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Influence of Behavioral Models

on Multiuser Channel Capacity
Erik Agrell, Senior Member, IEEE, and Magnus Karlsson, Fellow, OSA; Senior Member, IEEE

Abstract—In order to characterize the channel capacity of a
wavelength channel in a wavelength-division multiplexed (WDM)
system, statistical models are needed for the transmitted signals
on the other wavelengths. For example, one could assume that the
transmitters for all wavelengths are configured independently of
each other, that they use the same signal power, or that they use
the same modulation format. In this paper, it is shown that these
so-called behavioral models have a profound impact on the single-
wavelength achievable information rate. This is demonstrated by
establishing, for the first time, upper and lower bounds on the
maximum achievable rate under various behavioral models, for
a rudimentary WDM channel model.

Index Terms—Achievable information rate, behavioral models,
channel capacity, multiuser communications, mutual information,
network information theory, nonlinear interference, wavelength-
division multiplexing.

I. INTRODUCTION

O
NE of Shannon’s most significant contributions was

the definition of the channel capacity as the highest

achievable throughput (in bit/symbol or bit/s/Hz) of a given

communication channel, at an arbitrarily low error probability

[1]. He furthermore showed that a capacity-achieving transmis-

sion scheme can operate by transmitting discrete-time symbols

generated from a suitably chosen input distribution, if certain

conditions are imposed on the allowed sequences of symbols.

In a more practical setting, the symbols correspond to

pulses, the input distribution to a modulation format, and the

allowed sequences of symbols to an error-correcting code.

The maximum throughput that can be achieved with the best

possible error-correcting code is, for a given channel and

a given input distribution, given by the mutual information

[2, Ch. 2, 7]. This quantity can be expressed as a (possibly

complicated but still explicit) integral over the joint distribu-

tion of the transmitted and received symbols. Thus, it is a

function of the channel and the input distribution. To obtain

the channel capacity, which is a function of the channel alone,

the mutual information should therefore be maximized over all

possible input distributions (or modulation formats). Neither
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Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

this maximization nor the mutual information integral admit

analytical solutions in general, and the exact channel capacity

is therefore known only for a few specific channels, of which

the additive white Gaussian noise (AWGN) channel is the most

well known. This implies that for most practical channels, the

capacity is only known in terms of upper and lower bounds.

For the coherent fiber-optic channel, the AWGN channel

model is a good starting point, due to the amplified spon-

taneous emission (ASE) noise in optical amplifiers, but the

nonlinearities of the optical fiber will make this channel model

inaccurate for sufficiently high signal powers. Assuming the

added ASE noise variance Pase to be fixed and known, the

question is, how will the channel capacity C(P ) behave as

a function of the signal power P ? There is a common and

reasonable belief [3]–[5] that the nonlinearity will somehow

limit the available capacity for fiber links, but the question is

to what extent.

For the single-wavelength channel, the capacity was pio-

neered in [3], where it was shown to reach a maximum and

then decay as the signal power increases, and more recently

referred to as the “nonlinear Shannon limit” [6], [7]. However,

more or less all such plots formally represent lower bounds

on the channel capacity, as pointed out, e.g., in [4], [8]–[10],

since they are obtained from analysis over a finite set over all

possible input distributions or using suboptimal (mismatched)

receivers. It is possible to show that the channel capacity will

not decay at high signal powers, provided that a sufficiently

exhaustive search over input distributions is carried out at each

signal power level [11], [12]. Moreover, it can be shown that

the use of a finite-memory channel model will also raise the

lower capacity bounds at high signal powers to nonzero values

[13].

In this paper, which is an extension of [14], we will deal

with the capacity of multichannel systems, e.g., wavelength-

division multiplexed (WDM) optical links, for which the

situation is more subtle. The current paradigm in optical

multiuser communications [4]–[7], [9], [15]–[26] is to analyze

the capacity of a single user in the system, say user 1,

assuming that the other users are outside our control. We will

therefore call user 1 the primary user and the other users,

whose transmissions cause interference to user 1, interferers.

More formally, the quantity of interest is the achievable in-

formation rate C1 = sup I(X1;Y1), where I(X1;Y1) denotes

the mutual information between the input X1 and output Y1

of subchannel 1, and the maximization is over all possible

input distributions (modulation formats) fX1
. These quantities

will be mathematically defined in Sec. IV, where it is also

remarked that C1 is in general not a channel capacity in



2 JOURNAL OF LIGHTWAVE TECHNOLOGY, TO APPEAR, 2015

the information-theoretic sense. It is instructive to contrast

with wireless multiuser systems, where the transmitters are

typically designed jointly (but possibly operated separately),

and the relevant capacity measure is a multidimensional object,

the capacity region, which describes the set of achievable

throughputs for all users simultaneously [27], [2, Ch. 15], [28,

Ch. 6].

