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Abstract

This thesis describes the analysis of four different methods for generating synthetic turbulence, and
the implementation of the methods into HYDRA CFD Code. These methods are the synthetic eddy
method (SEM) by Jarrin, divergence free synthetic eddy method (DFSEM) by Poletto, synthetic
fluctuations by Davidson, and a spectral method for generating fluctuations by Batten. The SEM and
the DFSEM are stochastic algorithms that use the view of turbulence as a superposition of eddies,
whereas the last two methods use the Fourier space to describe turbulence in terms of wavenumbers.

The motivation of this work is the growing interest of using unsteady simulations, in particular
large eddy simulations (LES), in engineering applications, and the computational issues that come
with it. In order to use LES, instantaneous inlet velocities are needed as turbulent inflow boundary
conditions. These boundary conditions will be given by synthetic turbulence, generated by the four
methods mentioned. The object is to trigger the equations to start resolve turbulence.

The methods are first implemented in C and investigated in terms of correlation in space and
time for the generated turbulence. It is shown that all of the methods generated fluctuations with
proper correlation in time and space. Next, the SEM, the DFSEM, and the synthetic fluctuations
method are implemented into the CFD programming language HYDRA CFD Code. Last, the
implementation of the SEM and the DFSEM is further investigated through a channel flow simulation
in HYDRA, where the two methods are used for generating inlet conditions. The results from these
simulations show that the SEM and the DFSEM produces fluctuations that remain throughout the
channel.

Keywords: LES, SEM, DFSEM, synthetic fluctuations, inlet boundary conditions, turbulence, HYDRA
CFD Code
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Nomenclature

Acronyms

CFD Computational Fluid Dynamics
DFSEM Divergence Free Synthetic Eddy Method
DNS Direct Numerical Simulation
EARSM Explicit Algebraic Reynolds Stress Model
KEP Kinetic Energy Perserving
LES Large Eddy Simulation
MUSCL Monotone Upwind Schemes for Scalar Conservation Laws
RANS Reynolds-averaged Navier-Stokes
SEM Synthetic Eddy Method
SGS Sub-Grid Scale

Greek symbols

α Constant
αn Random angle
αk Intensity
β Coefficient
Γ Length scale ratio
δij Kronecker’s delta
ε Dissipation rate
εijk Levi-Civita symbol
θ Angle
κ Wave number
µ Dynamic viscosity
ν Kinematic viscosity
νt Turbulent kinematic viscosity
νSGS Sub-Grid Scales turbulent viscosity
ξ Random coefficient
ρ Density
σi Length scale, ith direction
σn Unit vector
τ Viscous stress
τ Time scale
ϕ Random angle
ω Frequency
∆ Grid spacing
Ψ Phase
Ω Vorticity tensor
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Roman symbols

aij Cholesky decomposition of the Reynolds stress tensor
bij Reynolds stress anisotropy tensor
dxi Grid spacing in xi-direction
dt Time step
fi Body forces, ith component
k Turbulent kinetic energy
Lt Turbulent length scale
p Pressure
Sij Strain rate tensor
t Time
ui Velocity vector, ith component
xi Spatial coordinate, ith component
T Inlet time scale
U ′ Time filtered velocity in x1 -direction
V ′ Time filtered velocity in x2 -direction
W ′ Time filtered velocity in x3 -direction
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1 Introduction

Describing the motion of fluids, such as air or water, mathematically is of great importance in many
areas, both in academics as well as in the industry. However, even though the importance of describing
flow correctly is great, the Navier-Stokes equations that are used to describe the flow are not generally
analytically solvable. Hence, numerical methods are used to simulate the flow in order to get a good
understanding of how the flow behaves in a specific situation.

1.1 Background

The most commonly used method for describing flows in industrial applications, is Computational
Fluid Dynamics (CFD), where the finite volume method is used in order to numerically solve the
Navier-Stokes equations. However, even though the powers of computers are steadily increasing,
solving Navier-Stokes equations directly, a so called direct numerical simulation (DNS), is still far too
computationally heavy for most cases. Instead of solving the equations directly, there are different
methods for modelling the Navier-Stokes equations, such that computers are able to solve the equations
in a reasonable amount of time, of which two are of most interest in this thesis. The first one is
Reynolds-averaged Navier-Stokes (RANS), which relies only on the mean motion and uses models
to describe turbulence. The second model is Large Eddy Simulation (LES), which resolves large
turbulent eddies while the smaller ones are simulated.

Compared to DNS and LES, RANS is quick and gives good enough results for it to be widely
used in industrial applications. However, with increasing computer power, LES is used more and
more to simulate spatially developing flows. Using LES to simulate spatially developing flows requires
the specification of instantaneous turbulent inlet boundary conditions for triggering the equations to
start resolve turbulence. Hence, in order to use LES in industrial cases, there is a need for methods
to generate realistic inflow conditions.

One method to achieve proper inlet conditions, is to obtain inflow data from a precursor simu-
lation. However, as this is computationally heavy, more efficient methods are sought for. A second
alternative method is to use recycling methods which have been used successfully by Kaltenbach
et al. in [1] and Aider and Danet in [2], amongst others. A third alternative to achive proper inlet
conditions, is to generate synthetic turbulence. There are different methods for generating synthetic
turbulence, with the same goal of generating turbulence that resembles the actual flow by matching a
reduced set of statistics. It should be noted that using ordinary white noise as turbulent inflow is not
satisfactory, since the fluctuations from a white noise is totally uncorrelated in space and time, which
will make the fluctuations disappear too soon.

The present thesis focuses on the implementation of four methods for generation of synthetic tur-
bulence. The first method was presented by Batten et al. in [3], where the turbulence is described
in Fourier space, using the notion of wavenumbers to describe the fluctuations. The second method
also uses the Fourier space to describe the turbulence, and is presented by Davidson in [4]. The last
two methods are the synthetic eddy method (SEM) by Jarrin and the divergence free synthetic eddy
method (DFSEM) by Poletto, presented in [5] and [6] respectively. These methods are very similar
and view turbulence as a superposition of eddies.

