
Thesis for The Degree of Doctor of Philosophy

Visual GUI Testing:
Automating High-Level Software Testing in

Industrial Practice

Emil Alégroth

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Göteborg University
Göteborg, Sweden, 2015

Visual GUI Testing:
Automating High-Level Software Testing in
Industrial Practice

Emil Alégroth

Copyright © 2015 Emil Alégroth
except where otherwise stated.
All rights reserved.

Technical Report No 117D
ISSN 0346-718X
ISBN 978-91-7597-227-5
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Göteborg University
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2015.

ii

To Therese, Alexandra and my supporting family

iv

Abstract

Software Engineering is at the verge of a new era where continuous releases
are becoming more common than planned long-term projects. In this context
test automation will become essential on all levels of system abstraction to
meet the market’s demands on time-to-market and quality. Hence, automated
tests are required from low-level software components, tested with unit tests,
up to the pictorial graphical user interface (GUI), tested with user emulated
system and acceptance tests. Thus far, research has provided industry with a
plethora of automation solutions for lower level testing but GUI level testing is
still primarily a manual, and therefore costly and tedious, activity in practice.

We have identified three generations of automated GUI-based testing. The
first (1st) generation relies on GUI coordinates but is not used in practice due
to unfeasible maintenance costs caused by fragility to GUI change. Second
(2nd) generation tools instead operate against the system’s GUI architecture,
libraries or application programming interfaces. Whilst this approach is suc-
cessfully used in practice, it does not verify the GUI’s appearance and it is
restricted to specific GUI technologies, programming languages and platforms.

The third (3rd) generation, referred to as Visual GUI Testing (VGT), is
an emerging technique in industrial practice with properties that mitigate the
challenges experienced with previous techniques. VGT is defined as a tool-
driven test technique where image recognition is used to interact with, and
assert, a system’s behavior through its pictorial GUI as it is shown to the user
in user-emulated, automated, system or acceptance tests. Automated tests
that produce results of quality on par with a human tester and is therefore
an effective complement to reduce the aforementioned challenges with manual
testing. However, despite its benefits, the technique is only sparsely used in
industry and the academic body of knowledge contains little empirical support
for the technique’s industrial viability.

This thesis presents a broad evaluation of VGT’s capabilities, obtained
through a series of case studies and experiments performed in academia and
Swedish industry. The research follows an incremental methodology that be-
gan with experimentation with VGT, followed by industrial studies that were
concluded with a study of VGT’s use at a company over several years. Results
of the research show that VGT is viable for use in industrial practice with
better defect-finding ability than manual tests, ability to test any GUI based
system, high learnability, feasible maintenance costs and both short and long-
term company benefits. However, there are still challenges associated with the
successful adoption, use and long-term use of VGT in a company, the most
crucial that suitable development and maintenance practices are used. This
thesis thereby concludes that VGT can be used in industrial practice and aims
to provides guidance to practitioners that seek to do so. Additionally, this
work aims to be a stepping stone for academia to explore new test solutions
that build on image recognition technology to improve the state-of-art.

Keywords

Software Engineering, Automated Testing, Visual GUI Testing, Industrial Re-
search, Empirical Research, Applicability and Feasibility

Acknowledgments

First and foremost, my deepest thanks go to my main supervisor, friend and
mentor Professor Robert Feldt whose belief in me and unwavering support
made this thesis possible. We have had an amazing journey together and you
have not just taught me how to be a researcher but a better person as well,
something that I will cherish forever.

Second, my thanks go to my second supervisor, Associate professor Helena
Holmström-Olsson, whose positive attitude, support and advice have been a
great source of inspiration and help, both in times of joy and despair.

Next I want to thank my examiner Professor Gerardo Scheider and all my
past and present colleagues at the Software Engineering division at Chalmers
University of Technology whose guidance and support has been invaluable for
the completion of my thesis work. In particular I would like to thank Dr.
Ana Magazinius, Dr. Ali Shahrokni, Dr. Joakim Pernst̊al, Pariya Kashfi, An-
tonio Martini, Per Lenberg, Associate professor Richard Berntsson Svensson,
Professor Richard Torkar and Professor Jan Bosch for many great experiences
but also for always being there to listen to and support my sometimes crazy
ideas. Additionally, I want to thank Bogdan Marculescu and Professor Tony
Gorschek who, together with Robert, convinced me, in their own way, to pro-
ceed a PhD. Further, I want to thank my international research collaborators,
in particular Professor Atif Memon, Rafael Oliveira and Zebao Gao who made
a research visit in the US a wonderful experience.

However, this thesis had not been completed without the support of my
loving wife, and mother of my wonderful Alexandra, Therese Alégroth. She
has been my rock and the person I could always rely on when times were tough.
Thanks also go to my mother Anette, father Tomas and sister Mathilda for
believing in me and for their sacrifices to ensure that I could pursue this dream.
Further, I want to thank my friends for always being there and I hope that
one day, perhaps after reading my thesis, that you will understand what I do
for a living.

