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Abstract 

In the past 20 years, considerable progress has been made to improve urban air quality in the EU. However, road traffic still contributes 
considerably to the deterioration of urban air quality to below standards, which requires a method to measure properly and model pollution 
levels resulting from road traffic. In order to visualize the geographical distribution of pollution concentration realistically, we applied the Land 
Use Regression (LUR) model to the urban area of Gothenburg. 
The NO2 concentration was already obtained by 25 samplers through the urban area during 7-20 May, 2001. Predictive variables such as 
altitude, density, roads types, traffic and land use were estimated by geographic information system in buffers ranging 50 to 500 m-radii. Linear 
regression (α=5%) between NO2 and every predictive variable was calculated, and the most robust variables and without collinearity variables 
were selected to the multivariate regression model. The final formula was applied using Kriging in a grid map to estimate NO2 levels. 
The average of measurements was 23.5 μg/m³ (± 6.8 μg/m³) and 180 predictive variables were obtained. The final model explained 59.4% of 
the variance of NO2 concentration with presence of altitude and sum of traffic within 150 m around the sampler sites as predictor variables. The 
correlation measured versus predicted levels of NO2 was r = 0.77 (p < 0.001).  
These results highlight the contribution of traffic in air pollution concentration, although the model is not precise in regions outside the urban 
area (e.g. islands and rural area). Moreover, future analyses should include meteorological data to improve the LUR modelling. 
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1. Introduction 

Exposure assessment can be used to evaluate, at various levels of detail, the degree and linkage between contaminant sources 
and concentration of hazards and receptors (e.g. humans) in the environment by studying the different exposure pathways (e.g.  
air, water, and soil) and routes (e.g. inhalation, ingestion, and dermal contact) between them. As one kind of exposure assessment 
air pollution exposure assessment indicates human exposure to air pollutants. [1]. 

The most exposed receptors to air pollution include residents, students, workers and road users (e.g. pedestrians and drivers) 
whose residences, schools, universities or offices are located near to heavy traffic roads or individuals that remain long time on 
roads (bus drivers, traffic guards, street vendors etc.). Therefore, the environment may enable the exposure to pollutants and 
thereby trigger various outcomes [2]. 

Although the literature has documented significant variation of outdoor air pollution at small scales within urban areas for 
important pollutants, such as NO2 and black smoke [3-5], many studies assessed exposure based on the average of pollutants 
concentration measured by regulatory monitoring stations. Due to economic and administrative reasons, the number of stations 
are sparse and limited, besides their measurements involve only regional pollutants concentration [6,7] which cannot be detected 
accurately at some places such as street canyons, busy traffic roads, industry, railway stations, airports and ports,. 

Several models are based on the proximity to polluted source, e.g. proximity to busy traffic [8]. This approach is limited 
because it disregards others parameters that may influence the dispersion of pollutants such as altitude, land use, population, road 
type, traffic intensity, temperature and atmospheric stagnation [8]. Therefore, recent models became more refined including some 
of those parameters [1].  

Ordinary dispersion modelling requires good databases which are updated frequently (at least every five years); however 
measurements are expensive if they are conducted at numerous places [1]. In many of urban areas where the exceedances of 
environmental standards most frequently take place, it is rather suitable to perform specific modelling, e.g. a CFD-model for 
street canyons. The result is usually satisfactory since the emission variability within those areas is more limited than the 
emissions variability of a whole city. Nevertheless, in comparison with environmental standard values, total concentrations are 
required, meaning that areas outside street canyon areas (urban, regional and long distance shares) have to be included. This can 
be accomplished through the boundary conditions for the calculations based on larger scale modelling, such as Land Use 
Regression (LUR) modelling.  

The main advantage of LUR is because it is based on characteristics related to the overall trends of air pollutants 
concentrations mainly for longer time scales. It adopts measurements of pollution using samplers as dependent variable and land 
use, traffic, demographic and geographic characteristics as predictor variables [9]. Thus, LUR predicts the concentrations of 
pollution based on surrounding land use and traffic characteristics within circular areas (buffers) as predictors of measured 
concentrations [3]. Moreover, the enhancement of geographic information system (GIS) techniques has contributed to the 
dissemination of LUR method. 

Hence we aimed to develop a LUR model to map the geographical distribution and the level of air pollution concentrations in 
the urban area of Gothenburg and Mölndal, Sweden. 