The thesis presents these four methods and how the accuracy of each of the methods is exam-
ined. This is first done through investigating the correlations of the generated turbulence in space
and time, using autocorrelation in time and two-point correlation in space. It is shown in [7] that
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examining correlations is the preferable way of measuring the generated turbulence compared to other
methods, such as inspecting the energy spectrum of the generated velocity signal. Next, the methods
are integrated into HYDRA CFD Code, which is a CFD code first developed by University of Oxford
and customised and further developed by Rolls-Royce Plc for turbo-machines applications. HYDRA
is designed as a coupled solver, since the aim is mainly to solve for high speed flows in ideal gases. A
coupled solver is considered suitable for those kinds of flows.

In HYDRA, the SEM and the DFSEM are further investigated and used to produce inlet boundary
conditions in a channel flow simulation. It should be noted that the methods could be used in the
interface between the RANS region and the LES region in a hybrid LES-RANS simulation as well [8],
even though this is not investigated in the present thesis.

Even though this thesis focuses on four methods for generating synthetic turbulence, there are
other methods that have been used successfully. In [9], Hanna et al. generated one-dimensional time
series of inflow data based on an exponential correlation function to simulate flows over an array of
cubes using LES. The efficiency of this method was shown to be very high, however, the accuracy
was limited due to that there were no spatial correlation imposed at the inlet. In [10], Klein et al.
developed a technique generating synthetic velocities as inflow data for jet flows, which reproduced
first and second order one-point statistics as well as locally given correlations. The technique is
based on the knowledge that for late stage homogeneous turbulence the correlation function takes a
Gaussian form.

1.2 Purpose

The purpose of the present project is to implement four different methods for generating turbulent
flow into the programming language C, and then integrate three of the methods into HYDRA CFD
Code. In HYDRA, the SEM and the DFSEM will be tested on a simple test case, in form of a channel
flow. This test case is used for its simplicity, and the challenges that arise with the constant influence
from the walls.

1.3 Limitations

There are some limitations that need to be addressed. As there were some time constraints to the
project, only the methods by Davidson, Jarrin, and Poletto will be integrated into HYDRA, and only
the SEM and the DFSEM will be used in a channel flow simulation. The methods will not be tested
on complex geometries, but only the simple test case already mentioned. This will keep the test work
to a minimum, as well as giving a clear view of how well the methods perform. When implementing
the models, the flow will be considered to be incompressible. Many flows for which the methods will
be used are almost incompressible, hence this might not be a huge limitation but it deserves to be
mentioned.

1.4 Method

The project work began with literature studies in order to determine which methods to implement,
and how this was to be done. Next, the methods were implemented into the programming language
C, where input to the methods was taken from a RANS simulation. The plotting and result analysis
was done in Matlab. The methods were finally integrated into HYDRA CFD Code, where the SEM
and the DFSEM were used in an LES simulation of a channel flow.
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2 Theory

This section presents the most important theoretical aspects of the work done in the present project.
Starting with a short presentation of the flow equations of interest, followed by a description of the
four different methods for generating synthetic turbulence, and how these methods are implemented
and analysed.

2.1 Governing equations

The motion of fluids are described by Navier-Stokes equations. The first equation that is part of the
Navier-Stokes equations is given by the continuity equation:

dρ

dt
+ ρ

∂ui
∂xi

= 0, (2.1)

where ρ is the density of the fluid and ui is the velocity vector. In the present project, the flow is
assumed to be incompressible, that is ρ = constant, which means that Equation (2.1) can be rewritten
as:

∂ui
∂xi

= 0. (2.2)

The next equation is the momentum equation which is given by:

ρ
dui
dt

= − ∂p

∂xi
+
∂τij
∂xj

+ ρfi = − ∂p

∂xi
+

∂

∂xj

(
2µSij −

2

3
µ
∂uk
∂xk

δij

)
+ ρfi, (2.3)

where µ denotes the dynamic viscosity, p is the pressure, and ui denotes the velocity vector. In the
second step, the viscous stress τij was rewritten as:

τij =

(
2µSij −

2

3
µ
∂uk
∂xk

)
, (2.4)

where the strain rate tensor Sij is defined as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.5)

and the second term in Equation (2.4) is zero due to Equation (2.2).

Solving Equation (2.2) and Equation (2.3) directly, that is using a DNS, is a tedious work and
not applicable in most industrial applications due to the turbulent behaviour of the flow. Turbulent
flow can be viewed upon as flow consisting of eddies of different scales of velocity, length, and time.
Solving all scales directly demands a very fine mesh resolution, which in most cases results in too
demanding computations for any wider application. Hence, the flow is usually modelled by using a
turbulence model.

2.1.1 Large Eddy Simulation

Modelling all turbulent scales, as done in RANS, gives results that, to some extent, resembles the
actual flow. Further, modelling no turbulence at all and solve the Navier-Stokes equations with DNS
is computationally too heavy. While RANS models all of the turbulent scales, LES models only the
smaller scales, while the larger scales of the turbulence are resolved. As it is the smaller scales that
are the heaviest scales to compute, this will make LES less computationally heavy than DNS, but
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still heavier than RANS.

When formulating the equations used in RANS, the velocity and the pressure terms are decom-
posed into mean and fluctuating values, and the Navier-Stokes equations are time averaged. When
using LES the Navier-Stokes equations are instead volume averaged, which results in equations that
are dependent on both space and time. The equations become:

∂ui
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νsgs)

∂ūi
∂xj

)
, (2.6)

∂ūi
∂xi

= 0. (2.7)

The large, time dependent turbulence is part of the filtered velocity and pressure terms ūi and p̄. The
term

∂τij
∂xj

includes the Reynolds stresses of the small eddies, which are called sub-grid stresses (SGS).

