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Isogeometric analysis in form finding in architecture 
An implementation of a dynamic relaxation solver for Rhinoceros©  
Master’s thesis in Structural Engineering and Building Technology 
ANDREA ALEXANDERSSON  
Department of Applied Mechanics 
Division of Material and Computational Mechanics 
Chalmers University of Technology 
 
 

Abstract 

Today, the use of computers for the design of new buildings is almost crucial. As the 
built environment is getting more complex, the integration between design and 
analysis is getting more important and the time setting up models for the geometry as 
well as the analysis is increasing. To make the design process as efficient as possible 
there is a need for tools for real-time analysis in the conceptual design phase.  
 
Most CAD geometries consist of NURBS (Non-Uniform Rational B-Splines) which 
are functions in a mathematical model for representing and generating geometries. By 
using isogeometric finite elements, i.e. where the basis functions consist of NURBS, 
the geometry of the CAD model can also be used in the FE-analysis which means that 
the same model can be used for the geometry as well as for the analysis. This will 
save a lot of time for the analysts and for the design process in general as it will 
facilitate the design iteration. Using the correct geometry instead of a simplification 
will also generate more reliable results. 
 
Dynamic relaxation is an explicit numerical method in which a static problem is 
solved as a fictious dynamic problem and can be used for form finding. By using this 
form finding method on elements that only work in tension and compression, i.e. 
membranes, an idea of an optimal form can be obtained. 
 
The purpose of this thesis has been to develop a plug-in program for the 3D modeling 
software Rhinoceros©. The plug-in uses dynamic relaxation with isogeometric 
analysis for the conceptual design of membranes. The program is written in the 
coding language C# using VisualStudio©. The aim is to explore new methods of FE-
modeling and to evaluate the possibilities and difficulties of using isogeometric 
elements in a design process.    
 

Key words:  

Isogeometric analysis, finite element method, form finding, dynamic relaxation, shell 
structures, object oriented programming, architectural engineering 
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Isogeometrisk analys för formsökning inom arkitektur 
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Sammanfattning 

Att använda datorer när man designar nya byggnader är idag näst intill nödvändigt. 
När den byggda miljön blir mer komplex, blir integrationen mellan design och analys 
allt viktigare och tiden det tar för att modellera geometrin samt modellen för analyser 
ökar. För att göra designprocessen så effektiv som möjligt finns därför ett behov av att 
utveckla verktyg för realtidsanalys under den konceptuella designfasen. 
 
De flesta CAD-geometrier består av NURBS (Non-Uniform Rational B-Splines) som 
är funktioner i en matematisk modell för att representera och skapa geometrier. 
Genom att använda isogeometriska finita element, där basfunktionerna består av 
NURBS, kan geometrin i CAD-modellen också användas i FE-analyserna, vilket 
innebär att samma modell kan användas för geometrin samt för 
strukturberäkningarna. Detta gör att man kan spara mycket tid på modelleringen och i 
designprocessen i allmänhet eftersom det underlättar itereringen som processen 
innebär. Genom att använda den korrekta geometrin istället för en förenkling kommer 
också beräkningarna att generera mer tillförlitliga resultat. 
 
Dynamisk relaxation är en explicit numerisk metod i vilken man löser ett statiskt 
problem som ett fiktivt dynamiskt problem och kan användas för formsökning. 
Genom att använda membran, d.v.s. element som bara kan ta tryck- och 
dragspänningar, kan man genom denna formsökningsmetod få en uppfattning om den 
optimala formen för systemet. 
 
Syftet med arbetet har varit att utveckla ett plug-in-program för 3D-
modelleringsprogrammet Rhinoceros©. Plug-in-programmet använder dynamisk 
relaxation med isogeometrisk analys för konceptuell design av membran. Programmet 
är skrivet i kodspråket C # med VisualStudio©. Syftet är att undersöka nya metoder 
för FE-modellering och att utvärdera möjligheter och svårigheter med att använda 
isogeometriska element i en designprocess. 
 
Nyckelord:  
Isogeometrisk analys, finita elementmetoden, formsökning, dynamisk relaxation, 
skalstrukturer, objektorienterad programmering, Arkitektur och teknik 
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1 Introduction 

 
Today, the use of computers for the design of new buildings is almost crucial. As the 
built environment is getting more complex, the need for tools for real-time analysis in 
the conceptual design phase is increasing. This integration between the design and 
analysis of the structures will therefore demand a stronger connection between 
architects and engineers.  
 

1.1 Background 

 
Most CAD (Computer Aided Design) geometries consist of NURBS (Non-Uniform 
Rational B-Splines). As the built environment gets more and more complex, the CAD 
models are getting larger and the amount of time setting up the model for the 
geometry as well as the model for the analysis is increasing. When two different 
models (geometry and structural analysis) are needed in the design process a lot of 
information can be lost. Many factors contributes to this loss. The lack of 
communication between architects and engineers and the overall lack of integration 
between the two professions has great significance to this. Another important factor is 
the simplifications that are made in the FE-model.  
 
In isogeometric analysis (IGA) the basis functions used in the FE-calculations 
consists of NURBS, hence, by using isogeometric finite elements the geometry of the 
CAD model can also be used in the FE-analysis. This will save a lot of time for the 
analysts and for the design process in general as it will facilitate the design iteration. 
Using the correct geometry instead of a simplification will also generate more reliable 
results. 
 
There are a number of tools for conceptual design already today, for example the 
SMART© tool for the Rhino© plug in program Grasshopper©. However, most of these 
programs use classic Lagrangian finite element analysis and therefore translates the 
NURBS geometry into a simplified model for the structural computations. By 
implementing isogeometric analysis in these tools the process in the conceptual 
design phase can be made even more efficient. In most FE-programs, for example 
ANSYS© the geometries are also simplified to carry out the calculations. With further 
development of IGA to the FE-programs the work and results of the subsequent 
design phases can be improved as well.  
 
Shells derives directly from their flow of forces. A well-formed shell transfers the 
external loads predominantly by membrane forces, i.e. tension and/or compression in 
the plane of the shell structure. Through this minimization of bending stresses the 
thickness of a concrete shell loaded with its self-weight can be reduced to around 
80mm for reinforced or pre-stressed concrete and 12mm if fiber reinforcement is used 
(Adriaenssens et al. 2014). Not only does this lightness has an aesthetically appealing 
effect, the material savings does also have positive effects on the cost and 
environmental aspects.  
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Shell structures comprises of both continuous and discrete surfaces, i.e. membranes or 
grid shells. They can both be generated in three ways;  

- By freeform where the shell is generated without consideration to the 
structural performance (Figure 1). 

- Through form finding which includes both natural hanging shapes and digital 
form finding (Figure 2 and Figure 3). 

- Mathematically, where the shape is described by analytical functions (Figure 
2). 
 
 

 
 
Figure 1: Shell and Shadows by Zaha Hadid Architects, see [1]. 

 
 
Figure 2: The roof over the British Museum Great Court designed by 

Foster+Partners. The form is mathematically generated by Chris Williams, but the 

triangularization of the grid has been form found, see [2]. 
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Figure 3: Form finding experiments by Heinz Isler, see [3]. 

 
Form finding is the process of finding an optimal form based on criteria regarding for 
example minimizing material use or deflections. The design loading for form finding 
the geometry is often chosen to be the structure’s self-weight.  
 
Dynamic relaxation is a numerical method, using finite elements, that iteratively 
searches to find the solution where all forces are in equilibrium. By using this method 
an idea of an optimal form can be used in the conceptual design of a structure. As a 
physical example consider the principle of the hanging chain. By applying a 
gravitational field to the hanging chain, it will eventually find its most optimal form, 
i.e. the chain will be in equilibrium. One problem that arises when using these types 
of methods is how to keep free edges straight in the search for equilibrium. This 
restriction in design limits the design cases for which it can be used. To further 
develop this method and to be able to use it for a wider set of situations, a way to keep 
a desired geometry and satisfy the boundary conditions for the specific case is 
necessary. 
 

1.2 Purpose 

 
The purpose of this thesis has been to develop a form finding program for membranes 
that uses dynamic relaxation in combination with isogeometric analysis. The program 
is built as a plug-in for the 3D modeling software Rhinoceros©. The program is 
written in the coding language C# using VisualStudio©. The aim is to explore new 
methods of FE-modeling and to evaluate the possibilities and difficulties of using 
isogeometric elements in a design process.    
 
A literature study followed by the design of a plug-in using form finding will give a 
deeper understanding of the method. How does the method differ from the traditional 
form finding method using isoparametric elements? What advantages are there in 
using isogeometric elements? Is there any differences in mesh sizes and 
computational effort? 
 
A case study of the roof of the British Museum will be carried out to apply the 
method to a real problem. What is the context of the roof and the building? How was 
the form finding process in this case? What difficulties were dealt with then? And 
could it have been made more efficient by using isogeometric analysis? 
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1.3 Method 

 
The work during the project has been roughly divided into three main parts with the 
writing of the report as a continuous part throughout the entire project. 
 
Initially a literature study and a “crash course” was carried out. This first part of the 
project was necessary to understand the different steps of the methods that were 
processed in the remaining parts. The literature study consisted of reading old theses, 
books and articles that treat the subjects. The crash course concerned dynamic 
relaxation, NURBS and isogeometric analysis with literature and coding examples.  
 