 
Nomenclature 

μg/m³ microgram per cubic meter 
GIS Geographic information system 
LUR Land use regression 
m meter(s) 
NO2  Nitrogen dioxide 
SD Standard deviation 

2. Methods 

2.1. Study area 

The study was carried out in urban areas of Gothenburg and Mölndal, at the west coast of Sweden. There are several factors 
that affect air quality in both cities. For instance, the varied altitude, with mountains and valleys, affects the levels of air 
pollutants due to the limited dispersion in the valleys, especially during winter inversion. Furthermore, there are also pollutants 
coming by long distance transportation from mainly Europe, which contribute to the air quality. Both harbor at Göta River 
estuary and industrial operations around the city contribute to air pollution emissions. However, the air quality in the city centre 
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is affected by mainly the road traffic emission. Despite having fewer inhabitants, Gothenburg exhibits higher levels of NO2 than 
Stockholm1 . 

2.2. NO2 sampling 

NO2 is considered a good indicator to traffic-related air pollution and easy to measure [10]. In 2001 a monitoring campaign of 
NO2 named GÖTE-2001 was carried out during 2 weeks in spring of 2001 during 7-20 May. The measurements were taken at a 
height of approximately 2-2.5 m above ground. This monitoring campaign was a partnership between local government, 
Chalmers University of Technology and University of Gothenburg. 

The measurements were done in 25 sites using IVL passive samplers across the study area. The placement of each site was 
determined by specific criteria: twenty passive samplers were distributed by dividing the region into 1 x 1 km cells covering a 
20 km2 grid area. In addition to the grid, five instruments were positioned in the western and north parts close to main roads of 
the city and also in the vicinity of the main valleys in the region Göta Älv valley, Säve valley, and Mölndal valley [11]. 

We checked if the average of NO2 concentration measured by passive samplers represented the annual average of NO2 
concentration for the year 2001 measured at the regulatory monitoring stations Femman, Gårda, Järntorget and Mölndal through 
T-Student test (α = 5%). 

2.3. Land use 

The digital cartographic databases on altitude, land use and roads were obtained from the Lantmäteriets geodatabase 
(http://www.lantmateriet.se). The land use data included 9 classifications by type of use (industrial, arable, forests and water) and 
building patterns (enclosed, low, high, recreational). As the road data contained many classifications, they were summarized in 
4 main groups based on their width and speed: Types I and II representing local roads (until 50 km/h) and types III and IV 
representing expressways (> 50 km/h). Demographic and traffic information for the year 2001 were provided by Earth Sciences 
Department of Gothenburg University. 

The independent variables were created on the GIS software MapInfo (Professional version 10.5; MapInfo Corporation, New 
York, NY, USA) in buffers of 50, 100, 150, 250 and 500 m-radii around 25 sampling locations. The variables consisted in 
five broad categories:  

 Physical geography – altitude (m); 
 Land use – shortest distance to industrial use (m), area of different land uses (km²) estimated within buffers around 

each sampling location; 
 Road – shortest distance to roads type IV (m), lengths of different roads (m) within buffers of different radii; 
 Traffic – sum of traffic flow counts (annual average daily traffic) within buffers of different radii; 
 Demographic – available in a grid of points with a resolution of 500 m. Thus number of inhabitants and population 

density within 500 m were estimated. 

2.4. Statistical Analysis 

The measured ambient NO2concentration was used as dependent variable. Independent variables were individually screened 
using bivariate regression analysis. After ranking all variables by the absolute strength of their correlation with NO2, we 
eliminated other variables that were correlated (Pearson’s r ≥ 0.6) with the most highly ranked variable. Through multivariate 
analysis, there was obtained variable(s) with statistical significance (α = 5%). A grid of points was created for the studied area 
and buffers were created around each point in order to capture the variable(s) derived from multivariate regression model. 

The final equation is presented below: 

1 32 0 1 2
... xxNO X X X    (1) 

NO2 represents the predicted value of the dependent variable. The constant is β0. X represents the key covariables of traffic 
volume, road type, land use, altitude and demography and their respective coefficients (βx). The bivariate regression and 
correlation analysis were calculated on SPSS for Windows software. The multivariate regression was calculated on Statistics 
Data Analysis (STATA) software. 

Finally, the predicted LUR-NO2 for each point was calculated. The lattice interpolation using kriging was applied to visualize 
the surface of the LUR model on the GIS software ArcMap 10.1 (ESRI, Redlands, CA, USA). 