Two kinds of models are needed to fully describe a mul-

tiuser system as a single-user channel model X1 → Y1,

as illustrated in Fig. 1: the first is a discrete-time multiuser

channel model, which gives the statistics of the channel

outputs Y1, . . . , YM as functions of the inputs X1, . . . , XM ,

and the second is a behavioral model, which relates the

interferers’ distributions fX2
, . . . , fXM

to the primary user

input distribution fX1
. Obviously, fX1

needs to be optimized

for the considered multiuser channel model in order to attain

the channel capacity, but how shall the interferers, which

cause interference to the primary user, behave during this

optimization process? Will they be passive, or are they allowed

to adapt their signaling power and/or modulation format to the

power and/or modulation format of the primary user? These

questions are usually not explicity adressed in the majority of

papers on optical multiuser capacity. The notable exception

is the work by Taghavi et al. [27], where both the capacity

region and some bounds thereon were defined for a WDM

system model, based on a Volterra approach. Their main

conclusion (based on simulations of a simplified, nonlinear

channel model) was that C1(P ) is unbounded if the receiver

could use multiuser detection to cancel nonlinear interference,

and saturated (monotonically) to a constant value in the special

case of increasing all user powers P simultaneously.

In this paper, we discuss and classify the different behavioral

models used in the literature, and give an illustrative example

of multiuser capacity for a simple nonlinear optical channel

model, together with some general conclusions on how the

selected behavioral model for the interferers influences C1(P ).
Although the idealized channel model is not fully realistic,

it serves the purpose of exemplifying, for the first time,

the profound impact of behavioral models on the nonlinear

channel capacity. The paper is organized as follows. In Sec. II,

the multiuser nonlinear channel model is described and its

parameters are defined. The behavioral models are defined

in Sec. III, where we also attempt to classify the behavioral

models considered in earlier optical channel capacity studies.

After mathematically defining the channel capacity and related

quantities in Sec. IV, upper and lower bounds are derived in

Sec. V and VI, resp. The obtained bounds are plotted and

discussed in Sec. VII. The paper concludes in Sec. VIII with

a discussion about the validity of the results and their potential

extensions to more realistic optical channel models.

We use uppercase notation X for random variables and

lowercase x for deterministic variables. Probability density

functions are denoted as fX(x) and conditional probability

density functions as fY |X(y|x), where the subscripts will

sometimes be omitted if they are clear from the context.

Tx 3
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- Distribution f
x3
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Single-user channel

Fig. 1. A single-user channel model can be seen as a combination of
a multiuser channel model and a behavioral model for all users but one.
Transmitter and receiver are marked Tx and Rx, respectively.

II. SYSTEM MODEL

In order to exemplify the information-theoretic nature of

various behavioral models in optical communications, we need

a simple, yet nontrivial, channel model for a WDM link,

which enables analytical and numerical calculations of upper

and lower bounds on the achievable rates. Linear modulation

is used in the transmitter, and the receiver applies coherent

matched filtering and sampling. We select a simplified model

with three equispaced WDM channels enumerated by i =
1, 2, 3. For simplicity, we assume that four-wave mixing dom-

inates over self- and cross-phase modulation. This scenario

arises, e.g., when the generalized phase-matching condition

is fulfilled [29]. The dispersion and the nonlinearity are both

assumed weak, which means that the nonlinear phase shift

φNL ≪ 1. Under these assumptions, the coupled nonlinear

differential equations can be linearized in propagation distance

by a perturbative analysis. A detailed discussion and the full

set of coupled equations for this situation can be found in [29].

We find that the complex discrete-time output signals Yi are

given by a nonlinear channel model according to

Y1 = X1 + ǫX2
2X

∗
3 +N1, (1)

Y2 = X2 + 2ǫX1X
∗
2X3 +N2, (2)

Y3 = X3 + ǫX∗
1X

2
2 +N3, (3)

where Xi are independent, complex channel inputs and Ni are

independent, complex, circularly symmetric, white Gaussian

noise signals, each with zero mean and equal variance. The

indices in (1)–(3) are the same as in [27, Eq. (8)], [30, Eq. (6)],

confining the WDM system to 3 wavelengths and ignoring

self- and cross-phase modulation terms. Similar models were

derived in the context of noncoherent WDM systems with on–

off keying modulation [31], [32]. As in [27] and other works,

our intention is not to present an accurate channel model,

but rather the opposite: We wish to use the simplest possible

nonlinear WDM model that will allow us to qualitatively

compare different behavioral models.