This term is modelled with an SGS-turbulent viscosity νsgs in the second step. νsgs includes only the
effects of small eddiess.

In order to use LES, proper inlet data is required. Using synthetic turbulence as inflow was investigated
by Davidson and Billson in [11], where it is shown that the imposed fluctuations considerably improve
the results in a fully developed channel flow. There are different methods for generating synthetic
turbulence, where this project focuses on four different methods. A spectral method developed by
Batten, presented in [3], synthetic turbulence, presented by Davidson in [4], the SEM presented by
Jarrin in [5], and the DFSEM, presented by Poletto et.al in [6].

2.2 Spectral method

It is a well known fact that every turbulent signal can be expressed as a series of sines and cosines
[12]. In general, any periodic function, g, with a period of 2L can be written as a Fourier series as:

g(x) =
a0

2
+

∞∑
n=1

(an cos(κnx) + bn sin(κnx)) , (2.8)

where x is the spatial coordinate and κn is the wave number, given by

κn =
nπ

L
. (2.9)

The Fourier coefficients are given by

an =
1

L

∫ L

−L
g(x) cos(κnx)dx, (2.10)

bn =
1

L

∫ L

−L
g(x) sin(κnx)dx. (2.11)

Working with a Fourier decomposition in order to generate synthetic turbulence was first explored by
Kraichnan in [13], which was further developed by Batten et al. in [3]. The method developed by
Batten et al. was formed in such a way, that the velocity signal is specified in terms of the input
parameters, mean velocity, Reynolds stress tensor, and dissipation rate. This report follows the
method presented by Batten et al. The fluctuations are computed as:

u′k(xj , t) = aki

√
2

N

N∑
n=1

[
pni cos

(
d̂nj x̂j + ωnt̂

)
+ qni sin

(
d̂nj x̂j + ωnt̂

)]
, (2.12)
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where aki is the Cholesky decomposition of the Reynold stress tensor, N is the total number of modes,
pni and qni are amplitudes, d̂nj is the modified wave numbers, ωn is the frequency, x̂j and t̂ are spectral
coordinates given by

x̂j =
2πxj
Lt

, t̂ =
2πt

τt
, (2.13)

where Lt = k3/2

ε is the local turbulent length scale and τt = k
ε is the local turbulent time scale, and

k is the turbulent kinetic energy and ε is the dissipation rate. The translation of the spatial and
temporal variables ensures correlation in space and time. The frequency ωn is generated from a
normal distribution with mean equal 1 and standard deviation equal 1, the wave numbers dnj are
generated from a normal distribution with mean equal 0 and standard deviation equal 1/2. The
amplitudes pni and qni are computed as

pni = εijkη
n
j d

n
k , qni = εijkξ

n
j d

n
k , (2.14)

where the values of ηnj and ξnj are taken from a normal distribution with mean equal 1 and standard
deviation equal 1, and εijk is the Levi-Civita tensor, denoting a cross product. The modified wave

numbers d̂nj are computed as:

d̂nj = dnj
Vt
cn
, (2.15)

where Vt = Lt
τt

is the turbulent velocity scale and the coefficient cn is given by

cn =

√
3

2
Rlm

dnl d
n
m

dnkd
n
k

,

where Rlm is the Reynolds stress tensor. The Cholesky decomposition of the Reynolds stress tensor
aki, that is introduced to ensure turbulence anisotropy, is defined according to Lund et al. in [14]:

aki =


√
R11 0 0

R21/a11

√
R22 − a2

21 0

R31/a11 (R32 − a21a31)/a22

√
R33 − a2

31 − a2
32

 . (2.16)

The Reynolds stress tensor used is computed locally in every cell, hence aki is computed locally in
every cell. The variables are computed at every mode and the synthesised turbulent velocities are
computed at every mode at every time step.

2.3 Synthetic fluctuations

Another method for generating synthetic turbulence, and the second method used in the present
project, is presented by Davidson in [4], for isotropic fluctuations. The method bears some resemblance
with the method presented by Batten et al., in the way that both methods are decomposing the
turbulent signal in the Fourier domain. However, using the method proposed by Davidson, the
turbulent velocity field is computed as:

u′i(xj) = 2
N∑
n=1

ûn cos
(
κnj xj + Ψn

)
σni , (2.17)

where ûn is the amplitude, Ψn is the phase, σni is the direction of Fourier mode n, and κnj is the wave
number for mode n. This formula follows from first considering the decomposition of a signal into the
Fourier domain, given in Equation (2.8). This can be rewritten as:

an cos(κnx) + bn sin(κnx) = cn cos(αn) cos(κnx) + cn cos(αn) sin(κnx) = cn cos(κnx− αn), (2.18)
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p(ϕn) = 1/(2π) 0 ≤ ϕn ≤ 2π

p(Ψn) = 1/(2π) 0 ≤ Ψn ≤ 2π

p(θn) = 1/2 sin(θ) 0 ≤ θn ≤ π
p(αn) = 1/(2π) 0 ≤ αn ≤ 2π

Table 2.1: Probability distributions of the random angles ϕn, αn, and θn, and the random phase Ψn.

κnx1 sin(θn) cos(ϕn)

κnx2 sin(θn) sin(ϕn)

κnx3 cos(θn)

Table 2.2: Components of the wave number vector κnj .

where cn and the phase angle αn, are related to an and bn as

cn = (an + bn)1/2 , αn = arctan

(
bn
an

)
. (2.19)

This leads to the general form presented in Equation (2.17).

The procedure for computing the turbulence is as follows:

1. At every Fourier mode, generate random angles ϕn, αn, θn and phase Ψn with the probability
distributions given in Table 2.1. Figure 2.1 and Figure 2.2 give a visual explanation of the
different angles. ξni denotes the principal axes coordinate system.

