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ULS analysis of FRP composite sandwich plates - 
Sandwich PULS – development of a semi-analytical method 
Master’s Thesis in the International Master’s Programme in Naval Architecture and 

Ocean Engineering 

NIKLAS BLOMGREN AND MATEJ PREVC 
Department of Shipping and Marine Technology 
Division of Marine Technology 
Chalmers University of Technology 

 

ABSTRACT 

The use of fibre-reinforced polymers (FRP) composite sandwich structures is desirable 
because of their advantages compared to using steel structures. Many of the advantages 
are due to reduced weight, for example improved stability, lower fuel consumption, 
higher top speed, and increase in payload. Other advantages such as lower maintenance 
and long fatigue life contribute to an overall lower lifetime cost. A sandwich plate is a 
three-layer geometry consisting of two thin faces separated by a thick core.  

The purpose of this thesis is to develop Sandwich PULS; a semi-analytical calculation 
tool for predicting the ultimate limit state (ULS) of FRP composite sandwich plates. 
This was done by extending and improving DNV GL’s semi-analytical non-expert 
calculation tool Composite PULS, which is used for quick estimation of the ULS for 
unstiffened composite plates. ULS was evaluated in terms of the first buckling load and 
the first ply failure (FPF). 

The Sandwich PULS code was developed by implementing formulations for sandwich 
plate theory. First-order shear deformation theory (FSDT) was implemented in 
Sandwich PULS to include the transverse shear deformations that are highly important 
for sandwich plates with poor shear stiffness of the core. The Sandwich PULS code was 
evaluated against non-linear finite element analyses (FEA). 

It was concluded that Sandwich PULS shows good agreement with FEA predicted 
critical buckling loads. For all inspected plates, Sandwich PULS shows improved 
results compared to Composite PULS. Differences between Sandwich PULS and FEA 
are caused by the difference in evaluating shear stiffness. It has been shown that 
neglecting shear stiffness of faces results in good agreement between Sandwich PULS 
and FEA, while use of conventional shear correction factors proved to be unfavourable 
for sandwich plates. 

It was found that Sandwich PULS is limited in terms of slenderness. Sandwich plates 
with soft core should not have slenderness below 20 to assure an accurate solution. FPF 
loads according to Hashin-Rotem failure criteria are on the conservative side, but 
differences compared to FEA are up to 40% for sandwich plates. It was concluded that 
a more extensive investigation of failure initiation load prediction should be performed 
for better understanding. 

 

Key words: Buckling, fibre-reinforced polymers, first-order shear deformation 
theory, sandwich plates, semi-analytical method, shear correction 
factor, ultimate limit state. 
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Notations 

Roman upper case letters 

� Displacement amplitude [mm] 

��� Displacement amplitude vector [mm or -] 

��� Extensional stiffness matrix [N/mm] 

���� Shear stiffness matrix [N/mm] 

� Shear strain amplitude (xz-plane) [-] 

��� Extension-bending coupling stiffness matrix [N] 

� Shear strain amplitude (yz-plane) [-] 

	
� Section stiffness (Abaqus) [Nmm] 

�	� Bending stiffness matrix [Nmm] 

� Young’s modulus [MPa] 


 Airy’s stress function [N] 

� Shear modulus [MPa] 

��� Incremental load vector [N/mm or N] 

� Shear correction factor [-] 

�
� Shear stiffness (Abaqus) [N/mm] 

��� Incremental stiffness matrix [N/mm or N or Nmm] 

���� Geometric stiffness matrix [N/mm or N or Nmm] 

���� Material stiffness matrix [Nmm or -] 

� Number of degrees of freedom along the  [-] 

 longitudinal direction  

� Number of degrees of freedom along the [-] 
 transverse direction  

�� Preload [N] 

�� Reference load [N] 

��� Stiffness matrix [MPa] 

� Shear strength [MPa] 

� Internal potential energy [Nmm] 

�� Bending strain energy contribution [Nmm] 

�� Membrane strain energy contribution [Nmm] 
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��� Extension-bending coupling energy contribution [Nmm] 

�� In-plane strain energy contribution [Nmm] 

�� Shear strain energy contribution [Nmm] 

� Load potential from external forces [Nmm] 

� Longitudinal strength [MPa] 

� Transverse strength [MPa] 

� Out-of-plane strength [MPa] 

 

Roman lower case letters 

  Length [mm] 

! Breadth [mm] 

" Vertical distance between the midplane of two  [mm] 

 sandwich plate faces  

ℎ Thickness [mm] 

$ Curvature [-/mm] 

% Characteristic length on the surface of the shell [mm] 

& Number of half-sine waves along the longitudinal  [-] 
 direction  

' Number of half-sine waves along the transverse  [-] 
 direction  

( Dimensionless displacement (rotation) amplitude [-] 

) Thickness [mm] 

* Out-of-plane displacement [mm] 

*+,
-
. Initial out-of-plane displacement (imperfection) [mm] 

/ Longitudinal coordinate [mm] 

0 Transverse coordinate [mm] 

1 Out-of-plane coordinate [mm] 

 

Greek upper case letters 

2 Eigenvalue [-] 

3 Potential energy [Nmm] 
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Greek lower case letters 

4 Shear strain [-] 

∆6 Incremental step/Arc-length parameter [-] 

7 Normal strain [-] 

7+ Membrane/Mid-plane strain [-] 

8
 Load multiplier [-] 

9 Poisson’s ratio [-] 

: Normal stress [MPa] 

; Shear stress [MPa] 

< Rotation [-] 

 

Subscripts 

1 Longitudinal-to-fibre direction  

2 Transverse-to-fibre direction  

3 Out-of-plane-to-fibre direction  

c Core  

C Compression  

f Face  

s Step  

S Symmetric  

T Tension  

x Longitudinal direction  

y Transverse direction  

z Out-of-plane direction  

 

Abbreviations 

BC Boundary Condition  

CLT Classical Laminate Theory  

DOF Number of Degrees Of Freedom  

FCSR Face-to-Core Stiffness Ratio  
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FEA Finite Element Analysis  

FFF First Fibre Failure  

FPF First Ply Failure  

FRP Fibre Reinforced Polymers  

FSDT First-order Shear Deformation Theory  

FW Face Wrinkling  

HOT Higher Order Theories  

IMO International Maritime Organization  

LPF Last Ply Failure  

LT Layer-wise Theories  

LTR Length-to-Thickness Ratio  

MT Matrix Tension failure  

MTs Mixed Theories  

PULS Panel Ultimate Limit State  

SC Shear Crimping  

SOLAS Safety Of Life At Sea  

SPS Sandwich Plate System  

ULS Ultimate Limit State  
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1 Introduction and motivation 

This chapter gives a brief introduction to the problem and motivation behind the work 
of this thesis. 

1.1 Background  

Fibre-reinforced polymers (FRP) composites and sandwich structures are becoming 
more and more used in a large number of applications. Commercial aircraft, such as the 
new Airbus A350, wind turbine blades and bridges made partially or primarily out of 
FRP composites have been known and used for many years. In the future, a significant 
growth in the use of such materials is expected in automotive segments as well. The 
first fiberglass boats appeared in the early 1940s and FRP composites have been used 
in boats, yachts, high-speed light craft, naval ships and submarines ever since, Marsh 
(2006).  

As described in Job (2015), the use of FRP composites in the shipbuilding segment is 
still in its beginning stages. Their use in marine applications has so far been limited to 
naval vessels and non-structural components in commercial vessels, such as cabins on 
cruise ships, lifeboats and hatch covers on bulk carriers. Here and in many other 
applications, FRPs are usually combined with other materials and form so-called FRP 
sandwich plates. Those are plates with FRP composites used in thin faces and combined 
with a thick core material, such as balsa wood, PVC foam, honeycomb, etc.  

The most commonly used structural material in the shipbuilding segment today is steel. 
Using FRP composite materials instead of steel can have many advantages, for 
example: 

• higher strength vs. self-weight ratio: reduced weight of structures for the same 
strength, 

• corrosion resistance: no need for corrosion addition to thicknesses,  

• long-lasting: lower lifetime costs, 

• long fatigue life, 

• tailor-made structural components with desired properties, 

• reduced magnetic, radar and infra-red signatures, 

• dimensional stability: no thermal shrinking or swelling, 

• nonconductive: does not conduct electricity, 

• thermal isolation: does not conduct heat. 

In most cases the important advantage of using FRP composites is structural weight 
savings, which can be reflected in different ways. One of them is reduced fuel 
consumption and reduced fuel costs. Hand-in-hand with reduced fuel consumption goes 
a reduced carbon footprint. Having fluctuating oil prices in mind, another and maybe 
more intriguing reason is the increase in payload, which results in a shorter payback 
time. The latter is of great importance especially for cruise ships, since the only 
possibility to increase their payload is to build up. That is due to the draught, breadth 
and length limitations for ships in canals and ports. To avoid reduction of ship stability, 
the use of light-weight structural materials above the waterline is a way to overcome 
the problem. On the other hand, for naval ships reduced structural weight is of 
importance to allow for increased speed of the vessel. Adding the fact that composites 
reduce magnetic, radar and infra-red signatures, one can see why the use of these 
materials as a structural material has been increasing in naval ships.  
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Compared with steel, FRP composites have higher upfront costs, but the maintenance 
and lifetime costs are much lower, Job (2015). Since composites are not corrosive there 
is not the same need for extensive maintenance, which is another reason why higher 
initial investment has a rather short payback time. In an investigation done by Evegren 
et al. (2011), extra structural costs of the composite superstructure on the cruise ship 
under investigation will be compensated by fuel savings in 5.9 years, but if extra cabin 
capacity and an increased payload due to this is taken into the calculation the break-
even is after about 2.5 years.  

One major drawback why composites are not used for commercial ships is fire safety. 
SOLAS requires structural materials to be non-combustible, which seems to represent 
an insuperable obstacle for FRP composites. An amendment to the fire safety chapter 
of SOLAS, see IMO (2004), has loosened this obstacle a bit and paved the way for 
extensive research and development projects and product development, the goal of 
which has been to demonstrate the equivalent fire safety for composite applications, 
Job (2015). Despite all the efforts, no structural FRP solution has been built for a 
commercial ship. 

Another reason for why using FRP composites is rather difficult are their orthotropic 
properties. On the one hand, structures made out of composites can be tailor-made for 
its specific use, which is a great advantage. On the other hand, this makes it harder to 
compare and standardize properties, behaviour and structural response of composite 
structures. Several research papers can be found on comparing composite plates made 
under the same circumstances but having different material properties, Hayman et al. 
(2011).  

Estimating ultimate limit state (ULS), which is defined by Hollaway et al. (2001) as the 
load where the structure fails due to reaching its maximum strength, is even more 
cumbersome. Furthermore, agreement between results obtained with FEA and 
experimental results are rather bad and ultimate strengths are often overestimated, 
Boyle et al. (2001). Due to these uncertainties, definition of the ULS is not the same in 
literature. It might be referred to as the first buckling load, the first fibre/ply failure 
load, or, as previously mentioned, the maximum load-carrying capacity. 

Current design approaches stated in class regulations for marine single-skin FRP and 
sandwich constructions are based on the first ply failure or the first buckling load, DNV 
(2013). To increase safety of such structures and to ensure that these loads will not 
occur during normal operation, additional safety factors are applied on these loads to 
obtain the limit load, as illustrated in Figure 1.1.  
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Figure 1.1 Principal load-displacement curve showing different load states for 

current traditional design approaches, from Braaten and Boström 

(2013). 

The limit load as defined in Figure 1.1 is in many cases overly conservative since FRP 
composites show additional post-buckling residual strength, which has been the focus 
of many researches. If uncertainties behind the estimated collapse load are minimized 
and the estimation of the ULS agrees with experimental results, a less conservative limit 
load can then be set in class regulations. This is the goal and the idea behind future 
design approaches, as illustrated in Figure 1.2, which will result in a more optimized 
but still safe structure.  

 

Figure 1.2 Principal load-displacement curve showing different load states for 

future design approaches, from Braaten and Boström (2013). 

While obtaining the FPF and the first buckling load is a rather simple and computational 
undemanding task, the ULS estimation is a highly complex task, especially for FRP 
composite structures. In the post-buckling zone non-linear response caused by the large 
deflection theory and material degradation have to be accounted for, which results in a 
high computational cost. 

The DNV GL’s code PULS (Panel Ultimate Limit State), see Steen et al. (2004), has 
been developed having these high computational, modelling and post-processing times 
in mind, which is why it comes with certain limitations. PULS is limited to the load 
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bearing capacity assessment of steel or aluminium thin-walled stiffened panels used in 
ship and offshore constructions. It is further limited to rectangular, not curved plates. 
PULS is a recognized buckling evaluation tool and its main purpose is to be a user-
friendly, non-expert analyses tool with a low computational cost. The PULS code is 
implemented and used for automatic buckling controls as part of the DNV GL’s 
Nauticus Hull commercial programs. 

Until 2013, the PULS code could only evaluate the buckling response of steel and 
aluminium panel structures. Since then, a new Composite PULS code, see Braaten and 
Boström (2013), based on the PULS code has been developed in order to evaluate the 
ultimate strength of unstiffened composite plates.  

The Composite PULS code has certain limitations: it is only applicable to thin 
symmetric laminates, since the classical laminate plate theory (the Kirchhoff’s plate 
theory) and symmetrical ply degradation model are implemented. It is further limited 
to simply supported plates and it has been developed for one material only. The purpose 
of this thesis is to extend the Composite PULS code towards becoming a computational 
tool that can, with tolerable accuracy and within reasonable computational time, 
estimate the ULS capacity of FRP composite sandwich plates.  

1.2 Objectives 

The main objective of this master’s thesis project was to develop the semi-analytical 
method Sandwich PULS based on the Composite PULS code in order to predict the 
ULS capacity of FRP composite sandwich plates. A comparative investigation of 
formulations for PULS against non-linear finite element simulations, the Composite 
PULS code and other existing formulations should be carried out. In order to satisfy the 
main objectives of the project, the following three main aims have been identified. 

• The developed code should incorporate a set of formulations for the PULS 
code in order to predict the first buckling load of FRP composite sandwich 
plates. 

• The developed code should incorporate a set of formulations for the PULS 
code in order to predict the FPF of FRP composite sandwich plates. 

• The developed code should be validated against an advanced FE analysis 
based on the same failure initiation criteria. 

Further, the project aims for the Sandwich PULS code to remain a computational tool 
that can with tolerable accuracy, i.e. within approximately 10%, and preferably on the 
conservative side predict the ULS of sandwich plates. Calculation time of the developed 
Sandwich PULS code should maintain reasonable, i.e. less than one minute and/or be 
reasonably faster than commercial FE software.  

1.3 Methodology 

To predict the ULS of FRP sandwich composite plates the theories behind the existing 
Composite PULS code had to be extended. First, an extensive investigation on 
theoretical background was performed on the topic of buckling of single-skin and 
sandwich plates as well as a detailed study of the principles of the existing Composite 
PULS code. The extension of the code was done by implementing formulations for 
sandwich plate theory, as well as replacing the classical laminate theory (CLT) with 
first-order shear deformation theory (FSDT), see Chapter 3.  
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The comparative investigation of formulations implemented in Sandwich PULS was 
performed in three phases: 

• Phase 1: Eigenvalue analysis: compare the first buckling loads. 

• Phase 2: Load-displacement analysis: compare non-linear model response. 

• Phase 3: Failure initiation analysis: compare failure initiation loads. 

In every phase, results were compared to non-linear finite element analyses (FEA) and 
the existing Composite PULS code. The first phase was to perform the eigenvalue 
buckling analysis. Four plate models with different material setups and geometries, see 
Appendix A, were used to validate the eigenvalue buckling analysis. The first buckling 
load was registered for the different plates subjected to different load cases of biaxial 
or combined longitudinal uniaxial/in-plane shear loading. The second phase was to 
perform the load-displacement analysis where plates were subjected to uniaxial 
compression, assuming linear elastic material properties, to investigate model response 
of the implemented formulations. The same plate models were used in the load 
displacement analysis as for the eigenvalue buckling analysis. The third phase was to 
perform failure initiation analyses for the FRP Sandwich plate 2, see Appendix A, 
subjected to either biaxial or combined longitudinal uniaxial/in-plane shear loading. 
Finally, a set of sensitivity studies was performed in order to investigate the validity 
and limitations of the Sandwich PULS code.  