In this work, we consider the single-wavelength detection

scenario, as it was defined in [27]. This means that each
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receiver i receives its own signal Yi, with no information about

the other received signals Yj for j 6= i. Furthermore, receiver

i knows the distributions fXj
of the other users j 6= i, but not

their codebooks. Hence, multiuser detection [27], [33], [34] is

possible, but not simultaneous decoding [28, Ch. 6].

The channel model (1)–(3) is characterized by two param-

eters, ǫ and Pase = E[|Ni|2]. In an n-span amplified link,

the single-polarization noise variance (power) equals Pase =
nnsp(G − 1)hνB, where nsp is the spontaneous emission

factor, hν the photon energy, G the gain of each amplifier,

which also equals the span loss, and B the signal bandwidth.

The constant in (1)–(3) is ǫ = nγLeff, where γ is the fiber

nonlinear coefficient and Leff the effective nonlinear amplifier

span length, related to the physical amplifier separation L via

Leff = (1− exp(−αL))/α with α being the fiber attenuation

coefficient. One may improve the model by multiplying ǫ
with a complex factor depending on the phase mismatch,

attenuation factor, and span length, but we neglect this for

simplicity.

For the numerical examples in Sec. VII, the following

parameters will be used. We consider a link with n = 16
amplifier spans. The gain of each is G = 30 dB and the

spontaneous emission factor is nsp = 2. The signal bandwidth

is B = 40 GHz, and with hν = 0.128 aJ, γ = 1.6 W−1 km−1,

and Leff = 24 km, we get Pase = 0.16 mW and ǫ = 610
W−1. The condition φNL = ǫP ≪ 1, where P is the signal

power, translates to P ≪ 1.6 mW, or a signal-to-noise ratio

of P/Pase < 10 dB. We will apply this model, which was

derived under a weak nonlinearity assumption, also in the

strongly nonlinear regime, which although inaccurate is the

conventional approach in the literature.

III. BEHAVIORAL MODELS IN MULTIUSER

COMMUNICATIONS

Whenever a multiuser system is characterized by means of

a single-user channel capacity, the results are connected to a

certain behavioral model, as discussed above. The behavioral

models relate the input distributions of the interferers to

the primary input distribution. We study three fundamentally

different classes of behavioral models:

(a) Fixed interferer distributions. The interferer distributions

fX2
, . . . , fXM

remain the same regardless of fX1
. The

dashed arrow from Tx 1 in Fig. 1 does not exist in this

case. From the viewpoint of information theory, this is a

single-user channel.

(b) Adaptive interferer power. All users transmit with the

same power P1 = P2 = P3, but not necessarily the same

distributions. The interferer distributions fX2
, . . . , fXM

are fixed apart from a scale factor, which depends on P1.

(c) Adaptive interferer distribution. All users transmit with

the same distribution and the same power, fX1
= fX2

=
fX3

.

The channel models used for WDM capacity analyses in

the literature fall in categories (b) and (c). Model (b) was

used by Wegener et al. [20], where on–off keying modulation

was assumed for the interferers [20, Eq. (15)], and a Gaussian

pdf assumed for the primary user, although all users had the

same power. Behavioral model (b) was also considered in [26,

Fig. 2(b)], where the influence of interferer distributions on

the achievable rate of the primary user was studied. It was

concluded that Gaussian interferers caused worse interference

than quadrature phase-shift keying (QPSK) and ring-shaped

modulation, when the primary user applies Gaussian modula-

tion at the same power level as the interferers. Model (c) was

used in [5], [7], [9], [22], [25]–[27], where it was explicitly

stated that every channel had the same modulation and power.

Multilevel ring-shaped modulation was used in [5], [7], [9],

[22], [25], four different modulation formats were used in

[26, Fig. 2(a)], and Gaussian modulation for all channels was

used in [27]. Quite a few studies have used models of the

nonlinear interference that does not depend on the choice of

modulation format, but only on the power spectral density of

the interferers. Then the modulation of the interferers has not

been specified, and the chosen behavioral model can be either

(b) or (c). This applies to [4], [6], [15]–[19], [21], [23], [24].