As an application of the first part of the project a plug-in program to the software 
Rhinoceros© was developed. The program uses dynamic relaxation with isogeometric 
analysis of membrane structures. The program is built in Visual Studio© using the 
coding language C#. This choice of language is because of the existing project wizard 
RhinoCommon©. RhinoCommon© is a .NET plug-in SDK (Software Development 
Kit) containing templates for creating plug-ins using Visual Studio© for Rhinoceros©. 
 
As a starting point for the program, existing functions for building the geometry and 
calculating the basis functions in MATLAB© written by Vedad Alic was tested. These 
MATLAB©-codes was then translated to C#-codes and the program was 
supplemented with a code for the dynamic relaxation routine. In the beginning these 
calculations were made purely in Visual Studio© with no connection to Rhinoceros© 
to make sure the classes and methods in the program were working as intended. 
Comparisons with results from MATLAB© calculations was made to ensure the 
accuracy of the results. 
 
Parallel to this “calculation engine” the coding and design for the interface of the 
plug-in was developed using RhinoCommon©. When both codes worked without any 
problems they were connected and modified so that the geometry and other input for 
the analysis was read directly from Rhinoceros©.    
 
After having explored the attributes of structures analyzed with form finding and 
developed understanding for isogeometric analysis a case study of the roof of the 
British Museum was carried out. This was done to understand the process from 
concept to realization and how isogeometric analysis and form finding could have 
been integrated to facilitate the technique. A problem encountered in form finding 
methods, such as dynamic relaxation, is how the boundary conditions meet a desired 
design or the restraint of the context of a structure. Different ways to overcome this 
limitation in the design process was also explored.   
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1.4 Limitations 

 
The aim of the thesis has been to develop the conceptual tool for membrane 
structures. For that purpose the tool is supposed to be used for the process from an 
initial idea to the concretization of a model for further design. Thus the purpose is not 
to replace existing software for final design calculations to ensure the load carrying 
capacity.  
 
The form finding method used in this thesis is dynamic relaxation. There are several 
other methods, such as the force density method, that could have been used 
(Adriaenssens et al. 2014). However dynamic relaxation was chosen because of the 
relatively straightforward implementation of the method. 
 
The structure for analysis that is treated is membranes, although isogeometric analysis 
can be used for other structural elements with some modifications of the calculations.  
 
In the calculations only evenly distributed loading is considered and the setting of the 
boundary conditions is limited to the control points. 
 

1.5 Outline of the report 

 
The report is divided into the same parts as the proceeding of the work in this thesis. 
After the introduction of the project, the theory behind the work is explained. The 
theory covers NURBS and B-Splines, from which the NURBS are derived, as well as 
the method of analysis used. These methods are the classic finite element method and 
the isogeometric finite element method, both constructed on the isoparametric 
concept. Finally the theory of dynamic relaxation is explained.  
 
Then follows the main section of the thesis which shows the implementation of the 
theory in the plug-in program in Rhinoceros©.  
 
The case study of the British Museum then follows with an explanation of the design 
and context of the building. A section of the form finding process for this particular 
structure is described and connected to the form finding process treated in this thesis. 
 
To sum up the report there is a discussion on what has been brought forward during 
this work and what conclusions can be drawn. The discussion also reconnects to the 
argument on how to develop the integration between architects and engineers. 
Suggestions on how to proceed this work for further development is also added for 
advice on other forthcoming studies. 
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2 Theory 

 
This chapter covers the theory of the subjects in the thesis. First are the theory of 
NURBS and the mathematics of the geometry of the basis used in isogeometric 
analysis presented. The chapter then moves on to the method of analysis where the 
isogeometric analysis is compared with classic FE-analysis. The reader is then 
assumed to already have some basic knowledge of the finite element method. Finally, 
there is a section covering the theory of dynamic relaxation, which is the form finding 
method used in the thesis, including a general algorithm showing the important steps 
of the procedure. 
 

2.1 NURBS 

 
In order to properly explain the structure and behaviour of NURBS it is natural to first 
provide an introduction to B-Splines. For a more thorough review of B-splines and 
NURBS the reader is referred to Cottrell, J.A. et al. (2009) from which the notations 
used below follows.  
 

2.1.1 B-Splines 

A B-Spline is a curve that consists of several polynomial segments and is defined by 
the polynomial degree of each segment, the knot vector and the control points. The 
polynomial order and the knot vector define the basis functions of the B-spline 
segments. By adding the control points, the curve is defined as a linear combination of 
the basis functions. 
 
Knot vectors 

 

The knot vector, Ξ = [ξ1, ξ2, ξ3,…, ξn+p+1], is a non-decreasing sequence of coordinates 
in the parameter space, where ξi is the ith knot, n is the number of basis functions used 
to construct the curve and p is the polynomial order of the curve. The knots divide the 
curve into segments, or the parameter space into elements.  The knot vector consists 
of knot spans that span over the interval ξi ≤ ξ ≤ ξi+1. A knot span can have zero 
length, the two consecutive knots are then of the same value and the knot is said to be 
a knot of a certain multiplicity. If all knots are equally spaced in the vector, i.e. the 
knot spans are of equal lengths, it is a uniform knot vector, and otherwise it is non-
uniform. If the first and last knot of a knot vector has the multiplicity p + 1, the knot 
vector is open.  A major difference between knots and nodes in classic finite element 
analysis is that the knots are not necessarily interpolatory. If the knot vector is open 
the first and last knot will be interpolatory but not, in general, the interior ones. This is 
why the open knot vector is mostly used in CAD geometries.   
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As an example, consider the knot vector 
 

[ ].5,5,5,4,4,3,2,1,0,0,0=Ξ  (2.1) 

 
 
The first and last knot is of multiplicity three which means that the knot vector is open 
and non-uniform since the multiplicity implies that the knot spans are of varying 

lengths. Note that the knot ξ4 is of multiplicity two. This will have consequences on 
the continuity over the element which in this case will be C0. This will be obvious 
when calculating the basis functions. One can also note that the number of basis 
functions that will be used to construct the curve is  
 

81 =−−= pkn . (2.2) 

 
Where k is the total number of knots in the vector and the polynomial order is 2, since 
the multiplicity of the first and last knot of the open vector is p + 1. 
 
Basis functions 

 

The B-spline basis functions are defined by using equations (2.3) and (2.4) recursively 
on a knot vector. This procedure follows the Cox de Boor recursion formula.  
For p = 0 the function is a step function: 
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For p > 0 the function is a linear combination of two previously calculated functions: 
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ipi

i

pi NNN . 
(2.4) 

 
The basis functions for the knot vector (2.1) are calculated in Appendix AI. The 
schematic picture in Figure 4 shows how the basis functions for each degree is 
generated from the previously calculated functions.  
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Figure 4: Schematic picture over how the basis functions are generated for p=0, p=1 

and p=2. The basis functions in red are zero because of the zero lengths of the knot 

span. 

As an example, by using the knot vector from (2.1), tracing the fifth basis function of 

the second degree, )(2,5 ξN , it is obvious that three functions from the zeroth degree 

is needed.  
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These three step functions gives two functions of the first degree using equation (2.4) 
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Finally by using equation (2.4) again on these two first degree functions, )(2,5 ξN  is 

obtained. 
 

( )

( ) ( ) ( )



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


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−+−⋅−
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ξ
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32 if <≤ ξ  

 
 

43 if <≤ ξ  

 

otherwise 
 

 
 

 
 
Figure 5: Generating the fifth basis function from the previous functions of lower 

degree. 
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The resulting plots for all basis functions calculated in Appendix AI are shown in 
Figure 6, Figure 7 and Figure 8. The step functions of the zeroth degree basis 
functions p = 0: 
 

 
 
Figure 6: Form functions for p=0 

 
For p = 1 the step functions are interpolated to linear functions: 
 

 
 
Figure 7: Form functions for p=1 

 
The second degree basis functions, p = 2, are interpolated from the linear functions: 
 

 
 
Figure 8: Form functions for p=2 
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Properties of the basis 

 

There are several important properties of these functions, some which are common for 
the Lagrangian elements. The property of partition of unity, i.e. the sum of all basis in 
each point is equal to one is one of them. 
 

1)(
1

, =∑
=

n

i

piN ξ  
(2.5) 

 
A distinctive and important property of isogeometric analysis is that a pth order 
function always has p-1 continuous derivatives over the knots, provided that the 
interior knots are of multiplicity one. This means that it’s possible to obtain a higher 
continuity over element boundaries, which leads to a more accurate approximation of 
the sought physical field, i.e. the displacements in this case. A B-spline function of pth 
order also has support over p+1 knot spans, which means that a higher order function 
has support over a larger portion of the domain compared to classic Lagrangian 
functions. However the bandwidth of the matrices used in the numerical method will 
not change. Regardless of the method of analysis, the number of functions that any 
function shares support with will be 2p+1.  
 

Derivatives of the basis functions 

 

The derivative of the basis function Ni, p is given by 
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1,, ξ
ξξ

ξ
ξξ

ξ
ξ

−+

+++

−

+ −
−

−
= pi

ipi

pi

ipi

pi N
p

N
p

N
d

d
. 

