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Physics of a disordered Dirac point in epitaxial graphene from
temperature-dependent magnetotransport measurements
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We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by magnetotransport.
Hall effect measurements show that the carrier density increases quadratically with temperature, in good
agreement with theoretical predictions which take into account intrinsic thermal excitation combined with
electron-hole puddles induced by charged impurities. We deduce disorder strengths in the range 10.2–31.2
meV, depending on the sample treatment. We investigate the scattering mechanisms and estimate the impurity
density to be 3.0–9.1×1010 cm−2 for our samples. A scattering asymmetry for electrons and holes is observed
and is consistent with theoretical calculations for graphene on SiC substrates. We also show that the minimum
conductivity increases with increasing disorder strength, in good agreement with quantum-mechanical numerical
calculations.

DOI: 10.1103/PhysRevB.92.075407 PACS number(s): 72.80.Vp, 71.23.−k, 72.10.−d

I. INTRODUCTION

Many of the exceptional electronic properties of graphene
arise from its linear dispersion relation [1,2]. However, when
the Fermi energy approaches the Dirac point, its properties
can be dominated by the effects of disorder, which can be both
intrinsic (such as ripples and topological lattice defects) and
extrinsic (including cracks/voids, adatoms, charged impurities,
etc.), in general varying from sample to sample [3]. Of
particular significance are the effects of disorder potentials on
electrical transport properties [4] due to the lack of screening
at very low carrier densities. Microscopically, the fluctuating
electrostatic potential breaks up the intrinsically homogeneous
charge distribution into electron-hole puddles [5–9]. This
effect is recognized to mainly originate from unintendedly in-
troduced charged impurities, whose type, spatial distribution,
and density also depend on the sample environment, device
fabrication techniques, and particularly graphene synthesis and
treatment processes.

Recently, epitaxial graphene on SiC (SiC/G) has been
reported to have very high quantum Hall breakdown current
density [10] which potentially allows a quantum electrical
resistance standard operating at even higher temperatures and
lower magnetic fields [11]. Low and well-controlled carrier
density is required to achieve high breakdown current in these
conditions, and understanding the disorder effects is therefore
highly important. To date, there are very few experimental
studies of disorder in epitaxial graphene grown on SiC due to
the intrinsically high level of doping from the substrate [12].
In this paper, using extremely low carrier density epitaxial
graphene, we describe the role of disorder in governing the
temperature-dependent magnetotransport.
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II. METHODS AND METHODOLOGY

Our SiC/G samples were epitaxially grown on the Si-
terminated face of 4H-SiC at T = 2000 ◦C and P = 1 atm
Ar, as reported elsewhere [11,13–15]. The as-grown samples
have large uniform monolayer areas, where devices with an
eight-leg Hall bar geometry of various sizes were fabricated
using standard electron-beam lithography followed by O2

plasma etching and large-area titanium-gold contacting. A
nonvolatile polymer gating technique was used to control the
carrier density in epitaxial graphene by room-temperature UV
illumination [16] or corona discharge [17]. The polymer gates
consist of bilayer polymer coating on top of the graphene
Hall bars, forming SiC/graphene/polymer heterostructures.
The first layer is PMMA/MMA copolymer, followed by the
second layer of UV sensitive polymer ZEP520A [16]. Both
dc and ac magnetotransport measurements were carried out
using an Oxford Instruments 21 T superconducting magnet
with a variable temperature insert which allows temperature-
dependent measurements from 1.4 up to 300 K.

Magnetotransport measurements were made on three SiC/G
devices, which we denote CD1, CD2, and UV1. We used
two different techniques to reduce the relatively high initial
electron density and tune the Fermi level to the vicinity of
the Dirac point, where four-probe resistance maxima were
observed: CD1 and CD2 were treated with multiple negative
ion projections onto the bilayer polymer gate, produced by
corona discharge using a piezo-activated antistatic gun [17],
resulting in extremely low final electron densities of 1.2 and
1.3 × 1010 cm−2, respectively; UV1 was treated with deep
UV illumination using a 248-nm mercury lamp [16] which
eventually reduced the electron density to 8 × 1010 cm−2.
As we will show below, these values should not be treated
as the real electron densities, but merely are effective carrier
densities, neff , calculated from the low-field Hall coefficients at
1.4 K assuming a homogeneous landscape with a single type
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FIG. 1. (Color online) The Hall resistance Rxy and the longitudinal resistance Rxx as a function of magnetic field at temperatures from 1.4
to 300 K for sample CD2. The sample enters the quantum Hall regime already from about 0.6 T as observed from the quantized Rxy and the
vanishing Rxx at low temperatures.