As will be demonstrated in the following, the achievable

rates may vary significantly between behavioral models.

IV. INFORMATION THEORY

The mutual information between two random variables X
and Y with joint distribution fX,Y and marginal distributions

fX(x) =
∫

fX,Y (x, y)dy and fY (y) =
∫

fX,Y (x, y)dx is

defined as [2, Eq. (2.35)]

I(X ;Y ) =

∫∫

fX,Y (x, y) log2
fX,Y (x, y)

fX(x)fY (y)
dxdy, (4)

where the integral is over the domain of X and Y . If one

or both of X and Y are discrete, their distributions are re-

placed with probability mass functions and the corresponding

integrals are replaced with sums. Similarly, the conditional

mutual information between X and Y given another random

variable Z is defined as [2, Eq. (2.61)]

I(X ;Y |Z)

=

∫∫∫

fX,Y |Z(x, y|z) log2
fX,Y |Z(x, y|z)

fX|Z(x|z)fY |Z(y|z))
dxdydz.

If X and Y are the input and output, resp., of a communication

channel, then the joint distribution can be separated into the

product fX,Y (x, y) = fX(x)fY |X(y|x), where fX denotes

the input distribution and fY |X denotes the channel. Thus,

the mutual information depends on both the input distribution

and the channel. More precisely, the mutual information gives

the highest achievable rate, in bit/symbol, of a given channel

and a given input distribution, if strong coding is allowed over

long blocks of symbols. As discussed in the Introduction, the

channel capacity is

C = sup
fX

I(X ;Y ), (5)

which is a function of the channel only, not of the input

distribution. From a practical viewpoint, the optimization over

input distributions in (5) can be regarded as an optimization

over modulation formats.
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In the multiuser scenario considered in this paper, we are

interested in the channel capacity of one subchannel. Inspired

by (5), one can define

Ci(Pi) = sup
fXi

: E[|Xi|2]=Pi

I(Xi;Yi), (6)

where Pi = E[|Xi|2] =
∫

|x|2fXi
(x)dx is the signal power

of subchannel i. This quantity is an achievable rate of sub-

channel i and has been studied in numerous publications

in optical communications. It is often called the channel

capacity, although, strictly speaking, the single-user channels

in Fig. 1 have no channel capacity in an information-theoretic

sense, since Shannon’s channel coding theorem, according to

which (5) gives the maximum achievable rate of the channel

described by fY |X , assumes the channel law fY |X to remain

the same throughout the maximization. This is not the case

in (6), where I(Xi;Yi) relies on a channel law fYi|Xi
that

changes with fXi
and/or Pi, according to the behavioral

models that control the input distributions fXj
for j 6= i.

In this paper, we wish to evaluate C1(P1) for the behavioral

models in Sec. III.1 As usual in nonlinear information theory,

it seems infeasible to find an exact expression, but we can

follow the standard approach and sandwich the achievable

rates between upper and lower bounds. No approximations

are involved in the derivations of these bounds.

V. UPPER BOUNDS

Our upper bounds on C1 depend on the following funda-

mental lemma.

Lemma 1: If X and Z are independent, then

I(X ;Y ) ≤ I(X ;Y |Z)

Proof: From [2, Eq. (2.119–120)],

I(X ;Y |Z) = I(X ;Y ) + I(X ;Z|Y )− I(X ;Z) (7)

= I(X ;Y ) + I(X ;Z|Y ) (8)

≥ I(X ;Y ),

where (7) follows from the independence of X and Z and (8)

from the nonnegativity of conditional mutual information [2,

Eq. (2.92)].

If X and Z are not independent, the Lemma does not hold.

A notable example is when X → Y → Z forms a Markov

chain, in which case I(X ;Y |Z) ≤ I(X ;Y ) follows by the

data-processing inequality [2, Eq. (2.122)].

For the specific channel model (1), the lemma can be used

to derive two upper bounds.

Theorem 2: For any distributions of X2 and X3, C1 is

upperbounded as

C1(P1) ≤ log2

(

1 +
P1

Pase

)

1A similar analysis can be carried out for subchannels 2 and 3. By
symmetry, C3(P3) is equivalent to C1(P1), whereas C2(P2) is different.
Some of the bounds in Sec. V and VI extend straightforwardly to C2 as well
(e.g., Theorems 4 and 5), whereas other bounding techniques, tailored to (2),
would be needed for a full characterization of C2(P2).