I also want to thank my industrial collaborators, in particular the staff
at Saab AB, Michel Nass, the staff at Inceptive, Geoffrey Bache, the Soft-
ware Center and everyone else that has helped, supported and believed in my
research.

This research has been conducted in a joint research project financed by
the Swedish Governmental Agency of Innovation Systems (Vinnova), Chalmers
University of Technology and Saab AB. My studies were also supported by the
Swedish National Research School for Verification and Validation (SWELL),
funded by Vinnova.

vii

List of Publications

Appended papers

This thesis is primarily supported by the following papers:

1. E. Börjesson, R. Feldt, “Automated System Testing using Visual GUI
Testing Tools: A Comparative Study in Industry”
Proceedings of the 5th International Conference on Software Testing
Verification and Validation (ICST’2012), Montreal, Canada, April 17-
21, 2012 pp. 350-359.

2. E. Alégroth, R. Feldt, H. H. Olsson, “Transitioning Manual System Test
Suites to Automated Testing: An Industrial Case Study”
Proceedings of the 6th International Conference on Software Testing
Verification and Validation (ICST’2013), Luxenbourg, March 18-22, 2013.

3. E. Alégroth, R. Feldt, L. Ryrholm, “Visual GUI Testing in Practice:
Challenges, Problems and Limitations”
Published in the Empirical Software Engineering Journal, 2014.

4. E. Alégroth, R. Feldt, P. Kolström, “Maintenance of Automated Test
Suites in Industry: An Empirical study on Visual GUI Testing”
In submission.

5. E. Alégroth, R. Feldt, “On the Long-term Use of Visual GUI Testing
in Industrial Practice: A Case Study”
In submission.

6. E. Alégroth, G. Zebao, R. Oliviera, A. Memon, “Conceptualization and
Evaluation of Component-based Testing Unified with Visual GUI Test-
ing: An Empirical Study”
Proceedings of the 8th International Conference on Software Testing
Verification and Validation (ICST’2015), Graz, Austria, April 13-17,
2015

7. E. Alégroth, J. Gustafsson, H. Ivarsson, R. Feldt, “Replicating Rare
Software Failures with Visual GUI Testing: An Industrial Success Story”
Accepted for publication in the Journal of IEEE Software, 2015.

ix

x

Other papers

The following papers are published but not appended to this thesis, either due
to overlapping contents to the appended papers, contents not related to the
thesis or because the contents are of less priority for the thesis main conclu-
sions.

1. E. Börjesson, R. Feldt, “Structuring Software Engineering Case Studies
to Cover Multiple Perspectives”
Proceedings of the 21st International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2011), Miami Beach, Florida,
USA, July 1-3, 2011.

2. E. Alégroth, M. Nass, H. H. Olsson, “JAutomate: a Tool for System-
and Acceptance-test Automation”
Proceedings of the 6th International Conference on Software Testing,
Verification and Validation (ICST’2013), Luxenbourg, March 18-22, 2013.

3. E. Alégroth, “Random Visual GUI Testing: Proof of Concept”
Proceedings of the 23rd International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE’2013), Boston, Massachusetts,
USA, June 27-29, 2013.

4. G. Liebel, E. Algroth and R.Feldt, “State-of-Practice in GUI-based Sys-
tem and Acceptance Testing: An Industrial Multiple-Case Study”
Proceedings of the 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), 2013.

5. E. Algroth and R.Feldt, “Industrial Application of Visual GUI Testing:
Lessons Learned”
Chapter of the book Continuous Software Engineering published by Springer,
2014.

6. E. Alégroth, G. Bache, E. Bache, “On the Industrial Applicability of
TextTest: An Empirical Case Study”
Proceedings of the 8th International Conference on Software Testing
Verification and Validation (ICST’2015), Graz, April 13-17, 2015

7. R. Oliviera, E. Alégroth, G. Zebao, A. Memon, “Definition and Evalu-
ation of Mutation Operators for GUI-level Mutation Analysis”
Proceedings of the 10th Mutation Workshop (Mutation’2015), Graz, Aus-
tria, April 13, 2015

Statement of contribution

In all listed papers, the first author was the primary contributor to the research
idea, design, data collection, analysis and/or reporting of the research work.