2. Define the highest wave number for the used mesh κmax, the lowest wave number κl, and κe as:

κmax =
2π

2∆
, κl =

κe
p
, κe = α

9π

55Lt
, (2.20)

where ∆ is the grid spacing, α = 1.453, and Lt is the turbulent length scale. The factor p is
chosen to p = 2 to make the largest scales larger than those corresponding to κe.

3. Divide the wave number space, obtained by κmax − κl, into N modes with equal size ∆κ.

4. From Figure 2.1, compute the components of the wave number vector, as shown in Table 2.2.

5. Calculate components of unit vector σni . This is done by looking at Figure 2.2. Continuity
requires that σni and κnj are orthogonal for each wave number n. σn3 is chosen to be parallel with
κni , and the direction of σni in the ξn1 − ξn2 plane is chosen randomly through the randomisation
of αn. The resulting expressions for σni are presented in Table 2.3.

σnx1 cos(ϕn) cos(θn) cos(αn)− sin(ϕn) sin(αn)

σnx2 sin(ϕn) cos(θn) cos(αn) + cos(ϕn) sin(αn)

σnx3 − sin(θn) cos(αn)

Table 2.3: Components of the unit vector σni .
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Figure 2.1: Visualisation of the randomised angles θn and ϕn, and their relation to the wave number
vector κni . The figure is taken from [4].

Figure 2.2: Visualisation of the randomised angles αn, θn, and ϕn, and their relation to the wave
number vector κni and the velocity unit vector σni . The figure is taken from [4].
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6. Compute the amplitude as:

ûn =
(
E
(
|κnj |

)
∆κ
)1/2

, (2.21)

where the energy E(κ) is chosen to describe a modified von Kármán spectrum by the equation:

E(κ) = α
u2
rms

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
e[−2(κ/κη)2], (2.22)

with κ = (κiκi)
1/2, κη = ε1/4ν−3/4, and urms is the root mean square of the velocity, computed

as urms = (2
3k)1/2. The spectrum can be seen in Figure 2.3.

Figure 2.3: Modified von Kármán spectrum. The figure is taken from [4].

7. The velocity field is generated for a series of time steps, where the randomised quantities are
determined for every time step. However, the generation of a velocity field using this method,
will lead to independent time steps. To introduce correlation in time, an asymmetric time filter
is used. The new velocities are computed for time step m as:

(U ′)m = a(U ′)m−1 + b(u′1)m,

(V ′)m = a(V ′)m−1 + b(u′2)m,

(W ′)m = a(W ′)m−1 + b(u′3)m,

(2.23)

where a = exp(−∆t/T ) and b = (1− a2)1/2, where T is the inlet time scale, and ∆t is the time
step. This will ensure a time correlation equal to exp(−∆t/T ).

The method outlined above generates isotropic fluctuations. However, the same approach was made
for the generation of non-isotropic fluctuations by Davidson and Billson in [11]. The procedure
for generating the non-isotropic fluctuations is very similar to the method for generating isotropic
fluctuations, with some small additions as follows:

1. The Reynolds stress tensor for the flow is supplied, as well as a turbulent length scale. In the
present thesis, these quantities where obtained from a RANS simulation.
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2. The eigenvalues of the Reynolds stress tensor, that is the normal Reynolds stresses in the
principal coordinate system, are computed, as are the principal coordinate directions.

3. Isotropic fluctuations in the principal coordinate system are generated, as described above, and
rescaled.

4. The non-isotropic fluctuations length scales σi and the wavenumbers κj are modified so as to
make the fluctuations anisotropic and to ensure that the fluctuations satisfy continuity.

5. The non-isotropic fluctuations are transformed back to the original coordinate system, where
the Reynolds stresses of the synthetic fluctuations are equal to the Reynolds stresses supplied in
step 1..

2.4 Synthetic eddy method

The third method for generating synthetic turbulence discussed here, is the synthetic eddy method,
presented by Jarrin et al. in [5]. The procedure for generating fluctuations using this method is as
follows:

1. Define and calculate input data, consisting of the mean velocity Ui, the Reynolds stress tensor
Rij , and the length scales σi.

2. Define a box on which eddies are generated. This box is defined as:

[−σx1 , σx1 ;−σx2 , σx2 ;−σx3 , σx3 ] , (2.24)

where σi is the length scale in the different directions. A visualisation of the generated box of
eddies, can be seen in Figure 2.4. The solid lines make the LES domain, and the cross hatched
lines make the box in which the eddies are generated. The grey area is the inlet to the LES
domain and the black dots represent the randomised eddies.

3. Generate a random position xk and intensity εki for every eddy, inside the previously defined
box.

4. The eddies are convected through the box with a reference velocity scale U0. Using Taylor’s
frozen turbulence hypothesis, saying that the advection of turbulence past a fixed point is due
to the mean flow, the new position for the eddy is given as

xi(t+ dt) = xi(t) + U0dt. (2.25)

When xi > σi, that is when the eddy reaches the end of the box, regenerate the eddy at xi = −σi,
at a random position in the two other directions, with a new random intensity.

5. The fluctuations are computed as:

u′i(x) =
1√
N

N∑
k=1

aijε
k
j fσ(x)(x− xk), (2.26)

where N is the number of eddies, aij is the Cholesky decomposition of the Reynolds stress
tensor, computed locally in every cell as in Equation (2.16). The intensities εki are randomly
generated as εki ∈ {−1, 1}, x is the position in the mesh and xk is the position of eddy i, and
fσ(x) is a shape function taken as:

fσ(x)(x− xk) =

√
VB

σx1σx2σx3
f

(
x1 − xk1
σx1

)
f

(
x2 − xk2
σx2

)
f

(
x3 − xk3
σx3

)
,
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Figure 2.4: Box of eddies, generated when using SEM and DFSEM.

where VB is the volume of the box and f(x) in the present project is taken as a hat function
[15]:

f(x) =

{√
3
2 (1− |x|) , if x < 1,

0, else
.