of charge carrier. In the absence of disorder, these densities
would correspond to an upper limit for the Fermi energy (EF =
�vF

√
πneff , where vF is the Fermi velocity), which is between

12.7 and 32.9 meV, based on the assumption of a linear disper-
sion where the density of states vanishes at the Dirac point [18].
In reality, due to the effects of disorder, a residual density of
states and coexistence of electrons and holes [6] at EF → 0
are expected, and thus the determination of an extremely
low Fermi energy from Hall effect measurements becomes
nontrivial. The overall net charge density is much lower than
neff , but differences in the mobilities of the two carrier types
still create a finite Hall coefficient at the Dirac point, which
corresponds to the resistivity maximum studied here.

III. RESULTS AND DISCUSSIONS

A. Intrinsic excitation in the presence of electron-hole puddles

In Fig. 1, we present typical experimental results: the Hall
resistance Rxy and the longitudinal resistance Rxx of sample
CD2 as a function of magnetic field at temperatures from 1.4
to 300 K. In our study, all three devices show similar behavior,
as shown in Fig. 1. Due to the extremely low carrier densities
of the samples, quantum Hall plateaux corresponding to the
filling factor ν = 2 can be observed already from about 0.6 T
at 1.4 K. The Hall resistance becomes significantly nonlinear
when approaching the quantum Hall regime. Therefore, to
extract the zero-field carrier densities of our devices, only Hall
coefficients between −0.1 and +0.1 T are used.

It has been theoretically studied and experimentally con-
firmed that close to the Dirac point, as a consequence of
disorder, the carrier density landscape is extremely inhomoge-
neous and electron-hole puddles form [4–9]. Classically, the
low-field Hall coefficient in the presence of both electrons and
holes is given by

RH ≡ Ey

JxB
= −1

e

neμ
2
e − nhμ

2
h

(neμe + nhμh)2
, (1)

where ne (nh) and μe (μh) are the electron (hole) density
and mobility, respectively. Similar two-carrier analyses are
also found in the literature for this electron-hole coexistence
regime in monolayer and bilayer graphene [19,20]. The carrier
density directly extracted from this two-carrier low-field Hall

effect is, therefore, effectively,

neff = (neμe + nhμh)2

neμ2
e − nhμ

2
h

. (2)

When the Fermi energy is zero, i.e., at charge neutrality
point (CNP), ne = nh > 0. Thus, neff = αne, where α =
μe
μh

+1
μe
μh

−1 . Notably, for electronlike behavior (RH < 0), α > 0; for

holelike behavior (RH > 0), α < 0.
We now analyze the temperature dependence of the effec-

tive carrier density neff , as shown in Fig. 2, for the three devices.
A quadratic increase of neff with increasing temperature can
be clearly observed for all of the samples. Each sample also
exhibits a distinct nonzero residual charge density at the
low-temperature limit even when EF → 0, indicating that the
potential landscape of our devices is highly inhomogeneous.
These features are clearly different from the Arrhenius
behavior of conventional semiconductors and intrinsic thermal
activation in graphene when no disorder effects are accounted
for (i.e., there is no residual carrier density). Accurate fitting

FIG. 2. (Color online) Temperature dependence of the effective
carrier densities neff deduced using Eqs. (1) and (2) for sample CD1,
CD2, and UV1. Quadratic increase with increasing temperature is
observed, together with nonvanishing carrier densities neff,0 at T → 0
K. The experimental data is well fitted using Eqs. (4) and (5), as shown
in the figure (dashed lines), where the disorder potential strength s

and the mobility ratio μe/μh are extracted from the fitting.
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TABLE I. Energy fluctuations of electron-hole puddles in
graphene. (Results of our analysis of magnetotransport data are
highlighted in bold. KPM: Kelvin probe microscopy; SET: single-
electron transistor; STM: scanning tunneling microscopy; STS:
scanning tunneling spectroscopy; CVD: chemical vapor deposition.)