Proof: From (6) and Lemma 1,

C1(P1) ≤ sup
fX1

:E[|X1|2]=P1

I(X1;Y1|X2, X3). (9)

Given X2 = x2 and X3 = x3, (1) is an AWGN channel

with a constant offset ǫx2
2x

∗
3. If this offset is known, it can

be subtracted at the receiver, resulting in a regular zero-

mean AWGN channel with noise variance E[|N1|2] = Pase.

Hence, the right-hand side of (9) equals the AWGN channel

capacity log2(1+P1/Pase), independently of x2 and x3, which

completes the proof.

Alternatively, the theorem can be derived from (1) via the

data-processing inequality [2, Th. 2.8.1].

Theorem 2 holds for any distributions of X2 and X3, and

therefore for any behavioral models. For certain behavioral

models, the bound can be tightened using the next theorem.

Theorem 3: If X2 and X3 are zero-mean, circularly sym-

metric Gaussian (ZCG), then

C1(P1) ≤
1

P2

∫ ∞

0

e−u/P2 log2

(

1 +
P1

Pase + ǫ2P3u2

)

du

Proof: Invoking Lemma 1, this time conditioning on X2

only, yields

C1(P1) ≤ sup I(X1;Y1|X2)

= sup

∫

C

f(x2)I(X1;Y1|X2 = x2)dx2

≤
∫

C

f(x2) sup I(X1;Y1|X2 = x2)dx2, (10)

where the suprema are over all fX1
such that E[|X1|2] = P1.

If X3 is Gaussian, then (1) conditioned on X2 = x2 is a

zero-mean AWGN channel, because its two noise contributions

ǫx2
2X

∗
3 and N1 are both Gaussian. The power of ǫx2

2X
∗
3 is

ǫ2|x2|4P3, while the power of N1 is Pase as before. Hence, the

supremum in (10) equals the capacity of an AWGN channel

with power Pase + ǫ2|x2|4P3,

C1(P1) ≤
∫

C

f(x2) log2

(

1 +
P1

Pase + ǫ2|x2|4P3

)

dx2. (11)

This bound can be simplified by using the circular symmetry

of

f(x2) =
1

πP2
e−|x2|

2/P2 .

Let U = |X2|2. Then U is exponentially distributed,

f(u) =
1

P2
e−u/P2 , u ≥ 0. (12)

The theorem now follows by changing the integration variable

in (11) from x2 to u = |x|2.

VI. LOWER BOUNDS

Since the channel capacity is the supremum of mutual

information, a lower bound on capacity can be obtained

from the mutual information for any given input distribution.

Analogously, from (6),

C1(P1) ≥ I(X1;Y1) (13)
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for any input distribution fX1
with power P1. In this section,

we will obtain lower bounds on C1(P1) via (13).

If all input distributions are discrete, it is feasible to calcu-

late the right-hand side of (13) by numerical integration, using

either of the following two theorems.

Theorem 4: If X1, X2, and X3 are all discrete, uniformly

distributed over complex constellations X1, X2, and X3, resp.,

then

I(X1;Y1) = E

[

log2
f(y1|x1)

f(y1)

]

, (14)

where

f(y1|x1) =
1

πPase|X2||X3|
∑

x2∈X2

∑

x3∈X3

exp

(

−|y1 − x1 − ǫx2
2x

∗
3|2

Pase

)

, (15)

f(y1) =
1

|X1|
∑

x1∈X1

f(y1|x1). (16)

Proof: From (1),

f(y1|x1, x2, x3) =
1

πPase

exp

(

−|y1 − x1 − ǫx2
2x

∗
3|2

Pase

)

.

(17)

Marginalizing f(y1|x1, x2, x3) yields f(y1|x1) and f(y1).
Finally, (14) follows by rewriting (4).

Theorem 5: If X1 is ZCG and X2 and X3 are discrete,

uniformly distributed over complex constellations X2 and X3,

resp., then

I(X1;Y1) = E

[

log2
f(y1|x1)

f(y1)

]

, (18)

where

f(y1|x1) =
1

πPase|X2||X3|
∑

x2∈X2

∑

x3∈X3

exp

(

−|y1 − x1 − ǫx2
2x

∗
3|2

Pase

)

, (19)

f(y1) =
1

π(P1 + Pase)|X2||X3|
∑

x2∈X2

∑

x3∈X3

exp

(

−|y1 − ǫx2
2x

∗
3|2

P1 + Pase

)

. (20)

Proof: In (1), X1 +N1 is ZCG with variance P1 + Pase,

which yields

f(y1|x2, x3) =
1

π(P1 + Pase)
exp

(

−|y1 − ǫx2
2x

∗
3|2

P1 + Pase

)

.