The implementation of FSDT and sandwich theory into the Composite PULS code was 
done using the programming language Fortran 95. The non-linear FEA was done in 
Abaqus standard version 6.14-2, see Dassault Systèmes (2014). In the non-linear 
Sandwich PULS analysis and FEA the shape of the lowest buckling mode from the 
buckling analysis was used as an initial imperfection for the load-displacement and 
failure analyses. 

1.4 Limitations and assumptions 

The thesis was carried out in corporation with DNV GL and limited to extending the 
already existing Composite PULS code. This chapter covers the limitations and 
assumptions made for the development of the code towards predicting the ULS of 
sandwich plates. 

With the objective of developing the Sandwich PULS code for sandwich plates, the 
structures investigated were geometrically limited to unstiffened rectangular plates with 
symmetric layups. The development of the code was limited to ULS in terms of failure 
initiation from face wrinkling, shear crimping and the Hashin-Rotem failure criterion 
presented in Chapter 2.4. 

The thesis was further limited to only study simply supported plates under uniformly 
distributed uniaxial, biaxial or combined uniaxial longitudinal/in-plane shear loads, 
from here on referred to as axial/shear loads. It is believed that these load cases create 
a good representation of the in-plane loading conditions that occur in a largescale ship 
structure. Since buckling of plates was of major interest, the thesis was limited to 
studying in-plane loads only. Disregarding out-of-plane loads, e.g. hydrostatic pressure, 
wave loads etc., made the analysis less conservative. 

Neither simply supported nor clamped boundary conditions are considered as realistic 
representations able to reproduce the behaviour of hull plates in a largescale ship 
structure. Plates that are simply supported underestimate the structural stiffness, while 
clamped plates make it too stiff. The real response lies somewhere in between the two. 
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Simply supported plates were chosen because they produce lower ultimate loads and 
by that a conservative result in comparison to clamped plates, Misirlis (2012). 
Moreover, application of the Rayleigh-Ritz approximation method for clamped plates 
is difficult, since problems with convergence occur. 

Four different plate models were used in the study: 

• Sandwich Plate System (SPS): layer-wise isotropic, 

• single-skin FRP Composite plate: orthotropic, 

• FRP Sandwich plate 1: isotropic core, orthotropic faces, 

• FRP Sandwich plate 2: isotropic core, orthotropic faces. 

All four plates have various slenderness, i.e. thickness-to-breadth ratio, aspect ratio, 
material properties and different layups, see Appendix A. Material behaviour was 
assumed to be linear, while geometrical non-linearities were considered. All plates were 
assumed to have an initial imperfection in the shape of its first buckling mode, with an 
amplitude of 0.1% of the plate breadth. Verification of the developed Sandwich PULS 
code was limited to results created in the FEA software Abaqus. The models in Abaqus 
were limited to using shell elements.  

1.5 Outline of the thesis 

In Chapter 1, an introduction to the problem and motivation behind the work is 
presented. Objectives, methodology, together with the project’s limitations and 
assumptions are included.  

In Chapter 2, the theoretical background that the thesis is based on is presented. It gives 
a general description of composite materials and a description of their failure modes 
and failure criteria. Related work done by others authors and the existing PULS code is 
presented here. 

In Chapter 3, the newly developed Sandwich PULS code is presented. Main changes in 
the code due to the implementation of FSDT are described as well as sandwich plate 
theories and solution procedures. 

Chapter 4 presents the FE model and analysis procedure used for validating results with 
Abaqus. The chapter includes a model set-up, a description of loading cases and 
boundary conditions, choice of element type, mesh convergence study and analysis 
steps. 

In Chapter 5 results and discussion of results are presented. Results obtained with 
Sandwich PULS are compared with Composite PULS and validated against Abaqus.  

In Chapter 6 conclusions of the thesis are presented. 

Chapter 7 presents recommendations for future work. 

The Appendix chapters contain material data for plates that have been analysed in this 
thesis. Further, a description of the theories and derived mathematical expression that 
have been implemented in Sandwich PULS are presented.  
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2 Theoretical background 

This chapter gives a brief introduction to composite and sandwich materials, a 
theoretical framework behind the existing PULS code as well as theories and 
conclusions from related work done by other authors.  

2.1 Composite materials 

This chapter presents definitions for composite and sandwich materials based on work 
done by Agarwal et al. (2006) and Zenkert (1997). 

A composite material is defined as having two or more distinct constituent materials or 
phases, but is mostly recognised as a composite material when there are significant 
differences in the physical properties of the constituent phases. It is the combination of 
properties from two or more materials that in many cases make them advantageous in 
comparison to other materials considering strength-to-weight ratio, stiffness, toughness, 
insulation, among other properties, Agarwal et al. (2006). 

These properties vary with the type of constituents and the way the composite is 
composed. Composites usually consist of a continuous phase embedded with one or 
more discontinuous phases. Most commonly the discontinuous phases have superior 
material properties acting as reinforcement, while the continuous phase termed as 
matrix protects and keeps the reinforcement in place. Depending on geometry, the 
reinforcing material can be categorized as either particles or fibres. Fibre-reinforced 
composites are defined by the number of fibre layers as well as the orientation of the 
fibres, Agarwal et al. (2006).  

Composites with reinforcement embedded in matrix, yielding similar properties 
through the thickness of the geometry, are referred to as single-skin designs. In contrast 
to single-skin designs, composites also appear in discontinuous constellations with 
layers of different material.  

A sandwich element is defined as a three-layer geometry consisting of two thin faces 
separated by a thick core, see Figure 2.1.  

 

Figure 2.1 Sandwich plate. E is the Young’s modulus, G is the shear modulus, t is 

the thickness and d is the distance between midplanes of the two faces. 

Core properties are denoted with subscript c and properties of faces are 

denoted with subscript f, from Zenkert (1997). 
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The faces most commonly consist of the same stiff and strong material, while the core 
consists of a light and comparatively weaker material. Both faces and core can be either 
isotropic material or consist of composite materials with varying properties.  

A sandwich element is designed so that the faces consisting of high-performing material 
are situated as far as possible from the neutral axis and the centre of bending, hence the 
faces will counteract external bending moments more efficiently. The core stabilizes 
the faces against buckling and wrinkling, see Chapter 2.3, as well as resists shear, 
keeping the faces bounded together, Zenkert (1997). 

2.2 ULS prediction of composite and sandwich plates 

The classical laminate plate theory (CLT), see Reddy (2004), is only valid for thin 
plates, for which shear deformations can be neglected. This is not the case for sandwich 
plates, which are usually considered as thick plates, and therefore the shear 
deformations should be accounted for to capture accurate plate behaviour, see Zenkert 
(1997). It is the poor shear stiffness of the core material that makes the transverse shear 
deformations important. 

Carrera and Brischetto (2009) presented and assessed a large variety of plate theories 
for capturing composite and sandwich plate behaviour under bending and vibration. 
The theories assessed are Classical laminate theory (CLT), First-order shear 

deformation theory (FSDT) and Higher order theories (HOTs) with refinements 
including higher order terms in the kinematic assumptions made for the displacements 
field and by that creating a better representation of deforming sandwich plates. Further, 
Layer-wise theories (LTs), where the number of variables is independent for each layer 
as well as Mixed theories (MTs) including inter-laminar continuity of shear and normal 
stresses at the interface of two adjacent layers, are assessed. 

Carrera and Brischetto (2009) concluded that there are two independent sources of error 
in the 2D modelling of sandwich structures, one related to length-to-thickness ratio 
(LTR) and the other related to face-to-core-stiffness ratio (FCSR). For increasing FCSR 
the kinematics of the two faces become increasingly independent. Errors caused by 
FCSR cannot be reduced using even HOTs. To increase the accuracy, where FCSR 
causes errors, LTs analysis becomes necessary. To reduce the errors due to LTR, HOTs 
can be conveniently used. 

For the plates investigated by Carrera and Brischetto (2009) with FCSR in a range of 
106-109, CLT and FSDT are never reliable for thick or moderately thick plates. For thin 
or very thin plates, accuracy of results is very much subordinated to the FCSR. It was 
concluded that “CLT and FSDT are not suitable for application to sandwich plates, even 
when very thin plates are considered”, Carrera and Brischetto (2009). 

Compared to HOTs, FSDT is relatively simple to apply to semi-analytical methods for 
predicting post-buckling response of composite plates, as it was done in work by Yang 
(2014). Several material degradation models have been investigated by this author to 
obtain an estimation of the ultimate strength. It was shown that a ply region degradation 
model based on the FSDT assumptions yields accurate results for thicker plates, while 
the strength estimations for thinner plates are underestimated. Yang’s suggestion for 
future work is to implement his semi-analytical tool and degradation model into PULS. 
He also suggests extending his methods to ultimate strength analysis of sandwich plates. 

The key factor when FSDT is applied is the determination of the transverse shear 
correction factor (�) that will yield accurate results and give good representation of the 
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plate’s behaviour. � is used to compensate for the FSDT assumption that the transverse 
shear strains are constant through the plate thickness. A generally proposed value of the 
shear correction factor for single-skin layups is 5/6, Agarwal et al. (2006).  

Birman and Bert (2002) discussed the importance of the shear correction factor (�) for 
sandwich structures and how to evaluate it. Six methods for the estimation of � for 
sandwich structures have been compared. These methods are based on:  

1. the comparison of natural frequencies,  
2. the comparison of average stresses throughout the cross section, 
3. the minimization of the quadratic error of the shear stress, 
4. modelling the sandwich structure as a discrete mass system, 
5. the comparison of the shear strain energies and 
6. the comparison of the average strains. 

Methods 1-3 yield � = 1. Method 4 yields � = 1 for sandwich plates with very thin 
faces only. If the thicknesses of the core and faces are in the same order, values of the 
shear correction factor are even larger than 1. Methods 5 and 6 give an estimate of � as 
a function of the stiffness and geometry. Both methods 5 and 6 yield low values of � if 
the shear stiffness of the core is low compared to the shear stiffness of the faces, which 
is usually the case for sandwich structures.  

Structures, in this case plates, are seldom perfect and usually have small initial 
geometrical imperfections. In a post-buckling analysis it is important to include initial 
imperfections as the load-carrying capacity may be greatly overestimated when starting 
out with a “perfect” structure, Bathe (1996). According to Bathe (1996) the lowest 
calculated buckling load may be a reasonable estimate of the actual collapse load, 
assuming that pre-buckling displacements are small. Therefore, defining initial 
imperfections similar to the lowest buckling modes on a “perfect” structure could 
greatly reduce the load-carrying capacity but also make it much more realistic. 

Misirilis (2012) developed an approach for progressive collapse analysis of composite 
structures based on nonlinear FEA. During development, the effect on compressive 
strength from boundary conditions, initial imperfections and material configurations 
were investigated.  

In his findings Misirlis (2012) presents the effects and importance of initial geometric 
imperfection. ULS of composite plates is greatly affected by geometrical initial 
imperfections when the plate is thick. The effect on ULS from amplitude of the 
imperfection reduces with the slenderness of the plate. Irrespective of the slenderness, 
ULS is greatly affected by the shape of the initial imperfection. Like Bathe (1996), 
Misirilis (2012) concluded that the shape of the first buckling mode is a conservative 
assumption, but not the most conservative one. The possibility of wrinkling and local 
instabilities for laminates could cause further reduction of plate strength lower than that 
of first-buckling mode shape imperfection. Misirilis (2012) also concluded that a 
simply supported boundary condition is more conservative than a clamped condition, 
as a clamped condition (and all investigated boundary conditions that constrained 
unloaded edges) resulted in higher ultimate loads. 

The only obtained source with regards to ultimate strength experimental results for 
sandwich plates was Boyle et al. (2001). Boyle et al. (2001) presented experimental, 
numerical and analytical results for buckling and post-buckling of orthotropic 
rectangular sandwich plates with an aspect ratio of 1.33 or 2.0. The plates were made 
of FRP faces with either an orthotropic balsa wood or isotropic foam core. The 
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sandwich plates were subjected to uniaxial compression with clamped loaded edges and 
simply supported unloaded edges. Boyle et al. (2001) concluded that there is good 
agreement between analytical, numerical and experimental results of the buckling load. 
Regarding post-buckling behaviour, there is poor agreement between the numerical and 
experimental results.  

2.3 Failure modes 

For composites, failure can be initiated in many different ways; often internal material 
failure occurs long before any changes in behaviour can be observed. Internal failure is 
initiated through one or several of the following modes, as defined by Agarwal et al. 
(2006):  

1. breaking of fibres, 
2. microcracking of the matrix, 
3. debonding: separation of fibres from the matrix, 
4. delamination: separation of lamina from each other in a laminated composite.  

The severity of the failure modes differs greatly from one composite to another, highly 
dependent on the material composition, reinforcement, geometry, layup and the kind of 
loading applied to the geometry. Depending on the fibre volume fraction, failure tends 
to be initiated in different ways for different loads. 

For longitudinal tensile loading the most common failure initiation is fibre breakage at 
the weakest cross section. Composites with fibre volume fraction under 40% exhibit 
brittle failure, a fibre volume fraction between 40% and 65% yields brittle failure with 
fibre pullout and a fibre volume fraction over 65% yields brittle failure with fibre 
pullout and shear failure or debonding, Agarwal et al. (2006).  

Subjected to longitudinal compressive loads composites with a fibre volume fraction 
less than 40% exhibit matrix yield and/or matrix microcracking and debonding of 
constituents. With a fibre volume fraction over 40% failure is initiated through 
transverse tensile failure due to Poison’s ratio effects, shear failure or fibre 
microbuckling. The fibre microbuckling occurs with either matrix still elastic, preceded 
by matrix yielding or preceded by debonding of constituents, Agarwal et al. (2006). 

For composites subjected to transverse tensile loads failure initiation occurs most 
commonly by matrix tensile failure or debonding combined with the possibility of fibre 
splitting. Composites subjected to transverse compressive loads exhibit matrix shear 
failure or matrix shear failure combined with debonding and possibly fibre crushing. 
Composites under in-plane shear loading fail either by matrix shear failure, debonding 
or a combination of both, Agarwal et al. (2006). 

Due to the differences in composition between sandwich plates and single-skin 
composites, see Chapter 2.1, sandwich structures can fail in additional ways. The most 
common failure modes for sandwich plates acting as beam elements are shown in 
Figure 2.2 when exerted to different loads or load combinations, Zenkert (1997). One 
can notice that for buckling loads different local buckling instabilities can occur in 
addition to the global buckling - the instabilities which are of importance in this thesis. 
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Figure 2.2 Failure modes for sandwich plates acting as beams under different 

loads. (a) Face yielding under bending, (b) core shear failure under 

shear loads, (c & d), face wrinkling under compression & bending, (e) 

general buckling under compression, (f) shear crimping under 

compression, (g) face dimpling under compression and (h) local 

indentation due to lateral load, from Zenkert (1997). 

2.4 Failure criteria 

Local buckling failure criteria for sandwich plates, face wrinkling and shear crimping, 
are presented in this chapter. Generally used failure criteria for orthotropic/composite 
materials, the Hashin-Rotem and the Hashin failure criteria, are briefly described here 
as well. 

2.4.1 Face wrinkling 

Several different expressions for the face wrinkling, local instability as seen in Figure 
2.2d, can be found in literature. The one presented by Harris and Crisman (1965) 
includes amplitude of initial waviness and distinguishes between core tension, core 
compression and core shear failure. It can be applied to orthotropic material facings 
under uniaxial compression. A similar yet simpler and more conservative expression 
for the face wrinkling critical stress was proposed by Zenkert (1997). It states that face 
wrinkling will occur when the compressive stress in face reaches the critical wrinkling 
stress, defined as:  

 3
,, 5.0 cxcxfxxcrf GEE=σ    [MPa] (2.1a)  

 3
,, 5.0 cycyfyycrf GEE=σ    [MPa] (2.1b) 

More detailed formulae for the biaxial loading case can be found in literature, but 
according to experimental work presented in Allen (1969), Equations (2.1a) and (2.1b) 
give good predictions and are on the conservative side. For combined loading cases 
Sullins et al. (1969) suggested that the following interaction equation should be used: 
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where 1,fσ  and 2,fσ  are the major and minor principal compressive stresses in the faces 

defined as: 
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2.4.2 Shear crimping 

The core thickness and shear modulus must be adequate to prevent the shear failure in 
the core under compressive loads as it can be seen in Figure 2.2(f). The described local 
instability is known as shear crimping. Zenkert (1997) proposed a simple expression 
for the shear crimping critical stress, which can be expressed as: 

 
f

crf
t

S

2
, =σ    [MPa] (2.4) 

where S  is the shear stiffness of sandwich plate, which will be later described in 
Chapter 3.3. 

