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Fuel efficient control of a platoon using road topography information
MANDUS JEBER
Department of Signals and Systems
Chalmers University of Technology

Abstract
Fuel consumption has always been a main concern for the vehicle industry. Freight
transports spend much of their income on fuel and transportation of gods can also
cause congestion problems in highly trafficked areas. Investments towards develop-
ment of smarter control methods could possibly lessen these problems. To arrange
vehicles in a platoon and with the help of a control algorithm it is possible to travel
with a small inter-vehicle spacing. This results in a lowered air drag and better use
of road surface. The fuel consumption can also be lowered by knowing the upcoming
topography which makes it possible to use the potential energy obtained from hills.

This thesis presents ways to incorporate both the topography information and the
platooning behavior in a control strategy that can help reduce the fuel consumption.
In this thesis two main control methods are developed for this purpose. One is a
greedy approach that optimizes the trajectory for each vehicle without respect to
the vehicle behind. The other method plans the trajectory for the entire platoon
at once and uses more information to find the most efficient driving pattern. These
two control methods are compared to a platoon constructed with gap controllers
where the lead vehicle is controlled by a predictive controller.

The result of using a more intelligent control strategy compared to a gap con-
troller proved to save between 2% − 20% for the greedy approach and 3% − 24%
when more information is used, depending on the specific topography of the road.
The optimization routine can also handle different sample lengths and prediction
horizon.

Keywords: platoon, optimal, convex, fuel consumption, topography, MPC.
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1
Introduction

Lowered fuel consumption of vehicles is something that has always been in focus for
the vehicle industry, and it is becoming even more relevant with rising fuel prices.
Efficient driving is something that also companies involved in transportation using
heavy duty vehicles (HDV) are interested in. According to the annual report from
Volvo Group 2014 [1], 25% − 35% of the expenses for transportation companies
relates to fuel. If the fuel usage could be lowered, then the success for freight
transports would increase and the environmental strain from emissions would at the
same time be lessened.

Two common ways to minimize fuel consumption is to improve the combustion
system and increase the utilization of each vehicle. Two other ways are by arranging
the vehicles in a platoon and using knowledge of the topography of the road to plan
the journey better. Platoon is a name often given to a group of vehicles that drive
together on the road in an ordered manor with a short inter-vehicle distance. The
result is increased traffic flow and a lower air resistance for each vehicle involved.
The air resistance is a major part of the resistive forces that a HDV experience.
This is due to their large size and bulky shape. A lowered air resistance would lead
to that less energy is required to move the vehicles forward.

Transportation of goods using HDVs will often involve large masses, both from
the vehicle itself but also from the load they carry. This makes it harder to maintain
a constant velocity going uphill as the engine might not be able to provide sufficient
torque. Going downhill can in some cases result in that the vehicle has to break in
order to not violate the speed limit. If the topography of the upcoming road section
is known with the help of positioning systems, then a smarter driving pattern can
be achieved. This is done through the knowledge of the future gains and losses in
potential energy.

The gains of driving in a platoon and taking the topography into consideration
is already something professional drivers are aware of. Knowledge of eco-driving is
even a requirement for getting a driver’s licence in Sweden. Even with this knowledge
there is a limit to what is possible for a human driver. The driver might not be able
to react fast enough if an accident occur when the inter-vehicle distance is small.
Driving fuel efficiently also demands focus from the driver to plan the journey in
real time with respect to upcoming hills. A control system, that can plan the trip
and keep the inter-vehicle distance small, could therefore be of use.
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1. Introduction

1.1 Background
There have been several projects that uses different techniques to keep a number of
vehicles in a close formation, i.e. platooning. Two common variations of platooning
is the Adaptive Cruise Control (ACC) and the Cooperative Adaptive Cruise Control
(CACC) [2],[3]. These two control methods calculate the control signal with the help
of different information about other members in the platoon. The ACC uses only
sensor information from the ego vehicle about the nearest neighbor whereas the
CACC also receives information from one or several neighbors by vehicle to vehicle
(V2V) communication.

The illustration in Figure 1.1 shows a platoon of N vehicles. The ACC and
CACC aims to drive the platoon at a common velocity and also keep the inter-vehicle
spacing at a reference value. The reference spacing is constant in either space or
time. One downside to both of these algorithms is that no topographic information
is involved. It could for example be preferable to change the inter-vehicle spacing
as preparation for future hills.

N i+1 i i-1 1
di,i+1 di,i-1

Figure 1.1: A platoon of vehicles N vehicles.

There exists ways to involve the topographic information from Global Positioning
Systems (GPS) in order to find a more optimal driving pattern. Dynamic program-
ing or Model Predictive Control (MPC) has previously been used for this purpose
and has shown possibility to increase driving efficiency [4],[5]. The behavior will
be that before a steep hill the vehicle start to accelerate and then slowly decrease
its speed during the uphill travel. At the top of the hill the vehicle reaches a low
velocity in order to take advantage of the increase in velocity during the downhill
section, due to gravity. The result of this method of driving is a lower fuel consump-
tion. Depending on the implementation it is possible for the vehicles to know future
velocity changes of other vehicles. This would make the vehicles in the platoon able
to follow the predecessor better.

1.2 Aim
Positive result in using knowledge of road topography and arranging vehicles in a
platoon has previously been shown but the two strategies are seldom combined.
The idea to create a combined controller that includes both strategies could then
prove to be efficient. The aim of this project is therefore to analyze the efficiency
of a control strategy that combines the two concepts of platooning and topography
information in a way that minimizes the energy requirement for the entire platoon.
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1. Introduction

1.3 Method
A vehicle model will first be developed. Several of these vehicles will then be com-
bined to achieve the model of a platoon. From the model of one vehicle a convex
optimization problem will be stated that tries to minimize the fuel with respect to
topography and air resistance. This will later be referred to as a Predictive Con-
troller (PC). The optimization routine will then be extended to optimize the path
for several vehicles. The optimal path will be found using the Matlab plug-in cvx
[6].

The optimization routine will form the basis of two different platooning con-
trollers. The first controller optimizes the path of each vehicle separately. Each ve-
hicle will also be aware of the planed trajectory of its predecessor. This controller will
be named Predecessor Knowledge Predictive Controller (PKPC). The second con-
troller optimizes the trajectory for the entire platoon simultaneously. This demands
that information is gathered from all other vehicles and more V2V-communication
is then a must.

The platoon will be simulated in Matlabs simulation program Simulink, to ap-
proximate the behavior. The platoon controllers will be used as MPCs and will
therefore optimize the path iteratively at every sample point and the optimal veloc-
ity will, with the help of velocity controllers, be applied to each vehicle. In this way
the fuel consumption and behavior of the different control algorithms can be com-
pared. A third platooning controller that only optimizes the trajectory of the lead
vehicle will be used as a baseline comparison. In this algorithm the following vehicles
keep a predefined distance to the predecessor with the help of gap controllers. This
method of control will be referred to as Predictive Platooning Controller (PPC)

1.4 Delimitations
The modeling of the vehicle dynamics will not include the choice of gear as this
would severely increase the difficulty of the optimization. The number of vehicles
in the platoon is also assumed to be constant and outside influences such as traffic
lights and other obstacles are not included.

1.5 Thesis outline
In chapter 2 the model of the vehicles are introduced. The first section describes the
model that calculates the engine torque from a certain amount of fuel. The second
section talks about the forces that acts on the vehicles and how they are expressed.
The chapter ends with a display of the different road cases that will be used in this
work.