Marginalizing this distribution with respect to X2 and X3

yields f(y1) in (20). Equation (19) is proved as in the proof

of Theorem 4, which completes the proof of (18).

In Sec. VII, the expectations in (14) and (18) will be

evaluated by Monte-Carlo integration to obtain lower bounds

on C1 via (13). Theorem 4 applies to all three behavioral

models, as long as the interferer distributions X2 and X3 are

discrete, whereas Theorem 5 applies to some cases of models

(a) and (b).

Theoretically, Theorems 4 and 5 can be modified to hold

also when at least one of the input distributions is continuous.

In this case, the corresponding sums in the expressions for

f(y1|x1) and f(y1) will be replaced by integrals. However,

these integrals cannot in general be evaluated analytically.

This causes numerical problems in (14) and (18), where the

Monte-Carlo estimate of the expectation may become grossly

inaccurate if f(y1|x1) is not exact. Applying Monte-Carlo

integration inside another Monte-Carlo integral should be

avoided if at all possible. Therefore, we wish to find other

lower bounds on the mutual information. To this end, the

following lemma, due to Emre Telatar, is useful. It was stated

and proved in [4], [20], and it can also be obtained as a special

case of the auxiliary-channel lower bound [35, Sec. VI]2.

Lemma 6: Let XG and YG be complex, dependent, jointly

Gaussian random variables. Let Y be any complex random

variable (possibly non-Gaussian) such that

E[|Y |2] = E[|YG|2],
E[Y ∗XG] = E[Y ∗

GXG].

Then

I(XG;Y ) ≥ I(XG;YG).

The next lemma gives the mutual information of two com-

plex, jointly Gaussian variables. It is proved by straightforward

evaluation of the integral in (4); see, e.g., [36, Eq. (9-8)].

Lemma 7: If XG and YG are complex, jointly Gaussian

variables with zero mean, variances E[|XG|2] = σ2
X and

E[|YG|2] = σ2
Y , resp., and covariance E[XGY

∗
G] = sXY , then

their mutual information is

I(XG;YG) = log2
σ2
Xσ2

Y

σ2
Xσ2

Y − |sXY |2
.

The preceding two lemmas make it possible to prove the

following lower bound.

Theorem 8: For any zero-mean interferer distributions fX2

and fX3
,

C1(P1) ≥ log2

(

1 +
P1

ǫ2P3E[|X2|4] + Pase

)

. (21)

Proof: Combining (13) with Lemmas 6 and 7 yields

C1(P1) ≥ log2
P1σ

2
Y

P1σ2
Y − |sXY |2

, (22)

where

σ2
Y = E[|Y1|2],

sXY = E[X1Y
∗
1 ],

and Y1 is given by (1) for a ZCG input distribution X1. Using

2To see this, substitute X = XG, p(x) = pG(x), q(y|x) =
pG(x, y)/pG(x), and qp(y) = pG(y) in [35, Eq. (34)].
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the independence of X1, X2, and X3,

σ2
Y = E[|X1 + ǫX2

2X
∗
3 +N1|2]

= E[|X1|2] + ǫ2E[|X2|4]E[|X3|2] + E[|N1|2]
= P1 + ǫ2P3E[|X2|4] + Pase, (23)

sXY = E[X1(X1 + ǫX2
2X

∗
3 +N1)

∗]

= E[|X1|2]
= P1. (24)

The theorem now follows by substituting (23)–(24) into (22)

and simplifying.

The right-hand side of (21) depends on the statistics of X2.

For example, if X2 is discrete, uniformly distributed over a

constellation X2, then

E[|X2|4] =
1

|X2|
∑

x∈X2

|x|4. (25)

In the special case of a phase-shift keying (PSK) constellation

with power P2, (25) simplifies into E[|X2|4] = P 2
2 .

On the other hand, if X2 is ZCG, then E[|X2|4] can be

calculated by setting X2 = Xr + jXi, where j =
√
−1 and

Xr and Xi are real, independent, Gaussian variables with zero

mean and variance σ2 = P2/2. Then

E[|X2|4] = E[|Xr + jXi|4]
= E[X4

r ] + E[X4
i ] + 2E[X2

r ]E[X
2
i ]

= 3σ4 + 3σ4 + 2σ2σ2 (26)

= 2P 2
2 , (27)

where (26) follows from a standard result in mathematical

statistics [37, Eq. (5-46)].

