedHW could be calculated only if there was a vehicle in
front, andMinTLCwas calculated only when lateral speed was available
and greater than 0.2 m/s in either direction. MaxLO was calculated for
all segments. Table 2 shows the proportion of data available for the
different dependent measures. Available data are also broken down by
age group, task, and time categories.
3.2. Models

Table 3 shows the significant predictors remaining in each of the
four models after non-significant fixed effects and their corresponding
random effects were removed. Details of each model are described in
the paragraphs that follow.

3.3. Longitudinal control

The variables MinTTC andMedHWwere not correlated, and the dif-
ferent models reflect that fact. For MinTTC, time was significant after
adjusting for segment duration. As shown in Fig. 2, MinTTC was longest
during Phone (mean=3.64 s), followed by Pre-Phone (mean=3.45 s),
and shortest during Post-Phone (mean = 2.64 s). Post-hoc tests show
that the difference in MinTTC during Phone was significantly longer
than during Post-Phone (t(78.3) = −2.44, p = 0.0169).

In contrast, MedHW varied by age group, but not by task, after
adjusting for segment duration. Younger drivers kept the shortestmedi-
an headway (mean = 35.6 m), followed by middle-aged drivers
(mean = 40.0 m), and older drivers (mean = 44.7 m); see Fig. 2. The
differences between young drivers and each of the other age groups
were significant (younger vs. middle-aged: t(485) = 2.97, p =
0.0031; younger vs. older: t(517) = 3.43, p = 0.0007).

In summary, (a) the older the drivers the farther they drove from the
vehicle in front, independent of the phone task, and (b) during phone
tasks, drivers experienced less–critical longitudinal threats (short time-
to-collision) independent of the nature of the phone task and their age.

3.4. Lateral control

The lateral control measures MinTLC and MaxLO were moderately
correlated in the dataset, but the best models for these two measures
were not identical. For MinTLC, only task was a significant predictor
(after adjusting for segment duration and the task-by-segment duration
interaction). Manip had significantly greater MinTLC (mean = 1.23 s)
than Talk (mean = 0.99 s); see Fig. 2.

For MaxLO, all three main effects of age group, task, and time were
significant after adjusting for the effects of segment duration and the
task-by-segment duration interaction. Older drivers had the greatest



Table 2
Percentage of available data for dependent variables.

MinTTC MedHW MinTLC MaxLO

Overall 50 70 78 100
Young 48 68 74 100
Middle-aged 53 73 82 100
Old 56 68 87 100
Manip 45 64 73 100
Talk 60 81 88 100
Phone 50 68 76 100
Pre-Phone 49 70 78 100
Post-Phone 51 70 79 100
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MaxLO (mean = 1.24 m), followed by middle-aged drivers (mean =
1.13 m) and younger drivers (mean = 1.05 m; see Fig. 2). The differ-
ences between younger drivers and the other age groups were signifi-
cant (younger vs. middle-aged: t(103) = −2.30, p = 0.0236; younger
vs. older: t(227) = −2.75, p = 0.0065). MaxLO during Phone events
was significantly smaller than during Pre-Phone or Post-Phone (Phone
vs. Pre-Phone: t(2837) = 3.57, p = 0.0004; Phone vs. Post-Phone:
t(2838) = 4.21, p = 0.0004). The variable MaxLO was significantly
greater for Talk than Manip.

In summary, (a) the older the drivers the more likely they were to
drive closer to the road shoulder; (b) while talking on a phone, drivers
were also more likely to be closer to the road shoulder than while ma-
nipulating a phone; and (c) while talking on a phone, drivers experi-
enced more critical lateral threats (short time-to-lane crossing) than
while manipulating a phone.