2.5 Divergence free synthetic eddy method

The last method for generating synthetic turbulence discussed here, is the divergence free synthetic
eddy method, presented by Poletto et al. in [6]. The method was originally developed as the SEM,
however, the SEM did not fulfil the requirement of continuity, hence the method was further developed
into a divergence free synthetic eddy method. The two methods are very similar and differ mainly in
the expression for the fluctuations. The procedure for generating the turbulent velocities is as follows:

1. Define and calculate input data as in the SEM.

2. Define the same box as in the SEM.

3. Generate a random position xk and intensity αk for every eddy, inside the previously defined
box.

4. The eddies are convected through the box in the same way as in the SEM.

5. The fluctuations are now computed as:

u′(x) =

√
1

N

N∑
k=1

qσ(|rk|)
|rk|3

rk ×αk, (2.27)
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where N is the number of eddies, rki =
xi−xki
σk

, αki are the intensities of the eddies, and qσ(|rk|)
is a shape function, and the summation is taken over the k number of eddies.

The fluctuations generated by Equation (2.27) do not reproduce proper turbulence anisotropy. In
order to introduce anisotropy, Equation (2.27) is rewritten with a shape function that both satisfies
the divergence free requirement as well as introducing turbulent anisotropy. This shape function is
taken as:

qi =

{
σi
[
1− (dk)2

]
, if dk < 1,

0, else
, (2.28)

where dk =
√

(rkj )2. The fluctuations are now computed as:

u′β(x) =

√
1

N

N∑
k=1

σkβ

[
1− (dk)2

]
εβjlr

k
jα

k
l , (2.29)

where rkj is computed as rki =
xi−xki
σki

and εβjl is the Levi-Civita tensor. To prevent the shear stresses

from becoming zero, the fluctuations in the global coordinate system are computed using a rotation
transformation of the eddies generated in the local principal axes coordinate system as:

u
′G
i (x) = C1R

P→G
im u

′P
m , (2.30)

where RP→Gim is the rotational matrix from the principal coordinate system to the global coordinate
system, u

′P
m is the fluctuations in the principal axes coordinate system, and C1 is a normalisation

coefficient given by

C1 =

√
10V0

∑3
i=1

σi
3√

N
∏3
i=1 σi

min{σi}, (2.31)

where V0 is the eddy box volume. In order to ensure that the method will return the desired Reynolds
stress statistics, over a range of anisotropy levels, the length scale ratios denoted by Γ = σx

σy
= σx

σz
,

need to be chosen, together with the proper intensities, given by

〈(αkβ)2〉 =
λj/σ

2
j –2λβ/σ

2
β

2C2
, (2.32)

where λj are the normal stresses in the local principal reference system, and C2 is a constant coefficient.
The different anisotropy levels of the flow can be visualised using a Lumley triangle. The idea of this
triangle is to map the Reynolds stress anisotropy tensor, bij , through using the eigenvalues of bij .
The stress anisotropy tensor is given by

bij =
〈u′iu′j〉
〈u′nu′n〉

− δij
3
. (2.33)

Since the right hand side of Equation (2.32) needs to be positive, there are, for every eigenvalue, some
permitted values on the length scales. Hence, by choosing a series of values on the length scale ratio
Γ , it is possible to map different parts of the Lumley triangle. A series of values on Γ are chosen,
following the values in [6], and are presented in Table 2.4, together with corresponding values on
coefficient C2. The Lumley triangle with the mapped parts is presented in Figure 2.5, where the axes
are described as:

η2 =
bijbji

6
, ξ3 =

bijbjnbni
6

. (2.34)
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Figure 2.5: Lumley triangle used for visualising different anisotropic regions of the Reynolds stress
tensor. The figure is taken from [6].

Γ 1
√

2
√

3
√

4
√

5
√

6
√

7
√

8

C2 2.0 1.875 1.737 1.75 0.91 0.825 0.806 1.5

Table 2.4: Length scale ratios Γ with corresponding values on coefficient C2.

The actual length scale magnitude is taken as:

σavg = min

(
k3/2

ε
, κδ,max(∆x1, ∆x2, ∆x3)

)
, (2.35)

where k3/2

ε is the local length scale taken from RANS data, δ is the channel half-height, and κ = 0.41
is the Von Kármán constant.

2.6 Calculating the Reynolds stress tensor

The methods described in previous chapters all demand proper input in order to be able to generate
accurate synthetic turbulence. One of the quantities that must be provided, and that needs to be
computed, is the Reynolds stress tensor of the flow. In the present project, the Reynolds stresses were
obtained from the results of computing a 1D RANS simulation of the flow, using the explicit algebraic
Reynolds stress model (EARSM), developed by Wallin and Johansson in [16]. A short summary of
the model used in this project is presented here, for a more thorough description the reader is referred
to [16]. The Reynolds stresses in a two-dimensional flow may be written on the form

〈uiuj〉 = k

(
2

3
δij − 2Ceff

µ Sij + aij

)
, (2.36)

where k is the kinetic energy, Sij is the strain rate tensor, δij is Kronecker’s delta, and

Ceff
µ = −1

2
f1β1. (2.37)
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The anisotropy tensor bij is, for the two-dimensional case, given by

bij = β1Sij + β2

(
SikSkj −

1

3
SklSklδij

)
+ β4 (SikΩkj −ΩikSkj) , (2.38)

where Ωij is the vorticity tensor, defined as:

Ωij =
1

2
τ

(
∂vi
∂xj
− ∂vj
∂xi

)
, (2.39)

where the time scale τ = k
ε . The β- coefficients are given by

β1 = −6

5

N

N2 − 2IIΩ
, (2.40)