Theorem 8 will be used in the next section to lower-bound

C1 in certain cases when the interference is governed by

behavioral models (a) or (b).

VII. RESULTS

In this section, the bounds of Sec. VI and V are numerically

evaluated for the multiuser channel (1)–(3), using the param-

eters ǫ and Pase as specified in Sec. II. Fig. 2 (a)–(c) illustrate

via upper and lower bounds the single-user achievable rates

C1(P1) = sup I(X1;Y1), where the maximization is over all

distributions fX1
with power P1, combined with the three

behavioral models in Sec. III. For models (a) and (b), the

interferer distributions fX2
and fX3

are either uniform over

a QPSK constellation or Gaussian, which in total gives five

scenarios. We will discuss the three models separately below.

A. Behavioral model (a)—fixed interferer distributions

With behavioral model (a), the interferer distributions fX2

and fX3
are fixed and do not change with fX1

. The interfer-

ence power is also fixed at a level of P2/Pase = P3/Pase =
5 dB. The applied bounds are different depending on the nature

of the interferers: If X2 and X3 follow QPSK distributions,

then we obtain an upper bound from Theorem 2 and a lower

bound from Theorem 5 or 8, where Monte Carlo integration

was used to estimate the expectation in (18). The two lower
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Fig. 2. The achievable rates C1(P1) of user 1 in a WDM system, with the
three behavioral models (a), (b), and (c), defined in Sec. III, as a function of the
signal power P1. Dashed lines give upper bounds and solid lines lower bounds.
Shaded regions indicate the amount of uncertainty. Behavioral models (a) and
(b) both have two versions, depending on the type of interferer distributions. In
(c), the lower bound is obtained as the envelope of multiple bounds, indicated
with gray curves. Dotted vertical lines correspond to curves in Fig. 3.
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bounds turn out to be numerically indistinguishable; in Fig. 2

(a), Theorem 5 is plotted. On the other hand, if X2 and X3

follow Gaussian distributions, our upper bound is given by

Theorem 3 and the lower bound by Theorem 8 and (27).

The upper and lower bounds follow each other and together

prove that the achievable rate increases to infinity if the

signal power can be increased arbitrarily. This result is not

surprising, since X1 dominates over the two other terms in (1)

at sufficiently high power P1. The channel is in fact a single-

user channel, described by a fixed distribution fY1|X1
, and

the channel capacity is nondecreasing for all such channels,

linear or nonlinear [12]. The capacity is larger in the case of

discrete input distributions for the interfering channels than in

the Gaussian case, but the capacity follows the same general

trend in both cases.

B. Behavioral model (b)—adaptive interferer power

With behavioral model (b), the power of all users is the

same, but the distributions may be different. The same upper

and lower bounds as in Fig. 2 (a) are plotted in Fig. 2 (b):

Theorems 2 and 5 with QPSK interference and Theorems 3

and 8 with Gaussian interference. With this behavioral model,

the achievable rate of the primary channel is fundamentally

different depending on the nature of the interference. If

the interferers’ distributions are discrete, the achievable rate

increases with power towards infinity. This can be intuitively

understood as follows. The magnitude of the interference term

ǫX2
2X

∗
3 will, at high enough power P1 = P2 = P3, be

much larger than X1 or N1. Hence, receiver 1 can detect the

value of ǫX2
2X

∗
3 with high reliability (only four values are

possible in the QPSK case) and subtract this value from the

received signal Y1. After this so-called interference cancella-

tion, subchannel 1 is effectively an AWGN channel X1 +N1,

whose capacity is log2(1 + P1/Pase). This is the reason why

the two bounds converge near P1/Pase = 14 dB and above.

However, no similar receiver strategy is possible if X2 and X3

are Gaussian3, because then ǫX2
2X

∗
3 , which has a continuous

distribution with large variance, effectively drowns the weaker

contribution from X1. Therefore, this achievable rate has a

peak at a moderate power, after which it decreases towards

zero for very high power, as seen in Fig. 2 (b).

C. Behavioral model (c)—adaptive interferer distribution

To obtain a lower bound with behavioral model (c), i.e.,

when all users apply the same input distribution, we apply

Theorem 4 with a suitably chosen input distribution fX1
=

fX2
= fX3

. For the same reasons as in Fig. 2 (b), a discrete

input distribution is advantageous when the interference is

strong. We therefore consider M -PSK constellations with

uniform probabilities and choose the integer M suitably, as

described in the following.