(2.6) 

 
In a generalized formula for higher derivatives this is written as 
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Control points 

 

The control points are the coefficients of the basis functions that are used to create the 
B-spline curves. By taking the linear combination of the basis functions the curve is 
given by 
  

∑
=

=
n

i

ipiN
1

, )()( BC ξξ . 
(2.8) 

 
By using different control points for the same basis functions, two different curves are 
created. However, as the same basis is used, the curves have the same properties 
regarding the degree and continuity over the element boundaries. In Figure 9 and 
Figure 10 the basis from Figure 8 is used with two different sets of control points, 
resulting in two different curves.  
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The piecewise linear combination of the control points gives the control polygon. The 
control polygon is tangent to the curve in the interior knots which means that the 
curve has continuity C p-1 = C1 at these element boundaries. At the kink at the 
repeated knot, the continuity is C p-2 = C0. Note the repeated knot at control point (10, 
7) in Figure 9 and (10, 9) in Figure 10. Because of the C0 continuity followed by the 
repeated knot, the curve is interpolatory in the control point, i.e. the knot coincides 
with the control point. 
 

 
 
Figure 9: B-Spline curve where the blue dots mark the control points, or nodes, 

connected by the control polygon. The red squares mark the knots, i.e. the element 

boundaries. 

 
 
Figure 10: B-Spline curve created from the same knot vector as in Figure 9, but with 

other control points. 
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B-Spline surfaces 

 

The discussion so far has only covered the B-spline curve but moving on to surfaces 
is more or less the same thing only in two directions. The B-spline surface is defined 
by two knot vectors Ξ = [ξ1, ξ2, ξ3,…, ξn+p+1] and Η = [η1, η2, η3,…, ηm+q+1], the 
polynomial orders p and q and the control net {Bi,j} where i = 1,2,…,n and j = 
1,2,…,m. The tensor product of two univariate basis functions gives the bivariate 
surface defined by 
    

∑∑
= =

=
n

i

m

j

jiqjpi MN
1 1

,,, )()(),( BS ηξηξ . 
(2.9) 

 
 

 
 

Figure 11: Biquadratic surface from the knot vectors Ξ= [0 0 0 0.5 1 1 1] and Η= [0 

0 0 1 1 1]. To the left is the net of control points and to the right is the mesh 

consisting of two elements. 

 
Refinement 

 

There are several ways to enrich a B-spline without changing the initial geometry. 
Two of these tools are fundamental in isogeometric analysis; knot insertion and 
degree elevation. The changes are made in to the knot vector in the parameter space 
hence why it doesn’t change the geometry in the physical space.  
 
Knot insertion is either when a new knot is inserted and by doing so, creating a new 
subdivision of the curve. This is typically done to obtain a finer mesh of the geometry. 
Knot insertion is also when an existing knot is inserted hence decreasing the 
continuity over the element boundary. By inserting a new knot, one more control 
point, one more element and one more basis function than before the refinement is 
added. Knot insertion has similarities with the h-refinement in classical finite element 
analysis where elements are split into new elements. The difference is however that 
the h-refinement always will have C0 continuity over the element boundaries. 
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Figure 12: Knot insertion. The original curve to the left has three control points (blue 

dot) and two knots (red square), i.e. the curve consists of one element. The refined 

curve to the right has one more control point and one more knot, hence two elements. 

 
 

 
 
Figure 13: Knot insertion. The basis on the left with three functions is the original. 

The refined basis on the right has one more basis function. 

 
With degree elevation the polynomial order can be raised without changing the 
continuities of the knots. This is achieved by increasing the multiplicity of all existing 
knots, i.e. no new knots are inserted. Since all the knots are raised, the continuity of 
the interior knots is preserved. Degree elevation is similar to p-refinement in classic 
finite element analysis. In p-refinement, the order is increased but the basis is always 
C0 before the refinement. The degree elevation can be performed no matter what the 
initial degree is, which makes the isogeometric analysis more flexible in dealing with 
higher order techniques. 
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Figure 14: Order elevation. The curve on the left is the original curve, as in Figure 

12. The refined curve on the right has one more control point but the curve still 

consists of only one element. 

 
 

 
 
Figure 15: Order elevation. The refined basis on the right consists of one more basis 

function, as in Figure 13. 

 
If both higher order and higher continuity is desirable, the so-called k-refinement can 
be used. The k-refinement is a combination of knot insertion and order elevation and 
is unique for the isogeometric analysis. The order in which the actions are performed 
is crucial. If a new knot is inserted into a vector of degree p, the continuity over the 
new knot will be p-1. When performing order elevation of the vector to degree q the 
new knot will still have p-1 continuity. If the procedure is instead reversed, so that the 
vector is elevated from degree p to q and then the new knot is inserted, the knot will 
have continuity q-1. 
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2.1.2 Non-Uniform Rational B-Splines 

NURBS stands for Non-Uniform Rational B-Splines and are weighted B-Splines with 
weighted control points. In CAD geometries one usually wants a knot vector with 
uneven knot spans, for example so that the curve is interpolatory in the start and end 
points, hence the knot vector is non-uniform. The rational property comes from the 
fact that, as will be obvious further down in the text, the shape functions are piecewise 
rational functions, i.e. functions consisting of one polynomial divided by another 
polynomial.  
 
The major difference when moving on to NURBS is the weighting of the control 
points. By assigning different weights to the control points, the points will have a 
different amount of influence on the curve. This is what makes one of the defining 
features of isogeometric analysis since it makes it possible to construct any 
polynomial or rational (such as a circle for example). Since the weights are in 
proportion to each other one could say that the B-Splines also indirectly has weights 
of equal value. 
 

The ith control point of the NURBS curve, iB , is obtained from the corresponding B-

Spline control point, 
w

iB and weight iw : 

 

( )
( )

dj
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ji ,,1 K==
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B  
(2.10) 
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=
d

w

iiw B , (2.11) 

 
where d is the dimension of the entity.  
 
In order to apply the transformation to an entire curve, the weighting function is 
defined as: 
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(2.12) 

 

where piN ,  is the B-Spline basis function. With the weighting function the NURBS 

basis function is defined as: 
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(2.13) 

 
Combining the control points from (2.10) and the basis functions (2.13) the NURBS 
curve is given by: 
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(2.14) 
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Expanding into two dimensions, the basis for the NURBS surface is obtained in a 
similar way: 
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(2.15) 

 
The derivatives of the basis functions are obtained through the quotient rule 
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where  
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(2.17) 

 
For higher order derivatives, the expression gets more complicated 
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where 
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and 
 

( )!!

!

jkj

k

j

k

−
=








. 

(2.20) 

 
 

2.1.3 Multiple patches 

One mayor advantage of using isogeometric analysis is the ability to use multiple 
patches. This can be necessary if different parts of the model for example has 
different material properties in different parts of the model or a complex geometry.  
 
Each patch represents a subdomain of elements in the same parameter space. The 
transition between patches, i.e. the knots where two patches meet, will be C0 since the 
edges has to be interpolatory to meet.  
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2.2 Methods of analysis 

 
The finite element method is a numerical method that is used to solve partial 
differential equations. The method was developed from two independent directions; 
structural mechanics and mathematics. It was first introduced in the 1930s on solving 
problems of mathematical physics and was then further developed. After the Second 
World War and during the 60s the method grew, partly because of the introduction of 
computers and became well established for structural analysis of elasticity problems 
and structural mechanics (Thomée, 1999). After further development the method was 
generalized to function in several other areas in engineering, such as dynamics of 
fluids and heat transfer. 
 
The basis of the analysis is to divide a continuous domain into discrete subdomains 
connected by nodes. Each node has a function that is nonzero and continuous over the 
elements connected by the node. This function is known as the form function or basis 
function of the node and describes how a specific node influences the solution. By 
taking the linear combination of all element functions, the approximate solution for 
the whole problem is obtained. 
 
By providing a short introduction to both classic isoparametric and isogeometric 
analysis the two methods will be further evaluated and compared. For more 
information about isoparametric analysis the reader is referred to Ottosen, P. (1992). 
A thorough description of isogeometric analysis can be found in Cottrell, J. A. et al. 
(2009). 
 

2.2.1 Classic Finite Element Analysis 

The finite element method used is based on the Galerkin method for solving boundary 
value problems, see Ottosen, P. (1992) for explanation and references to other 
methods. The method starts with stating the strong form of the problem, i.e. the 
differential equation of the problem at hand. As an example, consider the boundary 
value problem 
 

����� + � = 0		on	Ω 
           � = 
			on	Γ� 

    �� ∙ � = �			on	Γ� 

(2.21) 

 

where Ω∂=Γ=ΓΓ hg U  denotes the boundary and n is the normal of Ω∂ . The 

unknown solution, u, is sought. For an elastic problem f denotes the known body 
force and h denotes a known traction force on the boundary. 
 
By multiplying the differential equation with a weighting function, v, and integrate by 
parts using the Green Gauss theorem the weak form of the problem is achieved 
 

 � ���������Ω� = � ����Ω� + � ����Γ�    

 

� = 
			��	Γ�. 

(2.22) 

 



 

 CHALMERS, Applied Mechanics, Master’s Thesis 2015:44  19 
 

To obtain a solvable system of linear equations an approximation of the solution field 
is required. According to the Galerkin method, the weighting function should be 
chosen to be equal to the approximation function of the solution. Hence, 
 

cNvaNu ⋅=⇒⋅=  

cBcNvaBaNu ⋅=⋅∇=∇⇒⋅=⋅∇=∇  
(2.23) 

  
where N is the vector containing the form functions, or basis functions, of the 
elements and a the vector of unknown scalar displacements of the nodes. Inserting 
these relationships into the weak form in (2.22) the matrix equations are obtained: 
 

������	�Ω
�

= � ���Ω
�

+ � ���Γ		
�

			⇔ 					"# = � 

  

" = �����	�Ω
�

,			� = � ���Ω
�

+ � ���Γ		
�

 

(2.24) 

 
where D is the constitutive matrix. 
  