Contents

Abstract v

Acknowledgments vii

List of Publications ix

1 Introduction 1
1.1 Introduction . 1
1.2 Software engineering and the need for testing 3

1.2.1 Software Testing . 3
1.2.2 Automated Software Testing 5
1.2.3 Automated GUI-based Software Testing 7

1.2.3.1 1st generation: Coordinate-based 7
1.2.3.2 2nd generation: Component/Widget-based . . 7
1.2.3.3 3rd generation: Visual GUI Testing 9
1.2.3.4 Comparison . 11

1.3 Research problem and methodology 11
1.3.1 Problem background and motivation for research 13
1.3.2 Thesis research process 16
1.3.3 Research methodology 17
1.3.4 Case studies . 18

1.3.4.1 Interviews . 20
1.3.4.2 Workshops . 21
1.3.4.3 Other . 22

1.3.5 Experiments . 24
1.3.6 Data analysis . 24

1.4 Overview of publications . 27
1.4.1 Paper A: Static evaluation 27
1.4.2 Paper B: Dynamic evaluation 28
1.4.3 Paper C: Challenges, problems and limitations 30
1.4.4 Paper D: Maintenance and return on investment 31
1.4.5 Paper E: Long-term use 33
1.4.6 Paper F: VGT-GUITAR 35
1.4.7 Paper G: Failure replication 37

1.5 Contributions, implications and limitations 38
1.5.1 Applicability of Visual GUI Testing in practice 39
1.5.2 Feasibility of Visual GUI Testing in practice 42

xi

xii CONTENTS

1.5.3 Challenges, problems and limitations with Visual GUI
Testing in practice . 47

1.5.4 Solutions to advance Visual GUI Testing 47
1.5.5 Implications . 48

1.5.5.1 Implications for practice 48
1.5.5.2 Future research 49

1.5.6 Threats and limitations of this research 51
1.5.6.1 Internal validity 51
1.5.6.2 External validity 52
1.5.6.3 Construct validity 52
1.5.6.4 Reliability/conclusion validity 53

1.6 Thesis summary . 53

2 Paper A: Static evaluation 55
2.1 Introduction . 56
2.2 Related Work . 57
2.3 Case Study Description . 59

2.3.1 Pre-study . 60
2.3.2 Industrial Study . 62

2.4 Results . 64
2.4.1 Results of the Pre-study 64
2.4.2 Results of the industrial study 68

2.5 Discussion . 71
2.6 Conclusion . 73

3 Paper B: Dynamic evaluation 75
3.1 Introduction . 76
3.2 Related Work . 77
3.3 Research methodology . 78

3.3.1 Research site . 79
3.3.2 Research process . 80

3.4 Results and Analysis . 81
3.4.1 Pre-transition . 81
3.4.2 During transition . 83

3.4.2.1 VGT test suite maintenance for improvement . 85
3.4.2.2 VGT test suite maintenance required due to

SUT change 86
3.4.3 Post-transition . 88

3.5 Discussion . 91
3.5.1 Threats to validity . 94

3.6 Conclusion . 94

4 Paper C: Challenges, problems and limitations 97
4.1 Introduction . 98
4.2 Background and Related work 100
4.3 Industrial case study . 102

4.3.1 The industrial projects 103
4.3.2 Detailed data collection in Case 1 105
4.3.3 Detailed data collection in Case 2 107

CONTENTS xiii

4.3.4 The VGT suite . 108
4.4 Results and Analysis . 110

4.4.1 Test system related CPLs 111
4.4.1.1 Test system version 112
4.4.1.2 Test system (General) 115
4.4.1.3 Test system (Defects) 117
4.4.1.4 Test company specific CPLs 118
4.4.1.5 Test system (Environment) 119

4.4.2 Test tool related CPLs 119
4.4.2.1 Test tool (Sikuli) related CPLs 119
4.4.2.2 Test application 124

4.4.3 Support software related CPLs 125
4.4.4 CPL Summary . 127
4.4.5 Potential CPL solutions 129
4.4.6 Defect finding ability, development cost and return on

investment (ROI) . 131
4.5 Discussion . 138

4.5.1 Challenges, Problems, Limitations and Solutions 138
4.5.2 Defects and performance 140
4.5.3 Threats to validity . 142

4.6 Conclusions . 143

5 Paper D: Maintenance and return on investment 145
5.1 Introduction . 146
5.2 Related work . 147
5.3 Methodology . 148

5.3.1 Phase 1: Interview study 149
5.3.2 Phase 2: Case study Setting 150
5.3.3 Phase 2: Case study Procedure 153

5.4 Results and Analysis . 155
5.4.1 Quantitative results . 156

5.4.1.1 Modeling the cost 159
5.4.2 Qualitative results . 161

5.4.2.1 Phase 1: Interview results 161
5.4.2.2 Phase 2: Observations 163
5.4.2.3 Phase 2: Factors that affect the maintenance

of VGT scripts 164
5.5 Discussion . 168

5.5.1 Threats to validity . 170
5.6 Conclusions . 171

6 Paper E: Long-term use 173
6.1 Introduction . 174
6.2 Related work . 176
6.3 Methodology . 177

6.3.1 Case company: Spotify 177
6.3.2 Research design . 179

6.4 Results and Analysis . 184
6.4.1 Results for RQ1: VGT adoption 184

xiv CONTENTS

6.4.2 Results for RQ2: VGT benefits 185
6.4.3 Results for RQ3: VGT challenges 187
6.4.4 Results for RQ4: VGT alternatives 189
6.4.5 Quantification of the Qualitative Results 194