 

 
1 Luftkvaliteten i Göteborg. Available in http://goteborg.se/wps/portal/invanare. Access in Jan/2014. 
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3. Results 

3.1. LUR modelling 

NO2 samples had an arithmetic mean of 23.5 μg/m³ with values ranging from 11.8 to 40.9 μg/m³ (SD = 6.8). There were 
4 samples that exhibited a greater value than the one standard deviation from the mean (≥ 30.4 μg/m³). All of these were located 
in proximity to expressways and industrial area. NO2 measured at the monitoring stations (Femman, Gårda, Järntorget and 
Mölndal) had an average of 30.2 μg/m³ (SD = 5.7) for the year 2001.  

T-Student test did not exhibit significant difference between annual average (monitoring stations) and 7-20th May period 
average (passive samplers). From the study, it can be assumed that the measurements obtained by passive samplers represent the 
annual average for 2001. 

The variables most related to NO2 levels were altitude, deciduous forests, sum of traffic, high buildings, industrial areas, roads 
type I, roads type IV and buildings with internal courtyard (more clustered in the city centre) (table 1). 

As seven variables did not exhibit correlation with each other (Pearson r < 0.6), they remained in the multivariate regression 
analysis. Industrial land use, enclosed buildings and roads type IV were associated with increasing of NO2 concentration whereas 
altitude, recreational buildings, high buildings and roads type I were associated with decreasing of NO2 levels (table 1). 

Table 1. Statistical characteristics of variables with p-values ≤ 0.2 in bivariate regression models. 

Variables Buffer (m)‡  R r² β p-value 
Altitude - 0.677 0.459 -0.197 <0.001 
Deciduous forest* 500 0.63 0.397 -53.345 0.001 
Sum of traffic 150 0.62 0.384 2 x 105  0.001 
High building 500 0.566 0.32 -30.6 0.003 
Deciduous forest* 250 0.544 0.296 -134.710 0.005 
Deciduous forest* 150 0.504 0.254 -275.263 0.010 
Sum of traffic* 100 0.496 0.246 3 x 105 0.011 
High building* 250 0.481 0.232 -72.497 0.015 
Average of traffic* 50 0.47 0.221 7.9 x 104 0.018 
Sum of traffic* 50 0.466 0.217 7 x 105 0.019 
High building* 150 0.453 0.205 -181.897 0.023 
Deciduous forest 100 0.447 0.2 -483.949 0.025 
Average of traffic* 150 0.444 0.197 6 x 104 0.026 
Industrial use 500 0.445 0.198 17.392 0.026 
Roads type IV 100 0.431 0.186 2.4 x 102 0.031 
High building* 100 0.431 0.186 -369.833 0.031 
High building* 50 0.405 0.164 -1,215.930 0.045 
Sum of traffic 250 0.4 0.16 3 x 106 0.048 
Roads type 4* 150 0.388 0.150 0.012 0.056 
Deciduous forest* 50 0.379 0.144 -1,536.954 0.062 
Shortest distance to road 4 - 0.369 0.136 9 x 103 0.069 
Enclosed building 500 0.365 0.133 21.066 0.073 
Industrial use* 250 0.36 0.129 46.005 0.077 
Shortest distance to industries - 0.422 0.178 -8 x 103 0.103 
Enclosed building* 250 0.321 0.103 59.879 0.118 
Roads type 1 250 0.319 0.102 -5 x 103 0.120 
Roads type 1* 500 0.306 0.094 -2 x 103 0.136 
Recreational building 500 0.297 0.088 -438.056 0.149 
Industrial use* 150 0.293 0.086 84.453 0.156 
Average of traffic* 100 0.283 0.08 4 x 104 0.170 
Enclosed building* 100 0.265 0.07 150.434 0.200 
‡ Buffer radius refers to the distance of the circular zone around each site for which the variables were calculated. 
* excluded by collinearity 

 
 Table 2 shows variables with statistical significance, which were attained in the multivariate analysis. The final model 
explained 59.4% of NO2 variance. Altitude exhibited the strongest interaction with levels of NO2 (p<0.001), thus the most 
elevated areas had the lowest air pollution concentration (negative coefficient). On the other hand, sum of traffic within 150 m 
was related to the increase of NO2 concentration (positive coefficient), and it was the second strongest variable related to the 
dependent variable (p=0.004). The correlation between measured and predicted levels of NO2 was robust with Pearson’s r = 0.77 
(p < 0.001).  

Table 2. Results of multivariate regression final model. 