Chapter 3 discusses how the vehicle model can be expressed as a convex opti-
mization problem. The second section in the chapter shows the optimal trajectory
for such an optimization.
Chapter 4 discusses how the optimization routine needs to be changed so that all
vehicles in a platoon can have its own optimization routine. The second section in
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1. Introduction

the chapter shows the optimal trajectory for such a platoon.
Chapter 5 finds a convex problem that optimizes the fuel consumption for an

entire platoon at once, using more information. The second section in the chapter
shows the optimal trajectory for such a platoon.

Chapter 6 shows the significant results of the report. These involve the total fuel
consumption, heterogeneous platoons, choice of sample length, length of prediction
horizon and the effect of modeling uncertainty in the air drag.

Chapter 7 discusses problems and observation that occurred in the work. The
end of the chapter will suggest future improvements and extensions.

Chapter 8 makes the final conclusions and analyzes the results.

4



2
System description

This chapter first describes the model of the engine and the non-linear vehicle model.
The parameter values in the model can be found in Appendix A. The different
topography cases are introduced at the end of the chapter.

2.1 Engine model
The fuel consumption is the primary concern in this project and an engine model
that can calculate the produced torque for a given amount of fuel is then essential.
A sample based engine map from fuel to torque was provided as the base of the
model. The data was provided by AB Volvo and is from an D13k460 Euro 6 engine.

It was noted that the engine efficiency was highest at around 1200 rpm. The
model was therefore constructed to best approximate the engine at that angular
velocity. The truck is not expected to vary its speed much from the average velocity
and the fuel model therefore only needs to approximate certain rotational velocities.
The approximation of the engine was done using a first order polynomial fit. In
Figure 2.1 the relevant angular velocities are shown in comparison to the model.
The range is approximately between 60 and 90 km/h.

0 500 1,000 1,500 2,000 2,500 3,000
Torque [Nm]

Fu
el

[k
g/
s]

1000 rpm
1100 rpm
1200 rpm
1300 rpm
1400 rpm
1000 rpm
1100 rpm
1200 rpm
1300 rpm
1400 rpm

Figure 2.1: The model of the engine in dashed lines and the actual engine data.
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2. System description

2.2 Truck model
The vehicle model will be used both in simulation and in optimization algorithms
to find the optimal driving pattern. A simple model is therefore wanted in order to
decrease the overall computation time. The model consists of the powertrain and
external forces and both are explained here briefly. Inspiration was taken from a
similar model that was used in [7].

Engine

Gearbox

Final
drive

Clutch

ωe ωt ωw

ωw

Figure 2.2: Illustration of the powertrain of the vehicle.

The powertrain can be seen as the combination of an engine, clutch, gearbox and a
final drive, see Figure 2.2. The clutch is not considered in this model and all shafts
that transport the torque are assumed to have no dynamics.

The model for the torque generated by the motor is only dependant on the fueling
as seen in Eq. (2.1).

δ = c1Te + c2 (2.1)

where δ is the amount of fuel needed to travel one metre. The engine is also assumed
to have a rotational inertia Je. The transmission in the gearbox is modeled as

ωt = ωe

ic
(2.2)

Tt = icncTe (2.3)

where nc is the transmission efficiency and ic is the gear ratio in the transmission. In
this project both coefficients are selected as 1, i.e. the dynamics of the transmission
are ignored. The final drive is modeled in the same way by a conversion factor if
and an efficiency constant nf according to Eq. (2.4).

ωw = ωt

if

Tw = ifnfTt

(2.4)

Tw is the output torque from the final drive which is also the torque at the wheels.
The angular velocity ωw is similarly the angular velocity at the wheels if the vehicle
is assumed to experience no slip. Again the transmission efficiency is set to 1. This
means that the model assumes no losses in the powertrain. The torque seen by the

6



2. System description

wheels generated by the motor can be calculated to the corresponding force at the
wheels as

Fw = 1
rw

Tw = icifncnf

rw

Te (2.5)

where rw is the wheel radius. The acceleration of the vehicle can now be calculated
according to Newton’s second law as done in Eq. (2.6)

mev̇ = Fw − Fr − Fb (2.6)
where me is the equivalent mass, Fr is the external resistive forces and Fb is the
braking force. The external forces is the composition of the air drag Fair, the roll
resistance Froll and the gravitational force in slopes Fg as described by Eq. (2.7) and
seen in Figure 2.3. The equivalent mass is calculated in Eq. (2.8) and is the mass
of the vehicle plus the resistivity that comes from the powertrain’s internal inertia.

Fb

Fw

Froll

Fg

Fair

α

Figure 2.3: The external forces acting on the vehicle.

Fr = Fair + Fg + Froll (2.7)

me = m+
Jw + i2f i

2
cnfncJe

r2
w

(2.8)

In (2.8) Jw is the wheel inertia and m is the mass of the vehicle. The air resistance
is calculated as

F i
air = 1

2Aρv
2Cd(1− fi(di,i+1, di,i−1)

100 ) (2.9)

where A is the cross section area of the truck, ρ is the air density, Cd is the air
drag coefficient and the function fi describes the reduction in air drag for vehicle
i. This reduction is then converted into a percentage reduction, in the air drag
formula. This model does not take wind velocity or side-wind into account and
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2. System description

the reduction will only depend on the distance to the vehicle behind di,i+1 and the
distance to the preceding vehicle di,i−1. The reduction in air resistance is modeled
as the composition of three linear functions given as

g1(di,i+1) = K1 − P1di,i+1 = 13− 0.94di,i+1, di,i+1 <
K1

P1

g2(di,i−1) = K2 − P2di,i−1 = 43− 0.45di,i−1, di,i−1 <
K2

P2

g3(di,i−1) = K3 − P3di,i−1 = 52− 0.47di,i−1, di,i−1 <
K3

P3

(2.10)

The first function g1(di,i+1) describes how the air resistance decreases depending
on how close the follower vehicle is. g2(di,i−1) and g3(di,i−1) describes how the
predecessor affects the air resistance. The coefficients in the functions g are close to
the ones used in [7] but with small implementation differences. The air reduction
for each vehicle i out of N vehicles can now be calculated as

fi(di,i+1, di,i−1) =


g1(di,i+1) if i = 1
g1(di,i+1) + g2(di,i−1) if i = 2
g1(di,i+1) + g3(di,i−1) if i > 2
g3(di,i+1) if i = N

(2.11)

A representation of the air drag reduction is found in Figure 2.4 and shows the
reduction for the first three vehicles in a platoon of length four or more. The x-axis
shows both the distance to the predecessor and the following vehicle.

0 10 20 30 40 50 60 70 80 90 100 110 1200
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20

30

40

50
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dr
ag
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n
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]

Vehicle 1
Vehicle 2
Vehicle 3

Figure 2.4: The air reduction experienced for the first three vehicles in a longer
platoon as a function of distance.
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2. System description

The gravitational force is the longitudinal component of the force induced by gravity
and is calculated as

Fg = mg sin(α) (2.12)

where α is the slope of the road. The roll resistance is also modeled as a function
of the slope and is calculated as

Froll = Crmg cos(α) (2.13)

where Cr is the roll resistance coefficient.
Now the equation of motion can be described by

mev̇ = Fw − Fair − Froll − Fg − Fb (2.14)

2.3 Hill profile
Three types of constructed road topographies and one based on real measurements
will be used in this paper. These road profiles are used to get an understanding
of how the optimal velocity profile depends on the road. The road profile therefore
needs to be simple but representative. The hill profiles that will be used in this
thesis are seen in Figure 2.5. Case 1 and 2 will be used to illustrate how the vehicles
prepares for an uphill or downhill section. Case 3 is used to show the effect of longer
roads where knowledge of the entire topography is not available. The forth case will
be used to analyse the behavior on real road data. Case 4 is the topography data
between Borås and Landvetter which has been gathered by AB Volvo. Note that a
flat section has been added both at the beginning and at the end of the road.