6.5 Guidelines for adoption and use of VGT in industrial practice . 194
6.5.1 Adoption of VGT in practice 197
6.5.2 Use of VGT in practice 198
6.5.3 Long-term use of VGT in practice 199

6.6 Discussion . 200
6.6.1 Threats to Validity . 202

6.7 Conclusions . 203
6.8 Appendix A: Interview Questions 204

7 Paper F: VGT-GUITAR 205
7.1 Introduction . 206
7.2 Background and Motivation . 207
7.3 Methodology . 209

7.3.1 Experiment: Fault detection and False results 209
7.3.2 Case study: Applicability in practice 213

7.4 Results and Analysis . 214
7.4.1 Experiment . 214
7.4.2 Case study . 216

7.5 Discussion . 220
7.5.1 Threats to Validity . 221

7.6 Related Work . 222
7.7 Conclusions . 223

8 Paper G: Failure replication 225
8.1 Failure replication and Visual GUI Testing 226
8.2 A Success story at Saab . 226

8.2.1 The company . 227
8.2.2 The problem . 227
8.2.3 The solution . 228
8.2.4 The defect . 230
8.2.5 Post-analysis . 230

8.3 Discussion . 231
8.4 Lessons learnt . 232

Bibliography 235

Chapter 1

Introduction

1.1 Introduction

Today, software is ubiquitous in all types of user products, from software ap-
plications to cars, mobile applications, medical systems, etc. Software allows
development organizations to broaden the number of features in their prod-
ucts, improve the quality of these features and provide customers with post-
deployment updates and improvements. In addition, software has shortened
the time-to-market in many product domains, a trend driven by the market
need for new products, features and higher quality software.

However, these trends place new time constraints on software develop-
ment organizations that limit the amount of requirements engineering, devel-
opment and testing that can be performed on new software [1]. For testing,
these time constraints imply that developers can no longer verify and vali-
date the software’s quality with manual test practices since manual testing is
associated with properties such as high cost, tediousness and therefore error-
proneness [2–7]. These properties are a particular challenge in the context
of changing requirements where the tests continuously need to be rerun for
regression testing [8, 9].

Automated testing has been suggested as the solution to this challenge since
automation allows tests to be run more frequently and at lower cost [4, 7, 10].
However, most automated test techniques have prerequisites that prohibit their
use on software written in certain programming languages, for certain oper-
ating systems, platforms, etc. [4, 11–13]. Additionally, most automated test
techniques operate on a lower level of system abstraction, i.e. against the
backend of the system. One such, commonly used, low-level test technique is
automated unit testing [14]. Whilst unit tests are applicable to find defects
in individual software components, its use for system and acceptance testing
is still a subject of ongoing debate [15, 16]. Test techniques exist for auto-
mated system and acceptance testing that interact with the system under test
(SUT) through hooks into the SUT or its GUI. However, these techniques do
not verify that the pictorial GUI, as shown to the user, behaves or appears
correctly. These techniques therefore have limited ability to fully automate
manual, scenario-based, regression test cases, in the continuation of this the-
sis referred to as manual test cases. Consequently, industry is in need of a

1

2 CHAPTER 1. INTRODUCTION

flexible and GUI-based test automation technique that can emulate human
tester behavior to mitigate the challenges associated with current manual and
automated test techniques.

In this thesis we introduce and evaluate Visual GUI Testing (VGT). VGT
is a term we have defined that encapsulates all tools that use image recog-
nition to interact with a SUT’s functionality through the bitmaps shown on
the SUT’s pictorial GUI. These interactions are performed with user emu-
lated keyboard and mouse events that make VGT applicable on almost any
GUI-driven application and to automate test cases that previously had to be
performed manually. Consequently, VGT has the properties that software in-
dustry is looking for in a flexible, GUI-based, automated test technique since
the technique’s only prerequisite is that a SUT has a GUI. A prerequisite that
only limits the technique’s applicability and usefulness for, as examples, server
or other backend software.

However, at the start of this thesis work the body of knowledge on VGT
was limited to analytical research results [17] regarding VGT tools, i.e. Trig-
gers [18], VisMap [19] and Sikuli [20]. Hence, no empirical evidence existed
regarding the technique’s applicability or feasibility of use in industrial prac-
tice. Applicability that, in this thesis, refers to factors such as a test tech-
nique’s defect-finding ability, usability for regression, system and acceptance
testing, learnability and flexibility of use for different types of GUI-based soft-
ware. Feasibility, in turn, refers to the long-term applicability of a technique,
including feasible development and maintenance costs, usability under strict
time constraints and suitable time until the technique provides positive return
on investment (ROI). Empirical evidence on these factors are key to under-
stand the real life complexities of using the technique, to build best practices
and to advance its use in industrial practice [17, 21]. However, such evidence
can only be acquired through an incremental process that evaluates the tech-
nique from several perspectives and different industrial contexts. This the-
sis work was therefore performed in Swedish software industry, with different
projects, VGT tools and research techniques to fulfill the thesis research objec-
tive. Hence, to acquire evidence for, or against, the applicability and feasibility
of adoption, use and viability of VGT in industrial practice, including what
challenges, problems and limitations that are associated with these activities.
Work that consequently resulted in an overall understanding of the current
state-of-practice of VGT, what impedes its continued adoption and a final, yet
positive, conclusion regarding the long-term viability of VGT in industrial use.