Basis functions 

 
Classic FEA using Lagrangian elements follows the isoparametric concept. The 
concept of isoparametric analysis is that the same basis that is used in the numerical 
method for the structural analysis of the model is also used for describing the 
geometry of the model.  
 
The choice of approximation has to fulfil the convergence criteria which comprises of 
the requirements of completeness and compatibility. The completeness requirement is 
that the approximation must be able to describe at least an arbitrary linear function in 
each element. The compatibility requirement is that the approximation of the solution 
must be continuous over the element boundaries. The simplest shape functions for a 
one-dimensional element are linear functions, see equation (2.25) and Figure 16.  It is 
obvious from Figure 16 that the shape functions are continuous over the element (the 
dotted lines represent an adjacent element) however the gradient of the approximated 
solution will be discontinuous, i.e. the boundary has C0-continuity.  
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Figure 16: Variation of linear element shape functions. 

As the polynomial degree is raised to quadratic elements, equation (2.26) and Figure 
17, it is clear that the C0-continuity is still present over the element boundary. Since 
the solution is interpolated between the values of the nodal points, the solution will 
vary continuously over boundaries but the continuity of the gradient of the solution 
cannot be assured.  
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Figure 17: Variation of quadratic element shape functions. 

 
The Lagrange element is a simple rectangular two dimensional element with four 
nodal points. The bilinear shape functions of the element is 
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Mapping 

 
When modelling structures with arbitrary geometries the elements has to be mapped 
from a square region, called the parent domain, in order to fulfil the requirement of 
compatibility, see Figure 18. The integrations are carried out in the parent element 
using the shape functions for the Lagrange element in equations (2.27) which are also 
the shape functions used in the mapping to the global domain, equation (2.28), which 
is the isoparametric concept. The parent domain or parameter space is local to each of 
the elements in the global domain, see Figure 18. 
 

( ) ( ) ( ) ( ) eeee
yyxx yNxN ⋅==⋅== ηξηξηξηξ ,,,, . (2.28) 

 

 
 
Figure 18: Mapping of an element from the parent domain to the global domain. 

 
Connectivity arrays 

 
Connectivity arrays are used to organize the structure of a model. These arrays 
contain information that keep track of which elements are connected to a certain node 
and which degrees of freedom (DOF) belong to which node. In classic FEA there are 
two such arrays. The DOF-array handles the numbering of the degrees of freedom. 
Each row in the DOF represents one node and its degrees of freedom. The EDOF-
matrix handles the elements of a structure and what DOFs are connected to each 
element. Hence, by combining the two arrays one can track which nodes are 
connected to which elements and which DOFs belongs to which node (Austrell et al., 
2004) 
 
Code architecture 

 
The flow chart of a program using classical FEA code is shown in Figure 19. The 
program starts with some pre-processing steps where the data defining the boundary 
value problem is read. From the input data the connectivity arrays can be set up and 
the memory for the global arrays is located and set to zero. After these initializations 
the algorithm for assembling the system starts. This algorithm consists of two loops. 
The first one loops through all elements where a local stiffness and force matrices are 
initiated. For each element a second loop goes through the quadrature points where 
the basis functions and its derivatives are calculated. The contribution from the 
quadrature point to the element stiffness matrix and force vector are assembled in  
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each iteration before the second loop is completed. Using the connectivity arrays, the 
element contribution can then be assembled into the global arrays. When all element 
stiffness matrices and contributions to the load vector are assembled the system can 
be solved.  
 
To obtain a code for a single-patch isogeometric analysis the steps in yellow in Figure 
19 need to be modified. As the basis is changed the input data will be different as well 
as the connectivity arrays. The evaluation of the basis functions must be updated as 
the basis consists of NURBS which are calculated according to Section 2.1.2. As can 
be seen in the flowchart, the isogeometric analysis fits well into the existing FE-codes 
and only a few changes are necessary. 
 
 
 

 
 
Figure 19: Flow chart of a classical FEA program.  
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2.2.2 Isogeometric Finite Element Analysis 

The concept of isogeometric analysis was conceived by Tom Hughes, a professor at 
the University of Texas in Austin. The idea was brought to him while studying how 
the models for finite element analysis are generated from CAD geometries. In 2003 
the graduate students Austin Cottrell and Yuri Bazilevs started to study the subject in 
their PhD work under the supervision of Hughes. During their work they studied the 
technology behind NURBS and develop NURBS based finite element codes. After 
them other students have developed the method further under the supervision of 
Hughes (Cottrell et al., 2009). 
 
The isogeometric analysis also inherits the isoparametric concept, as the same basis is 
used for describing both the geometry and the solution space. However, there is a 
fundamental difference in the implementation of the concept. Instead of 
approximating the geometry, which in fact is already known, after the unknown 
solution space, the course of action is reversed. By implementing isogeometric 
analysis the chosen basis will exactly represent the geometry and is then used for 
approximation of the unknown fields.  
 
 

 
 
 
Figure 20: The fundamental difference between classic isoparametric and 

isogeometric finite element analysis.  

Basically the only thing that differ isogeometric analysis from classic FEA is the basis 
that is being used. However, this difference has large consequences. 
 
Mapping 

 
In isogeometric analysis the parameter space is local to patches, rather than of single 
elements as in classical FEA. The mapping is therefore carried out in two steps; an 
affine mapping from the parent element to the parametric domain and a geometrical 
mapping from the parametric domain to the global domain.  
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Figure 21: Mapping in two steps; from parent element to parametric domain and 

from parametric domain to the physical element. 

 
Connectivity arrays 

 
With the difference in the parametric domain from the classic FEA comes a need of 
using two additional connectivity arrays. The NURBS coordinates are introduced as 
the indices of the knots in the knot vectors, defining the index space, see Figure 22. 
 
 

 
 
Figure 22: The index space of the mesh in Figure 11  showing the two elements. 

 



 

 CHALMERS, Applied Mechanics, Master’s Thesis 2015:44  25 
 

The INC array connects the NURBS coordinates to their global shape function 
number, where each row represent one function. The IEN array tells in which 
elements the shape functions have support (Cottrell et al., 2009). 

Code architecture 

 
The flowchart of the code for multipatch isogeometric analysis is shown in Figure 23. 
The major difference from the classic FEA is the extra loop through the patches. The 
change of using multiple patches also results in the partitioning of the input data. The 
global input that is common for all patches is, as before, read at the starting point. 
Local input, such as the knot vectors and control points are read in the loop for the 
different patches. The differences in the routine from the single patch code are 
highlighted in yellow. 
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Figure 23: Flow chart of an isogeometric analysis program using multiple patches 

 
An important difference from the classical FEA is that in isogeometric analysis the 
exact geometry is always used, independent of the level of discretization. The 
accuracy of the computations is of course the major advantage of this geometric 
exactness but it also affects the whole analysis process. By using the exact geometry 
from the beginning, there is no need for an external description of the geometry which 
will simplify the refinement of the model.   
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2.3 Dynamic Relaxation 

 
Dynamic relaxation is an explicit numerical method in which a static problem is 
solved as a fictious dynamic problem and can be used for form finding. The method 

traces the motion of the nodes step by step for small time increments, ∆t, until the 
structure reaches a state of static equilibrium. It was invented in 1965 by Alistair Day 
and was originally developed for tidal flow computations (Barnes, 1988 and 
Adriaenssens et al., 2014). The notations follow the notation according to Barnes, M. 
R. (1988). 
 
The method is based on Newton’s second law, force equals mass times acceleration. 

The residual force ixR  in node i in the direction x is 

 

ixiix vMR &⋅= , (2.29) 

 
where  

iM   is the lumped mass in the node i,  

ixv&   is the acceleration of the node i in the x-direction. 

 
From equation (2.29) the recurrence equation for calculating the velocity for each 
time step is obtained 
 

i
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, 
(2.30) 

 
where  

tt

ixv
∆+

  is the updated velocity at time t+∆t, 

t

ixv    is the velocity at the previous iteration, 

t∆  is the time step. 
 
From the updated velocities the new displacements are computed by 
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(2.31) 

 
where  

tt

ixu
∆+

  is the updated displacement at time t+∆t, 

t

ixu    is the displacement at the previous iteration. 
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To make the structure come to rest in equilibrium, damping is introduced to the 
solution procedure. There are several kinds of damping, however for this project 
kinetic damping has been chosen because of its satisfactory convergence properties 
(Barnes, 1988). When using kinetic damping, the kinetic energy of the nodes is 
traced. If a peak in the energy is found the system is brought to rest by setting the 
velocity to zero, see Figure 25. The iteration process is then continued from the 
current geometry. 
 

 
 
Figure 24: The kinetic energy and its peaks during the dynamic relaxation iterations 

without damping. A magnified picture of the highlighted piece of the curve is shown in 

Figure 26. 

 

 
 
Figure 25: The kinetic energy during the dynamic relaxation routine with kinetic 

damping. At each peak the kinetic energy is set to zero and continued from that point. 