The angle of the slope is ± 2 degrees in all of the constructed cases. The length
of the respective uphill and downhill section is the same for case 1 and 2 and the
first two uphill sections in case 3. The downhill section in case 3 is almost twice as
long.

9



2. System description

0 0.5 1 1.5 2 2.5 3 3.5 4
·104

−100

−50

0

Distance [m]

H
ei
gh

t
[m

]

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

10

20

H
ei
gh

t
[m

]

0 1,000 2,000
−10

−5

0

Distance [m]

H
ei
gh

t
[m

]

0 1,000 2,000
0

5

10

Distance [m]

H
ei
gh

t
[m

]

Figure 2.5: The four cases of hill profile that will be evaluated. Top left sub-figure
is case 1, top right case 2, the middle is case 3, and the bottom sub-figure is case 4.
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3
Predictive controller

This chapter explains how a controller that uses topographic information in order
to minimize the fuel consumption for a single vehicle can be constructed as a convex
problem, namely the Predictive Controller (PC).

3.1 Convex problem statement
The controller to be designed will later be implemented as an MPC. This means
that it finds the optimal trajectory with respect to fuel consumption, over a given
prediction horizon at every sample point. The prediction horizon describes how far
ahead along the road the optimization problem has knowledge about. The controller
uses information about the topography in order to predict the future behavior of
the vehicle. A new optimal trajectory is calculated at equally spaced positions along
the road. This means that the controller operates in the spatial domain.

The main reason to choose the spatial domain instead of the time domain is
that hills are located at certain positions along the road. This makes it impossible
to determine the hill location as a function of time unless the velocity curve of the
vehicle is known beforehand. If instead the spatial domain is used the hill location
can be modeled independently of the vehicle speed.

The computation time required to solve the problem needs to be kept small
since the comping unit inside a HDV should be able to solve it. The aim is therefore
to describe the system as a convex problem. Convex optimization problems are
relatively easy to solve and any local optimum is also guaranteed to be the global
optimum [8].

The system dynamics are, as described by chapter 2,

mev̇ = Fw − Fair − Froll − Fg − Fb (3.1)

The kinetic energy for each vehicle is then

E = mev
2

2 (3.2)

In Eq. (3.1) the time derivative of the velocity is a function of the square of the
velocity, induced by the air drag. If the kinetic energy is used, it is possible to
describe the vehicle movement in a linear fashion in terms of kinetic energy, without
loosing any dynamics. The derivative with respect to distance of the kinetic energy
is the same as the time derivative with respect to time as seen in Eq. (3.3).
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3. Predictive controller

me
dv

dt
= me

ds

dt

dv

ds
= mev

dv

ds
= d

ds
E = Fw − Fair − Froll − Fg − Fb (3.3)

The force Fair will be described in terms of kinetic energy in the following way.

Fair = 1
2ρACdv

2 = ρACd
E

me

(3.4)

The model in Eq. (3.3) now needs to be discretized in order to be used in the control
algorithm. This would result in the discrete model

E(k + 1) = E(k) +
(
icifncnf

rw

Te − ρACd
E

me

− Crmg cos(α)−mg sin(α)− Fb

)
sd

(3.5)
where sd is the sampling distance. The time it would take to traverse each sample
distance would then be

td(k) = sd

v(k) = sd√
2E(k)/me

(3.6)

The gravitational force and the roll resistance are functions of the hill angle. These
forces can then be seen as vectors of constants since the hill profile is known before
hand. This leaves the optimization routine to have the engine torque and the break-
ing force as optimization variables. All other functions and forces can be calculated
from these two variables.

All system properties have now been described and the only thing left is to
introduce limitations to the system. The most obvious limitation is that the engine
torque has a maximum output power, Pmax. The engine should also have a minimum
torque. This minimum torque should represent the retarding torque produced when
no fuel is added to the engine. This is described by the engine model in Eq. (2.1) and
states that the engine torque should be greater than −c2

c1
. The vehicle should also

stay within the speed limits which puts a constraint on the maximum and minimum
velocity, vmin and vmax. It is also desirable to end with the correct velocity vref. It is
possible to relax this constraint and demand that the final velocity should be greater
or equal to the reference velocity. The optimal fuel consumption should still be the
same but it could simplify calculations. The final demand is that the vehicle should
traverse the prediction horizon within a pre-defined time. This forces the vehicle
to maintain the correct average velocity. Note that the various velocity constraints
will be stated in terms of kinetic energy.

Another fact is that it might not be possible to fulfill all constraints for certain
road sections. It is then possible to add slack variables, i.e. an optimization variable
that allows the optimization to violate the constraints. This variable is added to
the cost function with a large gain. The result is that the constraints would only be
violated if it is necessary in order to solve the problem. The optimization problem
for the PC can now be stated as follows.

12



3. Predictive controller

min
Te

c1Te + c2

subject to

E(i+ 1) = E(i) +
(
icifncnf

rw

Te − Fair − Froll − Fg − Fb

)
sd

E(1) = mev
2
init

2
Hp∑
1
td ≤

Hpsd

vref

mev
2
min

2 ≤ E ≤ mev
2
max

2

E(Hp) ≥
v2

refme

2
− c2/c1 ≤ Te ≤ Tmax

(3.7)

In Eq. (3.7) Hp is the the number of samples that are considered over the prediction
horizon. The initial velocity vinit is starting velocity of the vehicle. In simulations
and implementations on real vehicles, this velocity is the current velocity and should
be transmitted to the controller at each sample point. The optimization problem
now only consist of convex constraints except for the limit on the engine torque.
The torque limit is on the form

Tmax = Pmax
rw

icifncnf

√
me

2E = Pmax

ωe

(3.8)

where ωe is the angular velocity of the engine. To solve this, a linearization of the
time with respect to velocity squared will be used. From this time approximation
the time can be calculated in a linear way as a function of kinetic energy. The time
it takes to traverse each sample point will be approximated with

td ≈ test = a0 + a1
2E
me

(3.9)

where the constants a0 and a1 are the solution to the minimization problem

min
a0,a1
‖ttrue − a0 − a1v

2
true‖∞ (3.10)

where ttrue is a time vector corresponding to the time it would take to drive one
sample distance using a range of representative velocities, i.e. velocities close to the
reference velocity. The kinetic energy v2

true is also calculated from these represen-
tative velocities. One important reason that this approximation works is that the
vehicles will not wary much from the reference velocity due to being constrained to
be within a certain range.

The illustration in Figure 3.1 shows how such a time estimation could be. In this
example a vector of 100 points between 72 km/h-78 km/h was generated. The time
it would take to traverse an 80 m sample distance was calculated using Eq. (3.6)
and the parameters that produced the best fit to this curve was calculated using
Eq. (3.10) from the square of the velocity vector.
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3. Predictive controller
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Figure 3.1: The approximation of time compared to the real time to traverse an
80 m distance.

With the new time approximation the constraint on the engine torque can be written
as

Te ≤
Pmaxsd

test

rw

icifncnf

(3.11)

One final addition needs to be made if the controller is used as an MPC over a long
drive cycle. The total travel time and the distance traveled needs to be remembered
and added to the time constraint. The expected travel time for the traveled distance
must also be calculated. This would give the constraint

tmemory +
Hp∑
1
td ≤

dmemeory +Hpsd

vref
(3.12)

where dmemory and tmemory is the distance traveled and the total travel time up to
this point. This constraint needs to be included so that the average velocity for the
entire trip is correct instead of over only the prediction horizon.
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3. Predictive controller

3.2 Optimal solution for the predictive controller
This section will explain the solution given from the optimization for the first two
road cases using a prediction horizon of 2480 m and a sampling distance of 80 m. In
the figures it holds in general that when the braking force is not shown, it means that
the brake was not used. The dashed black line represents constraints on velocity
and torque. The dashed blue lines is marking where a downhill or uphill section
starts and the dashed red line is placed where flat ground starts again. The vehicle
also has a time constraint that corresponds to keeping an average velocity of at least
75 km/h. The maximum and minimum velocity are in this case set to 70 km/h and
80 km/h.