The results presented in this introductory chapter (Chapter 1) are struc-
tured as follows. First, an introduction is given in Section 1.1 followed by
a background to this research, including; manual, automated and automated
GUI-based testing. Section 1.3 then presents the research problem, questions
and the methodology. This section also details the different research methods
that were used and how the included papers contribute to answer the thesis
research questions. An overview, and summaries, of the included papers are
then given in Section 1.4. Section 1.5 then presents the syntheses of included
papers and finally the thesis introduction is concluded in a summary in Section
1.6.

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 3

1.2 Software engineering and the need for test-
ing

Software engineering is the application of engineering best practices in a struc-
tured process to design, develop and maintain software of high quality [22].
Several software development processes have been defined such as plan-driven,
incremental and agile development processes [23, 24]. These processes can be
divided into three fundamental activities: requirements engineering, develop-
ment (design and implementation) and verification and validation.

Requirements engineering refers to the activity of elicitation, specifica-
tion and modeling of the software’s requirements, i.e. the needs of the cus-
tomer/user. Hence, features, functions and qualities that the developed soft-
ware must include [25, 26]. In turn, development is the activity of designing
and realizing the requirements in software that fulfills the user’s needs. Finally,
verification and validation, traditionally, is the activity of evaluating that the
developed software conforms to the requirements [1], most commonly achieved
through testing.

Tests for verification and validation are therefore a tightly coupled coun-
terpart to requirements [27]. Hence, whilst the quality of a software system is
determined by how well each process activity is performed, it is through test-
ing that this quality is measured. Measurements that can be taken throughout
the development process, i.e. early with reviews of documents or code or late
with customer acceptance tests. Testing is therefore an essential activity in all
software engineering, regardless of process or development objective.

1.2.1 Software Testing

Software testing for verification and validation is a core, but also costly, activity
that can make up for 20-50 percent of the cost of a software development
project [1, 28, 29]. Verification is defined as the practice of assuring that the
SUT conforms to its requirements, whilst validation is defined as the practice
of assuring that the SUT conforms to the requirements and fulfills the user’s
needs [25,26].

Pictorial GUI

GUI model

Bitmaps
Hooks into:

GUI API/Toolkit
(GUI) Source code/

architecture

System
core

SW architecture
Technical interfaces

SW components

Regression
system and
acceptance

testing
Front-end

Back-end

Visual GUI Testing

Component/Widget/
Tag-based GUI-

testing

Unit-testing and
integration testing

System
view

System
layers

System
components

Manual
testing

Automated
testing

Reviews,
unit testing

and
integration

testing
Classes

Functions/methods

Exploratory testing

Figure 1.1: Theoretical, layered, model of a System and the manual/automated
techniques generally used to test the different layers.

4 CHAPTER 1. INTRODUCTION

Testing for the purpose of verification can be split into three types; unit,
integration and system testing [30], which are performed on different levels
of system abstraction [16, 26, 31] as shown in Figure 1.1. A unit test verifies
that the behavior of a single software component conforms to its low-level
functional requirement(s) and is performed either through code reviews or
more commonly through automated unit tests [9, 11, 14, 15, 32–34]. In turn,
integration tests verify the conformance of several components’ interoperability
between each other and across layers of the SUT’s implementation [16, 30].
Components can in this context be single methods or classes but also hardware
components in embedded systems. Finally, system tests are, usually, scenario-
based manual or automated tests that are performed either against the SUT’s
technical interfaces or the SUT’s GUI to verify that the SUT, as a whole [30],
conforms to its feature requirements [35–37]. However, scenario-based tests
are also used to validate the conformance of a SUT in acceptance tests that
are performed either by, or with, the SUT’s user or customer [35–38]. The
key difference between system and acceptance test scenarios is therefore how
representative they are of the SUT’s real-world use, i.e. the amount of domain
knowledge that is embedded in the test scenario.

