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Carbon NanoFibers (CNF) properties, 

growth and applications. 

V. Desmaris, A. M. Saleem, S. Shafiee 

Smoltek AB, Regnbagsgatan 3, 417 55 Gothenburg, Sweden 

 

One dimensional carbon nanostructures have been known and fabricated for more than a hundred 

years [01] and where originally referred as ”filamentous carbon”, ”carbon filaments” or ”carbon 

whiskers” [02]. However, It is only during the 1990s and 2000s with the demonstration of carbon 

nanotubes [03-04] and the introduction of catalytic plasma enhanced chemical vapor deposition [05-

06], that one dimensional carbon nanostructures emerged as promising for a large variety of 

applications. In this paper, Carbon NanoFibers (CNFs), a particular type of one dimensional carbon 

with unique properties are first described, before their growth is discussed and finally their main 

applications are presented. 

CNF 

 

CNFs are allotropes of carbon having a diameter size of about 50 to 100 nm with length ranging from 

one to hundreds of micrometers (Fig 1). Unlike carbon nanotubes (CNTs), which is a hollow 

cylindrical structure made of one or several concentric graphene rolls (single wall carbon nanotube 

and multiwall carbon nanotube respectively), CNFs consist of a stack of graphene cones. CNFs and 

CNTs are distinguished by measuring the angle () between the one dimensional carbon 



nanostructure axis and the graphene layers forming it. Single or multi-wall CNTs exhibit an angle of 0, 

whereas CNF reveal a nonzero angle (Fig. 2). 

The electronic bindings between carbon atoms in a CNF are twofold: in-plane covalent bonds within 

each cone of graphene and inter-plane Van der Waals bindings between the cones.  As a result, the  

angle does not only determine the nature of the carbon nanostructures, but also its electrical and 

mechanical properties.  

Unlike CNT, whose conductivity depends on its chirality and usually present a ratio of 

metallic/semiconducting CNT of 1/3 [07], CNFs have the advantageous properties of being 100% 

metallic and possibly grown individually at low temperatures. 

The typical properties of CNF are summarized in the table below, the variations depends on their 

processing conditions and hence their structural configuration, diameter, length, interface, 

contacting schemes… etc… 

Table I: Typical properties of CNFs 

Parameter Typical values 

Diameter 1-100 nm 

Length 0.1-100 m 

Fill factor when grown as films 5-80 % 

Density <2 g/cm3 

Thermal expansion coefficient (CTE) ~ 10-6/K-10-7/K 

Young Modulus 80-800 GPa 

Poisson’s Ration 0,2-0,25 

Tensile strength 30 GPa 

Electrical resistivity 0.1 ·m – 2m·m 

Thermal conductivity 20-3000 W/m·K 

Temperature tolerance >1000 C without oxygen, >400 C with oxygen 

Vertical pressure strength as grown >50 Bar 

Horizon shear strength as grown Weak 

Shear strength of bonded nanostructures 1.5x-3x MIL 

 



Growth 

The properties of CNFs are largely depending of the growth conditions. Arc discharge and its modern 

variant electro spinning can provide very pure material, however the control and reproducibility of 

the length, shape and alignment of CNF produced using these techniques are inherently limited and 

consequently restrain their applications fields.  

It is the development of catalytic PECVD during the late 1990s [05] that made possible a more 

deterministic method to produce CNF on substrates.  The positioning of the fibers on a substrate 

would depend on the presence of a catalyst, the CNF alignment is controlled by the electric field 

generated by the plasma, whereas the length of the CNF is simply determined by the growth time. 

Even though the full growth process of CNF is not completely understood, it is generally accepted 

[08] that the perpendicular alignment of the CNF to the substrate results from uniform stress at the 

catalyst/CNF interface due to electrostatic forces, which compensate for any non-verticallity during 

the growth process.  

In addition, many PECVD systems using different RF and microwave sources developed [09- 11]. 

However, DC-PECVD produced so far the best results for the fabrication of CNF at low CMOS 

compatible temperature using different pre and post processing techniques to cope with the 

inherent discharge problems, which may rise when using insulating substrates [12]. 

The most accepted description of the growth mechanism of CNF originates from the pioneer work of 

Baker et al in the 1970s. It decomposes the growth process into four steps described in Fig 3. First, A 

molecule of gas precursor is adsorbed at the surface of the catalyst. Second, the gas molecule is 

dissociated at the surface of the catalyst. Third, the dissociated carbon atoms diffuse through [01]or 

at the surface [13] of the catalyst towards the CNF, depending on the propensity of the catalyst to 

form carbide or enable low-energy diffusion of carbon at its surface. Fourth, the carbon atoms are 

incorporated into the CNF. 