 
The peak is found when the current kinetic energy is lower than the previous iteration, 
i.e. 
 

t

e

tt

e KK <∆+
, (2.32) 

 
where 

tt

eK
∆+

 is the current kinetic energy, i.e. the energy at time t+∆t, 
t

eK  is the previous kinetic energy, i.e. the energy at time t. 
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To find the displacement at the true peak, which occurs sometime between t and t+∆t, 

the kinetic energies calculated at t,   t+∆t/2 and t+∆t are interpolated, see Figure 26. 
The time elapsed since the peak is obtained by 
 

qt
DE

E
tt ⋅∆=

−
⋅∆=*δ , 

(2.33) 

 
where  
 

ABDBCE −=−=    and   , (2.34) 

 
 

 
 
Figure 26: Magnification of the highlighted area in Figure 24. A, B, and C is the 

kinetic energy at the specific times. The red dot marks the location of the true peak. 

 
With the time for the true peak the displacement is calculated by 
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As an alternative the true peak can be assumed to occur at t+∆t/2 which would mean 
that the q in equation (2.33) is equal to 1/2. 
 
A general algorithm for a dynamic relaxation program using kinetic damping is 
presented in Figure 27. 
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Figure 27: General algorithm for the dynamic relaxation routine with kinetic 

damping. 
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3 Implementation 

 
The plug-in program created during the work of the thesis has been carried out using 
the project wizard RhinoCommon©. RhinoCommon© is a .NET plug-in SDK 
containing templates for creating plug-ins using Visual Studio© for Rhinoceros©. 
Programming in Visual Studio© offers a variety of coding languages, however for this 
thesis the object oriented programming language C# has been chosen. To perform the 
numerical calculations the Math.NET Numerics library has also been used. 
 
By using the .NET SDK provided by RhinoCommon© a large library of commands 
and classes for the geometric objects is offered. As mentioned before the geometric 
objects in Rhinoceros© are built up as NURBS which is convenient as the knot 
vectors and control points are then given by Rhinoceros© directly. The geometric data 
can then be used in the classes for calculations and analysis created during this work. 
The output, i.e. the form found geometry can then be exported back to Rhinoceros©. 
 
To create the computational classes in C# existing codes in MATLAB was translated 
and completed with some new routines. 
 

3.1 Structure of the software 

 
The program consists of two interacting projects called IGA and SampleCsWpfPanel. 
The structure of the two projects are shown in Table 1 and Table 2.  
 
IGA (Table 1) contains three classes with methods for calculations; FEMFunctions, 
IGAFunctions and IGAMembraneFunctions, where the latter class has been the main 
focus for this project in this thesis apart from some of the methods in IGAFunctions 
regarding the calculation of membranes. This project was developed before the plug 
in was created to make sure that the functions worked properly and is therefore 
reusable in other projects. The accuracy of the results was compared to results 
obtained by a similar program written in MATLAB.  
 
SampleCsWpfPanel (Table 2) was the second main focus of the thesis which consists 
of two central parts; SampleCsWpfPanelUserControl and SampleCsWpfViewModel. 
The UserControl consists of both the GUI (Graphic User Interface), which is basically 
the design of the interface to Rhino, and the interaction logic to the GUI which 
handles the events performed by the user at runtime.  
 
The GUI is developed using WPF (Windows Presentation Foundation) which is a 
subset of .NET Framework types in VisualStudio©. The interface contains different 
controls, for example buttons, that has events handled by the interaction logic. The 
controls for display have bindings to objects in the ViewModel class. 
 
The interaction logic of UserControl is called at start up where the program is 
initialized and the ViewModel class is instantiated. The event handlers creates objects 
of the classes (FormFindingPatch for example) and calls the methods in ViewModel 
at runtime.  
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ViewModel contains the surface and point classes and methods that handles the lists 
of them. When creating an instance of the FormFindingPatch or BoundaryPoint, the 
constructor demands an argument of a reference to a Rhino© object. The parameter is 
controlled in the UserControl before creating the instance to avoid errors. 
 
When the button Calculate (see Figure 31) is pressed at runtime by the user the void 
threadTest is called from the event handler of the button. The Rhino© object reference 
connected to the FormFindingPatch is first converted to a NURBS geometry and then 
sent as input to the method getIGAGeometry where the control points and knot 
vectors are obtained through properties in the Rhino© object. The calculations can 
then be carried out and the geometry is written back to Rhino© surfaces. The method 
threadTest, containing the dynamic relaxation routine together with some of the other 
classes can be found in Appendix AII. 
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Table 1: Classes and methods of the program IGA. 

IGA 

FEMFunctions  

GetGaussPoints 

Assem 

Solve 

Examples of methods in the class 

IGAFunctions  

- SurfacePatch  

- IGASurfacePatch : SurfacePatch  

- IGAElement  

- IGAIntegrationPoint  

- IGAFunctions  

DerBasisFun 

BuildINCIEN2D 

BuildDOF 

BuildEDOF 

ShapeFunction2DShell 

BuildBaseVectors 

BuildDMatrix 

BuildBCoefficients 

Methods used in the calculation methods in 

IGAMembraneSurfacePatch 

IGAMembraneFunctions 

- IGAMembraneSurfacePatch : SurfacePatch Inherits from SurfacePatch 

elements Property: Array of IGAMembraneElements 

INC 

IEN (ENOD) 

ID (DOF) 

LM (EDOF) 

Properties: Connectivity arrays calculated in 

IGAFunctions  

extF 

intF 

Internal and external force vectors 

ComputeBasisFunctions 

ComputeSurfaceParameters 

ComputeExternalForce 

ComputeInternalForce 

Void methods performing calculations for all 

integrationPoints in all elements in the patch 

using methods in IGAFunctions 

- IGAMembraneElement  

gpXi 

wXi 

gpEta 

wEta 

Property: Arrays of gauss points and weights 

in ξ and η direction from FEMFunctions 

integrationPoints Property: Array of 

IGAMembraneIntegrationPoints 

- IGAMembraneIntegrationPoint  

Basis functions, derivatives and jacobians 

Surface basis vectors 

Constitutive matrix and stiffness 

Coefficents for B-matrix 

Gauss points and weights 

Local internal force vector 

Properties 
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Table 2: Classes and methods of the program SampleCsWpfPanel 

SampleCsWpfPanel 

SampleCsWpfPanelUserControl 

- SampleCsWpfPanelUserControl 

   

GUI (Graphical User Interface) 

Bindings to SampleCsWpfViewModel 

- SampleCsWpfPanelUserControl Interaction logic for GUI 

ShowSelectedSurfaceCommand 

ShowSelectedPointCommand 

ShowSelectedPatchesCommand 

RemoveSurfaceCommand 

DeletePointCommand 

AddSurfaceCommand 

AddPointCommand 

Commands connected to GUI 

surfaceLoadCmb_SelectionChanged 

patchLst_SelectionChanged 

pickedPatchLst_SelectionChanged 

calculateBtn_Click 

ComparePoints 

Event-handlers connected to GUI 

 

 

Starts calculation, calls threadTest() 

threadTest 

getIGAGeometry 

Contains the dynamic relaxation routine 

Called from threadTest 

Input: NURBS-surface (Rhino object 

reference) 

Output: knot vectors, degrees, control 

points 

SampleCsWpfViewModel 

- SampleCsWpfViewModel Class 

surfaceList 

boundaryPointList 

patchList 

Lists of FormFindingPatch and 

BoundaryPoint instances. Binding to GUI 

selectedSurface 

selectedPoint 

selectedPatch 

Objects of FormFindingPatch or 

BoundaryPoint. Binding to GUI 

AddSurface 

AddPoint 

SelectPatch 

UnselectPatch 

RemoveSurface 

DeletePoint 

Void methods with FormFindingPatch or 

BoundaryPoint as argument 

- FormFindingPatch (Rhino object reference) Class (Constructor argument) 

E (Elastic modulus) 

nu (Poisson’s ratio) 

t (thickness) 

xLoad 

yLoad 

zLoad 

Double properties 

- BoundaryPoint (Rhino object reference) Class (Constructor argument) 

xLocked 

yLocked 

zLocked 

Boolean properties 
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3.2 Solution algorithm 

 
The following algorithm is implemented in the class SampleCsWpfPanelUserControl 
for the form finding. The algorithm is meant to give an overview of the program 
together with the tables in the preceding section. The code for the algorithm can be 
found in Appendix AII. 
 

1. Global input is read from SampleCsWpfViewModel 
2. Lists are allocated for the patches 
3. For each FormFindingPatch: 

a) Convert Rhino object to NURBS surface 
b) Create object of IGAMembraneSurfacePatch 
c) Add patch to list 

4. Create array of global control points 
5. Create global DOF array 
6. Allocate vectors for global internal and external forces 
7. For each IGAMembraneSurfacePatch: 

a) Build DOF and EDOF matrices from global numbering 
b) Get surface properties and load from FormFindingPatch-properties 
c) Calculate basis functions using IGAMembraneSurfacePatch - for each 

integration point in each element: 
i. Using IGAFunctions, calculate: 

• Basis functions 

• Derivatives of the basis functions with respect to parametric 
coordinates 

• The Jacobian for the mapping from parent element to parameter 
space 

ii. Store the results in the integration point 
d) Calculate surface parameters using IGAMembraneSurfacePatch – for each 

integration point in each element: 
i. Build base vectors using IGAFunctions 
ii. Calculate the Jacobian for the mapping from parametric domain to 

physical element 
iii. Construct D-matrix using IGAFunctions 
iv. Build coefficients for the B-matrix using IGAFunctions 
v. Store the results in the integration point 

e) Calculate external force using IGAMembraneSurfacePatch – for each 
integration point in each element: 
i. Calculate internal force 
ii. Assemble into global force 