Testing is also used to verify that a SUT’s behavior still conforms to the re-
quirements after changes to the SUT, i.e. regression tests. Regression tests can
be performed with unit, integration, system or acceptance test cases that have
predefined inputs for which there are known, expected, outputs [9]. Inputs and
outputs that are used to stimulate and assert various states of the SUT. As
such, the efficiency of a regression test suite is determined by the tests’ cover-
age of the SUT’s components, features, functions, etc [34,39], i.e. the amount
of a SUT’s states that are stimulated during test execution. This also limits
regression tests to finding defects in states that are explicitly asserted, which
implies that the test coverage should be as high as possible. However, for
manual regression tests, high coverage is costly, tedious and error-prone [2–7],
which is the primary motivation why automated testing is needed and should
be used on as many different levels of system abstraction as possible [16, 40].
Especially in the current market where the time available for testing is shrink-
ing due to the demands for faster software delivery [1]. Demands that have
transformed automated testing from “want” to a “must” in most domains.

However, whilst lower levels of system abstraction are well supported by
automated regression test techniques, tools and frameworks, there is a lack of
automated techniques for testing through the pictorial GUI, i.e. the highest
level of system abstraction. Thus, a lack of support that presents the key
motivator for the research presented in this thesis.

To cover any lack of regression test coverage, exploratory testing, defined
as simultaneous learning, test design and test execution, is commonly used
in industrial practice [41, 42]. The output of exploratory testing is a defect
but also the scenario(s) that caused the defect to manifest, i.e. scenarios that
can be turned into new regression tests. This technique has been found to be
effective [43] but has also been criticized for not being systematic enough for
fault replication. Further, the practice requires decision making to guide the
testing and is therefore primarily performed manually, despite the existence
of a few automated exploratory testing tools, e.g. CrawlMan [44]. However,
automated exploratory testing is still an unexplored research area that war-

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 5

rants more research, including automated GUI-based exploratory testing since
it could help mitigate the challenges associated with manual verification and
validation, e.g. cost.

In summary, testing is used in industrial practice on different levels of
system abstraction for verification and validation of a SUT’s conformance to its
requirements. However, much of this testing is manual, which is costly, tedious
and error prone, especially for manual regression testing, which is suggested as
solvable with automated testing. More research is therefore warranted into new
automated test techniques and in particular techniques that operate against
the SUT’s highest level of system abstraction, i.e. the pictorial GUI.

1.2.2 Automated Software Testing

There are two key motivators for the use of automated testing in industrial
practice; (1) to improve software quality and (2) to lower test related costs [40].

Software quality : Automated tests help raise software quality through
higher execution speed than manual tests that allow them to be executed
more frequently [16, 40]. Higher test frequency provides faster feedback to
the developers regarding the quality of the software and enables defects to
be caught and resolved earlier. In turn, quick defect resolution lowers the
project’s development time and mitigates the chance of defect propagation
into customer deliveries. Early defect detection also mitigates synergy effects
to occur between defects, for instance that two or more defects cause a joint
failure which root-cause therefore becomes more difficult and costly to find.

However, a prerequisite for any automated test technique to be used fre-
quently is that the tests have reasonable test execution time. This prerequisite
is particularly important in contexts where the tests are used for continuous
integration, development and deployment [45]. Hence, contexts where the
test suites should be executed each time new code is integrated to the SUT,
e.g. on commit, which cause the tests to set the pace for the highest possi-
ble frequency of integration. This pacing is one reason why automated unit
tests [9, 11, 14, 15, 32–34] are popular in industrial practice since several hun-
dred unit tests can be executed in a matter of minutes. In addition, unit tests
are popular in agile software development companies, where they are used
to counteract regression defects [46] caused by change or refactoring that is
promoted by the process [47,48].

Lower cost : Automated testing is also used to lower the costs of testing
by automating tests, or parts of tests, that are otherwise performed manually.
However, there are still several costs associated with automated tests that need
to be considered.

First , all automated test techniques require some type of tool that either
needs to be acquired, bought and/or developed. Next, the intended users of the
tool need be given training or time to acquire knowledge and experience with
the tool and its technique before it can be used. Knowledge and experience
that might be more or less cumbersome to acquire dependent on the technique’s
complexity [40]. This complexity implies that techniques with high learnability
are more favorable from a cost perspective since they require less training.

Furthermore, adoption of test automation is associated with organizational
changes, e.g. new or changed roles, which adds additional costs, especially if

6 CHAPTER 1. INTRODUCTION

the organizational changes affect the company’s processes, e.g. due to changes
of the intended users’ responsibilities. Additionally, many automated test
techniques have prerequisites that prohibit their use to certain systems written
in specific programming languages, operating systems and platforms [4,11–13].
Therefore it is necessary to perform a pilot project to (1) evaluate if the new
technique is at all applicable for the intended SUT and (2) for what types of
tests the technique can be used. Thus a pilot project is an important activity
but also associated with a, sometimes substantial, cost. However, several of
these costs are often overlooked in practice and are thereby “hidden” costs
associated with any change to a software process.