2.4.3 Hashin-Rotem and Hashin failure criteria 

The Hashin-Rotem failure criterion, see Hashin (1973), and the Hashin failure criterion, 
see Hashin (1980), are based on experimentally observed failures for different loading 
conditions. Both are mode-dependent, i.e. different failure modes are being 
distinguished.  

The expressions for the Hashin-Rotem failure are rather simple and only in-plane stress 
contributions are taken into the consideration. In addition, the Hashin failure criteria 
include interlaminar stresses, i.e. out-of-plane normal and shear stress contributions.  

Failure in fibre tension 

Hashin-Rotem criterion: 
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Failure in fibre compression 

Hashin-Rotem and Hashin criterion: 
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Failure in matrix tension 

Hashin-Rotem criterion: 
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Failure in matrix compression 

Hashin-Rotem criterion: 
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According to Agarwal et al. (2006), the interlaminar stresses are negligible in the 
regions away from the free boundary, i.e. free edges, holes, and joints, etc. If neglected 
the described failure criteria are then almost the same, only the expression for fibre 
failure in tension differs. 

2.5 The PULS and Composite PULS codes 

Panel Ultimate Limit State (PULS) is a semi-analytical calculation tool used for the 
ultimate capacity prediction by estimating non-linear buckling response developed by 
DNV GL. Only a brief description of the methods behind the PULS and Composite 
PULS codes are presented here; more thorough descriptions can be found in works by 
Byklum and Amdahl (2002), Byklum (2002), Steen and Byklum (2005) and Steen et 
al. (2004). 

The PULS code was first developed for unstiffened, regularly and non-regularly 
stiffened and corrugated steel plates under uniaxial or biaxial compressive, tensile, 
shear and/or out-of-plane loads. It is limited to simply supported rectangular non-curved 
plates. Clamped plates can be modelled by adding springs to the plate edges with the 
risk of obtaining inaccurate results if spring stiffness is poorly estimated. PULS was 
extended to Composite PULS for the ULS prediction of unstiffened composite panels, 
see Braaten and Boström (2013).  

The PULS and Composite PULS codes are written in Fortran 95 programming language 
and use MS Excel user-interface, which makes them both computationally efficient and 
user friendly. The PULS and Composite PULS codes are based on CLT, i.e. the 
Kirchhoff’s plate assumptions. To capture the non-linear post-buckling response of 
plates, the large deflection plate theory, to account for initial imperfections *
-
., is 
implemented. The initial imperfection is set to take the shape of the first buckling mode, 

while the amplitude of the imperfection can be selected (e.g. *+,
-
. = !/1000).  
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Energy methods, see Appendix D, are used to describe the non-linear plate response 
due to the large deformation theory in the PULS and Composite PULS codes. Using 
the principle of minimum potential energy a set of non-linear equilibrium equations is 
developed, which can be solved by using the Rayleigh-Ritz method, see Appendix E. 

If assuming CLT, as for the PULS and Composite PULS codes, the total potential 
energy is expressed only by the mid-plane deflection *, which is approximated by using 
a series of admissible functions together with unknown amplitudes. It is more 
favourable to express the potential energy with as few approximated functions as 
possible. Adding more functions results in more terms and consequently in a higher 
computational cost, as explained in Braaten and Boström (2013). 

The extensional and shear stiffness coupling contributions, i.e. terms �AB and �CB of 
the extensional stiffness matrix, as defined in Appendix C, are not implemented in the 
Composite PULS code. This simplification is reasonable, since there is no such 
coupling if cross-ply layups are used. According to Agarwal (2006), for cross-ply 

layups �DAB and �DCB terms will cancel each other out if there is an equal number of plies 
orientated at a positive and negative ply orientation angle E and having the same 
thickness. Positions of these plies in such laminates are irrelevant.  

Based on findings by Ashton (1969), additional simplification to not implement 	AB 
and 	CB terms of the bending stiffness matrix, as defined in Appendix C, was made in 
the Composite PULS code. For a general case there is a coupling between in-plane 
stresses and shear strains and these terms should be included, as mentioned by Hareide 
(2014). Therefore, terms 	AB and 	CB are not to be neglected especially if layups that 
include plies with +45°/-45° orientations are being investigated. 

Stresses and displacement field are obtained in the PULS and Composite PULS codes 
using the Airy’s stress function 
, after which different failure criteria can be evaluated. 
For the PULS code, the von Mises yield criterion is evaluated, while for the Composite 
PULS code the Hashin-Rotem failure criterion is implemented, see Braaten and 
Boström (2013).  

A complete degradation model with instantaneous degradation was implemented in the 
Composite PULS code. Symmetrical ply degradation was assumed in order to keep the 
model conservative and because the PULS code cannot capture asymmetry (i.e. ��� =

0 or no coupling between strain and curvature is assumed). The implemented 
degradation model was not fully validated and is not included. Only the first buckling 
load and the Tsai-Wu failure criterion for FPF are being evaluated in the Composite 
PULS code. 
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3 Sandwich PULS 

In this chapter, the further development of the PULS and Composite PULS codes is 
presented. The new code is called Sandwich PULS. The main change compared to the 
other two codes is the implementation of first-order shear deformation plate theory 
(FSDT), which relaxes some assumptions of the Kirchhoff’s classical laminate plate 
theory (CLT).  

FSDT has been assumed even though HOTs would be preferred, as concluded by 
Carrera and Brischetto (2009). Since one of the objectives of this thesis is that Sandwich 
PULS should remain a computational tool with a low computational cost, it is believed 
that implementation of HOTs would have made computational costs too high. Even the 
implementation of FSDT could have a high computational cost as it was implied from 
work done by Yang (2014).  

Changes needed for this and implementations to the existing Composite PULS code are 
briefly presented and highlighted in equations with dashed lines. Full derivations and a 
more thorough explanation of theories implemented in Sandwich PULS can be found 
in appendices as referred to in the text. General differences between the PULS, 
Composite PULS and Sandwich PULS codes are presented in Table 3.1. 

Table 3.1 General differences between the PULS, Composite PULS and Sandwich 

PULS codes. 

 PULS Composite PULS Sandwich PULS 

Panel type Steel or aluminium Single-skin 
Sandwich/    

Multiple materials 

Plate theory CLT CLT FSDT 

Geometries 
Rectangular,       
non-curved 

Rectangular, non-curved, unstiffened, 
symmetrical layup 

BCs 
Simply supported, 

“clamped” 
Simply supported 

ULS Ultimate strength FPF/FFF/LPF FPF/FW/SC 

Failure 
criteria 

von Mises 
Hashin-Rotem/  

Tsai-Wu 
Hashin-Rotem/ 

FW/FC 

The plate schematic geometry is presented in Figure 3.1 where notations used in this 
chapter are indicated and described. 
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Figure 3.1 Plate geometry where a is the length, b is the breadth, h is the thickness, 

m is the number of buckling half-sine waves along the longitudinal 

direction and n is the number of buckling half-sine waves along the 

transverse direction. 

3.1 Kinematics and displacement field 

Composite PULS uses Kirchhoff’s assumptions, which are valid for thin plates only. 
For thick plates and plates where shear deformations are not to be neglected, i.e. for 
sandwich plates, first-order shear deformation theory (FSDT) needs to be implemented 
in Sandwich PULS under the assumptions presented in Appendix B.  

Since the PULS and Composite PULS codes are based on the large deflection plate 
theory, the non-linear terms are added to the membrane strain in order to acquire better 
approximation for the deflections that are large compared to the plate thickness. Due to 
the implementation of FSDT the bending strains are dependent not only on the 
derivative of the deflection, but also on the shear strains. The following extended strain 
field is then defined as: 

 








∂

∂
+














∂

∂

∂

∂
+









∂

∂
+

∂

∂
=+=

x
z

x

w

x

w

x

w

x

u
zk xinit

xxx

φ
εε

2

00

2

1
   [-] (3.1a) 

 








∂

∂
+














∂

∂

∂

∂
+









∂

∂
+

∂

∂
=+=

y
z

y

w

y

w

y

w

y

v
zk

yinit
yyy

φ
εε

2

00

2

1
   [-] (3.1b) 

 









∂

∂
+

∂

∂
+








∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂

∂

∂
+

∂

∂
+

∂

∂
=

=+=

xy
z

x

w

y

w

y

w

x

w

y

w

x

w

x

v

y

u

zk

yxinitinit

xyxyxy

φφ

γγ

00

0

   [-] (3.1c) 

 xxz
x

w
φγ +

∂

∂
=    [-] (3.1d) 

 yyz
y

w
φγ +

∂

∂
=    [-] (3.1e) 

m=3 

a b 

h 

n=1  



CHALMERS, Shipping and Marine Technology, Master’s Thesis 2015:X-15/325 17 

Displacement functions are represented in the form of truncated, i.e. finite number of 
approximation terms, double Fourier series as: 
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where M and N are the numbers of degrees of freedom used in the Rayleigh-Ritz 
approximation method, see Appendix E. 

There is no coupling between the membrane and the bending strains for symmetric 
layups. Therefore there is no need for implementation of the in-plane displacement 
fields, F and G, and only the three displacement functions, shown in Equations (3.2a), 
(3.2b) and (3.2c), are used to describe the buckling problem when FSDT is applied. 

3.2 Energy contributions 

The principle of minimum potential energy is reformulated using the Rayleigh-Ritz 
method in order to solve the buckling problem. Total potential energy consists of 

separate energy contributions from in-plane (��) and shear strains (��) and energy 

contribution from external forces (�) as: 

 WUU sP ++=Π    [Nmm] (3.3) 

The in-plane strain energy contribution can be further divided into three contributions 
associated, respectively, with the membrane strain energy ��, the bending strain 
energy �� and the strain energy ��� due to bending-stretching coupling, as can be seen 
in Equation (3.4). The latter is non-zero only for non-symmetric plates, which are not 
within the scope of this thesis. 
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The implementation of FSDT into the Sandwich PULS code only influences the energy 
contribution from the bending strains, since they are dependent on the curvatures, which 
are further based on the FSDT assumptions, see Equation (B.5). The energy 
contribution from the membrane strains and the potential from external loads are not 
dependent on the implemented FSDT and is therefore kept unaltered, as presented in 
Byklum (2002). As presented in Chapter 2.5, terms 	AB and 	CB of the bending stiffness 
matrix should be accounted for and are implemented in the Sandwich PULS code.  
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The expanded bending strain energy contribution is expressed as: 
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The shear strains are neglected in the Composite PULS code since CLT was assumed. 
If FSDT is assumed, the shear strain contribution to the total potential energy has to be 
implemented. It can be expressed as: 
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Full derivations of the bending and shear strain energy contributions after the Rayleigh-
Ritz method is applied are shown in Appendix E. 

3.3 Shear stiffness implementation 

As mentioned in Chapter 2.2 the shear correction factor (�) has to be used to 
compensate for the FSDT assumption that the transverse shear strains are constant 
through the plate thickness. In Sandwich PULS shear correction is accounted for and 
implemented inside of the transverse shear stiffness matrix ���� calculation, i.e. inside 
terms �HH, �HI and �II.  
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Dependent on the type of plate being analysed in Sandwich PULS, a different shear 
correction approach is used. For a general single-skin orthotropic plate this is done by 
applying the shear correction factor � to the shear stiffness matrix as: 

 [ ] [ ] [ ]
sss AAKA '

6

5
' ==    [N/mm] (3.7a) 

where � = 5/6 is a general valid and accepted value for orthotropic plates, see Agarwal 
et al. (2006).  

For a sandwich plate the method presented by Birman and Bert (2002), which is based 
on the comparison of the shear strain energies, is used to evaluate the shear correction 
factor. If the sandwich core has low stiffness, both axial and shear, compared to the 
stiffness of the faces, the shear stiffness matrix can then be obtained as: 

 [ ] [ ] [ ]s

f

c
ss A

G

G
AKA '35.2' ==    [N/mm] (3.7b) 

Two different options for sandwich plates to compensate for the assumption of constant 
shear stress through the thickness are presented in Zenkert (1997). Both options assume 

that a sandwich plate has thin faces, i.e. )L ≪ )N, weak core, i.e. �L ≫ �N, and that the 

shear moduli �L of the faces are large. An assumption that �HI = �IH = 0 can also be 

made since most core materials are at least orthotropic (for example balsa, honeycombs) 

or even isotropic (for example most foams). For an isotropic core the terms �HH and 

�II are equal and Zenkert (1997) proposes two options for how to obtain them: 

 cctGAA == 5544    [N/mm] (3.7c) 
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All four options for the shear stiffness evaluation are implemented in the Sandwich 
PULS code. Results from sensitivity studies dependent on these options are presented 
in Chapter 5, where the options are denoted as: 

• Kopt1: shear stiffness evaluated using Equation (3.7c),  

• Kopt2: shear stiffness evaluated using Equation (3.7d), 

• Kopt3: shear stiffness evaluated using Equation (3.7b), 

• K=5/6: shear stiffness evaluated using Equation (3.7a). 

3.4 Solution procedure 

A presentation of the solution procedure that is used in the Sandwich PULS code 
follows the methodology of this thesis, as presented in Chapter 1.3. First, the procedure 
for solving the eigenvalue problem is presented, which is to be used for defining the 
imperfection shape and represents one of the ULS loads, see DNV (2013). The 
incremental solution procedure, which is needed for capturing the buckling and post-
buckling behaviour of the plate, is presented next. The procedure to obtain the failure 
initiation load is presented last. 

The eigenvalue analysis and the incremental solution method are completely separated 
calculation processes in the PULS codes, even though almost the same theoretical 
principles and similar problem formulations apply for both. Because of that, the 
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implementations of the FSDT in the eigenvalue analysis and the load-displacement 
analysis are presented in separate sections. 

Only parts that have been changed in the solution procedure due to the implementation 
of FSDT are presented in this chapter. Further and more detailed descriptions of the 
procedure can be found in Yang (2014), Byklum (2002) and Steen (1998).  

3.4.1 Eigenvalue analysis 

The eigenvalue, i.e. first critical buckling load, is obtained after solving the following 
system of equations written in a general matrix form: 

 [ ] [ ]( ){ } { }0=ΑΛ− GM
KK  (3.8) 

where ���� is the material stiffness matrix, ���� is the geometric stiffness matrix, Λ

is the eigenvalue and ��� is the corresponding eigenvector. 

The displacement field corresponding to FSDT, shown in equation (3.2), has 3 
displacements: the out-of-plane displacement and the additional shear strains. The 
displacement vector corresponding to the eigenvalue and to the assumed displacement 
field can be written as: 
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Due to the expanded displacement field, the material and geometric stiffness matrices 
are 9-times larger. The material stiffness matrix is obtained after the in-plane strain 
energy contribution is derived twice with respect to the displacement amplitudes, as 
shown in Equation (3.10).  
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In a similar manner, the geometric stiffness matrix is obtained. It should, however, be 
noted that the geometric stiffness matrix is not dependent on the implementation of 
FSDT. The matrix is expanded with terms equal to zero in order to match the material 
stiffness matrix dimensions, since the external load potential is dependent only on the 
out-of-plane displacement. 
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The exact size of the stiffness matrices, i.e. the exact size of the eigenvalue system of 
equations, depends on the chosen number of terms, i.e. degrees of freedom, for the 
Rayleigh-Ritz trial functions, see Appendix E.  