β2 = 0, (2.41)

β4 =
β1

N
, (2.42)

where IIΩ is given by
IIΩ = ΩklΩlk. (2.43)

N is obtained from the solution of a cubic equation

N =
A′3
3

+
(
P1 +

√
P2

)1/3
+ sign

(
P1 −

√
P2

) ∣∣∣P1 −
√
P2

∣∣∣1/3 , for P2 ≥ 0, (2.44)

and

N =
A′3
3

+ 2
(
P 2

1 + P2

)1/6
cos

[
1

3
cos−1

(
P1√

P 2
1 − P2

)]
, for P2 < 0, (2.45)

where

P1 = A′3

[
A

′2
3

27
+

9

20
IIS −

2

3
IIΩ

]
, (2.46)

P2 = P 2
1 −

[
A

′2
3

9
+

9

10
IIS +

2

3
IIΩ

]3

, (2.47)

with
IIS = SklSlk, (2.48)

and A′3 is chosen to

A′3 =
9

4
(1.8− 1). (2.49)

For low Reynolds numbers, the model needs to be slightly modified. The turbulence time scale is
chosen to

τ = max

(
k

ε
, Cτ

√
ν

ε

)
, (2.50)

where k is the kinetic energy, ε is the dissipation rate, ν is the viscosity, and Cτ is a constant. The
non-dimensional shear stress is expressed as

σ =
1

2

k

ε

dU

dy
. (2.51)
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A wall damping function is chosen to

f1 = 1− exp

(
y+

A+

)
, (2.52)

where A+ is set to A+ = 26. The β-coefficients are now computed as

β1,low = f1β1, (2.53)

β4,low = f2
1β4 − (1− f2

1 )
B2

4σ2
, (2.54)

where B2 is chosen to B2 = 1.8, and

β2,low = (1− f2
1 )

3B2 − 4

2σ2
. (2.55)

2.7 General method for generating synthetic turbulence

The general way of generating synthetic turbulence, regardless of which method that is used, can be
described by the steps presented below, following the same methodology as in [17].

1. A 1D precursor RANS simulation is performed.

2. The Reynolds stress tensor is computed using the EARSM by Wallin and Johansson.

3. The Reynolds stress tensor is used as input for generating the anisotropic synthetic fluctuations.

4. The Reynolds stresses are taken in one point of the domain, where the magnitude of the
turbulent shear stress is largest.

5. The synthetic fluctuations are scaled with the local value of the Reynolds stress(
|〈u′1u′2〉|
|〈u′1u′2〉|max

)1/2

RANS

, (2.56)

which is taken from the RANS simulation.

2.8 Turbulent statistics

In order to verify that the generated turbulence is satisfying and that the behaviour of the turbulence is
physically correct, some statistics of the turbulence will be examined. The generated turbulence must
follow the same physical behaviour as naturally existing flow, both in time and in space. Hence, for the
generated flow, there is a need to examine the two-point correlation in space and the autocorrelation
in time.

2.8.1 Two-point correlation

In order to examine if the generated velocity field behaves physically correct in space, two-point
correlation is used in order to find out if there is a correlation between two points in space. The
two-point correlation can be described as in [12]. First, pick two points along the x1-axis xA1 and xC1 .
Sample the fluctuating velocity in one direction, for example the x1-direction. The correlation of u′1
at the two chosen points is given by:

B11(xA1 , x̂1) = u′1(xA1 )u′1(xA1 + x̂1), (2.57)
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where x̂1 = xC1 − xA1 is the distance between the two points. From Equation (2.57), it follows that
when the distance between the two points decreases, the two-point correlation increases. When the
distance between the points instead increases, the two-point correlation goes to zero. The two-point
correlation is usually normalised so that it varies between −1 and 1. The normalised two-point
correlation is given by:

Bnorm
11 (xA1 , x̂1) =

1

u1,rms(xA1 )u1,rms(xA1 + x̂1)
u′1(xA1 )u′1(xA1 + x̂1), (2.58)

where

u1,rms =
(
u

′2
1

)1/2
(2.59)

is the root mean square of u′1. The generated fluctuations are expected to have a two-point correlation
that goes towards zero as the distance between the two measuring points increases, and equal zero
where the distance is of the order of the turbulent length scale. An integral length scale can be
computed as:

Lint(x1) =

∫ ∞
0

B11(x1, x̂1)

uA1,rmsu
C
1,rms

dx̂1. (2.60)

2.8.2 Autocorrelation

Autocorrelation can be thought of in the same way as two-point correlation, but instead of choosing
two points in space, now choose two points in time tA and tC , separated by t̂ = tC − tA . The
autocorrelation of u′1 for the two time points is given by

B11(tA, t̂) = u′1(tA)u′1(tA + t̂). (2.61)

In the same way as with the two-point correlation, the autocorrelation is usually normalised and the
equation becomes:

Bnorm
11 (t̂) =

1

u2
1,rms

u′1(tA)u′1(tA + t̂). (2.62)

Similar to the two-point correlation, the autocorrelation is expected to go to zero when the time
difference between the measuring points increases, and equal zero when the difference is of the order
of the turbulent time scale of the flow. An integral time scale can be computed as:

Tint =

∫ ∞
0

Bnorm
11 (t̂)dt̂. (2.63)

2.9 HYDRA

Here follows a short presentation of the CFD solver HYDRA. The information presented in this
section can be found in [18].