In Figure 3.2 the result is shown when the first hill case was used, that only has
flat and uphill sections. It is visible that the optimization finds it advantageous to
increase the vehicle speed slightly before the hill and use full engine power as soon
as the hill starts. This is done in order to minimize the velocity change for the
road section. This will keep the air resistance to a minimum since it increases with
velocity squared and staying close to the average velocity is therefore beneficial.
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Figure 3.2: Optimal solution with the PC using case 1
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3. Predictive controller

Figure 3.3 shows the result for case 2, i.e. a downhill section. Here the vehicle starts
to slow down before the drop by setting the torque from the engine to a minimum.
At the end of the slope some braking force is required to keep the vehicle within
the velocity constraints. Note that after and before the speed changes, the vehicle
is traveling with a velocity slightly below than the reference velocity. This is to
achieve the correct average speed for the entire road section.
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Figure 3.3: Optimal solution with the PC using case 2
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4
Predecessor knowledge predictive

controller

The predictive platoon controller (PPC) uses one optimization routine along with
gap controllers to build up the platoon. This assures that the velocity curve of
the platoon takes the topography into account. The extension to this would be to
replace the gap controllers with predictive controllers. This gives the possibility for
the following vehicles to decide for themselves which velocity they should keep. The
only communication between the vehicles is the predicted time test over the control
horizon for the vehicle in front. Each vehicle is also assumed to have a distance
sensor so they know how far ahead the preceding vehicle is. In other words, each
vehicle optimizes its fueling based on the topography and the predicted velocity
profile of the preceding vehicle. This can be seen as a greedy approach as each
vehicle tries to drive as fuel efficiently as possible but ignores the effect this could
have for the vehicles behind. Such a controller will be named predecessor knowledge
predictive controller (PKPC). One assumption that is used in each vehicle is that
the vehicle behind is keeping a constant distance of dref meters. This is to get an
approximation of the air drag reduction.

4.1 Convex problem statement
No change is needed compared to the PC case for the first vehicle in the platoon
other than that the predicted time to traverse each sample distance needs to be
sent to the next vehicle. The rest of the platoon also use the same optimization
routine but with slight modifications. The first change is that the vehicles need to
be restricted to not drive too close. This is done via requiring a time delay between
the vehicles. The constraint states that the time it takes for a vehicle to reach a
certain sample distance minus the time it took the previous vehicle to reach the same
position, must not be to small. This is done in the constraint stated in Eq. (4.1)
where each vehicle also has been given an initial headway time to reach the starting
position. This headway time must be approximated when the MPC is implemented
in Simulink. A time delay between the vehicles is used so that the distance between
them in meters will increase as the velocity increases.

ti(j)− ti−1(j) ≥ dref

vref
(4.1)
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4. Predecessor knowledge predictive controller

In Eq. (4.1) ti(j) is the time it takes vehicle i to reach sample point j as done in
(4.2).

ti(j) = tiinit +
j∑

k=1
tid(k) (4.2)

where tiinit is the initial time delay between vehicle i and i− 1. Unfortunately (4.1)
is not a convex constraint. The solution is to use the time approximation previously
discussed in Eq. (3.9). The new expression for the time delay between vehicles is
then linear in kinetic energy and can be written as

ti(j)− ti−1(j) = tiinit +
j∑

k=1
tiest(k)−

j∑
k=1

ti−1
est (k) ≥ dref

vref
(4.3)

Another term that causes the optimization problem to be non-convex is the air
drag. This is because the inter-vehicle distance in meters is not known over the
prediction horizon, and the distance is also multiplied with the kinetic energy. The
air resistance is therefore linearized around dref and vref using a first order Tailor
expansion as seen in Eq. (4.4).

F i
air = ρACd

(
1− fi(dref, dref)

100

)
Eref

me

+

+ρACd
P2,3

100
Eref

me

(
(ti − ti−1)vpred − dref

)
+

+ρACd

(
1− fi(dref, dref)

100

)
E − Eref

me

(4.4)

In Eq. (4.4), vpred is the predicted velocity of the preceding vehicle. The distance to
the preceding vehicle is calculated with the approximated time difference multiplied
with the velocity of the preceding vehicle. The velocity of the preceding vehicle is
calculated using the sent vector of time estimated. The distance to the following
vehicle is assumed to be at the reference distance. Also note that the linearization
will differ for the last and first vehicle as they will only have a following or preceding
vehicle. The constant P2,3 is either equal to P2 or P3 depending on the position in
the platoon.

4.2 Optimal solution for the predecessor knowl-
edge predictive controller

In this section the results from the optimization routine for four vehicles are ex-
plained. The black dashed lines are the limiting constraints. The blue and red
dashed line correspond to the start and end of a slope respectively where an arrow
will indicate the increase or decrease of hill angle.

Figure 4.1 shows the results from the optimization using case 1. Here all the
vehicles follow the same velocity curve and this velocity curve looks the same as in
the PC case. All vehicles also follow with the closest allowed distance. The first
vehicle is drawn in blue and it can be seen that it applies more torque than the rest
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4. Predecessor knowledge predictive controller

of the platoon due to the different air resistance. The remaining three vehicles use
similar amount of torque and the lines therefore shadow each other in the figure.
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Figure 4.1: Optimal solution with the PKPC using case 1

Figure 4.2 shows the result for case 2 i.e. the downhill road. The color order for the
vehicles is blue for the first vehicle, red for the second, cyan the third and magenta
is the forth vehicle. The sub figure showing the relative time distance, gap, has the
same color order where the gap between vehicle 1 and 2 is in blue, between 2 and 3
is drawn as red and the last gap between vehicle 3 and 4 is cyan.

Well before the downhill starts, the three last vehicles start to separate from the
lead vehicle. The reason for this is as follows. The first vehicle finds its optimal
velocity trajectory which has the same shape as for the PC. This means that the first
vehicle sets the engine torque to the minimum in the downhill section. If the second
vehicle drives at close range to the first and also releases the gas in the downhill
section, it will soon get to close to the vehicle in front. This is since the air resistance
is lower for the second vehicle and the retarding affect is then larger for the vehicle
in front. It is also wasteful to use the brake since this would imply that the vehicle
could have driven slower at other sections of the road. The solution to avoid to use
the brake is then to increase the inter-vehicle distance before the downhill and catch
up with the vehicle in front at a later time on the road.

This explained driving behavior is visible in the figure as all vehicles separate
and stop the fuel to the engine. By not giving the engine any fuel, it will add a
small retarding force. The vehicles start to catch up to each other when the slope
has ended. Some small braking force is still required in order to not violate the
velocity constraint.
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Figure 4.2: Optimal solution with the PKPC using case 2
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5
Full knowledge predictive

controller

The PKPC can be seen as a greedy approach to control a platoon since all vehicles
optimizes its driving pattern with regards only to their own fuel consumption. In
order to find a velocity curve that is the optimum in regards to the combined con-
sumption of the platoon, more information has to be shared. This is the purpose
of the full knowledge predictive controller (FKPC). It finds the optimal velocity for
all vehicles in the platoon and feeds this information to each vehicle. In order to do
this, the position and velocity at the current sample position for all vehicles is used.