4. Discussion

4.1. Older and middle-aged vs younger drivers

In accordance with previous studies arguing that younger genera-
tions are more likely than older generations to use a phone while driv-
ing (Brusque & Alauzet, 2008; Nelson et al., 2009), younger drivers in
the IVBSS study engaged in more phone-related tasks than middle-
aged and older drivers. The ratio of Manip to Talk tasks varied with
age (3.1, 1.5, and 0.8 for younger, middle-aged, and older drivers, re-
spectively). Thus, for older drivers, Talk was preferred over Manip,
confirming the common hypothesis that older generations use mobile
phone mainly for phone conversations—whereas younger generations
use mobile phones for a wider variety of tasks, such as texting (Young
& Lenné, 2010). In addition, elderly drivers may also initiate calls less
often than younger drivers.

Both longitudinal and lateral control was affected by age. In fact,
older andmiddle-aged driversmaintained significantly larger headway,
as well as distance from the road center, than younger drivers. This re-
sult confirms the finding of previous studies that older drivers keep
larger safety margins (e.g., Andrews & Westerman, 2012; Brouwer
et al., 1991), for longitudinal and lateral margins, respectively). A possi-
ble explanation for the older group's larger safety margins relies on the
interplay of individual perception of driving performance and risk. In
general, older drivers are aware of their reduced ability to perceive
and react to threats (Hancock et al., 2003; McPhee et al., 2004; Rogé &
Pébayle, 2009) especially when distracted (Shinar et al., 2005); they
Table 3
Significant predictors for each of four models.

MinTTC MedHW

Predictors Age F(2499) = 8.53
Task
Time F(1,78.5) = 3.4, p = 0.0393

Covariates Duration F(1604) = 25.2, p b 0.0001 F(1,87.9) = 9.6
Duration × Task
may increase their safety margins accordingly (Young & Lenné, 2010).
At the same time, younger drivers perceive risk differently than older
drivers, taking higher risks—whichmay involve reducing safetymargins
(Cestac et al., 2011).

Interestingly, neither MinTLC nor MinTTC (indicators of lateral and
longitudinal threat) were significantly different across age groups in
our study. This suggests that even when younger drivers had a smaller
safety margin, they could react fast enough to keep their MinTLC and
MinTTC in the same range asmiddle-aged and older drivers. Compensa-
tory behavior based on individual perception of risk and driving perfor-
mance would also explain why the interaction between age and task
was not significant in our analysis. In fact, younger drivers may have
taken higher risks (Constantinou et al., 2012) than older drivers while
using the phone because they judge themselves as being better at
reacting while distracted by the phone (Brouwer et al., 1991).

4.2. Manip vs Talk phone task segments

Longitudinal control was not significantly different for Manip and
Talk. This was not expected, since Manip requires longer times with
eyes off-road than Talk (Fitch et al., 2013), and one might therefore ex-
pect Manip to exhibit lower longitudinal safety margins than Talk. One
possible explanation is that drivers successfully predicted steady-traffic
conditions before initiating a phone interaction (Tivesten &Dozza, 2015).

Manip and Talk influenced lateral control differently. During Talk,
drivers exhibited shorter MinTLC and larger MaxLO, possibly because
they drove closer to the edge of the road, whereas duringManip, drivers
tended to stay more in the middle of the lane. This difference in behav-
ior is consistent with the different glance strategies required for Talk
and Manip (Victor & Dozza, 2011). Since Manip may require longer
glances away from the road, a more centered position is safer. In con-
trast, during Talk, the drivers' eyes are generally on the roadway, thus
driving closer to the curb may be safer even if it may result in lower
MinTLC.

4.3. Pre-Phone and Post-Phone vs Phone segments

MinTTC was lower in Post-Phone than in Phone events. This result
may be explained by drivers being likely to end phone calls when enter-
ing driving conditionswith higher traffic density, wheremore attention
to the longitudinal control of the vehicle is necessary.

Phone-related events exhibited lower MaxLO than both baseline
events (Pre-Phone and Post-Phone). A possible explanation is that dur-
ing the Phone task the driver engages in tighter lateral control, changing
lanes less frequently, and possibly avoiding overtaking. This result is
consistent with simulator studies that show that drivers look around
less, follow less closely, and change lanes less often when talking on
the cell phone.