HYDRA is a CFD code which is mainly used for high speed flows in aero engine and industrial appli-
cations with air as the working fluid. Hence it is written as a coupled solver and the code is designed
for solving flows of compressible ideal gases. All fluids are treated as compressible and to avoid
compressibility, it is necessary to use low Mach-numbers as fluids at low Mach-numbers are deemed
compressible. In HYDRA, this is made possible by using the feature Low Mach Pre-Conditioning.
HYDRA is aimed for solving fully submerged flows, hence there is no capability for free surface
solutions.
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Fluxes are divided into two parts, one inviscid and one viscid part, where the viscous part is nonlinear.
This decomposition of the flux originates from the coupled eigen system of mass-momentum and
energy equation. To increase the convergence rate, a multigrid is implemented, consisting of four grid
levels. The first is the original mesh imported into HYDRA and the three other grid levels are coarser
grid levels created in HYDRA by removing edges from the previous grid. The idea is that at each
iteration all equations are solved on every grid level. Starting at the coarsest grid and moving to finer
and finer grids, where the solution is obtained at the finest grid. To decrease the convergence time, a
pre-conditioner is used.
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3 Numerical method

This section describes the numerical setup for the testing of the methods. First, the setup for
computing the autocorrelation and two-point correlation is described followed by the setup used for a
channel flow simulation.

3.1 Setup for computing correlations

All three methods were examined with regard to autocorrelation in time and two-point correlation in
space. This was done through using the methods to create turbulence on a small mesh, consisting of
1× 1× 62 cells, with the directions streamwise, wall normal, and spanwise respectively. The input for
the methods was obtained from a 1D precursor RANS simulation, as described in Section 2.6. The
number of time steps used was set to 10 000. The length scale and time scale were obtained through
the turbulent kinetic energy k and the dissipation rate ε taken from the RANS simulation.

It was found that in order to provide smooth results, the method developed by Batten needed
to use more Fourier modes than was needed when using the method developed by Davidson and was
much slower. The number of modes when using the two methods was set to 1000 for the method by
Batten and 150 for the method by Davidson. Regarding the DFSEM, it was pointed out in [6] that
a large value of eddies produces a more accurate result, at the cost of being more computationally
heavy. When testing the methods, a number of 2000 eddies were used for the DFSEM and SEM.

3.2 Channel flow

A second order monotone upwind scheme for scalar conservation laws (MUSCL) was used for
discretisation in space, together with an explicit time scheme. A kinetic energy preserving conservative
scheme (KEP), presented in [19], was used in order to ensure that the global discrete kinetic energy
evolves in a manner that corresponds to the true equation for kinetic energy. The global conservation
property is obtained by proper construction of the interface flux between each pair of neighbouring
cells. More explicitly, the flux between each pair of neighbouring cells is averaged, where the average
of any quantity between its values at o and p is defined by

q̄ =
1

2
(qp + qo). (3.1)

The kinetic energy conservation law is given by:

∂k

∂t
= p

∂uj
∂xj
− τij

∂ui
∂xj

, (3.2)

where k is the kinetic energy, p is the pressure, and τ is the viscous stress. The discretisation scheme
used is presented by:

∑
o

volo
dko

dt
=
∑
b

Soi

{
uoi

(
po + ρo

uo2i
2

)
–uoiσ

o
ij

}
+
∑
o

(
po
∑
p

ūiS
op
i − σ

o
ij

∑
p

ūjS
op
i

)
, (3.3)

where index o represents an interior cell, index p represents the surrounding cells, and index b
represents the boundaries. volo is the volume of the cell, Soi is the outer face area, Sopi is the face area
between the two cells, ρ is the density, and ūi is the mean value of the velocity between the points o
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and p. The first sum on the right hand side represents the flux through boundaries and the second
sum is the finite volume discretisation of∫

D

(
p
∂ui
∂xi
− τij

∂uj
∂xi

)
dV. (3.4)

The channel consisted of 800 × 20 × 40 cells in streamwise, wall normal, and spanwise direction
respectively. There are periodic boundary conditions in the spanwise direction and viscous walls at
the top and bottom. The Mach number was set to 0.15, which is low enough for using the assumption
of incompressible flow.
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4 Results

The four methods were first examined through the use of autocorrelation and two-point correlation.
Next, the synthetic fluctuations method, the SEM, and the DFSEM were implemented into HYDRA,
where the SEM and the DFSEM were used for generating inflow in a channel flow simulation.

4.1 Correlations

The four different methods were tested regarding the autocorrelation and the two-point correlation.
The normalised autocorrelation of the generated turbulence using the different methods are pre-
sented in Figure 4.1, and the normalised two-point correlations are presented in Figure 4.2. The
correlations are computed in the spanwise direction of the flow. The figures show the correlations for
the streamwise components of the velocity, for the correlation of the other components see Appendix A.

All the methods seem to yield turbulence with physically expected correlations. Correlations that are
converging towards zero when the distance, in time and in space, increases. Looking at Figure 4.1b,
showing the autocorrelation using the method by Davidson, this autocorrelation behaves precisely as
an exponential function, just as expected when using the time filter. Further, by inspecting Figure 4.1
for the autocorrelations, it is seen that the time scale is of order 0.15 since this is the value of the
time difference for when the autocorrelation becomes zero. In Figure 4.2, it is seen that the two-point
correlation goes to zero when the distance between the measure points is close to 0.05, which is the
order of the length scale.

4.2 Channel flow

It was chosen to implement the synthetic fluctuations, SEM, and DFSEM, into HYDRA CFD Code.
These methods were chosen over the method by Batten since they, according to the documentation of
the methods as well as the results from testing the correlations, seemed more promising. Further, the
SEM and the DFSEM were used for generating turbulent inlet conditions in a channel flow simulation.

Figure 4.3 shows the result obtained from the channel flow using the SEM and Figure 4.4 shows
the result obtained when using the DFSEM. In Figure 4.3a and Figure 4.4a the relative velocity
in the streamwise direction is shown for the two methods. It is clear from the figures that there
are indeed some fluctuations throughout the channel in both cases. Figure 4.3b and Figure 4.4b
shows the density in the channel, which seems to not vary much all through the channel. It is not
fully constant but the variations are small enough to not ruin the assumption of an incompressible flow.