5.1 Convex problem statement
The resulting problem is similar to the PKPC but calculations for all N vehicles
must now be done in the same optimization as seen in (5.1).

min
Te

N∑
i=1

c1T
i
e + c2

subject to
for i = 1 to N

Ei(k + 1) = Ei(k) +
(
icifncnf

rw

T i
e − F i

air − F i
roll − F i

g − F i
b

)
sd

Ei(1) = mev
2
init

2
Hp∑
1
tid ≤

Hpsd

vref

mev
2
min

2 ≤ Ei ≤ mev
2
max

2

Ei(Hp) ≥
v2

refme

2
− c2/c1 ≤ T i

e ≤ Tmax

Fb ≥ 0
if i is greater than 1

ti − ti−1 ≥ dref

vref

(5.1)
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5. Full knowledge predictive controller

Note that the air drag needs to be changed slightly in order to be convex. The
velocity that is multiplied with the time delay is replaced with the constant vref and
the expression then becomes linear. The new air resistance is described by (5.2).
Again the equation needs to be modified for the last and first vehicle.

F i
air = ρACd

(
1− fi(dref, dref)

100

)
Eref

me

+

+ρACd
P2,3

100
Eref

me

(
(ti − ti−1)vref − dref

)
+

+ρACd
P1

100
Eref

me

(
(ti+1 − ti)vref − dref

)
+

+ρACd

(
1− fi(dref, dref)

100

)
E − Eref

me

(5.2)

5.2 Optimal solution for the full knowledge pre-
dictive controller

This section explains optimization results for the FKPC. The blue and red dashed
line correspond to the start and end of a slope respectively, where an arrow will
indicate the direction. The black dashed lines are the limiting constraints.

Figure 5.1 shows the result obtained by using hill case 1. The difference between
the solution from the FKPC and both the PC and PKPC is negligible and the
platoon behaves as expected. The inter-vehicle gap stays at its minimum value
through out the road section.

Figure 5.2 shows the result from using case 2, the downhill road. The three
last vehicles has almost the exact same solution where as the first vehicle, in blue,
differs slightly. There is a small increase in the relative distance between vehicle
1 and 2 seen in blue, just before the hill but the gap is much smaller than in the
FKPC compared to the the PKPC case. This is because the lead vehicle can adjust
its trajectory in order for the following vehicles to drive in a more fuel efficient
way. The optimization tries to find the optimum for the entire platoon, not just
the optimum for each vehicle as in the PKPC case. This means that it can be
advantageous for one vehicle to sacrifice efficiency so that other vehicles can use a
better velocity curve. It is the leader who has to adapt most towards the rest of the
platoon since the difference in air resistance is greatest between vehicle 1 and 2.
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Figure 5.1: Optimal solution with the FKPC using case 1
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Figure 5.2: Optimal solution with the FKPC using case 2
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6
Controller comparisons and

parameter changes

In this chapter various results are brought up. First the differences in fuel consump-
tion between the controllers are observed. After this the impact of mass differences
is discussed. Results from using different sampling intervals and varying lengths of
prediction horizon are also analyzed. Finally the impact of a remodeled air resistance
is observed.

6.1 Fuel consumption
This section aims to compare the simulated fuel consumption for the different control
structures and analyze the result. Road cases 1, 2 and 4 were used to get an
impression of how different road scenarios will impact the result. The data is based
on a platoon of four identical vehicles. The controllers PKPC, FKPC and the PPC
were implemented and simulated as MPCs in Simulink. Figure 6.1 shows how much
fuel each vehicle consumed for case 1.
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Figure 6.1: Simulated fuel consumption for each vehicle using case 1.
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6. Controller comparisons and parameter changes

The lead vehicle and the second vehicle’s fuel consumption are very similar for all
three control methods. The difference in fuel consumption mainly lies in the last
two vehicles. The lead vehicle for the PPC calculates its trajectory in the same way
as the lead vehicle of the PKPC. This results in the therefore similar. The increased
fuel consumption for the last two vehicles in the PPC can be explained by their lack
of knowledge of future control actions. This makes the gap controllers react slower
to velocity changes in the predecessors compared to the PKPC and FKPC.

The optimal solutions from the PKPC and FKPC are basically the same for case
1. This can be seen from comparing the solutions presented in chapter 4 and 5. This
can also be seen in the fuel consumption for the four vehicles.

Figure 6.2 shows the fuel consumption for each vehicle using case 2. Now the
effect of the different controllers is more clear. The trajectory for the first vehicle is
again the same for the PPC and the PKPC but the fuel consumption is different.
This is due to the gap controllers desire to drive close to the predecessor. The lead
vehicle in the PPC will then experience a lower air resistance. The second vehicle
in the PKPC will increase the distance to the lead vehicle which results in a larger
air drag. The gain from increasing the inter-vehicle spacing becomes clear when
the fuel consumption for the following vehicles is observed. For these vehicles the
PKPC performs better than the PPC. Better still is the FKPC that has a lower fuel
consumption for all its members in the platoon.

1 2 3 40

Vehicle position in the platoon

Fu
el

co
ns
um

ed

PPC
PKPC
FKPC

Figure 6.2: Simulated fuel consumption for each vehicle using case 2.

In Table 6.1 the total fuel consumption for the PKPC and FKPC is compared
against the PPC. For both road case 1 and 2 the FKPC uses the least fuel but the
difference is small for uphill roads. On downhill roads the fuel gain from using more
information in the optimization becomes greater.

26



6. Controller comparisons and parameter changes

Table 6.1: Total fuel consumption for the different controllers using hill case 1 and
2

Case PPC PKPC FKPC
1 100% 98.20% 98.21%
2 100% 79.79% 78.15%

The PKPC and FKPC was also run in an MPC simulation for road case 4, the Borås
to Landvetter distance. The velocity and inter-vehicle spacing for each vehicle from
case 4 is found in the appendix Figure B.1 and Figure B.2. In the simulation
the minimum velocity has been lowered. This is because of the long and steep
uphill sections that would otherwise be difficult for the HDVs to handle. From the
simulation it could be concluded that the vehicles sometimes drive with the smallest
allowed separation but both controllers must often increase the separation which is
due to the long downhill sections. Both controllers finished with an average velocity
only fractions away from the reference. This is merely due to the fact that the actual
time and distance traveled was fed back into the control routine and compensated
for. For both controllers the vehicles would in the final few hundred meters of the
road, drive with a lower than reference velocity to achieve this.

The combined fuel consumption can for case 4 be seen in Table 6.2. As theorized
in chapter 5 the first vehicle in the FKPC sacrifices some efficiency so that the
combined platoon will gain fuel. This is why the first vehicle is the only one that
consumes more energy compared to the PKPC.

Table 6.2: Total and individual fuel consumption for the FKPC compared to the
PKPC between Borås and Landvetter

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Average
100.70% 98.43% 98.01% 98.68% 99.02%

6.2 Heterogeneous vehicles
When a platoon consist of vehicles with different properties it might be advantageous
to arrange them in a certain order to spend the least amount of fuel for a particular
road section. A platoon of four vehicles, each with a different mass, was used as
a basis for this analysis. The optimal fuel consumption for all the 24 different
arrangements of the four vehicles was then calculated and compared. The masses
used were 20, 33, 46 and 60 tonnes. The results are based on the optimal solution,
not the MPC simulations. The topography used to gather the data was case 1 and
case 2.