8. Get boundary conditions by comparing the control points to the 
BoundaryPointList 

9. Create mass matrix 
10. Set initial forces, energies and displacements to zero 
11. Set an initial residual norm 
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12. While the solution has not converged: 

a) Set the internal forces to zero 
b) Compute the internal force using IGAMembraneSurfacePatch – for each 

element: 
i. Extract the element displacements 

• For each integration point, determine: 
- Derivatives of displacements 
- Strains 
- B-matrix 
- Internal force for current Gauss point 
- Add contribution of internal force from current Gauss point 

to element force vector 
ii. Assemble the element forces to the global internal force vector 

c) Compute the out of balance force vector 
d) Set the constrained degrees of freedom in the out of balance vector to zero 
e) Calculate the residual norm of the out of balance force vector 
f) Update the velocities 
g) Update displacements 
h) For all IGAMembraneSurfacePatches: 

i. Write the solution to Rhino geometry 
ii. Update the surface to Rhino 

i) Kinetic damping: 
i. Set the previous kinetic energy 
ii. Compute the current kinetic energy 
iii. If a peak in the kinetic energy is found: 

• Find the time location of the peak 

• Compute the displacement of the peak 

• Set the velocities to zero 
j) If the norm of the out of balance force vector is smaller than a certain 

tolerance, the analysis is done, if not the while loop continues. 
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3.3 User’s manual 

 
1. Initializations 

a) Open the user interface. 
b) Draw the surface or surfaces for form finding in Rhinoceros©. Rebuild 

the surfaces to raise the degree of the surfaces to at least 2. 
c) Draw points to represent supports. The points have to coincide with the 

control points of the surfaces generated by Rhino©. 
 

2. Geometry (Figure 28) 
a) Add the surfaces to the list by selecting them and press the button Add 

surface. 
b) Erase or show the surface in Rhinoceros© by highlighting the surface 

in the list and press the buttons on the right hand side of the user 
interface. 

c) The material parameters are typed in for the highlighted surface. 
 

3. Boundary conditions (Figure 29) 
a) Add the boundary conditions by selecting the points and press the 

button Add point. 
b) Erase or show the point in Rhinoceros© by highlighting the point in 

the list and press the buttons on the right hand side of the user 
interface. 

c) When a point in the list is selected, the user can decide in which 
directions the boundary is restrained. 
 

4. Load (Figure 30) 
a) Select a surface in the list box 
b) For the selected surface, type in the load in each direction. 

 
5. Dynamic relaxation (Figure 31 and Figure 32) 

a) The list on the right represent the list of patches added to the analysis 
b) To add a surface, select the surface in the list on the left 
c) To erase a surface from the analysis, select the patch in the list with the 

added patches 
d) To show the selected patches for the analysis in Rhinoceros©, press the 

button Show patches 
e) To start the analysis, press the Start button. 
f) The form found surface is added as a new surface to Rhinoceros©, 

Figure 32.  
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Figure 28: The geometry tab is opened when the GUI is started. One patch is 

highlighted. The material parameters can be typed in for each patch. 
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Figure 29: The tab for choosing boundary conditions in the GUI. Once a point is 

selected, the directions of the restraint can be chosen. 
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Figure 30: The loading tab in the GUI. When a patch is selected, the load can be 

typed in for each direction. 
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Figure 31: Dynamic relaxation tab of the GUI. The patches for form finding are 

selected. 
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Figure 32: Dynamic relaxation tab after relaxation of the two patches. 
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3.4 Boundary conditions 

 
One issue that arises when working with form finding techniques such as dynamic 
relaxation is dealing with the horizontal forces that occur along the edges of the 
model. The structures obtained through a form finding process often end up with the 
similar attribute of arches along the unrestrained sides to account for the horizontal 
forces. This behavior causes a huge limitation to the range of design situations where 
form finding can be used. By finding a way of keeping a desired geometry while the 
boundary conditions are still satisfied this design method could be used more 
generally. 
 
Consider, for example, a square patch with fixed supports in the corners and the edges 
locked in the z-direction. In the form finding process the sides of the patch will move 
more and more towards the middle, forming a vault to obtain equilibrium for the 
horizontal forces along the edges, see Figure 33.  
 
 

 
 
Figure 33: Sketch of a form found square patch with four locked corners in plan 

(above) and a section through the middle (below). 
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Figure 34: Form found square patch with four locked corners and the sides locked in 

the y-direction. 

The question of how to keep the edges in line with the initial patch, the dotted square 
in Figure 33, was raised.  
 
An idea to counteract for these forces that occur was to add patches along the sides. 
The hope was that in the relaxation of the model these patches would pull the edges of 
the square patch towards the desired straight line forming “wings” along the sides, see 
Figure 35. The horizontal components of the reaction forces should ideally cancel 
each other out. Unfortunately this effect was not obtained.   
 
The kink that arises along the intersection of two patches has C0 continuity. This 
could have consequences on the transferring of the forces over this kink and could be 
a reason for this undesired result.  
 
 

 
 
Figure 35: Attempt to keep straight edges by adding four edge patches to pull the 

edges out creating "wings" on the sides of the square. 
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Figure 36: Attempt with four unloaded side patches. 

 
 
Figure 37: Attempt with four loaded side patches. 

 
To overcome this kink another attempt was made using only one patch with an initial 
curvature outwards, see Figure 38. During the relaxation these curved edges would 
move towards the desired straight lines. Performing the dynamic relaxation on a patch 
using four elements, this effect was obtained, see Figure 39. However when the mesh 
was refined the form found edges was relaxed into another curvature, see Figure 40.   
 

 
 
Figure 38: Attempt using one patch with initial curvature of the sides. 
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Figure 41: Top view of the form found patches in Figure 39 and Figure 40. 

 
 
Figure 39: Form found patch consisting of four elements with initial curvature. 

 
 
Figure 40: Form found patch consisting of nine elements with initial curvature. 
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4 British Museum Case Study 

 
The roof over the British Museum Great Court consisting of a triangular grid shell 
was completed in 2000. The architects of the project were Foster and Partners and the 
engineers were Buro Happold.  
 

 
 
Figure 42: The roof over the Great Court from above, see [5]. A view from inside is 

seen on Figure 2. 

 

4.1 Context 

 
The British Museum was founded in the mid-18th century to house the collection of 
the physician Sir Hans Sloan which he in his will bequeathed to King George II. The 
collection included chiefly natural history specimens from his travels but also books, 
coins and medals.  
 
Today’s quadrangle building, designed by Sir Robert Smirke, was completed in 1852 
and is in the Greek revival style. The Great Court was originally meant to be a garden 
but, due to the need of more space for storing books, the Reading Room and some 
book stacks were built just a few years later. After that the court became a lost space. 
 
In 1997, as the library department of the Museum was relocated, the architectural 
competition for the redesign of the courtyard was launched. The main aims of the 
competition were to reveal hidden spaces, revise old spaces and to create new spaces. 
The winning entry by Foster and Partners together with Buro Happold was completed 
in 2000 (History of the British Museum). 
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The buildings surrounding the courtyard are old and designed for the prevailing 
conditions at that time and can therefore not restrain any horizontal forces from the 
new roof. The roof is therefore designed to take only vertical forces along the edges 
using sliding supports and all horizontal forces must be transferred either to the 
corners of the square or to the edge of the circular Reading Room in the courtyard 
where they can be handled. The circular Reading Room is reinforced with columns to 
transfer the extra weight to the ground and the horizontal forces cancel each other 
through a compression ring around the room. 
 
The Great Court measures 73 meters from east to west and 97 meters from north to 
south, see Figure 43. The circular Reading Room is offset 3 meters to the north from 
the middle and has a diameter of 44 meters (Williams, 2001).  
 

4.2 Form Finding Process 

 
Form finding techniques such as dynamic relaxation demands that the supports are 
fixed in order to be able to meet the surrounding buildings in straight lines around the 
edges. Also, the shell needed to be able to take both compression and tension. The 
techniques of form finding origins from the physical hanging models hence the 
resulting model works in either one or another.  
 
Since a form finding technique couldn’t be used the shape of the roof was determined 
geometrically by Chris Williams. The structural grid was then found through dynamic 
relaxation on the given surface where the nodes of the grid lie on the surface. 
 
 

 
 
Figure 43: The boundary of the roof. 
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The height of the roof, z, is the sum of three different functions of x and y which are 
the directions in east and north. The centre of the reading room is the origin, see 
Figure 43. The first function z1 describes the change in the height between the 
boundaries from the Reading Room and the surrounding buildings, i.e. the rectangular 
court, see Figure AIII: 1 in Appendix AIII. The second and third functions describe 
the curvature of the roof and are both zero along the edges, see Figure AIII: 2 and 
Figure AIII: 3 in Appendix AIII. The function describing the roof shape is presented 
in Appendix AIII. Figure 44 shows the final surface generated by the sum of the three 
functions. 
 

 
 
Figure 44: The final surface comprised of the three functions. [4] 

Once the shape of the roof was finished the structural grid could be determined. The 
node points along the boundaries were equally spaced around the Reading room and 
the rectangle and joint together. These radial lines were then divided into segments of 
equal length and by joining the dots a grid was obtained, see Figure 45. The 
discontinuities in the grid were eliminated using dynamic relaxation where a fictitious 
force was applied to the nodes. Allowing the nodes to slide on the given surface a 
relaxed grid was obtained; see Figure 46 (Williams, 2001).  
 