Derived final expressions for the stiffness sub-matrices are shown in Appendix F and 
are implemented in the Sandwich PULS code. The material and geometric stiffness 
matrices are evaluated and sent to the eigenvalue solver, which is a built-in Fortran 
subroutine. As a result, the eigenvalue for a certain loading case is obtained. 

3.4.2 Incremental solution method 

The perturbation incremental method, see Steen (1998), is applied to predict pre- and 
post-buckling behaviour in the PULS codes. This method makes it possible to solve the 
non-linear plate equilibrium equations in increments by computing the rate form of 
these equations with respect to the perturbation parameter. The latter one is varied from 
0 to 1 within each stage, which makes the load path piecewise linear. If the perturbation 
parameter is sufficiently small, i.e. if a sufficiently large number of load stages is used, 
any load history can be approximated by using this procedure, Steen (1998). 

If the arc length parameter ∆6 is used as the perturbation parameter, the relation linking 
the change in the arc length parameter with a change of the external load and a change 
of displacement and shear strains, must be satisfied: 

 
222 η∆=∆+∆Λ mnq    [-] (3.11) 

As mentioned, here (�- are not only the displacement amplitudes, i.e. ��-, as in the 

PULS and Composite PULS codes, but also the shear strain amplitudes, i.e. ��- and 
��-, since FSDT is applied. The displacement amplitudes are to be made non-
dimensional with respect to the plate thickness as: 
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As the increment size goes towards zero, the relation is found by combining Equation 
(3.11) and Equation (3.12) and thus arriving at: 
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3.4.3 Procedure for solving incremental equations 

Here the procedure for solving the first-order incremental equations is briefly described, 
based on the work done by Yang (2014). First, incremental equilibrium equations need 
to be established in a similar manner as for the eigenvalue analysis. The principle of 
minimum total potential energy should be written in the rate form as: 
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Or rewritten as: 
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 [ ]{ } { } { }0=Λ+ && GAK mn   (3.15) 

where ��� is the incremental stiffness matrix, ��� is the incremental load vector and 2P 
is the rate of load parameter. 

The incremental stiffness matrix can be rewritten as: 
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All implementations are based on the conclusions made and discussed in Chapter 3.2 
when explaining the potential energy contributions.  

Due to the relaxed in-plane rotation assumptions of FSDT, the incremental stiffness 
submatrices are dependent on the energy contribution from the bending strains, which 
are redefined as shown in Equation (3.5). The energy contribution from shear strains, 
which are redefined as shown in Equation (3.6), is included in the ��QQ� and ��RR� sub-
matrices. The membrane strains and the external load potential only influence the ��SS� 
sub-matrix, which has not been affected by the implementation of FSDT. Derived 
expressions for the bending and shear strain-based stiffness matrices are shown in 
Appendix F.  

With FSDT applied, the system of (3 ∙ � ∙ �) equations, see Equation (3.14), has (3 ∙

� ∙ � + 1) unknowns. An equal number of terms is assumed for the three displacement 
fields, i.e. 	Y
 = � ∙ � for each displacement or shear strain. DOF along the shorter 
plate edge, i.e. �, is set manually, while DOF along the longer plate edge is dependent 
of the plate aspect ratio, i.e. � =  /! ∙ �. 

The last equation needed to solve the linear system of equations is Equation (3.13) that 
has been previously extended due to the implemented FSDT. After Equation (3.15) is 

inserted into Equation (3.13) the arc length increment 2P can be obtained as: 
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One should observe that the additional summation over shear strains term is present in 
(3.17) due to the implementation of FSDT.  

The load parameter and the displacement and shear strain amplitudes for the next stage 
are calculated as: 
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Equations (3.18a) and (3.18b) can be written in the expanded Taylor series form, but if 
a small increment size is used it is enough to take only the linear terms and still keep 
sufficient accuracy. Using the second and higher order terms will only increase 
computational cost, as concluded in Byklum (2002). Due to this simplification, the 
estimated deflections are smaller than the real ones for all PULS codes, if a small 
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enough increment size is not used. This effect becomes more significant in the areas 
where change in deflection is large, i.e. where the non-linear Taylor series terms 
become non-negligible. 

3.4.4 Failure initiation 

The incremental procedure is stopped when a given failure criterion is reached. Since 
sandwich plates are in the scope of this thesis, the face wrinkling (see Chapter 2.4.1) 
and the shear crimping (see Chapter 2.4.2) local instability failure criteria have been 
implemented in the Sandwich PULS code. The Hashin-Rotem failure criterion (see 
Chapter 2.4.3) was already implemented in the Composite PULS code and can be 
evaluated in the Sandwich PULS code as well.  

To satisfy sufficient accuracy in the PULS codes when close to failure, the increment 
parameter ∆6 is made smaller until stress from the applied external loads is within 1% 
of the failure stress. 
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4 Finite element analysis 

This chapter presents the FE model and analyses used to compare and validate the 
PULS, Composite PULS and Sandwich PULS codes. All models and analyses were 
made in the FE software Abaqus/Standard, see Dassault Systèmes (2014). 

4.1 Model set up 

All geometries, in this study all rectangular plates, were modelled as two-dimensional 
deformable planar shell elements. In order to define the composite materials, the 
composite-layup tool in Abaqus was used. To analyse the different loading cases, 
uniaxial, biaxial and axial/shear loading, two different set ups were used. All plates 
were simply supported for all loading conditions and for details about boundary 
conditions and model set-up see Chapter 4.2. 

All plates were modelled using conventional shell elements with both displacement and 
rotational degrees of freedom. Element types supported for analysis of laminated 
composite plates are based on first-order shear flexible theory. In this theory the 
transverse shear strain is assumed to be constant through the thickness of the shell. In 
order to estimate interlaminar shear stresses the shear correction factor was derived in 
Abaqus from the distribution of transverse shear stresses, see Dassault Systèmes (2014). 
To obtain interlaminar stresses, the shell was numerically integrated during analysis 
using Simpson’s rule allowing integration points at the interface of two layers. Three 
integration points were defined through the thickness for each layer, at the top, in the 
middle and at the bottom. 

To investigate the validity of the shell theory, i.e. if the assumption that plane sections 
remain plane is satisfied, Equation (4.1) where the left side is the material, a slenderness 
ratio was used. 

 100
)3)(3(

2

≥
++ αα

αα

D

lK
   [-] (4.1) 

Kij is the shear stiffness, Dij is the section stiffness and l is a characteristic length on the 
surface of the shell. If the expression in Equation (4.1) is satisfied, the shell theory is 
sufficient. If the expression is not satisfied, membrane strains will not vary linearly 
through the section and shell theory might give inaccurate results. The shear stiffness, 
Kij, and section stiffness, Dij, were obtained from the Abaqus data file filename.dat after 
running a data check of the analysis with defined pre-processor output. All plates used 
in the study, see Appendix A, fulfilled the expression in Equation (4.1), hence the shell 
theory is valid. 

4.2 Load cases and boundary conditions 

In this section the boundary conditions for different load cases are presented. Figure 4.1 
shows the load cases applied to the plate models.  
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Figure 4.1 Loading conditions investigated: biaxial (a-left) and axial longitudinal/ 

in-plane shear (b-right). 

4.2.1 Uniaxial and biaxial load cases 

For the uniaxial and biaxial load cases, loads were applied in a reference point outside 
the geometry as concentrated forces. The boundary conditions were set up so that one 
edge was free to move and another was restricted in the longitudinal and transverse 
directions, respectively, see Table 4.1. The loads in the longitudinal and transverse 
directions were each applied uniformly distributed over the edges by using equation 
constraints between the reference point and the edge free to move in the respective 
direction. By defining all edges as sets, the edges were made sure to remain straight 
when loads were applied. 

Table 4.1 Boundary condition set-up used for simply supported plate under bi-

axial load cases where a is the length, b is the breadth and U1-U3 are 

the displacements in the respective dirrections. 

X=0 X=a Y=0 Y=b 

U3=0 U1=U3=0 U3=0 U2=U3=0 

4.2.2 Axial longitudinal/in-plane shear load cases 

For the axial/shear load cases both axial loads and shear loads were applied as uniformly 
distributed shell edge loads. All edges were simply supported to restrict out-of-plate 
displacement. Instead of restricting edges in the longitudinal and transverse direction, 
two nodes in corners were restricted, which allowed for deformations caused by the 
shear loading. The boundary conditions for axial/shear loading are explained in Table 
4.2. 

Table 4.2 Boundary condition set-up used for simply supported plate under axial/ 

shear load cases where a is the length, b is the breadth and U1-U3 are 

the displacements in the respective dirrections. 

X=0 X=a Y=0 Y=b X=0, Y=0 X=a, Y=0 

U3=0 U3=0 U3=0 U3=0 U1=U2=0 U2=0 

4.3 Element type 

For 2D planar shell models in Abaqus/Standard one can assign either triangular mesh 
elements, quadrilateral mesh elements or quad-dominated mesh elements. A quad-
dominated element shape primarily uses quadrilateral elements but allows for element 
degeneration to triangular elements in transition regions. The elements supported for 
the modelling of composite shells all use five or six DOF. Elements using five DOF are 
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only suitable for “thin shells”, where thin-shell theory is assumed, and take no out-of-
plane shear contribution into consideration. Solutions for “thick plates” can be 
inaccurate using elements with five DOF, why these elements were disregarded. Most 
element types come with the option of reduced or full integration. Reduced integration 
is indicated by “R” in the element name, with fewer integration points in each element. 
Full integration is advantageous when greater solution accuracy is required, but requires 
more computational effort. 

With the option to choose geometric order, the available elements are a three-node 
linear or six-node quadratic triangular element, or a four-node linear or eight-node 
quadratic quadrilateral element, see Figure 4.2. Triangular elements provide accurate 
results in most situations but might require high mesh refinement in order to do so. That 
is due to utilizing constant bending and membrane strain approximations, why solutions 
involving large strain or high strain gradients might yield inaccurate solutions. S3 and 
S3R refer to the same 3-node triangular shell element that is a degenerated version of 
S4R, compatible with both S4R and S4. A drawback using degenerating elements is 
that when connection between elements change as they degenerate, the solution 
accuracy can be slightly off. Only using rectangular plates in this study, element 
degeneration is not considered necessary, why triangular elements are disregarded. The 
quadrilateral element types considered are four-node linear S4 or S4R and eight-node 
quadratic S8R, all using six DOF.  

 

Figure 4.2 Triangular and quadrilateral element shapes with three, six, four or 

eight nodes, from Dassault Systèmes (2014).   

S4 and S4R are both linear quadrilateral elements based on four-node elements, 
accounting for finite membrane strain and suitable for large strain analysis. S4 elements 
are fully integrated, having four integration points per elements, compared to one 
integration point per element for elements using reduced integration, for example S4R 
and S8R.  

S8R is a second-order element developed for analysis of thick shells limited to small 
strain. Being limited to small strain, solution accuracy using S8R elements might 
degrade as the strain increases. In order to function properly, transverse shear flexibility 
is required, Dassault Systèmes (2014). Having eight nodes per element, the same 
accuracy can be obtained with fewer elements for plates under large deflection 
compared to linear quadrilateral elements with four nodes.   

An analysis of the FRP Sandwich plate 2 under uniformly distributed uniaxial 
compression was performed for 3200, 5000 or 20000 number of elements of type S4R, 
3200 elements of type S8R or 3200 elements of type S4. Figure 4.3 shows 3200 number 
of elements of type S4R, Figure 4.4 shows 20000 number of elements of type S4R.  

Triangular 

Quadrilateral 

    Linear            Quadratic              
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Figure 4.3 FRP Sandwich plate 2 (900x1800 mm) under uniformly distributed 

uniaxial compression for 3200 number of elements of type S4R showing 

out-of-plane displacement. The deformation was scaled with a factor of 

7 in all directions. 

 

Figure 4.4 FRP Sandwich plate 2 (900x1800 mm) under uniformly distributed 

uniaxial compression for 20000 number of elements of type S4R showing 

out-of-plane displacement. The deformation was scaled with a factor of 

7 in all directions. 

The five cases of different numbers of elements and element type are compared in terms 
of load-displacement for end shortening and maximum out-of-plane displacement, see 
Figure 4.5, as well as the first buckling load and the FPF load, see Table 4.3. 
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Figure 4.5 Load-displacement for FRP Sandwich plate 2 (900x1800 mm) under 

uniformly distributed uniaxial compression with different element types 

and number of elements for plate end shortening (a-left) and maximum 

out-of-plane displacement (b-right). 

Table 4.3 First buckling load and FPF load for different element types and number 

of elements. 

 S4R-3200 S4R-5000 S4R-20000 S8R-3200 S4-3200 

Buckling load [MPa] 31.27 31.25 31.23 31.23 31.24 

FPF [MPa] 28.35 28.33 28.30 28.03 28.34 

For the FRP sandwich plate under investigation, FPF occurs before buckling and the 
limitation to small strain for S8R elements does not influence the results. Element type 
S4 gave the same solution as S4R, indicating that increased solution accuracy is not 
required. S4 outperforms S4R as well as S8R in terms of range of solution as the 
analysis for both S4R and S8R abort at about the same value, while S4 keeps going. 
This indicates that for analyses further than FPF, full integration using S4 elements 
might be advantageous. 

Element type S8R was the most conservative even though differences were small. At 
the point of FPF the difference between S8R and the others element types was about 
1%. The difference between type S4R with 3200 elements and 20000 elements is less 
than 0.2% for FPF. The S4R element was chosen as it was concluded to give results 
with sufficient accuracy for FRP Sandwich plate 2, having the lowest computational 
time. FRP Sandwich plate 2 had the most complex set-up of all plates investigated, see 
Appendix A, experiencing the most shear effects. Therefore, FRP Sandwich plate 2 was 
considered to require the most advanced element type, why element type S4R is 
considered to give results with sufficient accuracy for all plates.  
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4.4 Analysis steps 

In this section the analysis procedures for each analysis step, eigenvalue analysis, load-
displacement analysis and post buckling analysis up to first ply failure are presented. 

In Abaqus the eigenvalue buckling problem is solved by finding buckling loads using 
linear perturbation. The buckling analysis is initiated at the base state, with a preload 

�� subjected to the geometry. In this eigenvalue analysis where critical buckling loads 
are to be found, preloads are set to zero. In the buckling analysis, reference loads �� 
are scaled by load multipliers 8
 in order to find the number of requested buckling 
modes.  

The critical buckling loads can be defined as: 

 0=+ N

i

N
QP λ  (4.2) 

� is a number of degrees of freedom and Z indicates the buckling mode. With zero 
preloads and the reference load �� = 1 MPa each eigenvalue yielded the external force 
subjected to the geometry, which is the critical buckling load for every buckling mode. 
Figure 4.6 shows the first buckling mode obtained for the FRP Sandwich plate 2 under 
uniaxial loading. 

 

Figure 4.6 Out-of-plane displacement for the first buckling mode of FRP sandwich 

plate 2 (900x1800 mm) under uniformly distributed uniaxial loading in 

the longitudinal direction. 

In Abaqus, an eigenvalue buckling analysis can sometimes result in negative 
eigenvalues corresponding to negative buckling modes. In most cases the occurrence 
of negative eigenvalues is the software’s feature to indicate that the same load applied 
in the opposite direction would make the structure buckle. One of the most common 
cases is a plate under shear loading, where the same eigenvalue is reported both positive 
and negative, which indicates that the plate would buckle at the same shear load if 
applied in the opposite direction, Dassault Systèmes (2014). 
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In many cases the physical behaviour of negative buckling modes can be understood 
when displayed. Sometimes negative eigenvalues correspond to buckling modes not 
possible to explain in terms of physical behaviour, which could be if a preload is applied 
that causes geometrical nonlinearities. In such cases a geometrically nonlinear load-
displacement analysis could be performed to investigate the possibility of unstable 
collapse. A way to avoid negative buckling modes could be by applying a preload, 
Dassault Systèmes (2014). 

In a few cases with axial/shear loading the eigenvalue buckling analyses yielded 
negative eigenvalues as well as positive ones. This problem occurred especially for the 
SPS plate where for some load combinations no positive eigenvalues could be found 
without greatly increasing the number of iterations and by that the computational time. 
To avoid this problem the eigenvalue solver method was changed from Subspace to 
Lanczos, which allowed minimum eigenvalue of interest to be specified. In that way 
negative eigenvalues were bypassed and the positive eigenvalues found without 
significant difference in computational time. 