Second , for established systems, and particularly legacy systems, a consid-
erable cost of adopting a new test technique is associated with the development
of a suitably large test suite that provides test coverage of the SUT. Hence,
since automated testing is primarily used for regression testing, test coverage,
as stated in Section 1.2.1, is required for the testing to be efficient and valuable
in finding defects.

However, this brings us to the third cost associated with automated test-
ing which is maintenance of test scripts. Maintenance constitutes a continuous
cost for all automated testing that grows with the size of the test suite. This
maintenance is required to keep the test scripts aligned with the SUT’s re-
quirements [49], or at least its behavior, to ensure that test failures are caused
by defects in the SUT rather than intended changes to the SUT itself, i.e.
failures referred to as false positives. However, larger changes to the SUT can
occur and the resulting maintenance costs can, in a worst case, become unrea-
sonable [12]. These costs can however be mitigated through engineering best
practices, e.g. modular test design [16, 40, 50]. However, best practices takes
time to acquire, for any technique, and are therefore often missing, also for
VGT.

Hence, these three costs must be compared together to the value provided
by the automated tests, for instance value in terms of defects found or to
the costs compared to alternative test techniques, e.g. manual testing. The
reason for the comparison is to identify the point in time when the costs of
automation break even with the alternatives, i.e. when return on investment
(ROI) is achieved. Hence, for any automated test technique to be feasible,
the adoption, development and maintenance costs must provide ROI and it
should do so as quickly as possible. Consequently, an overall view of costs,
value and other factors, e.g. learnability, adoptability and usability, is required
to provide an answer if a test automation technique is applicable and feasible
in practice. These factors were therefore evaluated during the thesis work to
provide industrial practitioners with decision support of when, how and why
to adopt and use VGT.

In summary, automated testing helps improve SUT quality and lower
project costs [40]. However, the costs of automated testing can still be sub-
stantial and must therefore be evaluated against other alternative techniques
to identify when and if the adoption of a new technique provides positive ROI.

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 7

1.2.3 Automated GUI-based Software Testing

Automated software testing has several benefits over manual testing, e.g. im-
proved test frequency, but there are also challenges, for instance, that most
techniques operate on a lower level of system abstraction. However, there is a
set of automated test techniques that operate against, or through, the SUT’s
GUI that can be used for higher level testing. To clarify the differences be-
tween these types of GUI-based testing techniques we have divided them into
three chronologically defined generations [51]. The difference between each
generation is how they interact with the SUT, i.e. with exact coordinates,
through hooks into the SUT’s GUI or image recognition. The following sec-
tion presents key properties of the three generations to provide the reader with
contextual information for the continuation of the thesis.

1.2.3.1 1st generation: Coordinate-based

1st generation GUI-based test automation uses exact coordinates on the screen
to interact with the SUT [3]. These coordinates are acquired by recording man-
ual interaction with the SUT and are then saved to scripts that can be replayed
for automated regression testing, which improves test frequency. However, the
technique is fragile, even minor changes to a GUI’s layout can cause an entire
test suite to fail, resulting in frequent and costly maintenance [3,52,53]. There-
fore, the technique has mostly been abandoned in practice but is commonly
integrated as one basic component into other test automation frameworks and
tools, e.g. JUnit [53] and Sikuli [54]. However, because of the technique’s
limited stand-alone use in practice it will not be discussed to any extent in
this thesis.

1.2.3.2 2nd generation: Component/Widget-based

2nd generation GUI-based testing tools stimulate and assert the SUT through
direct access to the SUT’s GUI components or widgets by hooks into the SUT,
e.g. into its GUI libraries or toolkits [12]. Synonyms for this technique are
Component-, Widget- or Tag-based GUI testing and is performed in industrial
practice with tools such as Selenium [55], QTP [56], etc.

These tools can achieve robust test case execution, e.g. few false test
results, due to the tools’ access and tight coupling to the SUT’s internal work-
ings, e.g. GUI events and components’ ID numbers, labels, etc. These GUI
events can also be monitored in a few tools to automatically synchronize the
test script with the SUT, which would otherwise require the user to manu-
ally specify synchronization points in the scripts, e.g. static delays or delays
based on GUI state transitions. Synchronization is a common challenge for all
GUI-based test techniques because the test scripts run asynchronously to the
SUT.

Another advantage of SUT access is that some of these tools can improve
test script execution time by forcing GUI state transitions and bypass cosmetic,
timed, events such as load screens, etc.

Further, most 2nd generation tools support record and replay, which lowers
test development costs. In addition, most tools support the user by managing
GUI components’ property data, e.g. ID numbers, labels, component types,

8 CHAPTER 1. INTRODUCTION

OK

Hello World

Var= Ok
[type = button,

ID = 2,
Label = "OK

X = 10,
Y = 5"]

Var = outField
[type = textfield,

ID = 4,
Label = "Hello World",

X = 10,
Y = 70]

Example GUI 2 Generation
pseudo code
nd GUI component data

click Ok
AssertLabel outField, "Hello World"

Figure 1.2: Pseudocode example of a 2nd generation test script for a simple
application where GUI components are identified, in this case, through their
properties (Tags) associated with a user defined variable.

etc [57]. This functionality is required since these properties are unintuitive
without technical or domain knowledge, e.g. an ID number or component
type is not enough for a human to intuitively identify a component. How-
ever, combined, groups of properties allow the tester to distinguish between
components, exemplified with pseudocode in Figure 1.2.