Variables Β Std. Err. z p 
Constant 23.99528  3.117506 7.70 <0.001 
Altitude -0.1469365 0.050859 -2.89 0.004 
Traffic ≤ 150 m 14.3 x 106 6.4 x 106 2.24 0.025 
r² = 0.594     
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3.2. Mapping the LUR model 

The final formula was applied on 7,257 lattice points with a cell resolution of 300 m to calculate the NO2 concentration for 
each point. The average of LUR-predicted NO2 was 19.1 μg/m³ (SD = 4.7 μg/m³). Figure 1 exhibits the interpolated NO2 
concentration in the urban area of Gothenburg and Mölndal. The areas within the city with lower altitude combined with 
proximity to the busiest traffic corridors indicated the highest levels of NO2. 

 

Fig. 1. Concentration of NO2 (in μg/m³) in the urban area of Gothenburg and Mölndal predicted by the LUR model for 200l. 

The application of the LUR model at the monitoring stations (Femman, Gårda, Järntorget and Mölndal) demonstrated 
Pearson’s correlation higher between LUR-modelled concentration versus measured annual average (r = 0.87) than the 
correlation between LUR-modelled concentration versus measured May/2001 average (r = 0.57). 

Figure 2 exhibits the measured and modelled concentration of NO2 for each monitoring station. The LUR modelling is 
overestimated at Gårda station due to its proximity to a busy highway (route E6), and underestimated at Järntorget station due to 
lower traffic volume detected within 150 m.  

 

 

Fig. 2. Concentrations of LUR-estimated NO2 for 2001 and measured (May and 2001 averages) at monitoring stations.  
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4. Discussion 

In this study, the concentrations of ambient NO2 throughout the urban area of Gothenburg and Mölndal have been modelled. 
The LUR model included two independent variables (elevation and traffic within 150 m radius) and it predicted almost 60% of 
NO2 variability for 2001. 

Comparing to other LUR models [3,6,9,12-15], our results also highlight vehicular traffic as the most important variable 
responsible to increase air pollutant levels, mainly in areas where cars are more concentred such as the city centre, or close to 
busy expressways. 

LUR method has generally been applied successfully to model annual mean concentrations of NO2, NOx, PM2.5, and VOCs. 
The method has been applied in different settings, including non-industrial and industrial cities and its performance is typically 
better or equivalent to geostatistical methods such as kriging and conventional dispersion models. Nonetheless, the method has 
some limitations [7]. 

 LUR models have a restricted capacity to separate the impact of some priority pollutants because they are collinear to 
each other, although the same problem affects other methods of exposure assessment. 

 Most LUR studies do not include temporal variation or have limited calibration for different years, because they were 
based on short term monitoring campaigns with no much historic pollution data.  

 LUR model is designed to predict the total concentration of pollutants. In contrast, dispersion models are superior 
when the interest is in a specific source-related component of the total concentration (e.g. traffic-derived 
particulates). 

 Although LUR models provide individual estimates of ambient exposure (e.g. residential address), their predictor 
variables do not include infiltration of outdoor air into the home, or only estimates concentration at rooftop levels. 
This problem may affect all methods of environmental exposure assessment due to a lack of available data, 
complexity and high costs of data collection. 

Regarding possible differences between ambient predicted and personal exposure to air pollution, Montagne et al. [16] 
assessed the agreement of LUR models with measured personal exposure to PM2.5, soot (reflectance of PM2.5), NOx, and NO2 in 
Helsinki (Finland), Utrecht (The Netherlands), and Barcelona (Spain). Soot LUR models were significantly correlated with 
measured average outdoor and explained 39%, 44%, and 20% of personal exposure variability in Helsinki, Utrecht, and 
Barcelona. NO2 LUR models significantly predicted outdoor concentrations and personal exposure in Utrecht and Helsinki. 
LUR-predicted and measured outdoor, indoor, and personal concentrations were highly correlated with all pollutants when data 
from the three cities were combined.  

Non-inclusion of data on height of buildings is another limitation of LUR method. This data can be an important issue since 
air pollution may exhibit different levels according to the height. In a metropolitan area of Korea VOC concentrations were 
significantly higher for low floors (1st and 2nd floors) than high floors (10th to 15th floors) in both winter and summer for inversion 
periods. During non-inversion periods of summer some VOC compounds (MTBE, Benzene and Toluene) exhibited similar 
results [17]. 