The autocorrelation for the velocity in the wall normal direction is for the two methods shown
in Figure 4.5. The convergence towards zero when the time between two measuring points increases,
makes it possible to assume that the correlation of the generated fluctuations behaves as expected
and that the methods have been implemented into HYDRA correctly.

As a qualitative presentation of the generated fluctuations, the turbulence is shown for a small
channel flow in Figure 4.3. The setup is a 100× 20× 40 channel with periodic boundary conditions in
the spanwise direction and viscous walls at the top and bottom. Figure 4.6a shows the turbulence
when using SEM for the generation of synthetic fluctuations at the inflow. As the turbulence is
convected downstream, the finer scales tend to dissipate. However, since the turbulence is properly
correlated the turbulence persists all the way to the outflow. As a comparison for what happens when
using uncorrelated turbulence at the inflow, Figure 4.6b shows the resulting flow when describing
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the inlet fluctuations as simple white noise. It is seen from the figure that, when the fluctuations
are uncorrelated, the turbulence does not persist all through the flow, but instead disappears almost
instantly.
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(a) Autocorrelation using the method by Batten. (b) Autocorrelation using the method by Davidson.

(c) Autocorrelation using SEM. (d) Autocorrelation using DFSEM.

Figure 4.1: Autocorrelation in the x3-direction.
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(a) Two-point correlation using the method by Batten.(b) Two-point correlation using the method by Davidson.

(c) Two-point correlation using SEM. (d) Two-point correlation using DFSEM.

Figure 4.2: Two-point correlation in the x3-direction.
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(a) Relative velocity for the flow in streamwise direction.

(b) Visualisation of the density in the channel flow.

Figure 4.3: The relative velocity and density for the simulated channel flow using SEM at the inlet.
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(a) Relative velocity for the flow in streamwise direction.

(b) Visualisation of the density in the channel flow.

Figure 4.4: The relative velocity and density for the simulated channel flow using DFSEM at the inlet.
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(a) Autocorrelation for the velocity using the
SEM at the inlet.

(b) Autocorrelation for the velocity using the
DFSEM at the inlet.

Figure 4.5: The autocorrelation for the channel flow when using SEM and DFSEM at the inlet
respectively.

(a) Turbulence using SEM for inlet conditions. (b) Turbulence using white noise for inlet conditions.

Figure 4.6: Visulised turbulence when using different methods as inlet condition.
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5 Conclusions

This thesis has described the implementation and analysis of four different methods for generating
synthetic inlet conditions for LES. The four methods implemented are a spectral method by Batten,
synthetic fluctuations by Davidson, SEM by Jarrin and DFSEM by Poletto. The last three have all
been implemented into HYDRA CFD Code.

This work was motivated by the increasing interest for using LES in industrial applications, and
the need for cost effective methods for generating inflow data. The four methods implemented, all
require statistical quantities as input, available from a RANS simulation. The Reynolds stress tensor
were obtained using an EARSM by Wallin and Johansson. The generated fluctuations were first
investigated in terms of autocorrelation and two-point correlation, in order to examine the accuracy
of the physical appearance of the turbulence generated. The fluctuations were generated along one
line in spanwise direction of the flow. It was shown that all of the methods provided fluctuations with
both autocorrelation and two-point correlation with the physical appearance expected, meaning that
the correlations were converging towards zero when the distance between the measuring points where
close to the value of the time scale and length scale respectively. The methods by Davidson, Jarrin,
and Poletto were then implemented into HYDRA CFD Code. The implementation of the SEM and
the DFSEM were further investigated by using the two methods to generate inlet conditions for an
LES simulation of a channel flow. The results show that there is turbulence all through the chan-
nel, which indicates that the implementation of the SEM and the DFSEM into HYDRA was successful.

As future work, the implementation of the method by Davidson should also be investigated further
in form of channel flow simulation. The methods should all be tested and compared to DNS data
to get a more quantitative indication of how well the methods perform. It could also be beneficial
to test the methods on more complex geometries to get a more thorough understanding of how well
the implemented methods perform. Also, while this report focused on using the methods as inlet
conditions for LES, it should be possible to use the methods for boundary conditions in the interface
between the RANS region and the LES region in a hybrid LES-RANS simulations.
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A Correlations

(a) Autocorrelation for u′1. (b) Autocorrelation for u′2. (c) Autocorrelation for u′3.

Figure A.1: Autocorrelation for the fluctuations generated with the method by Batten.

(a) Two-point correlation for u′1. (b) Two-point correlation for u′2. (c) Two-point correlation for u′3.

Figure A.2: Two-point correlation in the x3-direction for the fluctuations generated with the method
by Batten.

(a) Autocorrelation for u′1. (b) Autocorrelation for u′2. (c) Autocorrelation for u′3.

Figure A.3: Autocorrelation for the fluctuations generated with the method by Davidson.
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(a) Two-point correlation for u′1. (b) Two-point correlation for u′2. (c) Two-point correlation for u′3.

Figure A.4: Two-point correlation in the x3-direction for the fluctuations generated with the method
by Davidson.

(a) Autocorrelation for u′1. (b) Autocorrelation for u′2. (c) Autocorrelation for u′3.

Figure A.5: Autocorrelation for the fluctuations generated with the DFSEM.

(a) Two-point correlation for u′1. (b) Two-point correlation for u′2. (c) Two-point correlation for u′3.

Figure A.6: Two-point correlation in the x3-direction for the fluctuations generated with the DFSEM.

(a) Autocorrelation for u′1. (b) Autocorrelation for u′2. (c) Autocorrelation for u′3.

Figure A.7: Autocorrelation for the fluctuations generated with the SEM.
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(a) Two-point correlation for u′1. (b) Two-point correlation for u′2. (c) Two-point correlation for u′3.

Figure A.8: Two-point correlation in the x3-direction for the fluctuations generated with the SEM.
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