The load-displcement analyses were performed using the Static Riks analysis 
procedure, which accounts for geometrical and material non-linearities. Static Riks is 
an incremental solution method with a reference load that scales with a load 
proportional factor for each increment. The incrementation is based on arc length 
allowing the Riks method to solve for loads and displacements simultaneously, 
Dassault Systèmes (2014).   

Automatic arc length incrementation was used to allow the analyses to shorten step 
length when required and to increase the step when allowed in order to save 
computational time. The initial arc length increment was 0.1, minimum 0.001 and 
maximum 1 to assure continuous output without having too large steps.   

For the load-displacement and post-buckling up to first ply failure analyses the buckling 
shape corresponding to the first buckling load was used as initial imperfection with an 
amplitude of 0.1% of the breadth for each plate, respectively. Initial imperfection was 
implemented by adding the string *NODE FILE, U to the keywords in the buckling 
analysis, which logs the shapes of all the buckling modes requested for in the analysis. 
The initial imperfection used was chosen by adding the string *IMPERFECTION, 
FILE=file name, STEP=1, followed by the buckling mode requested and the 
imperfection amplitude into the keyword of the analysis.  

In the third step of the analysis, post-buckling behaviour up to first ply failure was 
investigated. This analysis step was performed for the FRP sandwich plate 2, see 
Appendix A. Damage initiation for fibre-reinforced composites based on Hashin’s 
damage initiation theory was added to the model. The failure initiation criteria can be 
set to follow either the model proposed by Hashin and Rotem by setting the parameter 
α=0, or the model proposed solely by Hashin, taking out-of-plane normal and shear 
stress contributions into consideration, by setting α=1, see Appendix G. For this study 
the Hashin failure criteria, see Chapter 2.4.3, was used to register failure initiation.  

4.5 Mesh convergence study 

A mesh convergence study was performed in order to investigate the required mesh size 
for convergence of Abaqus results, and at the same time keep the number of elements 
down in order to maintain computational efficiency. The convergence study was 
performed by computing the eigenvalue corresponding to first buckling load for a set 
of mesh sizes under biaxial or axial/shear loading. As the four plates used in the study 
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have different aspect ratios, the number of elements was determined along the breadth. 
Each plate was assigned mesh with 10, 15, 20, 30, 50 and 100 elements over its breadth, 
respectively, as well as an initial mesh size generated by default settings in Abaqus. The 
range of the initial default meshes varied from 10 to 25 elements along the breadth for 
the four different plates. The mesh convergence study was performed with S4R 
elements used in the study, see Chapter 4.3. Figure 4.7 shows the mesh convergence 
for the FRP Sandwich plate 2. 

  

Figure 4.7 Mesh convergence for FRP Sandwich plate 2 (900x1800 mm) subjected 

to biaxial (a-left) or axial/shear (b-right) loading. The chosen mesh size 

is indicated with a red square in the figures. 

All but one initial mesh size for the four plates showed less than 1% difference for first 
buckling load compared to the finest and converged mesh with 100 elements along the 
breadth. The value not below 1% difference was the single-skin FRP composite plate 
under axial/shear loading, where the buckling load was 2.3% higher. The mesh was still 
believed to give results accurate enough for the eigenvalue analysis. For the load-
displacement analysis a new mesh was regenerated for the single-skin FRP Composite 
plate so that all plates contained a mesh with at least 20 elements along the breadth, 
which assured less than 1% difference in results compared to the finest and converged 
mesh size. For the FRP Sandwich plate 2, a mesh size with 40 elements along its breadth 
was assigned for the failure initiation analysis. 40 elements along the breadth 
correspond to 3200 number of elements in total with element sizes of 22.5x22.5 mm. 
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5 Results and discussion 

This chapter presents the results from all numerical simulations and calculations using 
the different versions of the PULS codes and the FE models presented in Chapter 4. 
Together with the results, detailed discussions of observations made are presented. The 
different versions of the PULS codes are referred to as C-PULS (Composite PULS, 
described in Chapter 2.5) and S-PULS (Sandwich PULS, developed in this thesis as 
described in Chapter 3). The structure of this chapter follows the methodology of this 
thesis, which is presented in Chapter 1.3.  

Results presented as interaction curves for the plates under biaxial loads show 
interaction for the applied uniformly distributed longitudinal and transverse loads. 
Interaction curves for the plates under axial/shear loads show interaction for the applied 
uniformly distributed uniaxial longitudinal and shear loads.  

In Chapter 5.1 the eigenvalue analysis results are presented and discussed for all four 
plates investigated, see Appendix A. The discussion is focused on the agreement 
between the first buckling loads from S-PULS and Abaqus, as well as on the differences 
between the first buckling loads from S-PULS and C-PULS. The first buckling loads 
are presented as interaction curves for varying combinations of biaxial or axial/shear 
load cases. “SigmaX,crit.” and “SigmaY,crit.” denote the first buckling loads in the 
longitudinal and transverse directions, respectively. “TauXY,crit.” denotes the first 
buckling load, when the plates are subjected to shear load. 

In Chapter 5.2 the load-displacement analysis is presented. Load-displacement curves 
are obtained, describing model response, for all four plates, see Appendix A, under 
uniformly distributed uniaxial longitudinal compression denoted as “SigmaX”.   

Chapter 5.3 presents the failure initiation analysis. The FPF and sandwich failure loads 
are presented as interaction curves for the FRP Sandwich plate 2, see Appendix A, 
under varying combinations of biaxial or axial/shear loads. “SigmaX,fail.” and 
SigmaY,fail.” denote the failure initiation loads in the longitudinal and transverse 
directions, respectively. “TauXY,fail.” denotes the failure initiation load, when the 
plates are subjected to shear load. 

Final parts of this chapter cover sensitivity studies performed on the FRP Sandwich 
plate 2 presented in Chapter 5.4, which provide an assessment of the Sandwich PULS 
code validity for different breadth-to-thickness, face-to-core shear stiffness and aspect 
ratios. 

As explained in Chapter 3.3, different options for the shear stiffness evaluation of 
sandwich plates are implemented in the Sandwich PULS code and used for the FRP 
Sandwich plate 2. Results dependent on these evaluation options and are denoted as: 

• Kopt1: shear stiffness evaluated using Equation (3.7c),  

• Kopt2: shear stiffness evaluated using Equation (3.7d), 

• Kopt3: shear stiffness evaluated using Equation (3.7b), 

• K=5/6: shear stiffness evaluated using Equation (3.7a). 
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5.1 Eigenvalue analysis 

Validation of the Sandwich PULS code, after the implementation of FSDT, for the 
eigenvalue analysis was done in steps for plates with increasing complexity. The 
Sandwich PULS code was tested and validated for the SPS, single-skin FRP Composite 
plate, FRP Sandwich plate 1 and for the FRP Sandwich plate 2. Plate dimensions and 
material properties for the plates can be found in Appendix A. Sandwich PULS (S-
PULS) is compared to Composite PULS (C-PULS) and validated against Abaqus. 

5.1.1 Sandwich Plate System (SPS) 

For the biaxial load cases, differences between S-PULS and Abaqus results are up to 
13%, see Figure 5.1, while for the axial/shear load cases differences are below 5%, see 
Figure 5.2. For the SPS plate the importance of transverse shear deformations is large. 
S-PULS shows good agreement with Abaqus, while C-PULS gives overestimated first 
buckling loads. 

 

Figure 5.1 The first buckling load interaction curves for the SPS plate under biaxial 

loads for C-PULS and S-PULS, validated against Abaqus. 

 

Figure 5.2 The first buckling load interaction curves for the SPS plate under 

axial/shear loads for C-PULS and S-PULS, validated against Abaqus. 
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The different buckling modes, i.e. different numbers of half-sine waves in the 
longitudinal direction, yield different first buckling loads as presented in Figure 5.3. In 
S-PULS the first buckling modes shift from four half-sine waves (& = 4) to only one 
half-sine wave (& = 1) in the longitudinal direction. Abaqus yields a buckling mode 
shifting in steps from four to one half-sine waves, which can explain the disagreement 
between the S-PULS and Abaqus predicted first buckling loads in this region.  

 

Figure 5.3 Shifting between different buckling modes for S-PULS and Abaqus, 

where m is number of half-sine waves in the longitudinal direction. 

5.1.2 Single-skin FRP Composite plate 

Both C-PULS and S-PULS show good agreement with Abaqus for biaxial and 
axial/shear loading cases. For biaxial loading differences between S-PULS and Abaqus 
are at most 2.1%, see Figure 5.4. For the axial/shear loading case, shown in Figure 5.5, 
differences between the results are up to 9%; a majority of the results still differ less 
than 5%.  

 

Figure 5.4 The first buckling load interaction curves for the single-skin FRP 

Composite plate under biaxial loads for C-PULS and S-PULS, validated 

against Abaqus. 
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S-PULS is more conservative for positive shear loads, while for opposite shear loads it 
is less conservative, see Figure 5.5. Results obtained with C-PULS and S-PULS are 
symmetric, i.e. an opposite direction of the shear load gives the same eigenvalue, while 
the Abaqus interaction curve is shifted down. 

 

Figure 5.5 The first buckling load interaction curves for the single-skin FRP 

Composite plate under axial/shear loads for C-PULS and S-PULS, 

validated against Abaqus. 

Since the single-skin composite plate analysed is considered as a thin plate, the effect 
from shear strains accounted for in S-PULS is small, resulting in very similar results 
for C-PULS and S-PULS. 

5.1.3 FRP Sandwich plate 1 

The FRP sandwich plate 1 shows good results under both biaxial loading, see Figure 
5.6, and axial/shear loading, see Figure 5.7. In both cases the differences between S-
PULS and Abaqus are less than 2%.  

 

Figure 5.6 The first buckling load interaction curves for the FRP Sandwich plate 1 

under biaxial loads for C-PULS and S-PULS, validated against Abaqus. 
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Figure 5.7 The first buckling load interaction curves for the FRP Sandwich plate 1 

under axial/shear loads for C-PULS and S-PULS, validated against 

Abaqus. 

It can be noticed that C-PULS and S-PULS show very similar results. As for the single-
skin composite plate the FRP Sandwich plate 1 is considered as a thin plate, where the 
effect from shear strains is small. Additionally, the plate does not fulfil assumptions of 
the sandwich plate theory implemented in S-PULS, presented in Chapter 3.3, since the 
faces are not thin compared to the core thickness. 

5.1.4 FRP Sandwich plate 2 

The FRP sandwich plate 2 shows good agreement between “S-PULS, Kopt1”, “S-
PULS, Kopt2” and Abaqus under biaxial load cases, see Figure 5.8, and axial/shear 
load cases, see Figure 5.9. C-PULS gives overestimated critical buckling loads, while 
“S-PULS, Kopt3” results are over-conservative for all load cases. “S-PULS, Kopt1” 
shows better agreement for the plate under biaxial loads, while “S-PULS, Kopt2” gives 
better results for the plate under axial/shear loads compared with Abaqus.  

 

Figure 5.8 The first buckling load interaction curves for the FRP Sandwich plate 2 

under biaxial loads for C-PULS and S-PULS with different shear 

stiffness evaluation options, validated against Abaqus. 
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Figure 5.9 The first buckling load interaction curves for the FRP Sandwich plate 2 

under axial/shear loads for C-PULS and S-PULS with different shear 

stiffness evaluation options, validated against Abaqus. 

FRP Sandwich plate 2 fulfils the assumptions of the sandwich plate theory implemented 
in S-PULS, presented in Chapter 3.3, having thick and soft core and thin faces. The 
effect from shear strains is great and “S-PULS, Kopt1” and “S-PULS, Kopt2” 
outperforms C-PULS. “S-PULS, Kopt1” is more conservative compared to “S-PULS, 
Kopt2”, since the latter one accounts for some of the face thickness, which slightly 
increases shear stiffness, see Chapter 3.3.  

5.1.5 Concluding remarks 

It was found that for the SPS plate and the FRP Sandwich plate 2, where the effects 
from shear strains are considerable, CLT is no longer adequate and the difference 
between C-PULS compared to S-PULS and Abaqus is significant. For FRP Sandwich 
plate 2 critical buckling loads predicted by S-PULS are within a 10%, mostly below a 
5%, difference compared to results obtained in Abaqus. 

In few cases, S-PULS and Abaqus yield different first buckling modes, i.e. a different 
number of half-sine waves. An investigation with increased degrees of freedom for the 
approximation functions in S-PULS was performed as an attempt to increase the 
accuracy, but showed no effect on the results. It is therefore believed that a slight 
difference between S-PULS and Abaqus evaluated shear stiffness of the plate is the 
reason for differently predicted first buckling modes. 

For the FRP Sandwich plate 2, the first buckling loads are slightly on the conservative 
side for “S-PULS, Kopt1”, while for “S-PULS, Kopt2” the first buckling loads are 
slightly on the non-conservative side. The “S-PULS, Kopt3” shear stiffness evaluation 
option is over-conservative. 

5.2 Load-displacement analysis 

The load-displacement analysis with linear material properties was performed in order 
to validate the model response for Sandwich PULS (S-PULS). The maximum out-of-
plane displacement was investigated for all four plates, see Appendix A, subjected to 
uniformly distributed uniaxial compression. Results were compared to Composite 
PULS (C-PULS) and validated against Abaqus. To distinguish between pre- and post-
buckling behaviour, first buckling loads are represented by dashed horizontal lines.  
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It should be mentioned that the PULS codes underestimate displacements in general. 
This is due to the Rayleigh-Ritz method that has been used to approximate 
displacements, which results in a stiffer model, see Appendix E.1. 

5.2.1 Sandwich Plate System (SPS)  

As for the eigenvalue analysis, S-PULS gives a significantly better estimation of the 
model response than C-PULS, see Figure 5.10. Even though the S-PULS and Abaqus 
predicted first buckling loads are close, the differences between the predicted out-of-
plane displacements at the first buckling loads are large. The differences are due to 
different shear stiffness estimations, as established in the eigenvalue analysis, see 
Chapter 5.1.1. In Figure 5.10 it is seen that the difference between S-PULS and C-PULS 
is not only at the point of first buckling load, as differences are present throughout the 
plate response. The load-displacement curves for S-PULS and C-PULS do not converge 
toward Abaqus due to the different shear stiffness estimations.    

 

Figure 5.10 Maximum out-of-plane displacement (@L/8) curves for the SPS plate 

under uniaxial compression for C-PULS and S-PULS, validated against 

Abaqus. 

5.2.2 Single-skin FRP Composite plate 

The single-skin FRP Composite plate shows similar results for S-PULS and C-PULS. 
Both PULS codes deviate the most at small out-of-plane displacements, while they 
converge towards the Abaqus plate behaviour for larger out-of-plane displacements, see 
Figure 5.11. As explained in the eigenvalue analysis, see Chapter 5.1.2, the differences 
between S-PULS and C-PULS are small due to the small effects of shear strains for the 
single-skin FRP Composite plate. As concluded by Braaten and Boström (2013), 
differences between Abaqus and C-PULS are partly due to the Rayleigh-Ritz 
approximation method in combination with the perturbation method, where the non-
linear contribution from the large deflection theory is neglected. S-PULS being based 
on C-PULS, see Chapter 1.4, inherits the same weaknesses.  
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Figure 5.11 Maximum out-of-plane displacement (@L/6) curves for the single-skin 

FRP Composite plate under uniaxial compression for C-PULS and S-

PULS, validated against Abaqus. 

5.2.3 FRP Sandwich plate 1 

As with the single-skin FRP Composite plate, see Chapter 5.2.2, the differences 
between C-PULS, S-PULS and Abaqus, see Figure 5.12, can be explained by the 
Rayleigh-Ritz and linear perturbation methods implemented in the PULS codes. There 
are noticeable differences between S-PULS and C-PULS, which are due to the reduced 
sandwich plate shear stiffness implemented in S-PULS, see Chapter 3.3. The effect of 
shear strains is relatively small, since the plate is rather thin, which is explained in the 
eigenvalue analysis of the same plate, see Chapter 5.1.3. For larger out-of-plane 
displacements, i.e. more than 10 mm for this case, the C-PULS and S-PULS plate 
responses converge towards the Abaqus-predicted plate response. The C-PULS and S-
PULS curves remain parallel to each other for the larger displacements due to different 
estimates of shear stiffness.  