4.3 Relation to form finding 

 
By describing a shell mathematically the possibility to try out different options is 
decreasing due to the time effort for setting up the analytical expressions. This means 
that the final form might not be the most optimal. The form finding of the grid layout 
will on the other hand generate the most optimal grid for the chosen form.  
 
Form finding technique such as dynamic relaxation are relatively easy and can 
generate suggestions of a final structure quickly.  This makes the process of 
generating a form much more efficient and several different shapes can be evaluated 
during the conceptual phase. However, the limitations in the technique discussed in 
Section 3.4 makes it complicated to satisfy the demands of the surrounding structures. 
To keep the edges straight the boundary along the whole rectangle needs to be fixed 
which in this case is not possible due to the surrounding old structures. 
 
The dome of the Reading Room is an old landmark and the sightlines to it could 
therefore not be disturbed. Hence, the shell had a restriction of the height which 
further complicates the use of form finding techniques. The more shallow vault the 
more the roof thrusts outwards generating larger horizontal forces to take care of.  
  



 
  

50  CHALMERS, Applied Mechanics, Master’s Thesis 2015:44 
 

 

 
 
Figure 47: Elevation of the final grid looking west [4]. 

 

Figure 45: Starting grid [4]. Figure 46: Relaxed grid [4]. 
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5 Discussion 

 

5.1 The conceptual design tool 

 
During this thesis a conceptual design tool for membranes has been developed. The 
tool can be used to get a quick estimation of the shape of a structure. Other existing 
form finding tools are constructed as components to the plug in program 
Grasshopper© which, for a beginner to Rhino©, can be complicated to use. The fact 
that this program is a plug in to Rhino© directly makes it more simple to use, which 
means that the tool can be used by a broader community and by new users of Rhino©. 
There are still several improvements that needs to be done. To make the program 
more user-friendly some developments of the user interface needs to be done 
especially regarding how the boundary points are chosen and what types of boundary 
conditions that can be applied.  
 
To speed up the convergence of the method the implementation of the mass matrix 
needs to be adjusted. The one that is currently used is a unity matrix multiplied with a 
scalar typed in by the user. By implementing a routine that adjusts the nodal masses to 
be proportional to the stiffness components the convergence would be improved 
(Barnes, 1988). 
 

5.2 Isogeometric analysis 

 
There are several advantages of using isogeometric finite elements for analysis. First 
and foremost is the fact that it uses the correct geometry which will generate more 
accurate approximation of the solution. When Lagrangian finite elements are used, the 
demand of the mesh size increases which has a negative effect on the computational 
effort of a program. Also, the refinement of a FEA mesh requires that the exact 
geometry is provided, i.e. that the CAD model communicates with the model for the 
analysis, which it’s not the case. 
 
Shell structures are particularly sensitive to imperfections with regard to buckling, 
which means that the approximation of the shell has to be very exact. This is also a 
reason to implement isogeometric analysis where the exact geometry is used. 
 
During the work of the thesis isogeometric analysis has been compared to the classic 
finite element analysis regarding the theory of the two methods. A further comparison 
between the two could have included the design of a shell using both methods. This 
would give a deeper understanding of the differences in results and computational 
effort of the implementation of the two methods.  
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5.3 The roof of the British Museum Great Court 

 
The case study of the roof of the British Museum was carried out to apply the method 
to a real problem. The specific context of the roof where the surrounding buildings are 
unable to handle the horizontal forces narrows the possible choices of form finding 
methods down. The surface of the roof is mathematically determined and the grid is 
subsequently determined using dynamic relaxation on the surface. Finding a form 
mathematically is a time consuming process and by finding a way to deal with the 
arching free edges during a form finding process, dynamic relaxation would have 
been a possible choice for the surface instead. This problem is discussed in Section 
3.4 and the issue needs further investigation. Perhaps by making the side patches in 
Figure 35 stiffer than the mid-patch the edges could be kept straight. Also a generic 
algorithm to find the starting curvature of the edges in Figure 38 that would generate 
straight edges in the form found patch is a possible way of dealing with the problem. 
By using isogeometric analysis for the form finding of the roof a more accurate model 
would offer less geometrical imperfections generated during the analysis. 
 

5.4 Connecting architects and engineers 

 
The use of computers is close to necessary today. There are several programs for 
design and analysis that work differently and are suited for different things. By the 
use of a common tool for design and analysis less time is wasted on translating 
geometry for calculations. Perhaps a wider understanding and more creative work 
collaboration of the two disciplines can be achieved if a common platform is used.  
 
The design process is an iterative process especially when working with more 
complex geometries like shells. To find the optimal form, the architectural design and 
structural analysis will undergo several stages. By compromising the work at the 
conceptual stage into the same computational toolbox this update is easier and faster. 
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6 Recommendations for further work 

 
There are several interesting subjects of future work with isogeometric analysis. Other 
subjects that has been discussed during the work has been how to experiment with the 
thickness of the membrane to be able to generate a wider range of shapes. Another 
development could be to allow for a limited amount of bending stresses in the 
membranes. 
 
The plug in created in this work has a great potential but needs more development, as 
discussed in Section 5.1. Besides working on the existing parts of the program further 
implementations dealing with other types of elements, for example beams, could be 
done.  
 
The discussion regarding the boundary conditions in Section 3.4 is an issue that would 
be very interesting to continue working with. Studies on a generic algorithm to find an 
initial shape of the boundary edges that would generate a straight edge was started. 
However, due to the lack of time, no results are yet available.  
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AI: Calculation of B-Spline basis functions 

 
To calculate the B-spline basis functions for a knot vector equations (2.3) and (2.4) 
are repeated recursively on the knot vector. The calculations are carried out for the 
knot vector in (2.1) i.e. 
 

[ ]5,5,5,4,4,3,2,1,0,0,0=Ξ  

 
For p=0 the results are the step functions 
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Figure AI: 1 The basis functions for p=0 are step functions. 
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The next step is for p = 1 
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Figure AI: 2 The basis functions for p=1 are linear functions. 
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Figure AI: 3 The basis functions for p=2 are quadratic functions. The continuity 

over the elements are p-1=1 except for the double knot where it's C
0
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AII: Coding example – threadTest() 

 
static void threadTest() 
{ 

// DYNAMIC RELAXATION PARAMETERS: 

double nodalMass = SampleCsWpfViewModel.Instance.NodalMass; 

double h = SampleCsWpfViewModel.Instance.TimeStep; 
int maxIter = SampleCsWpfViewModel.Instance.MaxIter; 

double tol = SampleCsWpfViewModel.Instance.Tol; 

int nIter = 0; 
 

// CREATE IGA SURFACE FROM RHINO SURFACE: 

List<IGAMembraneSurfacePatch> IGAPatches = new List<IGAMembraneSurfacePatch>(); 
List<FormFindingPatch> formfindingPatches = new b List<FormFindingPatch>(); 

List<NurbsSurface> nurbsPatches = new List<NurbsSurface>(); 

List<System.Guid> srfGuids = new List<Guid>(); 

List<int> bc = new List<int>(); 
int numOfPatches = SampleCsWpfViewModel.Instance.PatchList.Count; 

 

if (numOfPatches < 1) // If no patch is selected for analysis don't crash!! 
{ return; } 

 

List<double[]> uniqueB = new List<double[]>(); 
 

for (int i = 0; i < numOfPatches; i++) 

{ 

FormFindingPatch currPatch = new 
FormFindingPatch(SampleCsWpfViewModel.Instance.PatchList[i].surfacePatch); 

               

formfindingPatches.Add(currPatch); 
System.Guid srfGuid = new Guid(); 

srfGuids.Add(srfGuid); 

 
Rhino.Geometry.Surface srf = currPatch.surfacePatch.Surface(); 

// Convert the surface to a NURBS surface 

Rhino.Geometry.NurbsSurface nurbsSrf; 
nurbsSrf = srf.ToNurbsSurface(); 

nurbsPatches.Add(nurbsSrf); 

// IGA geometry data from Rhino.Geometry.NurbsSurface 

int degP, degQ; 
double[][] B; 

double[] knotXi, knotEta; 

getIGAGeometry(nurbsSrf, out degP, out degQ, out B, out knotXi, out knotEta); 
               

// Create IGAsurface patch from Rhino Geometry: 

IGAMembraneSurfacePatch IGAPatch = new IGAMembraneSurfacePatch(B, knotXi, 
knotEta, degP, degQ); 

IGAPatches.Add(IGAPatch); 

               

for (int j = 0; j < IGAPatch.B.GetLength(0); j++) 
{ 

double[] currPoint = new double[4] { B[j][0], B[j][1], B[j][2], B[j][3] }; 

bool alreadyExist = ComparePoints(currPoint, uniqueB); 
                       

if (!alreadyExist) 

{ 
uniqueB.Add(currPoint); 

}} 

 
// CONNECTIVITY ARRAYS FOR THE PATCH: 

int[][] INC = IGAPatch.INC; 

int[][] ENOD = IGAPatch.ENOD; 
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int[][] DOF = IGAPatch.DOF; 

int[][] EDOF = IGAPatch.EDOF; 

// Numbers for the patch                          Number of: 

int ndof = IGAPatch.ndof;                         // global degrees of freedom 
int ldof = IGAPatch.nen * IGAPatch.dim;           // local degrees of freedom 

int nel = IGAPatch.nel;                           // elements 

int nen = (IGAPatch.p + 1) * (IGAPatch.q + 1);    // local basis functions 
} 

 

double[][] B_Global = uniqueB.ToArray(); 
 

int ndofGlobal = B_Global.GetLength(0) * 3; 

int[][] DOF_Global = IGAFunctions.BuildDOF(3, ndofGlobal / 3); 