When the FKPC was used the difference in fuel consumption was too small for
the arrangement of vehicles to matter. No matter the ordering the optimal solution
was always the same. The best way to drive was to keep the inter-vehicle spacing
small. The velocity curve would therefor look very similar in all arrangements since
the effect from the limiting vehicle will always be the same, no matter the ordering.
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6. Controller comparisons and parameter changes

The result for the PKPC was similar for both case 1 and case 2 in that for both cases
the most fuel efficient order was to place the heaviest vehicle first in the platoon,
although it was less important for case 1. The order of the remaining vehicles only
altered the consumption marginally. The fuel consumption for the PKPC and all
mass combinations can be found in Appendix C

For PKPC using case 1 this result can be explained as follows. When the heav-
iest vehicle is placed first, its velocity will decrease during the uphill section and it
therefore has to increase its speed before the hill in order to maintain the correct
average velocity. Since the other vehicles in the platoon are lighter, they can easily
follow the same velocity profile. To follow the lead vehicle closely turns out to be
the optimal way to drive as this results in reductions in the air drag coefficient. By
following the heavier vehicle’s velocity trajectory, the lighter vehicles will deviate
from their average velocity more than if they were the lead vehicle. These velocity
changes will add to the air drag losses for these lighter trucks. The gain of rearrang-
ing vehicles in case 1 is therefore not too important since fuel gain for a few vehicles
also means losses for other vehicles.

When the heaviest vehicle is not the lead vehicle, the velocity profile for the
members in the PKPC platoon will start to differ. An example of this is seen in
Figure 6.3. Here the vehicles are ordered from lightest to heaviest.
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Figure 6.3: Velocity and spacing for a heterogeneous platoon ordered from lightest
vehicle to heaviest over an uphill section. First vehicle in blue, second in red, third
in cyan and forth in magenta

The first two vehicles can pass over the hill without any change in velocity which
causes problems for the remaining two vehicles. The third most heavy truck wants
to increase its speed before the hill but this would cause it to get too close to the
preceding vehicle. The third vehicle must therefore drive slower for some time in
order to increase the inter-vehicular spacing. This leaves room to then accelerate to
a higher than average velocity before the hill. After the hill it must now drive with

28



6. Controller comparisons and parameter changes

a slightly higher velocity in order to finish the drive cycle within the correct time.
The behavior for the last and also heaviest vehicle is similar but the compensatory
measures are even greater. All the times where the inter-vehicular spacing is large
will of course result in greater air drag and then also a higher fuel consumption.

The fact that the heaviest vehicle should be placed first also for case 2 can be
explained as follows. The heavier the truck the faster it will accelerate in a downhill
section and the vehicles also wants to decelerate before the downhill section in order
to finish with the correct trip time. The heavier the truck the more it must also
decelerate before the slope.

If the heaviest vehicle is placed first in the platoon it will, as explained, slow down
before the hill. This will in turn force the following trucks to also slow down with the
same amount in order to not drive to closely. This then forces the following vehicles
to also increase their speed considerably during the remaining trip to compensate
for this drop in velocity. The most fuel efficient way to do this is to simply follow
the lead vehicle as close as possible.

If the platoon is again ordered after weight with the lightest vehicle first, the
result can be seen in Figure 6.4. The lightest vehicle will only decrease its speed
slightly before the slope and will then pick up speed in the downhill section. The
second vehicle wants to decrease its speed earlier which results in a separation be-
tween them which will last the entire downhill section. The same happens for the
third and forth vehicle as they must slow down more and more, the heavier the
trucks become. The resulting inter-vehicle spacing is what makes this ordering less
fuel efficient.
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Figure 6.4: Velocity and spacing for a heterogeneous platoon ordered from lightest
vehicle to heaviest over a downhill section. First vehicle in blue, second in red, third
in cyan and forth in magenta

By ordering the vehicles correctly the fuel consumption can be lowered by 0.18% for
case 1 and 12.4% for case 2. Both reductions are for the best case ordering versus the
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worst case for the PKPC. One important note is that the average velocity changes
slightly depending on the order of the vehicles. This will also affect the overall fuel
consumption which makes the calculations less accurate.
For case 1 the average velocity ranged from 74.997 km/h to 75.015 km/h and for
case 2 from 75.043 km/h to 75.077 km/h. For the FKPC the variations were also
notable with average velocities ranging from 75.012 km/h to 75.015 km/h for case
1 and between 75.080 km/h and 75.097 km/h for case 2.

6.3 Varying sample distance
This section aims to evaluate the difference in results if the sample interval is
changed. The results when the sample distance was changed was done from the
solution from one FKPC and PKPC optimization. Both case 1 and case 2 was used
in those tests.

The five different sample distances used were 10 m, 20 m, 40 m, 80 m and 160
m with a prediction horizon of 2400 m. The difference in fuel consumption for each
case is seen in Table 6.3 where a sample length of 160 m is set as reference. From
the table it is clear that the gain from faster sampling is minuscule over the uphill
section. Both control methods also produce the same solution for this case. This
is because the optimum is to follow the predecessor closely which can be done in
the same way for both controllers in this specific hill case. The gain from shorter
sampling distances comes on the downhill road and here the controllers also produce
different solutions.

Table 6.3: Percentage gain in fuel consumption for each controller using different
sample lengths and hill topography

Controller Case 160m 80 m 40 m 20 m 10 m

FKPC 1 0 < 10−3 < 10−3 < 10−3 < 10−3

2 0 0.84 1.24 1.41 1.5

PKPC 1 0 < 10−3 < 10−3 < 10−3 < 10−3

2 0 2.44 2.96 2.76 2.92

The time it takes to calculate the optimum velocity curve will increase as the sam-
pling distance decreases. This is due to the growth in optimization variables since
the accuracy increases but the prediction horizon stays the same. The time it takes
will also be influenced on the specific road profile. For the results in this section,
the time it took to find the optimum was almost the same when a sample distance
of 80 m or 160 m was used. When the resolution was changed to 10 m the required
time grew more than 50 times. This means that when the sample distance is to
be selected, both processing power and the quality of the result need to considered.
The fuel gain from having short sampling intervals is also highly dependent on the
topography and it could then be beneficial to decrease the distance on complex
situations.

30



6. Controller comparisons and parameter changes

6.4 Varying horizon length
To evaluate the impact of different lengths of prediction horizons the road profile
from case 3 was used. Both the PKPC and FKPC was simulated with the ability
to know the topography 960 m, 1920 m, 2880 m or 3840 meters in front of them.

The resulting fuel consumption from using different prediction horizons did not
differ by a great amount. For the PKPC the largest difference in fuel consumption
was less than 0.3% and for the FKPC the largest difference was about 0.4%. With
these small variations it is hard to conclude any benefits of using short or long
prediction horizons by looking at the fuel consumption alone. The biggest difference
in the results lie in the velocity profile. To illustrate this the result for the FKPC is
analyzed. The reasoning for the PKPC was very similar and will therefore not be
shown.

When the vehicles only had knowledge of the topography 960 m in front of
them, the controller would sometimes make more drastic preparations before a hill.
In Figure 6.5 this phenomenon is shown for the FKPC with a 960 m prediction
horizon. For the first uphill section, at 500 m, the curve looks like usual but when
the second uphill section comes the vehicles increase their velocities more than usual
as preparation. This is because they can see the coming downhill section and know
that they will have to slow down before it. The vehicles must therefore have a high
velocity at some point to achieve the correct travel time for this particular part of
the road. The vehicles do not see far enough to know that at the end of the downhill
road, their velocity will be higher and the earlier increase in velocity is not needed.
This is also why they travel with a low velocity after the downhill section.
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Figure 6.5: Velocities for the FKPC platoon with a prediction horizon of 960 m
for road case 3.

In Figure 6.6 where a prediction horizon of 3840 m was used the behavior looks more
like one could expect. This time the vehicles keep closer to the average velocity and
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do not increase the velocity as much before the second uphill. This is since they
know that their velocity will be high at the end of the downhill section. The vehicles
will also travel closer to the reference velocity soon after the downhill section ends.
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Figure 6.6: Velocities for the FKPC platoon with a prediction horizon of 3840 m
for road case 3.