Synthesis (treatment) Disorder strength (meV) Probing method

Epitaxial on SiC (CD1) 12.7 ± 0.6 Magnetotransport
Epitaxial on SiC (CD2) 10.2 ± 0.4 Magnetotransport
Epitaxial on SiC (UV1) 31.3 ± 2.0 Magnetotransport
Epitaxial on SiC (AO) 15 ± 1 Magnetotransport
Epitaxial on SiC 12 KPM [5]
Exfoliated on SiO2/Si 50 SET [6]
Exfoliated on SiO2/Si ∼20 STM [7]
Exfoliated on h-BN 5.4 STM [8]
CVD on Ir(111) ∼30 STM/STS [9]

can be made based on the theory [4] assuming that the
electronic potential energy of disordered graphene follows
Gaussian statistics, which give the probability of finding the
local potential within a range dV about V ,

P (V )dV = 1√
2πs2

e
− V 2

2s2 dV , (3)

where s is a parameter used to characterize the strength of
the potential fluctuations. As a consequence, the temperature-
dependent charge density at CNP for both electrons and holes
is [4]

ne(T ) = nh(T ) = gsgv

2π (�vF )2

[
s2

4
+ (πkBT )2

12

]
, (4)

where gs = gv = 2 are the spin and valley degeneracies,
and vF ≈ 106 m/s is the Fermi velocity. The temperature
dependence of the effective carrier density is, therefore,

neff(T ) = αne(T ), (5)

where α is assumed to be constant over the temperature range
under consideration. The predicted temperature dependence
from Eqs. (4) and (5) fits the experimental data very well
(Fig. 2), giving potential fluctuation strengths s = 12.7, 10.2,
and 31.3 meV, and prefactors α which translate into mobility
ratios of electrons to holes μe/μh = 2.04, 1.85, and 2.36, for
the devices CD1, CD2, and UV1, respectively. Table I shows
comparisons of the potential fluctuations, due to electron-hole
puddles, between the values deduced from our magnetotrans-
port measurements and those found in the literature [5–9],
where most of the characterizations are based on STM. Table I
also includes the disorder strength (15 ± 1 meV) from our
analysis of the published data for SiC/G samples exposed to
aqueous-ozone (AO) processing [21], which results in high
mobility and extremely low p-type doping with an effective
carrier density neff,0 = −4.0 × 1010 cm−2 (negative sign for
holelike behavior) from Hall measurements. We find that the
disorder strengths measured in our samples are consistent with
those reported previously for SiC/G, and are smaller than
those of CVD and exfoliated samples on SiO2, while they are
slightly larger than that of exfoliated graphene on h-BN, which
is an atomically smooth, dangling-bond-free, and lattice-
matched substrate to support high-quality graphene [22].

These comparisons suggest that SiC/G generally has very good
quality and relatively small amounts of disorder, even though
the actual characteristics are expected to vary from sample
to sample and may also be sensitive to the sample treatment,
as seen from Table I. At the same time, it is demonstrated
that magnetotransport measurement is an additional effective
method to investigate the disorder effects and characteristics
in graphene.

B. Scattering mechanisms

To evaluate the scattering mechanisms in our SiC/G
samples, we now turn to examine the temperature dependence
of the longitudinal conductivity σxx and the electron mobility,
as shown in Fig. 3. Carrier mobilities of individual species are

FIG. 3. (Color online) (a) The longitudinal conductivity as a
function of temperature, where weak nonmonotonic dependences
are shown. (b) The temperature dependence of the electron mobility
of our samples. Individual contributions due to impurity scattering
(green, pink, and blue dashed lines) for all three samples, LA
phonon scattering (blue dash-dotted line), and RIP scattering (blue
dash-double-dotted line) for UV1 as an example are shown. The
solid lines represent the overall μe(T ) dependence by fitting the
experimental data. (c) σmin as a function of disorder strength. An
β(s − �)

1
2 dependence (green dash-dotted line) is observed from our

experimental data (green triangles). σmin as a function of K0 from
numerical calculations by Adam et al. (gray circles and solid line),
as well as predictions using the Boltzmann theory (blue dashed line)
and the self-consistent Boltzmann theory (SCBT) (red solid line) are
also shown [34].
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calculated classically based on