4.4. Driver compensatory behavior

This study suggests that drivers may be aware of their skills
(e.g., reaction times) and, when aging, adapt their driving accordingly
to control for risk. This study also suggests that drivers regulate lateral
control when using a phone, possibly in the effort to control for the in-
creased risk posed by phone use. Several recent studies suggest that
MinTLC MaxLO

, p = 0.0002 F(2153) = 4.95, p = 0.0083
F(1194) = 32.4, p b 0.0001 F(1194) = 30.4, p b 0.0001

F(2,2837) = 10.3, p b 0.0001
, p = 0.0027 F(1,51.3) = 183.0, p b 0.0001 F(1,63.9) = 231.8, p b 0.0001

F(1202) = 21.7, p b 0.0001 F(1,25.9) = 16.6, p = 0.0004



Fig. 2.Main statistically significant effects on lateral and longitudinal indicators. In each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. Notches indicate 95% confidence interval for the medians.
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drivers indeed self-regulate (i.e., increase safety margins while attend-
ing to other tasks such as phone interaction; Zhou et al., 2012; IIHS-
HLDI, 2014; Tivesten & Dozza, 2014; Young, 2014) to reduce risk.
Thus, self-regulationmay just be a specific instance of compensatory be-
havior and may be the key to reconciling controlled experiments and
naturalistic observations as well as inspiring the development of highly
acceptable countermeasures.

Controlled experimentsmay simply not give enough time or options
for drivers to show their natural compensatory behavior leading to bi-
ased results that are not found in real traffic. Interestingly, some con-
trolled experiments, such as Schömig and Metz (2012), show that,
when drivers are allowed, they do self-regulate also in controlled envi-
ronments, for instance by stopping the vehicle when they feel that the
situation is not suitable for multi-tasking while driving.

Understanding for which drivers and in which situations self-
regulation succeeds or fails may be the key for the development of high-
ly acceptable countermeasures to traffic crashes. For instance, this
knowledge can identify topics, target population, and timing for cam-
paigns, training, and education. In addition, advanced driver assistance
systems could be designed to boost the natural compensatory behavior
of the driver instead of reprimanding the driver with warnings. Positive
reinforcement of compensatory behavior might result in highly accept-
able and largely adopted countermeasures to traffic crashes.

4.5. Limitations and future analyses

Limitations in this study arise from (a) the nature of the data, (b) the
specific database, and (c) our analysis methodology. Naturalistic data
are influenced by all possible environmental variables such as weather,
traffic density, and road type, as well as by driver state and possible im-
pairments. These confounders are hard to control and may have biased
our analysis. The 108 drivers in the IVBSS dataset were volunteers and
drove mostly in a specific geographical location (southeast Michigan),
so our results may be biased by state-specific confounders, including
laws and driver behavior. Coding of phone use depended on subjective
evaluations and video data (Funkhouser & Sayer, 2011). The selection
criteria, which strongly reduced the number of analyzed phone seg-
ments, may have also biased the sample and potentially excluded
some specific driving scenarios.

Future studies may make use of larger datasets such as SHRP2
(Campbell, 2013) to validate and extend the results presented in this
paper while overcoming its possible biases. The use of larger datasets
could further assess (a) whether the relation between duration of
phone interactions and risk is linear (just a consequence of exposure),
(b) the possible interplay between self-regulation and the driving con-
text, and (c) which driver's characteristics/styles affect compensatory
behavior.
5. Conclusions

This study shows that drivers increase their safety margins as they
age, as well as while using a phone, to possibly control for risk. Drivers
also experienced more severe longitudinal threats just after phone
use, suggesting that a driver may decide to end a phone interaction
depending on the driving context. These findings may be explained in
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terms of compensatory behavior and self-regulation, both harder to
measure in controlled experiments than in naturalistic studies.

Current advanced driving support systems rely on negative feedback
(warning) to improve lateral and longitudinal control. A longitudinal/
lateral support system inspired by compensatory behaviormay increase
headway/change lateral offset instead of warning a driver, resulting in a
more natural and acceptable feedback for the driver. Finally, future
studies should investigate which drivers are most skilled at self-
regulating and in which contexts self-regulation fails.
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