One major factor involved in the decision of horizon length is the computation time.
The percentage change in computation time between the two shortest horizons was
only a few percent, but when the prediction horizon was extended to 2880 m the
computation time was doubled. For 3840 m the required time was around 10 times
as great compared to the shortest horizon. The increase in computation time comes
from the increase of optimization variables. Also for case 1 and case 2 the same
proportions in computation time held true.

6.5 Air resistance
The dynamics of the air resistance is the part of the vehicle model that has the
highest uncertainty. It was necessary to make the model simple yet representative
but this means that many of the involved factors were overlooked. This chapter is
aimed to show how the result would differ if the formula for the air resistance is
altered.

First the FKPC was used on both case 1 and case 2 with different K and P
values, i.e. the reduction of the air resistance when the inter-vehicle distance is
zero and the rate of change when the inter-vehicle distance increases, see Eq. 2.10.
In all tests the vehicles continued to stay close together with the smallest allowed
separation. The only visible difference was that when the air resistance was lower,
the vehicles would decelerate slower if no torque was applied by the engine. This
forces the vehicles to start to slow down earlier before a downhill section.
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6. Controller comparisons and parameter changes

If the air resistance is again lowered on uphill section, less of the engine power
is wasted on working against the air resistance. This means that the change in
velocity will be smaller over the hill since more power is available to move the
vehicles forward. The result will be the opposite if the air resistance is increased,
both for uphill and downhill sections.

The result for the PKPC was the same for case 1 as it was for the FKPC. This
is since they have the same optimal solution for uphill sections. More interesting
for the PKPC is downhill sections since the vehicles will increases their inter-vehicle
distance on these roads. Look back at Figure 4.2 for this fact. The length of this
separation mainly depends on the difference in air resistance between two vehicles.
If the difference is small then the vehicles do not need to separate as much. If the
difference on the other hand is larger, a greater separation is required to avoid use
of the brake. In Figure 6.7 an example of this is shown for an downhill section. The
upper figure shows the normal case when the parameters have not been changed. The
lower figure is when the rate of change with respect to separation (the P parameter)
has been doubled. The K gain (the static reduction) has been adjusted so that the
percentage reduction is the same at the reference separation. This means that the
first vehicle do not experience any change.
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Figure 6.7: The inter-vehicle separation using different rate of change in air resis-
tance over a downhill section. The separation between vehicles 1 - 2, 2 - 3 and 3 -
4 are shown in blue, red and cyan respectively.

The result from the parameter change is that the vehicles do not need to separate
as much in order to experience a sufficient increase in air resistance. The difference
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in time gap is mostly visible between the first two vehicles but this is simply since
the parameter change will affect them more because of the previously large gap.

On straight road sections the air resistance stands for more than 70% of the fuel
consumption for the first vehicle in a platoon when the air resistance in Eq. (2.9)
is used. For the rest of the platoon the air resistance can be contributed to about
60% of the fuel. For non-European trucks and private cars this number is lower
due to a more aerodynamic shape of the vehicles. Table 6.4 shows the percentage
gain in fuel from driving in a platoon of 4 vehicles compared to 4 vehicles that
drive separately. The comparison is done eighth times where the air drag coefficient
is decreased 10% each time. The comparison is done on a flat surface to better
illustrate the aerodynamic impact.

Table 6.4: Percentage fuel gain from driving in a 4 vehicle platoon compared to 4
individual vehicles for different values on the air drag coefficient.

1Cd 0.9Cd 0.8Cd 0.7Cd 0.6Cd 0.5Cd 0.4Cd 0.3Cd

21.36% 20.43% 19.39% 18.19% 16.81% 15.19% 13.27% 10.96%

As the table illustrates, both a HDV and a more aerodynamic vehicle will benefit
from being part of a platoon.
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7
Discussion

In this chapter discussion and thoughts about the project is found. It will end with
stating possible future improvements.

7.1 Optimization model
The model of the air resistance is likely the object which has the greatest uncertainty
in this project. So far there has been few studies of the reduction in air drag due
to having neighboring vehicles. The convex optimization problem can also have
negative reductions (increase) of the air drag coefficient. The reductions due to
neighboring vehicles should always be greater or equal to zero, see Figure 2.4, but
this is something not included in the thesis. This was due to the failure of finding
a convex way to state this property. The poor model is unfortunate since the air
drag is the only factor that gives benefit from driving in a platoon. The inaccurate
air model will likely skew the results presented in this thesis and should therefore
be analyzed with some scepticism. Even though the exact figures could be wrong,
the general concepts and tendencies presented should still be valid.

The model used to calculate the fuel consumption is not dependant on velocity.
This is not true for an actual engine but this simplification was still made. The
reasoning was that the velocity of the vehicles should not vary by a great amount.
This was more true when hill case 1 and 2 was used, but when simulations for case 4
was run the velocity range grew. This was due to the long up- and downhill sections.
It is then possible that the fuel consumption is slightly more or less for those places.
Still, the same approximation was done for all control algorithms and errors when
the fuel difference between them was compared should then be quite small as they
will cancel out to some extent. Another simplification whose impact has not been
evaluated much is the time approximation. Again this approximation is near the
truth when the velocity range is small but no analysis of its validity has been made
for cases where the velocity span is larger.

If the optimization routine is not able to find a solution that can keep the correct
average velocity, a slack variable is needed. This could for example happen for long
uphill road sections. The cost related to this variable should be appropriately scaled.
I some scenarios it might not be important when the platoon arrives. In this thesis
the cost was selected large so that the main priority was to keep the correct travel
time but this can lead to more extreme optima which is not always wanted.
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7.2 Implementation
When the controllers were implemented in Simulink, several calculations had to be
made to make the MPCs function correctly. The first is that the FKPC needs to
know the velocity that each vehicle will have at the start of each optimization. A
new optimization will be done each time the lead vehicle reaches a sample point.
The problem is that the following vehicles are still a small distance away from this
place in space. This makes it beneficial to predict the velocity of each vehicle at the
upcoming position. This is easily done when the vehicles drive in close formation but
if the inter-vehicle spacing increases, so does the errors in the velocity prediction.
This can cause the controller to find an optimum given an initial condition that will
not occur.

A similar problem will occur for the PKPC when the inter-vehicle spacing grows.
A vector of predicted times will be sent to a vehicle from its predecessor. This is
the basis of this vehicle’s optimization. If the distance between the two vehicles is
greater than the sample distance, then the received time vector would be based on
the next sample point. The vehicle behind would then need to remember the time
vector sent from the leader that is based on the previous sample point. This is not a
big problem in simulations but it can be in real implementations. The follower will
be using old data, one or more sample distance ago. If something were to occur that
makes the predecessor change its trajectory so that the predicted velocity curve,
based on one point in space, is not being followed at the next sample point, the
following vehicle would not be aware of this until it reaches this sample point. It
is also possible that this information delay can cause an unstable behavior if the
platoon consists of many vehicles that travel with large separations.

The problem with remembering data will also happen for the FKPC. All vehicles
except the leader needs to remember the velocity that should be followed at the
upcoming sample point. This is as mentioned previously because the trajectory is
found when the leader reaches a sample position, but the rest of the platoon has not
yet reached this position. If the vehicles have large separations then more than one
reference velocity need to be remembered. It is likely that this will cause instability
if the separation grows too large.

The gap controllers in the PPC are made out of PID controllers. The main
focus in this project was to find an optimization algorithm for optimal platooning.
The time spent on finding a stable and well behaved gap controller was therefore
short. This is one reason why only few results were compared to the PPC. It simply
underperformed and it is expected that the PPC would use less fuel if more time
was spent on finding a good gap controller.
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7.3 Future work
One relatively easy improvement on the model is a better time approximation. In its
current state, the velocity that will have the best time approximation lays close to
the reference velocity. For roads where the velocity varies greatly, there is a chance
that the approximation is not good enough. This can be solved by calculating the
predicted velocity curve for the entire trip beforehand and then find a vector of
values that corresponds to the approximation variables at each sample time. By
doing this, the approximation can be made accurate as each pair of values in this
vector corresponds to a linearization round the predicted velocity along the road.
This change would not increase the difficulty of the optimization, except that a large
optimization needs to be done before each journey starts.