 
Vector<double> extF_Global = new DenseVector(ndofGlobal); 

Vector<double> intF_Global = new DenseVector(ndofGlobal); 

 
for (int k = 0; k < IGAPatches.Count; k++) 

{ 

IGAMembraneSurfacePatch IGAPatch = IGAPatches[k]; 
int dim = IGAPatch.dim; 

int nel = IGAPatch.nel;                           // elements 

int nen = (IGAPatch.p + 1) * (IGAPatch.q + 1);    // local basis functions 
 

for (int m = 0; m < B_Global.GetLength(0); m++) 

{ 

for (int n = 0; n < IGAPatch.B.GetLength(0); n++) 
       { 

if ((B_Global[m][0] == IGAPatch.B[n][0]) && (B_Global[m][1] == 

IGAPatch.B[n][1]) && (B_Global[m][2] == IGAPatch.B[n][2])) 
        { 

        IGAPatch.DOF[0][n] = DOF_Global[0][m]; 

              IGAPatch.DOF[1][n] = DOF_Global[1][m]; 
              IGAPatch.DOF[2][n] = DOF_Global[2][m]; 

              } 

       } 

} 
 

IGAPatch.EDOF = IGAFunctions.BuildEDOF(dim, nel, nen, IGAPatch.DOF, 

IGAPatch.ENOD); 
int[][] DOF = IGAPatch.DOF; 

int[][] EDOF = IGAPatch.EDOF; 

 
// SURFACE PROPERTIES: 

double t = formfindingPatches[k].t; 

double E = formfindingPatches[k].E; 

double nu = formfindingPatches[k].nu; 
 

double[] force = new double[IGAPatch.dim]; 

force[0] = formfindingPatches[k].xLoad; 
force[1] = formfindingPatches[k].yLoad; 

force[2] = formfindingPatches[k].zLoad; 

 
// GET BASIS FUNCTIONS, SURFACE PARAMETERS AND EXTERNAL FORCE:  

IGAPatch.ComputeBasisFunctions(); 

IGAPatch.ComputeSurfaceParameters(E, nu, t); 
 

IGAPatch.ComputeExternalForce(t, force, ndofGlobal); 

extF_Global = extF_Global + IGAPatch.extF; 

} 
 

// BOUNDARY CONDITIONS: 
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// Loop through all control points 

for (int r = 0; r < B_Global.GetLength(0); r++) 

{   // Loop through all boundary points  

for (int s = 0; s < SampleCsWpfViewModel.Instance.BoundaryPointList.Count; s++) 
{ 

// The x- and y-valaue of the current boundary point 

BoundaryPoint currPoint = 
SampleCsWpfViewModel.Instance.BoundaryPointList.ElementAt(s); 

double x = currPoint.boundaryPoint.Point().Location.X; 

double y = currPoint.boundaryPoint.Point().Location.Y; 
 

if ((Math.Abs(B_Global[r][0] - x) < 1e-4) && ((Math.Abs(B_Global[r][1] - y) < 

1e-4))) 

{ 
if (currPoint.lockX == true) 

{ bc.Add(DOF_Global[0][r]); } 

if (currPoint.lockY == true) 
{ bc.Add(DOF_Global[1][r]); } 

if (currPoint.lockZ == true) 

{ bc.Add(DOF_Global[2][r]); } 
}}} 

 

// MASS MATRIX: 

DiagonalMatrix massMdiag = new DiagonalMatrix(ndofGlobal, ndofGlobal, 
nodalMass); 

Vector<double> massMvec = new DenseVector(ndofGlobal); 

for (int i = 0; i < ndofGlobal; i++) 
{ 

massMvec[i] = nodalMass; 

} 
 

// INITIALIZATIONS: 

// Initial displacements and velocities 
Vector<double> u = new DenseVector(ndofGlobal); 

Vector<double> v = new DenseVector(ndofGlobal); 

 

// Initial forces 
Vector<double> intF = new DenseVector(ndofGlobal); 

Vector<double> tau = new DenseVector(new double[] { 1, 1, 0 }); 

tau = tau * 5000000000 * 0; 
 

// Initial kinetic energy 

double kinE = massMdiag.LeftMultiply(v).DotProduct(v); 
double kinEPrev = 0; 

List<double> kinS = new List<double>(); 

 

// Initial norm 
double residualNorm = extF_Global.L2Norm(); 

           

// DYNAMIC RELAXATION ITERATION: 
// While the sum of the residual force is larger than the tolerance, do: 

while (residualNorm > tol) 

{ 
intF_Global.Clear(); 

for (int patchNum = 0; patchNum < IGAPatches.Count; patchNum++) 

{ 
IGAMembraneSurfacePatch IGAPatch = IGAPatches[patchNum]; 

double t = formfindingPatches[patchNum].t; 

int nel = IGAPatch.nel; 

int ldof = IGAPatch.nen * 3; 
// Extract the element displacements from the global displacements 

Matrix<double> ed = new DenseMatrix(nel, ldof); 

for (int i = 0; i < nel; i++) 
{ 
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for (int j = 0; j < ldof; j++) 

{ 

ed[i, j] = u[IGAPatch.EDOF[i][j]]; 

}} 
 

// Calculate the internal forces in the membrane 

IGAPatch.ComputeInternalForceParallel(ed, tau, t, ndofGlobal); 
intF_Global = intF_Global + IGAPatch.intF; 

} 

 
// Calculate residual 

Vector<double> residual = extF_Global - intF_Global; 

 

// Set the residual to zero in the boundary DOFs 
for (int i = 0; i < bc.Count(); i++) 

{ 

residual[bc[i]] = 0; 
} 

 

// Residual norm 
residualNorm = residual.L2Norm(); 

 

// Update velocities 
if ((nIter > 0) && !((kinE - kinEPrev) < 0)) 

{ 

v = v + residual.PointwiseDivide(massMvec).Multiply(h); 

} 
else 

{ 

v = residual.PointwiseDivide(massMvec * 2).Multiply(h); 
kinE = 0; 

} 

 
// Update displacements 

u = u + v.Multiply(h); 

for (int patchNum = 0; patchNum < IGAPatches.Count; patchNum++) 

{ 
IGAMembraneSurfacePatch IGAPatch = IGAPatches[patchNum]; 

NurbsSurface nurbsSrf = nurbsPatches[patchNum]; 

 
//----------------------------------------- 

// Write solution to rhino geometry 

                   
int nodeNumber = 0; 

for (int j = 0; j < IGAPatch.getM(); j++) 

{ 

for (int i = 0; i < IGAPatch.getN(); i++) 
{ 

Point3d pt3 = new Point3d(); 

pt3.X = IGAPatch.getB(i, j)[0] + u[IGAPatch.DOF[0][nodeNumber]]; 
pt3.Y = IGAPatch.getB(i, j)[1] + u[IGAPatch.DOF[1][nodeNumber]]; 

pt3.Z = IGAPatch.getB(i, j)[2] + u[IGAPatch.DOF[2][nodeNumber]]; 

nurbsSrf.Points.SetControlPoint(i, j, pt3); 
nodeNumber = nodeNumber + 1; 

}} 

                  
// Add new surface to rhino 

if (nurbsSrf.IsValid) 

{ 

if (nIter < 1) 
{ 

srfGuids[patchNum] = RhinoDoc.ActiveDoc.Objects.AddSurface(nurbsSrf); // Adds 

the surface 
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} 

RhinoDoc.ActiveDoc.Objects.Replace(srfGuids[patchNum], nurbsSrf); 

RhinoDoc.ActiveDoc.Views.Redraw(); 
} 

//----------------------------------------- 

} 
// Kinetic damping 

kinEPrev = kinE; 

kinE = massMdiag.LeftMultiply(v).DotProduct(v) * 0.5; 
kinS.Add(kinE); 

// If peak is detected, do: 

if ((kinE - kinEPrev) < 0)  

{ 
// Find location of the peak 

double eC = kinE; double eB = kinS[nIter - 1]; double eA = kinS[nIter - 2]; 

double eE = eC - eB; double eD = eB - eA; 
double eQ = eE / (eE - eD); 

 

u = u - v.Multiply(h * (1 - eQ)) + 
massMdiag.Inverse().LeftMultiply(residual).Multiply(Math.Pow(h, 2) / 2 * eQ); 

v.Clear(); 

kinS[nIter] = 0; 

} 
nIter++; 

 

if (nIter >= maxIter) 
break; 

} 

RhinoApp.WriteLine("residual norm = {0}", residualNorm); 
RhinoApp.WriteLine("total iterations = {0}", nIter); 

RhinoApp.Write("Number of degrees of freedom: "); 

RhinoApp.WriteLine(ndofGlobal.ToString()); 
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AIII: British Museum Great Court roof function 
 
The height of the roof, z, is a function of three fundamental functions 

321 zzzz   

 
The first one defining the difference in height between the rectangular buildings and 
the circular Reading Room 
 

  edgeedgecentre hhhz  1  

 

 
Figure AIII: 1 Surface corresponding to the first function [4]. 

 
The second creates a horizontal surface at the edges. Together with the third function 
it makes sure z=0 around the boundaries 
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Figure AIII: 2 Surface corresponding to the second function [4]. 

The third function with infinite curvature at the corners 
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Figure AIII: 3 Surface corresponding to the third function [4]. 
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