As a result, the PECVD growth of CNF requires three components: gases, an underlayer and a 

catalyst.  

The catalytic PECVD growth process involves generally two gases. The first one acts as a carbon 

precursor (usually acetylene or methane) and reacting with the catalyst, building the CNF. The 

second being a carbon etchant (often Ammonia or hydrogen) prevents parasitic growth [14]. 

The role of the underlayer, located between the catalyst and the substrate, acts as a diffusion barrier 

between the catalyst and the substrates, in order to avoid poisoning of the catalyst though a reaction 

with the substrate or diffusion in the substrate as a result of the elevated temperature during the 

growth process. Various metal underlayer based on refractory metals or alloy have been used 

depending on the choice of substrates of catalyst and a comprehensive review can be found in [15]. 

The activity of the catalyst particle is crucial for the growth process [16]. It can consist of consists of 

one or few elements [15], however vast majority of the reports regarding the growth of CNF deals 

with catalyst made of transitions metals: Fe, Co, Ni [15]. In addition, it is currently believed that the 

catalyst should form nanoparticles of a favorable size in order to initiate the growth of a CNF. 

Therefore the catalyst can be deposited as a film using Physical vapor deposition techniques, or 

directly as nanoparticles using spray coated [17] or spinning [18], providing that the growth 

temperature will lead to a dissociation of the film into droplet/nanoparticles of appropriate size. 

Applications 

Their remarkable properties, combined with the unique low temperature deterministic growth (Fig. 

4) process makes CNFs very suitable for semiconductor packaging applications as well as building 

advanced capacitors. 



CNF as interconnects 

Since the CNFs grown by catalytic PECVD are vertical dimensional material with large aspect ratio and 

are inherently rooted and attached to the underlying substrates which can be grown individually (Fig. 

4) with controllable pitch down to down to single digit microns on substrates, CNF have been first 

thought as alternative to micro-and nano copper pillars for packaging chips with high density of IOs 

[19]. In fact their resilience to electrical [20] and chemical corrosion makes them highly relevant 

when electromigration is limiting the reliability of copper interconnects for small pitch applications. 

Clusters of thousands of CNFs result in the form of a “forest”, which as such have been considered as 

interconnects. Such bump interconnects (Fig 5), made solely of CNF rooted on the underlying 

bonding pads, used as flip chip or integrated, have been demonstrated to form robust interconnects 

supporting current densities of several tens of MA/cm2. In addition, such bumps made solely out of 

CNFs have been demonstrated to provide a microwave link suitable for high frequency operations to 

about 20 GHz [21] and would be perfectly suited for the packaging of high power microwave devices 

such as GaN FETs or SiC transistors or diodes. 

CNF as solder joint enhancers 

A number of studies find that CNF’s can reduce the Coefficient of Thermal Expansion (CTE) of solder 

when embedded in the solder [22-25]. Commonly used SAC solders can have CTEs ranging from 16.7 

to 26 ppm/˚C , whereas the CTE of the adjoining silicon can range from 3 ppm/˚C to 8 ppm/˚C 

creating a mismatch which can cause solder joint cracking over time and thermal cycling. The effect 

of this mismatch as the solder volume is reduced raises the probability of joint failure significantly. 

CNFs have the ability to bond with solder while still remaining rooted on the IC pads enabling them 

build composite materials, which take advantage of their high (TPa) young modulus to provide robust 

joints between two chips or chips to package [25-26]. Studies show that CNFs, using flash metal 

layers, wet many of the commonly used IC assembly solders, such as Indium IN 290, In-Sn [19]or 

SAC305 [4], remarkably well leaving hardly any voids at the fiber/CNF interface and forming a 



composite joint with lower CTE that the solder itself, since VACNF have hardly any CTE. Further, the 

wetability of the CNF to the solder could prevent the solder from wicking out and away from the 

pads, thus reducing the number of solder shorts that occur as the solder pad-pad pitch gets smaller. 

The length of the rooted CNF is solely determined by the CVD growth process. Such length make it 

possible to enhanced the reliability of the fiber to solder joint, since fibers could be longer than the 

intermetalic region on the solder to pad interface. All the above features of the CNF/ solder 

composites make them very promising for Nano-scale interconnect with improved reliability. The 

thermal fatigue life was demonstrated to increased by 87 % by creating a 29% by volume mixture of 

CNFs and solder[22]. 

 The considerable Young Modulus of the CNFs along their growth axis confer them remarkable 

piercing properties, e.g. for nano-imprinting [27]. Therefore beside the rebar of the IMC layer in the 

bump formation, the CNF remarkable compressive strength would imply that they could provide 

considerable reinforcement of a solder bump, preventing it to deform and dimple during testing [28]. 