 

Figure 5.12 Maximum out-of-plane displacement (@L/4) curves for the FRP 

Sandwich plate 1 under uniaxial compression for C-PULS and S-PULS, 

validated against Abaqus. 
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5.2.4 FRP Sandwich plate 2 

The FRP Sandwich plate 2 is considered as a thick plate with thin faces and soft sore, 
which is why the effect of shear strains is great and significant differences between C-
PULS and S-PULS occur, see Figure 5.13. Different options for shear stiffness 
evaluation have been used in S-PULS, see Chapter 3.3. “S-PULS, Kopt1” and “S-
PULS, Kopt2” give a good plate response, which is close to Abaqus. As with the 
eigenvalue analysis of the plate, presented in 5.1.4, the “S-PULS, Kopt3” curve gives a 
too weak plate response, while C-PULS gives to stiff a plate response. Small enough 
incremental steps have been used to reduce the weakness of the PULS codes when 
neglecting the non-linear terms from the large deflection theory. 

 

Figure 5.13 Maximum out-of-plane displacement (@L/6) curves for the FRP 

Sandwich plate 2 under uniaxial compression for C-PULS and S-PULS 

with different shear stiffness evaluation options, validated against 

Abaqus. 

End shortening curves for the FRP Sandwich plate 2 under uniaxial compression are 
shown in Figure 5.14. When “S-PULS, Kopt3” reaches a critical buckling load, see 
Figure 5.14 at around 8 MPa, the other options are still predicting linear plate response. 
After a load of 30 MPa is reached “S-PULS, Kopt1” and “S-PULS, Kopt2” reach their 
critical buckling load approximately together with Abaqus. The effect of shear strains 
is not accounted for in C-PULS, which results in a too stiff plate behaviour and the C-
PULS plate response remains in the linear pre-buckling behaviour. Other curves are 
deep in the post-buckling behaviour when C-PULS reaches the critical buckling load, 
not seen in Figure 5.14.  
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Figure 5.14 End shortening curves for the FRP Sandwich plate 2 under uniaxial 

compression for C-PULS and S-PULS with different shear stiffness 

evaluation options, validated against Abaqus. 

5.2.5 Concluding remarks 

S-PULS predicts a better model response than C-PULS, especially for the FRP 
Sandwich plate 2 where the effect from shear strains is large. Compared to Abaqus, S-
PULS predicts a stiffer model response for the SPS plate, single-skin FRP Composite 
plate and FRP Sandwich plate 1. 

For the FRP Sandwich plate 2, the shear stiffness evaluation option “S-PULS, Kopt1” 
is slightly on the conservative side, “S-PULS, Kopt2” is slightly on the non-
conservative side and “S-PULS, Kopt3” is over-conservative, in agreement with the 
eigenvalue analysis. 

5.3 Failure initiation analysis 

This chapter presents failure initiation interaction curves for biaxial and axial/shear load 
cases for the FRP Sandwich plate 2. Due to the small shear strain effect for the FRP 
Sandwich plate 1 and because it does not fulfil the assumptions of the sandwich plate 
theory, see Chapter 3.3, only the FRP Sandwich plate 2 was chosen for the failure 
initiation analysis. Failure initiation is defined as the first ply failure (FPF) according 
to the Hashin-Rotem criterion and as the face wrinkling and shear crimping critical 
loads in Sandwich PULS (S-PULS), see Chapter 2.4. Abaqus registers FPF according 
to the Hashin failure criterion, see Appendix G.  

5.3.1 Hashin-Rotem failure criteria 

Results of FPFs under biaxial load cases are presented in Figure 5.15, and under 
axial/shear load cases in Figure 5.16, as interaction curves. S-PULS registers failure 
initiation much earlier than Abaqus, especially when a longitudinal compressive load 

is dominant, i.e. when :` a :b or :` a ;`b. There is only a small difference between 

“S-PULS, Kopt1” and “S-PULS, Kopt2”. 

The FPFs are initiated before the first buckling loads for most load cases. Due to the 
soft core, loads are taken by the FRP faces, which are thin. From a design point of view, 
it is believed that to reach the post-buckling plate behaviour, i.e. an FPF load higher 
than first buckling load, either a stiffer core or faces with increased thickness should be 

0

10

20

30

40

50

0 5 10 15 20

S
ig

m
a

X
 [

M
P

a
]

End shortening [mm]

S-PULS, Kopt1

S-PULS, Kopt2

S-PULS, Kopt3

Abaqus

C-PULS



CHALMERS, Shipping and Marine Technology, Master’s Thesis 2015:X-15/325 43 

used. Post-buckling behaviour can also be reached if FFF is evaluated or if a 
degradation model until LPF would be implemented in the S-PULS code, which is not 
within the scope of this thesis. 

 

Figure 5.15 FPF interaction curves for the FRP Sandwich plate 2 under biaxial 

loads for S-PULS with different shear stiffness evaluation options, 

validated against Abaqus. 

 

Figure 5.16 FPF interaction curves for the FRP Sandwich plate 2 under axial/shear 

loads for S-PULS with different shear stiffness evaluation options, 

validated against Abaqus. 
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extremes of half-sine waves, and are initiated by matrix tension failure. The matrix 
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see Table 5.1 and Table 5.2.  
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occurs for some load cases for the FRP Sandwich plate 2 analysed, see Table 5.1 and 
Table 5.2. 

Table 5.1 Ply numbers and fibre orientation (in parenthesis) where the FPFs occur 

for biaxial load cases. The relationship between the components of the 

reference loads for biaxial load cases are indicated in the first two 

columns. MT indicates matrix tension failure. 

SigmaX [MPa] SigmaY [MPa] S-PULS Abaqus 

0.87 -0.50 MT – 10 (0°) MT – 1, 10 (0°) 

0.97 -0.26 MT – 10 (0°) MT – 10 (0°) 

1.00 0.00 MT – 1, 10 (0°) MT – 10 (0°) 

0.97 0.26 MT – 1, 10 (0°) MT – 1, 10 (0°) 

0.87 0.50 MT – 1, 10 (0°) MT – 10 (0°) 

0.71 0.71 MT – 1, 10 (0°) MT – 10 (0°) 

0.50 0.87 MT – 10 (0°) MT – 10 (0°) 

0.26 0.97 MT – 10 (0°) MT – 10 (0°) 

0.00 1.00 MT – 10 (0°) MT – 7 (90°) 

-0.26 0.97 MT – 7 (90°) MT – 7 (90°) 

-0.50 0.87 MT – 4, 7 (90°) MT – 7 (90°) 
 

Table 5.2 Ply numbers and fibre orientation (in parenthesis) where the FPFs occur 

for axial/shear load cases. The relationship between the components of 

the reference loads for axial/shear load cases are indicated in the first 

two columns. MT indicates matrix tension failure. 

SigmaX [MPa] TauXY [MPa] S-PULS Abaqus 

0.87 -0.50 MT – 8 (45°) MT – 10 (0°) 

0.97 -0.26 MT – 10 (0°) MT – 1 (0°) 

1.00 0.00 MT – 1, 10 (0°) MT – 10 (0°) 

0.97 0.26 MT – 10 (0°) MT – 1 (0°) 

0.87 0.50 MT – 9 (-45°) MT – 10 (0°) 

0.71 0.71 MT – 9 (-45°) MT – 9 (-45°) 

0.50 0.87 MT – 2, 9 (-45°) MT – 9 (-45°) 

0.26 0.97 MT – 2, 9 (-45°) MT – 2 (-45°) 

0.00 1.00 MT – 9 (-45°) MT – 2 (-45°) 

-0.26 0.97 MT – 2, 9 (-45°) MT – 9 (-45°) 

-0.50 0.87 MT – 9 (-45°) MT – 9 (-45°) 

According to DNV (2013), matrix failure is not a preferred failure mode and is to be 
avoided. Structural design principles suggest that the layup shall be designed in such a 
way that loads are carried mainly by the fibres, so that fibre failure is critical. Here, the 
FPFs are initiated by matrix failure, which is expected for compressive loads, see 
Chapter 2.3.  
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The differences between the S-PULS and Abaqus results presented in Figure 5.15 and 
Figure 5.16, might be explained by how the stresses in each ply are calculated, i.e. based 
on how the curvatures are obtained in the S-PULS code. The “S-PULS, Kopt1” and “S-
PULS, Kopt2” results are based on the FSDT defined curvatures, see Equation (B.5). 
If neglecting the in-plane shear strain derivatives, i.e. the curvatures dependent on the 
second derivative of the out-of-plane displacement only, as done in “S-PULS, Kopt2, 
d2w only”, there is good concordance between S-PULS and Abaqus for the biaxial load 
cases, see Figure 5.15. For the axial/shear load cases there is good concordance between 

S-PULS and Abaqus only for the longitudinal uniaxial load case, i.e. :` a 0, ;`b = 0. 

The other FPF results for axial/shear load cases are over-predicted, see Figure 5.16.  

5.3.2 Sandwich failure criteria 

Sandwich failure criteria, the face wrinkling and shear crimping criteria, are evaluated 
for the biaxial and axial/shear load cases using the shear stiffness evaluation option 
“Kopt2”, see Figure 5.17 and Figure 5.18. These failure criteria are designed for 
compressive (and primarily uniaxial) loads only, as explained in Chapters 2.4.1 and 
2.4.2.  

The sandwich failure results obtained by S-PULS are somewhat satisfactory. They are 
only compared to the Hashin FPF criterion, since the face wrinkling (FW) and shear 
crimping (SC) criteria do not exist in Abaqus. For both load cases, face wrinkling will 
occur in the plate before shear crimping when longitudinal axial loads are dominant, 

i.e. when :` a :b or :` a ;`b. When transverse axial loads are dominant, i.e. when 

:` < :b, there is almost no difference between the criteria for the biaxial load cases, 

see Figure 5.17.  

For the axial/shear load cases the FRP Sandwich plate 2 will fail due to the shear 
crimping local failure in most cases, see Figure 5.18, which is not satisfactory. 
Generally, the face wrinkling should occur in a plate significantly before the shear 
crimping. On the other hand, the shear crimping failure is defined to be used for 
compressive loads only, which is why results for when shear loads are dominant cannot 
be considered as being valid.  

 

Figure 5.17 Sandwich failure initiation interaction curves for the FRP Sandwich 

plate 2 under biaxial loads for S-PULS with shear stiffness evaluation 

option 2, compared to Abaqus (Hashin FPF). SC denotes shear crimping 

and FW denotes face wrinkling sandwich failure. 
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Figure 5.18 Sandwich failure initiation interaction curves for the FRP Sandwich 

plate 2 under axial/shear loads for S-PULS with shear stiffness 

evaluation option 2, compared to Abaqus (Hashin FPF). SC denotes 

shear crimping and FW denotes face wrinkling sandwich failure. 

5.3.3 Concluding remarks 

The S-PULS FPF loads according to the Hashin-Rotem failure criterion are on the 
conservative side, but differences compared to Abaqus are up to 40%. For the FRP 
Sandwich plate 2 failure is initiated before the first buckling loads. If shear strains are 
neglected when calculation of stresses in each ply is performed for S-PULS, predicted 
FPF loads show good agreement with Abaqus. Predicted failure initiation loads are then 
within 15%, but S-PULS is on the non-conservative side. 

Face wrinkling and shear crimping critical loads are not validated, only compared to 
the Hashin-Rotem failure criterion. The face wrinkling and shear crimping failure 
criteria are formulated for uniaxial compressive loads only. When performing the 
sandwich failure criteria analysis for multiple interacting loads, the accuracy of results 
is uncertain.  

5.4 Sandwich PULS sensitivity studies 

This chapter presents the sensitivity studies performed in order to determine the range 
of accuracy of the Sandwich PULS (S-PULS) code regarding the face-to-core stiffness 
ratio, aspect ratio and breadth-to-thickness ratio. All sensitivity studies were performed 
on the FRP Sandwich plate 2 subjected to uniaxial compression. 

5.4.1 Breadth-to-thickness ratio 

Five cases with a different breadth-to-thickness ratio for the FRP Sandwich plate 2 were 
analysed in order to investigate the S-PULS sensitivity to slenderness. The analysis was 
performed including different shear stiffness evaluation options, see Chapter 3.3. “S-
PULS, Kman” refers to Sandwich PULS with shear stiffness, which was set manually 
as the value predicted by Abaqus. Figure 5.19 shows the critical buckling loads obtained 
for different plate slenderness.  

0

10

20

30

40

0 5 10 15 20 25 30

T
a

u
X

Y
,f

a
il

. 
[M

P
a

]

SigmaX,fail. [MPa]

S-PULS, Kopt2, SC

S-PULS, Kopt2, FW

Abaqus, Hashin FPF



CHALMERS, Shipping and Marine Technology, Master’s Thesis 2015:X-15/325 47 

 

Figure 5.19 First buckling loads of the FRP Sandwich plate 2 for S-PULS with 

different shear stiffness evaluation options for various slenderness under 

uniaxial compression, validated against Abaqus and compared to (a-

left), and without (b-right), C-PULS and S-PULS with K=5/6. 

Figure 5.19a shows the difference between C-PULS, Abaqus and S-PULS with 
different shear stiffness evaluation options. Both C-PULS and “S-PULS, K=5/6” 
greatly deviate from the other cases. The deviating S-PULS curve, i.e. “S-PULS, 
K=5/6”, shows the major importance of choice of shear stiffness evaluation option 
when sandwich plates are analysed. 

Figure 5.19b shows the S-PULS critical buckling loads with different shear stiffness 
evaluation options, which are validated against Abaqus. C-PULS and “S-PULS, K=5/6” 
are excluded in Figure 5.19b. “S-PULS, Kopt1” and “S-PULS, Kopt2” both show good 
agreement with Abaqus down to a slenderness of 20. “S-PULS, Kopt3” deviates the 
most from Abaqus, being over-conservative for all slenderness options. “S-PULS, 
Kman” shows the greatest agreement with Abaqus. An Abaqus analysis needs to be 
performed to set “S-PULS, Kman”, which is why it is only used for comparison and is 
not a valid option for implementation.  

“S-PULS, Kopt1”, “S-PULS, Kopt2” and “S-PULS, Kman” agree well with Abaqus 
for slenderness 25 or higher. For slenderness values lower than 25 the S-PULS curves 
start to deviate from Abaqus, see Figure 5.19b. Using the Abaqus shell validity theory 
check, see Equation (4.1), slenderness 20 is just on the limit. Slenderness less than 20 
does not fulfil the criterion, which is why the accuracy of the shell theory used in 
Abaqus cannot be guaranteed. It is believed that the plate theory used in the S-PULS 
code is valid for the same limits.   

5.4.2 Face-to-core stiffness ratio 

This chapter presents the analysis of a set of material configurations with a different 
face-to-core stiffness ratio. Six different face-to-core stiffness ratios, which is defined 
as the ratio between the shear stiffness of the faces and the shear stiffness of the core, 
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were used by altering the core shear stiffness. The Young’s modulus of the core was 
scaled accordingly, while the face stiffness properties were kept constant, see Table 5.3. 
The material properties of the FRP Sandwich plate 2 correspond to a face-to-core shear 
stiffness ratio, i.e. Gf/Gc, of 120.  

Table 5.3 Material properties with a face-to-core shear stiffness ratio (Gf/Gc), 

shear stiffness (Gc) and Young’s modulus (Ec) of core are shown.  

Gf/Gc Gc [MPa] Ec [MPa] 

120 40 125 

100 48 150 

75 64 200 

50 96 300 

25 192 600 

10 480 1500 

Figure 5.20 shows the critical buckling loads for S-PULS and Abaqus. In Figure 5.20a 
it is seen that for a lower core stiffness the S-PULS results approach the Abaqus results. 
This is because the assumptions of the sandwich plate theory implemented in S-PULS, 
see Chapter 3.3, assuming strong faces and weak core, are fulfilled. For a lower face-
to-core stiffness ratio, i.e. for a stronger core, the effect from shear stiffness is reduced 
and S-PULS and Abaqus start to approach the same solution, see Figure 5.20b.  