Moreover, little attention has been given in LUR studies regarding potential problems associated with datasets as accessibility, 
completeness and precision. Sometimes data may not be available to the period of interest. In this LUR model we were able to 
obtain traffic and demographic data for the year 2001, although there are limitations in the accuracy and representativity of the 
covariate data applied in this study. The demographic data was available only with a resolution of 500 m. Furthermore, neither 
land use nor traffic data were available in categories which have enabled detailed urban land uses (e.g. residential, commercial or 
governmental) and type of traffic (e.g. truck traffic, bus traffic or light traffic). 

Promising new developments in LUR include additional predictor variables such meteorological or emission data and raster 
GIS environment [7]. Although few studies included meteorological variables in LUR modelling such as temperature [18], 
humidity [12], atmospheric stability [18], wind speed [9,12], wind direction [6,9,12], we did not include meteorological variables 
in our LUR model. This fact may restrict the precision of the model because these variables have an influence on the dispersion 
and air pollutants concentration [9,3]. 

In our LUR model for Gothenburg predictor variables were computed for circular zones around each monitoring site ranging 
50 to 500 m radii. Radii upper than 500 m were not included in our modelling since they could be overlapped due to the 
proximity of the samplers’ sites to each other. The radius is crucial to determine the performance of the model because it should 
consider known dispersion patterns e.g., the use of 150-200 m radii are sufficient to detect the exposure to vehicle traffic since 
most constituents of automotive exhaust decrease to ambient concentrations within this distance [4]. In this study we found 
significant influence of traffic on the NO2concentration at this distance. 

In comparison to air dispersion models, LUR is a less costly option to assess the intra urban variability of air pollution as it 
combines air pollution monitoring at a smaller number of locations and development of models using predictor variables 
obtained through GIS [7].  

Even though our results identified higher concentrations of pollutants related to the proximity to busy traffic roads and/or to 
low altitude, we have limitations regarding extrapolation of the analysis to others areas e.g., rural areas or islands, since the 
samplers were located only at the urban area of Gothenburg and Mölndal. 
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When LUR models represent annual average concentrations it is possible using continuous routine monitoring data to adjust 
for the temporal component [7]. In our LUR model the temporal coverage sampling campaign fulfilled the annual average of 
NO2 for 2001, so we could extrapolate the model for later years. 

Additionally, as personal measurements in epidemiological studies are expensive and logistically difficult, we emphasize the 
importance on developing indirect approaches to assessment exposure as our LUR model and the possibility of its application in 
future epidemiological studies to be carried out in Gothenburg.  

Epidemiological retrospective studies are based on several metrics to evaluate association between air pollution exposure and 
adverse health outcomes (e.g. pregnancy outcomes, cardiorespiratory morbidity and mortality, etc.) [1]. In future health studies, 
air pollution exposures can be determined and the LUR can be calculated for homes or work locations within the studies, as 
described in the literature [15, 19]. 

Despite some limitations, LUR is a fast method to carry out to access air pollution exposure when there is data availability. 
LUR quantifies parameters related to deterioration of air quality, e.g. high density land uses, industrial or busy traffic areas, as 
well it may support policymaking regarding the decrease of air pollution concentration. 

Potential benefits of this model for health effects research include improved spatial estimations of atmospheric pollutant 
exposure and reduced need for extensive pollutant measurements. Nonetheless, the model could be more accurate with the 
inclusion of meteorological variables. 

5. Conclusion 

This paper documents the development of an LUR model which predicts ambient NO2 concentrations in the urban area of 
Gothenburg and Mölndal, Sweden. Results showed that geographic characteristics as altitude and traffic intensity contribute 
considerably to the urban air quality. In future research, additional meteorological will be incorporated into the model and then 
will be extrapolated for later years based on measurements of monitoring stations.  

Furthermore, the LUR model can be used to estimate outdoor concentrations at the home address of participants in 
epidemiological studies regarding air pollution, as well as it could support policymaking  about the improvement of urban air 
quality. 

Acknowledgements 

This research was funded by the National Council for Scientific and Technological Development, Research Center, Swedish 
Brazilian Innovation Center and SAAB AB.  

We thank the staff of Visual Arena Lindholmen Science Park and Visual Arena Research for support. Additionally we thank 
Alexander Walther and Peter Molnár from Gothenburg University for providing us both traffic and demographic data. 

References 

[1] B. Zou, J.G. Wilson, F.B. Zhan, Y. Zeng. Air pollution exposure assessment methods utilized in epidemiological studies, J Environ Monit, 11 (2009):475-
490. 

[2] J.R. Nuckols, M.H. Ward, L. Jarup, Using geographic information systems for exposure assessment in Environmental Epidemiology studies, Environ Health 
Perspect, 112 (2004):1007-1015. 