σxx = e(neμe + nhμh) = eneff

α
(μe + μh), (6)

via Eq. (5) and the value μe

μh
deduced from α. It is observed

that σxx(T ) remains slowly varying with weak nonmonotonic
fluctuations for a large range of temperatures. Similar behavior
has been reported for monolayer graphene samples when
EF ≈ 0 [23,24], and this is clearly different from thermally
activated conductivity in conventional gapped semiconductors
and from phonon-limited behavior in graphene, which will
result in a T −4 or T −1 dependence [25,26] at low or high
temperatures, respectively, due to intravalley acoustic phonon
scattering. It should be pointed out that this temperature
dependence of conductivity in our extremely low carrier
density samples could be a combination of various contri-
butions. It is believed that this weakly varying conductivity
is mainly due to the temperature-dependent carrier density
as described above and the μ(T ) dependence as we will
discuss below. At the lowest temperatures, there are also
temperature-dependent weak localization corrections, which
can be seen from Fig. 1(b) around B = 0 T, but have been
excluded in Fig. 3(a). Figure 3(b) shows the electron mobility
as a function of temperature, as well as the mobility limits as
a result of various scattering mechanisms, including impurity
scattering, scattering by longitudinal acoustic (LA) phonons in
graphene, and scattering by remote interfacial phonons (RIP)
at the SiC/graphene interface [27,28]. In the case of charged
impurities, carrier mobility is inversely proportional to the
impurity density nimp [18,29],

μimp ≈ C0

nimp
, (7)

where C0 is a constant. For LA phonon scattering [25],

μLA = e�ρsv
2
s v

2
F

πneD
2
AkBT

, (8)

where ρs = 7.6 × 10−7 kg/m2 is the two-dimensional mass
density, vs = 1.7 ×104 m/s is the sound velocity, and DA =
18 eV is the acoustic deformation potential. The RIP limited
mobility is given by [27,28]

μRIP = 1

nee

{ ∑
i

[
Ci

exp
(

Ei

kBT

) − 1

]}−1

, (9)

where Ci and Ei are electron-phonon coupling constants and
phonon energies, respectively, of the phonon modes under
consideration. To fit our data, we first considered three phonon
modes: two out-of-plane acoustic phonon modes in epitaxial
graphene (E1 = 70 meV and E2 = 16 meV) [27,30] and a
surface phonon mode of 4H-SiC (E3 = 117 meV) [27,28,31].
However, due to their relative large phonon energies, none
of these can yield a reasonable fit, which can only be
obtained [Fig. 3(b), solid lines] when an additional low-energy
phonon mode (E4 ≈ 2 meV) is introduced. This is consistent
with the previously reported results [27,28,32,33], and this
low-frequency remote phonon mode has been recognized to
originate from the interaction between graphene and the buffer
layer, that they are oscillating out-of-phase parallel to each
other.

It can be seen from Fig. 3(b) that impurity scattering plays
the most dominant role at low temperatures (<100 K), while
the high-temperature mobility is probably limited by RIP
scattering, since LA phonons make only a small contribution to
the overall mobility for temperatures below 400 K. Using C0 ≈
5 × 1015 V−1 s−1 [29], the densities of charged impurities for
our SiC/G samples are estimated to be 3.0–9.1 × 1010cm−2,
which are 1–2 orders of magnitude lower than that in typical
exfoliated [35] and CVD grown [36,37] graphene on SiO2, but
are comparable to that of h-BN supported graphene [38], con-
sistent with its high charge carrier mobility. Even though we
restrict the above analysis to phonon and impurity scattering,
other possible scattering mechanisms exist, such as scattering
due to ripples [39,40] and very large defects [41]. Quantitative
analysis of these mechanisms on our devices is rather difficult
since systematic examination of the sample morphology is
required and, on the other hand, the theoretical pictures are
rather complicated and still contentious [42].