 

Figure 5.20 The first buckling loads under uniaxial compression for different core 

shear stiffness (a-left) and a face-to-core shear stiffness ratio (b-right), 

for the FRP Sandwich plate 2. 

From Figure 5.21 to Figure 5.23 end shortening and maximum out-of-plane 
displacement load-displacement curves for the FRP Sandwich plate 2 with a face-to-
core stiffness ratio of 10, 50 and 100 are shown. For all face-to-core stiffness ratios S-
PULS agrees well with Abaqus for end shortening. For out-of-plane displacement one 
can see that S-PULS starts to deviate from Abaqus slightly before the critical buckling 
load for all stiffness ratios. The difference is believed to be caused by the difference in 
evaluated shear stiffness as the shear effect becomes apparent when the plate starts to 
deform out-of-plane. 
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Figure 5.21 End shortening (a-left) and out-of-plane displacement (b-right) for the 

FRP Sandwich plate 2 with Gf/Gc=10 under uniaxial compression. 

 

Figure 5.22 End shortening (a-left) and out-of-plane displacement (b-right) for the 

FRP Sandwich plate 2 with Gf/Gc=50 under uniaxial compression. 

 

Figure 5.23 End shortening (a-left) and out-of-plane displacement (b-right) for the 

FRP Sandwich plate 2 with Gf/Gc=100 under uniaxial compression. 

It can be seen in Figure 5.24 that the face-to-core stiffness ratio has little effect on the 
validity of S-PULS. The response due to different face-to-core stiffness is phased, lower 
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face-to-core stiffness ratio, i.e. stiffer core, does not influence S-PULS model response 
in other ways than giving a stiffer response. Different face-to-core stiffness ratios can 
be related to the importance of how the shear stiffness is evaluated for sandwich plates.  

For a lower core stiffness, occurrence of the second buckling mode can be observed in 
Figure 5.24a when curves change slope for the second time, and in Figure 5.24b when 
curves suddenly bend upwards. By example, this occurs for Gf/Gc=120 at 
approximately 43 MPa, see Figure 5.24. 

 

Figure 5.24 End shortening (a-left) and out-of-plane displacement (b-right) for the 

FRP Sandwich plate 2 with different face-to-core stiffness ratios under 

uniaxial compression for S-PULS. 

5.4.3 Aspect ratio 

The FRP Sandwich plate 2 was modelled maintaining the breadth of 900 mm, while the 
length was altered to obtain aspect ratios of 1, 2, 3, 4 and 5. Figure 5.25 shows the first 
buckling loads for S-PULS and Abaqus for different aspect ratios. The results differ 
most for the square plate where S-PULS and Abaqus generate different shapes of the 
first buckling mode. For the other aspect ratios, i.e. aspect ratios 2-5, the S-PULS and 
Abaqus predicted shapes of the first buckling mode are the same. For S-PULS the 
square plate buckles as two half-sine waves, while in Abaqus as one half-sine wave. 
Despite the different buckling mode shapes for aspect ratio of one, the first buckling 
loads for all aspect ratios predicted by “S-PULS, Kopt1” and “S-PULS, Kopt2” are 
within 4-7% of the Abaqus results. As before, “S-PULS, Kopt3” shows bad agreement 
with Abaqus being over-conservative. 
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Figure 5.25 S-PULS and Abaqus first buckling loads under uniaxial compression for 

the FRP Sandwich plate 2 with an aspect ratio of 1-5. 

In Figure 5.26, the computational times for S-PULS and Abaqus for the plates with a 
different aspect ratio are compared when scaled for 100 increments, in order to evaluate 
efficiency. It can be seen that the efficiency of S-PULS is decreased for an increasing 
aspect ratio. In general, S-PULS is still much faster than Abaqus.  

It should be noted that pre- and post-processing are not accounted for, where Abaqus is 
considered to be even more time-consuming than S-PULS. 

 

Figure 5.26 S-PULS and Abaqus calculation times for 100 increments for the FRP 

Sandwich plate 2 with aspect ratio of 1-5. 

S-PULS calculation time increases exponentially with the aspect ratio, see Figure 5.26. 
This can be explained by how the number of degrees of freedom that is used for the 
approximated displacement fields, see Chapter 3.1, is defined in the PULS codes. Since 
the number of degrees of freedom in the longitudinal direction, i.e. �, is dependent on 
the aspect ratio, i.e. � = 	Y
 ∙  /!, the stiffness matrices, see Chapter 3.4, increase 
in size and more computational effort is needed to solve the problem. 
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Compared with C-PULS, the S-PULS calculation time is approximately 9-times longer. 
Due to the implemented FSDT, which makes the system of equations 9-times larger in 
S-PULS, see Chapter 3.4, calculation time is increased. The increase of calculation time 
when implementing FSDT is in accordance with the expectations presented in Chapter 
3. 

5.4.4 Concluding remarks 

S-PULS is limited in terms of slenderness, as well as the shell theory used in Abaqus. 
The FRP Sandwich plate 2 with a slenderness of 25 fulfils the shell theory validity 
check and the S-PULS results are satisfactory. For a slenderness below 20, the physical 
interpretation of buckling modes is unknown and results are uncertain. 

For the FRP Sandwich plate 2 with a slenderness valid for the shell theory, neither face-
to-core stiffness ratio nor aspect ratio influences the quality of S-PULS results. Aspect 
ratio only influences calculation time, which increases exponentially with the aspect 
ratio. The latter can be explained by the increase in size of the stiffness matrices, which 
are dependent on the chosen number of degrees of freedom and thus dependent on the 
plate aspect ratio.  
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6 Conclusions  

The main objective of this master’s thesis project was to develop a semi-analytical 
method based on the Composite PULS code in order to predict the ULS capacity of 
sandwich plates. First-order shear deformation theory, which relaxes the Kirchhoff’s 
assumptions used in the Composite PULS code, has been implemented in the newly 
developed Sandwich PULS semi-analytical computational tool.  

It was concluded that in order to fully validate the Sandwich PULS code, more 
sandwich plate layups should be investigated. Further, the development has been 
limited to verification by Abaqus, lacking experimental data. It has been shown that 
Sandwich PULS shows good agreement with Abaqus predicting the critical buckling 
loads for both biaxial and combined uniaxial/in-plane shear load cases. For all inspected 
plates, Sandwich PULS shows improved results compared to Composite PULS. The 
small differences between Abaqus and Sandwich PULS are assumed to be caused by 
the slight difference in the evaluated shear stiffness.  

For sandwich plates with thin faces and soft thick core, the sandwich plate theory, where 
shear stiffness of the faces is fully or partly neglected, is applicable. For this kind of 
plates Sandwich PULS shows good correlation with Abaqus. It was concluded that 
“Kopt1” or “Kopt2”, should be used for the shear stiffness evaluation when sandwich 
plates are being analysed. It should be mentioned that Sandwich PULS evaluates shear 
stiffness independent on the axis direction. Implementation of a shear stiffness 
evaluation method that yields values dependant on the axis direction is believed to give 
a more realistic representation.  

It has been shown that the use of only one shear correction factor for all plates does not 
yield satisfactory results. If � = 5/6 is used, the critical buckling loads are over-
predicted and the predicted sandwich plate response is too stiff. For “Kopt3”, results 
are significantly under-predicted. If the use of a uniform shear correction factor is 
preferred, it is believed that values between 0.4 and 0.5 are considered to give a good 
response for FRP Sandwich plate 2 specifically. 

It was concluded that Sandwich PULS failure initiation predictions are not satisfactory. 
FPF loads according to Hashin-Rotem failure criteria are on the conservative side, but 
differences compared to Abaqus are up to 40%. Additionally, failures occur before the 
first buckling loads. The aim that failure predictions should be within 10% is therefore 
not fulfilled. Face wrinkling and shear crimping critical loads were not validated, only 
compared to the Hashin-Rotem failure criteria. The sandwich failure criteria predicted 
loads are not satisfactory and a definite conclusion cannot be given. It has been shown 
that a more extensive investigation of failure initiation load prediction should be 
performed for better understanding.  

With FSDT implemented in Sandwich PULS, the displacement field is extended with 
additional two shear strains. Calculation time is directly dependant on the size of the 
matrix that needs to be solved. It has been shown that it takes approximately 9-times 
longer in Sandwich PULS compared with Composite PULS to perform the same 
analysis.  

It was concluded that calculation time is very much dependent on the plate aspect ratio, 
which is due to an increased number of degrees of freedom that is needed for obtaining 
a solution. For square plates differences in calculation times between Composite PULS 
and Sandwich PULS can hardly be noticed, whereas for rectangular plates the 
calculation time increases exponentially with the aspect ratio. The Sandwich PULS 
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calculation time remains significantly shorter than Abaqus, even for larger aspect ratios. 
Pre- and post-processing times are not taken into consideration in the investigation. If 
so, use of Sandwich PULS would be even more advantageous in terms of time 
efficiency. To keep calculation time within reasonable time limits, it is recommended 
to use Sandwich PULS for plates with an aspect ratio of up to 3.  

From the sensitivity studies performed, it was concluded that Sandwich PULS is limited 
in terms of slenderness. Plates should not have a slenderness below 20 in order to assure 
accurate solutions. Otherwise, higher order theories should be implemented in PULS, 
as FSDT is no longer adequate and validation by Abaqus should in that case be done 
by modelling sandwich plates as solids. 
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7 Recommendations for future work 

Additional sandwich plate layups and material configurations should be investigated to 
get a better judgement about Sandwich PULS performance, validity and limitations in 
the code. Especially the part with failure initiation needs to be within the first scope of 
future work. Sandwich PULS could be extended first to first fibre failure or further to 
last ply failure. If last ply failure will be of interest, a material degradation model needs 
to be implemented in Sandwich PULS.  

With no experimental data from tests performed for FRP Sandwich plates, preferably 
experiments should be performed in order to fully validate Sandwich PULS. To analyse 
non-symmetrical sandwich plate layups, the stretching-bending coupling matrix ��� 
should be implemented in Sandwich PULS. Implementation of ���-matrix would be 
beneficial if degradation models are implemented since non-symmetrical degradation 
can be described. This will increase computational time even more, since two additional 
in-plane displacements need to be added to the displacement field when describing the 
buckling problem.  

The difference in results between Sandwich PULS and Abaqus are mostly based on a 
different shear stiffness evaluation, which is why methods for evaluation of sandwich 
plate shear stiffness need to be further investigated. Shear correction factors should be 
evaluated dependent on the axis direction, i.e. evaluating �HH, �HI and �II. An 
evaluation method based on strain energy distributions of actual shear strain and stress 
resultants across the cross section, could be one implementation option.  

Further development of the code in terms of reducing computational time should be 
investigated. One way of achieving a shorter computational time would be to combine 
routines used for computation of the stiffness matrices. As it is now, these routines are 
completely separated in Sandwich PULS for the eigenvalue analysis and for the 
incremental solution method. Optimization of the PULS code in general should be a 
priority for future work.  
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Appendix A – Material data 

All material data for the plates that has been used in this thesis is presented here. The 
SPS plate (Chapter A.1), single-skin FRP composite plate (Chapter A.2) and FRP 
Sandwich plate 1 (Chapter A.3) were only used as validation for the eigenvalue and 
load-displacement analyses during the implementation process. The FRP Sandwich 
plate 2 (Chapter A.4) was used in the eigenvalue analysis, the load-displacement 
analysis and the failure initiation analysis to give final evaluation of the Sandwich 
PULS code. 

A.1 Sandwich Plate System (SPS)  

The Sandwich Plate System (SPS) consists of thin steel faces and thick polyurethane 
elastomer core. The SPS has been used in shipbuilding due to its many advantages 
compared with conventional structures, such as:  

• improved corrosion and fatigue performance,  

• better strength-to-weight ratio,  

• increased impact, blast and ballistic resistance,  

• vibration damping and acoustic insulation,  

• built-in fire protection. 

Figure A.1a shows SPS layup and Figure A.1b shows an example of the difference 
between a conventional steel structure and a SPS structure. 

 

Figure A.1 Layup of the Sandwich Plate System (SPS) (a-left), a conventional 

stiffened steel (b-top right) and a SPS structure (b-bottom right), from 

Intelligent Engineering Ltd. (2015). 

Plate dimensions are: 

 mma 2970=  

 mmb 990=  

 mmtt ff 421 ==  

 mmtc 25=  

 0.3/ =ba  

 0.30/ =tb  
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Steel faces material properties are equal to: 

 GPaE f 208=  

 30.0=fν  

Elastomer core material properties are equal to, from Hareide (2014): 

 GPaEc 75.0=  

 30.0=cν  

It should be noted that a sandwich plate with thin faces, weak core and the fact that the 
shear modulus of the faces is large is assumed for this case. SPS shear stiffness matrix 
is evaluated according to Zenkert (1997) as:  
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A.2 Single-skin FRP Composite plate 

A single-skin FRP Composite plate with a quadriaxial layup �0d/+45/90/−45�C� is 
used in the validation process. 

Plate dimensions are: 

 mma 1920=  

 mmb 480=  

 
mmt plate 24=  

 0.4/ =ba  

 0.20/ =tb  

FRP material properties are: 

 MPaEL 49627=  

 MPaET 15430=  

 MPaGGGG TTLTLT 4800'' ====  

27.0=LTν  

The single-skin FRP Composite shear stiffness matrix is evaluated according to 
Agarwal et al. (2006) as: 

 

totaltotal tGtGKAA
6

5
5544 ===

 

 05445 == AA  
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A.3 FRP Sandwich plate 1 

The FRP Sandwich plate 1 used in the validation process has similar material properties 
as investigated plates in Boyle et al. (2001) in order to be able to recreate and compare 
their results. 

Plate dimensions are: 

 mma 1840=  

 mmb 920=  

 
mmt plate 1.19=  

 mmtt ff 2.321 ==  

 mmtc 7.12=  

 0.2/ =ba  

 2.48/ =tb  

FRP faces material properties: Certainteed/Seemann 625 E-glass woven roving (225 
yd/lb), from Juska et al. (1993), Derakane 8084 vinyl ester resin, from Ashland Inc. 
(2011): 

 Layup: �0H�� 

 
mmt ply 8.0=  

 4/ =facenply

 

 GPaEL 1.24=  

 GPaET 1.24=  

 GPaGGGG TTLTLT 65.3'' ====  

 115.0=LTν  

 331.0'' == TTLT νν  

 
MPaYX FRPCFRPC 0.331,, ==  

 
MPaYX FRPTFRPT 6.351,, ==  

 MPaSFRP 2.36=  

Core material properties: Divinycell HT-70 PVC foam, from Boyle et al. (2001) and 
MatWeb (2015 a): 

 GPaEc 896.0=  

 GPaGc 393.0=  

 15.0=ν  
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MPaYX foamCfoamC 15.1,, ==  

 
MPaYX foamTfoamT 1.2,, ==  

 
MPaS foam 9.0=  

A sandwich plate with thin faces, weak core and with a large shear modulus of the faces 
compared to the core shear modulus can be evaluated according to Zenkert (1997). FRP 
Sandwich plate 1 shear stiffness matrix is then evaluated as:  

 
cctGAA == 5544
 

 05445 == AA

 A.4 FRP Sandwich plate 2 

The FRP Sandwich plate 2 used in the validation process and failure analysis has the 
following properties: 

Plate dimensions are: 

 mma 1800=  

 mmb 900=  

 
mmt plate 36=  

 
mmtt ff 321 ==  

 mmtc 30=  

 2/ =ba  

 25/ =tb  

FRP faces material properties: Pre-preg E-glass fibre/epoxy, from Hayman (2011): 

 Layup: �0/−45/+45/90�� 

 
mmt ply 75.0=  

 4/ =facenply

 

 MPaEL 49627=  

 MPaET 15430=  

 
MPaX FRPC 915, =  

 
MPaX FRPT 968, =  

 
MPaY FRPC 118, =  

 
MPaY FRPT 24, =  

 MPaSFRP 65=  
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Core material properties: Divinycell H 100 Semi-rigid PVC foam, from MatWeb 
(2015 b): 

 MPaEc 125=  

 MPaGc 40=  

 32.0=ν  

 
MPaYX foamCfoamC 1.3,, ==  

 
MPaYX foamTfoamT 7.1,, ==  

 
MPaS foam 4.1=  
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Appendix B – First-order shear deformation theory 

The classical laminate plate theory (CLT) or better known as the Kirchhoff plate theory 
is only valid for thin plates, for which shear deformations can be neglected. This is not 
the case for sandwich plates, which are usually considered as thick plates, and shear 
deformations thus need to be accounted for. In this thesis, the Mindlin-Reissner or the 
first-order shear deformation plate theory (FSDT) has been chosen for the 
implementation in the Sandwich PULS code. The chapter is summarized and adopted 
from Reddy (2004) and Agarwal et al. (2006). 