[3] M. Jerrett, M.A. Arain, P. Kanaroglou, B. Beckerman, D. Crouse, N.L. Gilbert, et al., A modeling the intraurban variability of ambient traffic pollution in 
Toronto, Canada. J Toxicol Environ Health, 70 (2007):200-212. 

[4] Y. Zhu, W.C. Hinds, S. Kim, S. Shen, C. Siouta, Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmos Environ, 36 
(2002):4323–4335. 

[5] World Health Organization (WHO), WHO air quality guidelines global update 2005 – Report on a working group meeting, Bonn, Germany, 2006. 
[6] T. Sahsuvaroglu, A. Arain, P. Kanaroglou, N. Finkelstein, B. Newbold, A LUR model for predicting ambient concentrations of nitrogen dioxide in Hamilton, 

Ontario, J Air Waste Manag Assoc, 56 (2006):1059-1069. 
[7] G. Hoek, R. Beelen, K. Hoogh, D. Vienneau, J. Gulliver, P. Fischer, D. Briggs, A review of land-use regression models to assess spatial variation of outdoor 

air pollution, Atmos Environ, 42 (2008):7561-7578. 
[8] M. Jerret, M. Finkelstein, Geographies of risk in studies linking chronic air pollution exposure to health outcomes, J Toxicol Environ Health, 68(2005):1207-

1242. 
[9] M.A. Arain, R. Blair, N. Finkelstein, J.R. Brook, T. Sahsuvaroglu, B. Beckerman, L. Zhang, M. Jerret, The use of wind fields in a land use regression model 

to predict air pollution concentrations for health exposure studies, Atmos Environ, 41 (2007):3453-3464. 
[10] N. Rose, C. Cowie, R. Gillet, G.B Marks, Weighted road density: a simple way of assigning traffic-related air pollution exposure, Atmos Environ, 43 

(2009):5009-5014. 
[11] K. Borne, D. Chen, J. Miao, C. Achberger, J. Lindgren, M Hallquist, et al., Data report on measurements of meteorological- and air pollution variables 

during the campaign GÖTE-2001, Earth Sciences Centre, Gothenburg University, Gothenburg, 2005. 
[12] L. Chen, Z. Bai, S. Kong, B. Han, Y. You, X. Ding, S. Du, A. Liu, A land use regression for predicting NO2 and PM10 concentrations in different seasons in 

Tianjin region, China, J Environ Sci, 22 (2010):1364–1373. 
[13] M. Eeftens, R. Beelen, K. Hoogh, T. Bellander, G. Cesaroni, M. Cirach, et al, Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, 

PM10 and PM coarse in 20 European Study Areas; Results of the ESCAPE Project, Environ. Sci. Technol, 46 (2012):11195−11205. 
[14] R. Beelen, G. Hoek, D. Vienneau, M. Eeftens, K. Dimakopoulou, X. Pedeli, et al, Development of NO2 and NOx land use regression models for estimating 

air pollution exposure in 36 study areas in Europe e The ESCAPE project, Atmos Environ, 72 (2013):10-23. 



28   Mateus Habermann et al.  /  Procedia Engineering   115  ( 2015 )  21 – 28 

[15] C. Iñiguez, F. Ballester, M. Estarlich, S. Llop, R. Fernandez-Patier, A. Aguirre-Alfaro, A. Esplugues, Estimation of personal NO2 exposure in a cohort of 
pregnant women, Science of the Total Environment, 407 (2009):6093-6099. 

[16] D. Montagne, G. Hoek, M. Nieuwenhuijsen, T. Lanki, A. Pennanen, M. Portella, et al., Agreement of land use regression models with personal exposure 
measurements of particulate matter and nitrogen oxides air pollution, Environ Sci Technol, 47 (2013):8523-8531. 

[17] W.K. Jo, K.Y. Kim, Vertical variability of volatile organic compound(VOC) levels in ambient air of high-rise apartment buildings with and without 
occurrence of surface inversion, Atmospheric Environment, 36 (2002) 5645–5652. 

[18] L. Li, J. Wu, M. Wilhelm, B. Ritz, Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen 
oxides in Southern California, Atmos Environ, 55 (2012):220-228. 

[19] M. Brauer, C. Lencar, L. Tamburic, M. Koehoorn, P. Demers, C. Karr, A cohort study of traffic-related air pollution impacts on birth outcomes, Environ 
Health Perspect, 116 (2008):680-686. 