So far we have been able to identify that charge carrier
scattering at low temperatures in our SiC/G is mainly due to
impurities, in the classical regime, where quantum corrections
are suppressed by magnetic fields. It is these impurities
which provide the same origin for generating the electron-
hole puddles at EF → 0. Furthermore, these impurities are
most likely to be charged/Coulomb impurities rather than
short-range impurities. The main evidence for this is the
presence of unequal electron and hole mobilities, which is
a consequence of the unbalanced scattering cross sections
for charged scatterers in a system with two-dimensional
relativistic dispersion [29,43]. This theory can be intuitively
understood from the idea that an attractive potential scatters a
charge carrier more effectively than a repulsive potential [43].
As presented in Fig. 2, we have obtained similar μe/μh

in the range of 1.85–2.36. According to the theory [43],
assuming a single species of monovalent (|Z| = 1) impurities,
the above mobility ratios can be translated into a dimensionless
asymmetry factor c = 0.30–0.39, which is used to characterize
the strength of this asymmetry effect (i.e., c = 0 for μe = μh

and c → 1 for μe(h) � μh(e)). The nature of this asymmetry
factor depends on the dielectric constant of the substrate: for
SiO2, c|εr=3.9 ≈ 0.46; for SiC, the same substrates as used in
our devices, c|εr=10.0 ≈ 0.32, which is in very good agreement
with our experimental results. Small variations around the
predicted value are expected, since the actual electrostatic
environment of each SiC/G sample could also be affected by
the polymer top-gate dielectrics; meanwhile, the types and
amounts of charged impurities present in our samples could
be more complex.

C. Minimum conductivity of disordered graphene

Finally, the effects of disorder potential fluctuations on
the low-temperature, nonvanishing minimum conductivity
(σmin) at the Dirac point are investigated for graphene in the
diffusive transport regime. This property has been extensively
considered theoretically and the two main existing approaches
lead to contradictory results [34]. The semiclassical Boltzmann
transport theory predicts a decreasing σmin with increasing
disorder strength. With a self-consistent modification to the
Boltzmann theory, a subsequent increase of the minimum
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conductivity for higher disorder strengths is predicted. On
the other hand, the minimum conductivity treated quantum
mechanically [34,44–46] is increased for the entire disorder
strength range for a noninteracting model using a Gaussian
correlated disorder potential. Experimentally, very few studies
can be found addressing this problem in the literature [29].
Shown in Fig. 3(c) is the minimum conductivity (at B = 0)
as a function of the disorder strength s obtained from our
measurements when quantum corrections have been taken
into account, as well as theoretical predictions including the
numerical calculation via the quantum-mechanical approach
by Adam et al. [34], and results from the (self-consistent)
Boltzmann theories, for L = 50ξ , where L is the sample
length, ξ is the correlation length of the assumed random
Gaussian potential U (r) in the system, and the dimensionless
parameter K0 ∝ 〈U (r)U (r′)〉 is the disorder strength used in
the theories. Our experimental results show that the minimum
conductivity increases with increasing s, roughly following
a β(s − �)

1
2 dependence locally in the 0.5–2.5 × 4e2

h
range,

highlighted by the green dash-dotted line in the figure, where
β and � are constants. This increase agrees qualitatively
well with the theoretical predictions [34] from the quantum-
mechanical approach, where we assume s ∝ √

K0. However,
our data do not agree with the results from the Boltzmann
and the self-consistent Boltzmann theory, as shown in the
figure. In addition, we note that the minimum conductivity
may have a complex dependence on the sample length and
details of quantum interference effects [34,47,48], and also
be a function of the charged impurity density nimp indicated
from previous experimental work by Chen et al. [29], whose
results suggest that σmin drops with increasing nimp at low

impurity densities and may saturate rapidly. To allow a more
conclusive interpretation, however, more experimental data
and systematic comparisons between well-controlled samples
from different synthesis methods and a larger range of disorder
potentials and impurity densities would be needed.

IV. CONCLUSIONS

In summary, we have presented temperature-dependent
magnetotransport measurements on epitaxial graphene. We
have demonstrated the disorder effects when the Fermi energy
lies in the vicinity of the Dirac point and have been able to iden-
tify the main origin of those effects to be charged impurities.
The disorder strength and the impurity densities of our samples
have been estimated from experimental results. We have
also shown that the minimum conductivity increases with in-
creasing disorder strength, in good agreement with numerical
quantum-mechanical calculations. Overall, the application of
this method can, therefore, provide an alternative and effective
route for quantitatively studying the disorder characteristics in
graphene and other two-dimensional materials.
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