The first-order shear deformation plate theory is an extension of the Kirchhoff plate 
theory. The kinematic assumptions of the Kirchhoff plate theory, as found in Reddy 
(2004) and seen in Figure B.1, are: 

• Straight lines perpendicular to the mid-surface (i.e. transverse normals) before 
deformation remain straight after deformation. 

• The transverse normals do not experience elongation - they are inextensible 
(i.e. thickness of a plate does not change during a deformation). 

• The transverse normals rotate in such a way that they remain perpendicular to 
the mid-plane after deformation. 

The first two assumptions imply that the transverse displacement is independent of the 
thickness and that the transverse normal strain 7gg is zero. The third assumption shows 
that the transverse shear strains are zero, i.e. 7`g = 7bg = 0. 

 

Figure B.1 Undeformed and deformed geometries of an edge of a plate under the 

Kirchhoff assumptions, from Reddy (2014). 
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When formulating the laminate plate theory, additional assumptions or restrictions 
should be added to the initial Kirchhoff’s assumptions: 

• The layers are perfectly bonded together. 
• The material of each layer is linearly elastic and has three planes of material 

symmetry, i.e. orthotropic. 
• Each layer is of uniform thickness. 
• The strains and displacements are small. 
• The transverse shear stresses on the top and bottom surfaces of the laminate 

are zero. 

It should be pointed out that these assumptions are only valid for thin plates, where 
shear deformations are rather small and can therefore be neglected. With thick plates in 
mind, the first-order shear deformation plate theory was established, which relaxes the 
third Kirchhoff assumption in a way that the transverse normals can freely rotate but 
are still to remain straight after a deformation, as seen in Figure B.2. As a consequence 
of this relaxation, transverse shear strains need to be included in the strain field. 

 

Figure B.2 Undeformed and deformed geometries of an edge of a plate under the 

assumptions of the first-order shear deformation plate theory, from 

Reddy (2014). 

According to FSDT a displacement of a point in a plate can be defined as: 

 ),(),(),,( 0 yxzyxuzyxu xφ+=    [mm] (B.1a) 

 ),(),(),,( 0 yxzyxvzyxv yφ+=    [mm] (B.1b) 

 ),(),( 0 yxwyxw =    [mm] (B.1c) 
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The actual cross-sectional rotations, i.e. xφ  and yφ , are obtained by differentiating the 

in-plane displacement field, as shown in Equations (B.2a) and (B.2b).  
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The strain-displacement relation can be divided into the mid-plane strains, i.e. 
membrane strains, and the plate curvatures as follows: 
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where the mid-plane strains are: 
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and the plate curvatures for FSDT are: 
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Appendix C – Anisotropic plate theory 

This chapter presents plate theories for anisotropic plates based theories presented in 
Agarwal et al. (2006) and Reddy (2004). 

The stress-strain relation can be rewritten for a lamina as follows: 
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Where [ ] 1

1

−
T  and [ ]2T  in Equation (C.1) are inverse of the stress-transformation matrix 

and strain-transformation matrix defined for each lamina with ply orientation angle θ  
as: 
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Resultant forces and moments acting on a laminate cross section are obtained by 
integrating the corresponding stress through the laminate thickness h  (for resultant 
forces) and multiplying with the moment arm with respect to the mid-plane (for 
resultant moments): 
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After inserting Equation (B.3) into Equations (C.4) and (C.5) the following relation is 
obtained: 
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Three new matrices can be defined and Equations (C.6) and (C.7) can be rewritten as: 
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Where the extensional stiffness matrix [ ]A , the stretching-bending coupling stiffness 

matrix [ ]B  and bending stiffness matrix [ ]D  are defined as follows: 
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Combining Equations (C.8) and (C.9) with Equations (C.10)-(C.12) one can rewrite the 
total plate constitutive equation in a relatively simple form as follows: 
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According to FSDT, shear stresses are not equal to zero. It is assumed that the transverse 
shear strains are constant through the laminate thickness. As a consequence of this 
assumption the shear stresses must be constant as well. However, this is not the case 
with plates in reality, where the shear stresses follow square function through the plate 
thickness, see Figure C.1. Therefore, the shear correction factor (�) has to be used to 
compensate for this assumption, as is shown in Equation (C.16).  

 

Figure C.1 The shear stress distribution through the plate thickness as in reality (a) 

and after compensated for a parameter K (b). 

Shear stresses can be obtained on a lamina level as:
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Where [ ]1

~
T  is the rotational matrix, which is used for shear stress- and shear strain-

transformation, and defined for each lamina with a ply orientation angle θ  as: 
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Shear forces are obtained by integrating the shear stresses through the thickness of a 
laminate: 
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Equation (C.16) can be simplified similar as before by introducing the shear stiffness 
matrix as follows: 
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Appendix D – Energy principles 

In this chapter an overview of different energy principles are presented and summarized 
from Reddy (2004), Byklum (2002) and Yoo and Lee (2011). 

D.1 Potential energy 

The potential energy of a system describes the amount of work that the system can 
perform, which depends on the internal/elastic strain energy and the potential of applied 
loads. The applied load has a potential if the load has the capacity to do work on a 
system during displacement in the system.  

The potential energy for a static problem can be written as: 

 WU +=Π    [Nmm] (D.1) 

where U  is the internal strain energy and W  is the load potential. For a dynamic 
problem, kinetic energy has to be added to the expression for the potential energy. 

The strain energy density is the energy that is needed to deform a unit volume of 
material and it is defined as: 

 { } { } { } { } [ ]{ }εεεσεσ
ε

EdU
TTT

2

1

2

1
0 === ∫    [N/mm2] (D.2) 

The total strain energy of the plate is then the integration of the strain energy density 
over the whole volume of the body: 
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In general, the stress { }σ  and the strain { }ε  vectors each have six components and the 

material matrix [ ]E  is six by six in size. Since for sandwich plates the Mindlin-Reissner 

plate theory is applied, where the transverse normal strain 
zzε  is neglected, the stress 

and strain vectors have only five components and the material matrix is five by five in 
size. 

The total strain energy can be written in the form of the sum of the strain energies due 

to stretching ( mU , the membrane strain energy) and bending ( mU , the bending strain 

energy) for reasons of convenience when one looks at sandwich/composite plates. If 
the plate is asymmetric, the strain energy due to bending-streching coupling should be 

added to the sum ( mbU , the bending-streching strain energy). Energy contribution of 

the shear strains should be accounted for as well ( sU , the shear strain energy). The total 

strain energy is then: 

 smbbm UUUUU +++=    [Nmm] (D.4) 

The external load potential is a sum of the work done by body loads, which act on the 
whole body’s volume, and surface loads, which act only on the surface. It can be 
obtained as: 

 { } { } { } { }∫∫ −−=
S

s

T

V

b

T
dSfudVfuW    [Nmm] (D.5) 



D2 CHALMERS, Shipping and Marine Technology, Master’s Thesis 2015:X-15/325 

where { }u  is a displacement vector, { }
bf  is a body loads vector and { }

sf  is a surface 

loads vector.  

Combining Equations (D.3) and (D.5) the final expression for the total potential energy 
is obtained as:  
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D.2 The principle of virtual work 

The principle of virtual work states that a system is in static equilibrium if the sum of 
virtual work of internal and external forces is zero for all virtual deformations and 
strains. These virtual deformations do not need to have any relation to the actual 
displacement caused by the loading. However, they have to be kinematically allowed. 

 0=+=Π WU δδδ   (D.7) 

where Uδ  is internal virtual work of the plate, Wδ  is virtual work of external loads 

and δ  is the variational operator, which denotes the “change” of the virtual work. 

Since the solution to the nonlinear buckling problem, which is calculated using incremented 
method, is of interest in this thesis, the rates of the virtual work are solved for every 
increment. Therefore, the rate form of the principle of virtual work is being used: 

 0=+=Π WU &&& δδδ  (D.8) 

where the dot represents the differentiation with respect to a rate parameter. 

D.3 The principle of stationary potential energy 

From the principle of virtual work, the principle of minimum potential energy is 
derived. It states that of all the possible deflections satisfying kinematic compatibility, 
those which satisfy static equilibrium will give a stationary value of the potential energy 
of the body, Byklum (2002). This can be expressed as: 

 0=+=Π WU δδδ  (D.9) 

The principle is only valid for conservative, i.e. reversible, systems, where the material 
is elastic, but not necessarily linear elastic, and where the loads are directionally 
constant.  

The system is a stable one if this stationary point of Π  is also its minimum value. If the 
deformed configuration is described by the deflection w , the latter can be written as: 

 0=
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w
 (D.10) 

The principle of minimum potential energy can also be used on rate form: 
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Appendix E – The Rayleigh-Ritz method 

This chapter gives general information about the Rayleigh-Ritz method based on the 
work presented in Cook et al. (2002). General derivations and expressions implemented 
in the Sandwich PULS code, which are presented in this chapter, are based on the work 
done by Hareide (2012). 

E.1 General introduction 

The Rayleigh-Ritz method has been a well-known approximation method, also for the 
plate buckling problem, which is of interest in this thesis. For buckling of composite 
plates, the Rayleigh-Ritz method has some advantages over the direct, i.e. analytical, 
solutions since they are only limited for special cases. Unlike for analytical solutions, 
the Rayleigh-Ritz method describes the sought variable using a series of admissible 
functions together with unknown amplitudes, which are found using the principle of 
minimum potential energy.  

These functions should be simple enough and practicable to use. The choice is usually 
limited to polynomials and occasionally sine and cosine functions. These series 
expressions are called shape or trail functions and are truncated at a finite number of 
terms, i.e. degrees of freedom. In order for the approximated system to converge the 
trial functions need to be complete. Completeness is satisfied if the exact displacements 
and their derivatives that appear in the potential energy formulation can be matched 
arbitrarily closely and if enough terms are used in the trail functions, Cook et al. (2002). 

It should be mentioned that deflections approximated with the Rayleigh-Ritz method 
are under-predicted. This is due to the fact that the exact deflection shape is smooth and 
that it always takes the form of the least resistance. Even though the large number of 
degrees of freedom is used for the approximation, the approximated system will be 
made stiffer than it really is, since any other form than the exact one with the least 
resistance introduces slightly higher resistance, i.e. stiffness, Cook et el. (2002). 

For the buckling problem the potential energy is described with approximated 

displacement and rotations, 1w , 2w  and 3w , which can be defined as: 
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then the potential energy is described by several linear independent functions:  

 ( ) ( )MNMNMN CCBBAAwww ,...,,,...,,,...,,, 111111321 Π=Π→Π=Π  (E.2) 

where mnA , mnB  and mnC  are the unknown amplitudes and mxf )(  and nyf )(  are the 

trial functions. 
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The equilibrium requirement will now be satisfied if the potential energy is stationary 
with respect to all degrees of freedom. 
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Or written as: 
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Then the condition, written in Equation (D.10), that the potential energy has a stationary 
value can be rewritten as: 

 0
1 11 11 1

=
∂

Π∂
+

∂

Π∂
+

∂

Π∂
=Π ∑∑∑∑∑∑

= == == =

M

m

N

n

mn

mn

M

m

N

n

mn

mn

M

m

N

n

mn

mn

C
C

B
B

A
A

δδδδ  (E.5) 

The same condition can be rewritten in the following set of equations: 
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 (E.6) 

If all degrees of freedom are collected in a vector { }A , then the previous system of 

equations can be rewritten as: 
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E.2 Displacement functions 

The Rayleigh-Ritz approximated displacement functions used in the Sandwich PULS 
code are expressed as: 
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where M and N are the number of degrees of freedom used in the Rayleigh-Ritz 
approximation method. If they are set to infinity, the approximated series will limit to 
the exact solution. Therefore, finding a finite number of degrees of freedom that 
satisfies the convergence conditions, is crucial. 

E.3 Differentiated displacement functions 

To solve the plate buckling problem using the Rayleigh-Ritz method, the differentiated 
displacement functions need to be obtained in order to be later used in the expressions 
for the potential energy of the plate. The differentiated expressions are: 
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E.4 Energy contributions 

Only energy contributions from the bending and shear strains are presented here, since 
these are the ones that change if the FSDT is applied. Their energy contribution can be 
expressed as: 
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When the differentiated displacement functions shown in Equations from (E.9a) to 
(E.9i) are inserted into the expression for the bending and shear strain energy, i.e 
Equation (E.10b), the following expressions are obtained step-by-step: 
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Some of the trigonometric functions found in Equation (E.11a) can be used in the 
simplified form in Equation (E.11b) as: 
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E.5 Integrals used in the Rayleigh-Ritz method 

The integrals appearing in the potential energy expressions are solved and yield the 
exact solution for a certain combination of set values for m, n, p and q. 

Appearing in the terms with 11D , 12D  and 22D : 
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Appearing in the terms with 66D : 
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Appearing in the terms with xzS : 
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Appearing in the terms with yzS : 
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Appearing in the term with 16D  and 26D : 
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The terms h�� and h-i, which are the Kronecker deltas, are used to simplify the 

Equations from (E.13) to (E.16). They ensure that the integrals are non-zero only for 
terms where m equals p and for the terms where n equals q.  
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Similarly, the terms j�� and j-i are defined and used in Equation (E.17), which ensure 

that the integrals are non-zero only for the terms when m is not equal to p and for the 
terms where n is not equal to q. 

E.6 Final expressions for energy contribution 

After Equations from (E.13) to (E.17) and Equation (E.11b) are combined together the 
final expression for the bending and shear strain energy contribution is obtained as: 
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Appendix F – Derived stiffness matrices 

The derived stiffness matrices that are needed for the eigenvalue analysis and for the 
incremental solution method are presented in this chapter, together with the derivation 
process to obtain them. 

F.1 Derivation process 

When derivations for obtaining sub-matrices are made, the following chain rule is 
applied: 
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 (F.1) 

The chain rule expressed in Equation (F.1) can be explained in the following four steps 
as well: 

• (1): In the first term m and n are set to k and l and derived with respect to 

coefficient klβ  and in the second term p and q are set to k and l and derived 

with respect to coefficient klβ   

• (2): Result of the first derivation is a function dependent on m, n, p, q, k and l, 

which needs to be derived with respect to ijα   

• (3): Chain derivation rule is then repeated as in the first term m and n are set to 

i and j and derived with respect to the coefficient ijα  and in the second term p 

and q are set to i and j and derived with respect to the coefficient ijα  

• (4): The final result is a function dependent only on i, j, k and l  
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F.2 Derived eigenvalue stiffness matrices 
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In order to reduce computational effort and since the stiffness matrix is symmetrical, 
the following relations are implemented in the PULS code: 

 [ ] [ ]TM

AB

M

BA KK =  (F.8a) 

 [ ] [ ]TM

AC

M

CA KK =  (F.8b) 

 [ ] [ ]TM

BC

M

CB KK =  (F.8c) 
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Appendix G – Hashin-Rotem/Hashin (Abaqus) 

The Hashin-Rotem and the Hashin failure criteria are presented here as they are 
interpreted in Abaqus, see Dassault Systèmes (2014).  

Failure in fibre tension: 
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Failure in fibre compression: 

 1

2

11 =








CX

σ
 (G.2) 

Failure in matrix tension: 
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Failure in matrix compression: 
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Where α  is a coefficient that determines the contribution of the shear stress to the 
expression for the fibre tension failure. If 1=α  the Hashin criteria are used, while if 

0=α  the Hashin-Rotem failure criteria are used as interpreted by Abaqus. 

 

 