CNF-based adhesive interconnects 

CNF films can also be used as performance enhancer of flip-chip bonding when soldering is not 

possible. Using standard thermal compression flip-chip technique, composites made of CNF grown 

directly on chips such as SiC power transistors or Si LDMOS  and embedded into a polymer  have 

shown to such as can provide good ohmic contacts (specific contact in the order of 105 Ω·cm2 )on 

direct-copper-bonding or leadframes [19]. The embedding of CNF in polymers forms, after assembly 

a type of Anisotropic Conducting Film (ACF), where the polymer provide the necessary sufficient 

adhesion and compensate the relatively weak shear stress resilience of the  CNF. Such Adhesive 

interconnects meets the MILx1 to MILx3 standards. 



CNF as electrode material for capacitors 

Due to their metallic nature CNF, when grown on metallic surfaces, provide a large increase in 

effective surface area per footprint. As a result, CNF have also been implemented as electrode 

material for two types of capacitors, namely decoupling capacitors and super-capacitors. 

CNF-based capacitor electrode can be used in two relatively large decoupling capacitors directly on-

chip, having a large advantage over the embedded film capacitors [29-30] surface mount and land 

side decoupling capacitor can be realized by growing directly the CNF of the connecting pads of an IC 

chip, provided that the growth process is compatible with the IC’s technological node [31]. Different 

prototypes of CNF-based decoupling capacitors have shown an enhancement by a factor of 10 to 100 

in capacitance density compared to current technology [31]. 

Supercapacitors are electrochemical capacitors [32] with high power density. Their life time is 100 

times larger than Lithium batteries and their performance is largely dictated by the effective area of 

the electrode materials, its structure. Historically active carbon has been used as electrode material, 

however more recently flexible sheets of electrospun CNFs are considered prospective electrodes 

materials for supercapacitors because of their well interconnected pores, high mechanical and 

electrochemical stability [33-34]. Their main drawback of low specific surface area has nowadays 

been circumvented  bytheir nitrogen doping and functionalization with CNTs, resulting in 3D 

CNT/CNF composites suitable for supercapacitors with high power density and long life-cycle 

performance [35] for next generations supercapacitors. 

CNF as Thermal Interface Material. 

CNF exhibit very large thermal conductivity but mainly in the direction of its growth axis. As a result, 

early studies [36] have emphasized the need to combine CNFs as a filler into in a matrix of another 

material such as solders [37] or Copper[36].  This intrinsic isotropic heat conduction in the CNF, 

limited the tentative of using them in a TIM material. In fact, much focus on the packaging industry 

has been heat spreading using various materials such as graphite. Despite the successful 



implementation of heat spreaders, removing heat from the chips to the package and CNF is expected 

to play a key role in the vertical extraction of heat from the chip to the package [38], 

CNF for Nanoeletromechanical systems. 
 

Vertically aligned carbon nanofibers have also great potential in nanoelectromechanical system 

because a single carbon nanofiber can be grown upto a few micron long, standing alone vertically 

aligned at controlled position which can be addressed easily. The long single CNF can be bent easily 

by applying low electric field. The NEMs based on CNF grown using PECVD technique at CMOS 

compatible temperature can be embedded in CMOS chips. [39] made the nanoelectromechanical 

switch by bending vertically aligned carbon nanofiber using electric field and actuated the fiber by 

applying 10V potential across a 5 microns distance. The fiber could bear the 90o bend and came back 

to original position on switching electric field off. 

Summary 

Even though CNF do not fully meet electrical and thermal performance of CNTs, the reliability, and 

deterministic nature of their low temperature growth and properties makes them extremely 

attractive for various applications.  They have been shown to provide alternative and potentially 

disruptive solution for high reliability low-pitch interconnects or flip-chip and die-attach when 

employed intrinsically (I.e. as grown) or in combination with solders and polymers, respectively. 

Additionally their thermal properties and possibility to grow them on chip can provide new thermal 

managements solutions for packaged components. Furthermore CNF-based materials for the 

enhancement of supercapacitors as replacement for Lithium battery or on-chip decoupling capacitors 

widen the prospective application area of CNFs.  
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Fig 1. a.SEM picture of CNFs, b. TEM picture of CNFs 

  



 

Fig 2. Schematic of the internal structure.  a. a single wall CNT b. multiwall CNT. C. CNF  

 

  



 

Fig 3. CNF Growth mechanism: a. catalyst nanoparticle formation. b. Carbon adsorptiontion at the 

catalyst site. c. Carbon through the bulk and or surface diffusion of the catalyst. d. nucleation. 

  



 

Fig 4. SEM picture of individual fibers. 

  



 

Fig 5.a. SEM micrograph of Carbon bumps grown (hence rooted) on solder pads. B. array of Carbon 

bumps 

 