The bounds with behavioral model (c) are illustrated in

Fig. 2 (c). The upper bound is again Theorem 2. The lower

bound is obtained from Theorem 4 as discussed in the previous

3As stated in Sec. II, no receiver knows any of the other subchannels’
codebooks. If these codebooks were known, the interference can be detected
and substracted even for Gaussian X2 and X3. [2, Sec. 15.1.5].
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Fig. 3. The mutual information according to Theorem 4 for M -PSK
constellations with uniform probabilities, for the indicated values of P1/Pase.
The peak of each curve yields the lower bound in Fig. 2 (c).

paragraph. Each M = 2, . . . , 16 gives rise to one lower bound,

indicated in gray. As visible in the bottom right of the figure,

each of these bound converge to log2 M at high power. This

can be understood as follows. As explained in Sec. VII-B, the

interference term ǫX2
2X

∗
3 in (1) can be reliably detected by

receiver 1 and subtracted from Y1. This holds for any discrete

constellation at sufficiently high power. After interference

cancellation, the effective channel is again X1 + N1, whose

mutual information with a uniform M -PSK input distribution

is asymptotically log2 M . Hence, for every M , there exists

a power threshold above which the lower bound is arbitrarily

close to log2 M . This proves that the envelope of these bounds,

shown in black in Fig. 2 (c), grows unboundedly.

The optimization process is illustrated in Fig. 3, which

shows the mutual information I(X1;Y1) according to Theo-

rem 4 as a function of M = 2, . . . , 16, for selected values

of P1/Pase. At low signal power, the mutual information

is practically the same for any M -PSK constellation (and

actually for any zero-mean distribution, including Gaussian),

whereas the optimal M tends to increase with power in the

nonlinear regime. We know for sure that M -PSK are not

optimal constellations4, but they suffice to show the qualitative

trend of the achievable rate: It again grows with increasing

power towards infinity. This result is significantly stronger

than the theoretical prediction for this behavioral model with

arbitrary channel models [12], which only states that the

achievable rate is nondecreasing.

VIII. CONCLUSIONS AND DISCUSSION

Multiuser information theory, or network information the-

ory, is still in its infancy. In the information theory litera-

ture, the most common approach is to study the multiuser

capacity region, i.e., the set of achievable rates for all users

simultaneously. In this work, however, we followed the most

common approach in optical communications, which is to

4E.g., a satellite constellation [11] would improve the lower bound, at least
in the range between 6 and 11 dB.
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study the channel capacity of a single user in the system.

More specifically, we considered the achievable rate of a

single wavelength in a multiuser WDM system, assuming

certain behavioral models for the transmission on the other

wavelengths.

For behavioral models (a) and (c), the achievable rate is

unbounded with the signal power. With model (b), however,

the outcome depends crucially on the distributions on the inter-

fering channels; the achievable rate may increase indefinitely,

as with the other behavioral models, or it may decrease to zero

as the signal power increases. These results were obtained by

analytically deriving both upper and lower bounds, in contrast

to most previous works, which have studied lower bounds

alone.

On a theoretical level, the most important conclusion in this

paper is that the results depend strongly on the assumed be-

havioral model. We emphasize that whenever a single-channel

model is derived for a multiuser system, there is always an

underlying behavioral model involved. However, despite their

significance, behavioral models have not yet received much

attention in optical communications. Our recommendation

to everyone working with the capacity of such single-user

channel models is to clearly state and justify the behavioral

model, because it has such a profound impact on the end

results.

On a more practical level, the main message is that un-

bounded capacity growth is indeed possible, under some

specific conditions: (i) The interferers use discrete constel-

lations; (ii) the channel model depends on the actual signals

transmitted by all users, not on the statistical properties of

signals [13], [30]; (iii) the symbol clocks of different users are

synchronized; and (iv) the receiver applies multiuser detection

[27], [33], [34].

The results were computed for a dispersionless three-user

WDM model (1)–(3), derived in the weakly nonlinear regime.

Despite its simplicity, this channel model serves to illustrate

the fundamental differences between behavioral models. Fu-

ture work may involve extending the channel model to the

strongly nonlinear regime or accounting for dispersion, more

users (wavelength channels), or dual polarization. It is not

known to which extent the conclusions above extend to such

more realistic channels.
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