In this thesis only regular fuel driven HDV’s were modeled. A good extension
would be to also model hybrid and electric vehicles. This would be an interesting
test case as the fuel gain from platooning could be different for these vehicles. This
because the vehicles that use an electric engine can recharge their batteries when
they use the brake.

Further extensions of the models would be to incorporate gear changes and a
velocity depended fuel to torque function. The gear change could be an important
factor for roads with steep hills and the engine model is in its current state only
good at certain angular velocities.

The model for the air resistance has several possible improvements. Wind speed
and side wind is one thing that is not modeled and this will impact the total air
resistive force. To get a better model for the drag reduction from driving in a
platoon, extensive data gathering is needed from real life testing. It is possible that
the model used in this thesis is not accurate.

Implementation changes to make the controllers able to run in real vehicles might
be needed. Current HDV’s are not designed to transmit a vector of data, such as the
vector of predicted travel times. Most common is to send only the current velocity
or acceleration. To send more data likely requires the making of a new standard
amongst the vehicle companies.

String stability is a behavior that is often discussed in platooning papers. It
describes that errors do not propagate through the string of vehicles. String stability
has not been evaluated in this thesis but this is something that needs to be done
before any real implementation can be made. From observations of the simulation
results in the current control algorithms, it is likely that oscillations will start to
grow as the number of vehicles increases.
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8
Conclusion

By using an intelligent controller in vehicle platoons, the fuel consumption can be
lowered. The fuel gains comes mainly from their ability to keep a small inter-
vehicle distance between vehicles and by smoothing out the velocity curve over hills.
Smoother velocity curves means that the vehicles should increase the velocity as
preparation for steep hills and slow down before downhill slopes. The maximum
and minimum velocity will then be closer to each other and a lower air resistance is
then achieved. It will also minimize the break usage which means that less energy
is wasted.

By using a smart control algorithm such as PKPC and FKPC compared to a
gap controller the fuel consumption can be lowered but the amount of fuel gained
is dependant on the topography. The FKPC was more efficient than the PKPC on
downhill sections. On uphill sections the result was similar for both the controllers.
For real road data the FKPC would save about about 2% compared to the PKPC.
The main reasons for this are that the FKPC has access to more information and
V2V communication, which makes it possible for the vehicles to drive with a smaller
inter-vehicle distance.

The ordering of heterogeneous vehicles plays a big role for the PKPC where the
heaviest vehicle should be placed first in a platoon. The fuel reduction is mostly
visible on downhill roads but real terrain will always consist of both up- and downhill
sections, and vehicles should therefore be ordered before a journey begins. It can
otherwise force vehicles to make large velocity changes to avoid using the brake.
This will loose fuel and could be an uncomfortable ride for the passengers.

When the sample distance is to be selected one should, as usual in control algo-
rithms, choose a short length, as long as the computing unit can handle the heavy
calculations. This should make sure that the solution is close to the optimal.

The prediction horizon should not be selected too short. If it is then there is a
risk that the platoon will overcompensate for predicted future velocity changes to
achieve the correct travel time. If the prediction horizon is long, future maneuvers
in order to stay within the constraints can be planned more effectively.

The model of the air resistance plays a role in the behavior of the optimal velocity.
Depending on the model, the inter-vehicle distance could be different for the PKPC.
The FKPC is more robust against a badly modeled air resistance since the vehicles
tend to stay in close formation. It can also be concluded that the gain of driving
in a platoon will decrease for more aerodynamic vehicles. But even though the fuel
savings are smaller, the gain is still several percent which makes it worthwhile.

39



8. Conclusion

40



Bibliography

[1] Volvo AB. Annual Report. Volvo AB (2014).

[2] Seiler, P., Pant, A., Hedrick, K. (2004). Disturbance propagation in vehicle
strings. Automatic Control, IEEE Transactions on, 49(10), 1835-1842.

[3] Yanakiev, D., Kanellakopoulos, I. (1995, December). Variable time headway
for string stability of automated heavy-duty vehicles. In Decision and Control,
1995., Proceedings of the 34th IEEE Conference on (Vol. 4, pp. 4077-4081).
IEEE.

[4] Alam, A. (2014). Fuel-efficient heavy-duty vehicle platooning. Universitetsser-
vice US AB

[5] Kreuzen, C. (2012). Cooperative adaptive cruise control: using information
from multiple predecessors in combination with MPC, TU Delft, Delft Univer-
sity of Technology.

[6] CVX: Matlab Software for Disciplined Convex Programming. (2015) CVX re-
search. http://cvxr.com/cvx/.

[7] Kemppainen, J. (2012). Model Predictive Control for Heavy Duty Vehicle Pla-
tooning.

[8] Boyd, S., Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

41



Bibliography

42



A
Model parameters

Table A.1: Values used in the vehicle model

Notation Description Value
Cr Roll resistance coefficient 0.0015
Cd Air drag coefficient 0.56
ρ Air density 1.29 kg/m2

m Mass of vehicle 40 tonne
g Gravitational constant 9.81 m/s2

A Front area of truck 10.26 m2

if Final gear ratio ≈ 3.0159
ic Transmission gear ratio 1
nf Final gear efficiency 1
nc Transmission gear efficiency 1
Je Engine inertia 3.5 m2kg
Jw Wheel inertia 32.9 m2kg
rw Wheel radius 0.5 m
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B
Borås to Landvetter simulation

In Figure B.1 and Figure B.2 the velocity and inter vehicle time gap for the road
between Borås and Landvetter is shown. The color order is blue for the lead vehicle,
red for the second, cyan for the third and the last vehicle is drawn in magenta. The
inter vehicle spacing shows the time gap between vehicle 1-2 in red, 2-3 in cyan and
3-4 in magenta.
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Figure B.1: The velocity and inter vehicle gap from Borås to Landvetter using the
FKPC
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B. Borås to Landvetter simulation
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Figure B.2: The velocity and inter vehicle gap from Borås to Landvetter using the
PKPC
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C
Fuel consumption for a
heterogeneous platoon

Table C.1: Average fuel consumption for the PKPC using a heterogeneous platoon.
The result is displayed as the percentage change compared to the first vehicle order.
The weight order goes from first vehicle to the left and last vehicle to the right.

Weight order Case 1 [%] Case 2 [%]
60t46t33t20t 100.00 100.00
60t46t20t33t 100.00 100.00
60t33t46t20t 100.00 100.21
60t33t20t46t 100.00 099.99
60t20t33t46t 100.00 100.03
60t20t46t33t 100.00 100.23
46t60t33t20t 100.06 102.08
46t60t20t33t 100.06 102.10
46t33t60t20t 100.06 102.53
46t33t20t60t 100.05 102.08
46t20t33t60t 100.05 102.16
46t20t60t33t 100.06 102.57
33t46t60t20t 100.14 106.22
33t46t20t60t 100.18 105.89
33t60t46t20t 100.14 106.03
33t60t20t46t 100.18 106.11
33t20t60t46t 100.13 106.37
33t20t46t60t 100.11 106.20
20t46t33t60t 100.18 113.81
20t46t60t33t 100.14 114.17
20t33t46t60t 100.11 113.83
20t33t60t46t 100.13 114.00
20t60t33t46t 100.18 114.03
20t60t46t33t 100.14 113.95
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