Some 2nd generation tools, e.g. GUITAR [58], also support GUI ripping
that allow the tools to automatically extract GUI components, and their prop-
erties, from the SUT’s GUI and create a model over possible interactions with
the SUT. These models can then be traversed to generate scenarios of inter-
actions that can be replayed as test cases, a technique typically referred to
as model-based testing [59–63]. As such, provided that the interaction model
contains all GUI components, it becomes theoretically possible to automati-
cally achieve full feature coverage of the SUT since all possible scenarios of
interactions can be generated. However, in practice this is not possible since
the number of test cases grow exponentially with the number of GUI com-
ponents and length of test cases that makes it unreasonable to execute all of
them. This problem is referred to as the state-space explosion problem and is
common to most model-based testing tools [59]. One way to mitigate the prob-
lem is to limit the number of interactions per generated test scenario but this
practice also limits the tests’ representativeness of real world use and stifles
their ability to reach faulty SUT states.

Furthermore, because 2nd generation GUI-based tools’ interact with the
SUT through hooks into the GUI, these tests do not verify that the picto-
rial GUI conforms to the SUT’s requirements, i.e. neither that its appear-
ance is correct or that human interactions with it is possible. In addition,
the tools require these hooks into the SUT to operate, which restricts their
use to SUT’s written in specific programming languages and for certain GUI
libraries/toolkits. This requirement also limits the tools’ use for testing of
systems distributed over several physical computers, cloud based applications,
etc., where the SUT’s hooks are not accessible.

Another challenge is that the tools need to know what properties a GUI
component has to stimulate and assert its behavior. Standard components,
included in commonly used GUI libraries, e.g. JAVA Swing or AWT, are
generally supported by most tools. However, for custom built components, e.g.
user defined buttons, the user has to create custom interpreters or hooks for
the tools to operate. However, these interpreters need to be maintained if the
components are changed, which adds to the overall maintenance costs. Overall

1.2. SOFTWARE ENGINEERING AND THE NEED FOR TESTING 9

maintenance costs that have been reported to, in some cases, be substantial
in practice [10,12,16,52].

However, there are also some types of GUI components that are difficult or
can not be tested with this technique, e.g. components generated at runtime,
since their properties are not known prior to execution of the system. As such,
there are several challenges associated with 2nd generation GUI-based testing
that limit the technique’s flexibility of use in industrial practice.

In summary, 2nd generation GUI-based testing is associated with quick and
often robust test execution due to their access to the SUT’s inner workings.
However, this access is a prerequisite for the technique’s use that also limits its
tools to test applications written is certain programming languages, with cer-
tain types of components, etc. As a consequence, the technique lacks flexibility
in industrial use. Further, the technique does not operate on the same level of
system abstraction as a human user and does therefore not verify that the SUT
is correct from a pictorial GUI point of view, neither in terms of appearance
or behavior. Additionally, the technique is associated with script maintenance
costs that can be extensive and in worst cases infeasible [10,12,16,52]. Conse-
quently, 2nd generation GUI-based testing does not fully fulfill the industry’s
needs for a flexible and feasible test automation technique.

1.2.3.3 3rd generation: Visual GUI Testing

3rd generation GUI-based testing is also referred to as Visual GUI Testing
(VGT) [64], and is defined as a tool driven automated test technique where im-
age recognition is used to interact with, and assert, a system’s behavior through
its pictorial GUI as it is shown to the user in user emulated system or accep-
tance tests. The foundation for VGT was established in the early 90s by a tool
called Triggers [18], later in the 90s accompanied by a tool called VisMap [19],
which both supported image recognition based automation. However, at the
time, lacking hardware support for the performance heavy image recognition
algorithms made these tools unusable in practice [65]. Advances in hardware
and image recognition algorithm technology have now mitigated this chal-
lenge [66] but it is still unknown if VGT, as a technique, is mature enough
for industrial use. Thus providing one motivation the work presented in this
thesis.

Several VGT tools are available in practice, both open source; Sikuli [20],
and commercial; JAutomate [67], EggPlant [68] and Unified Functional Test-
ing (UFT) [56], each with different benefits and drawbacks due to the tools’
individual features [67]. However, common to all tools is that they use image
recognition to drive scripts that allow them to be used on almost any GUI-
driven application, regardless of implementation, operating system or even
platform. As a consequence, VGT is associated with a high degree of flexi-
bility. The technique does however only have limited usefulness for non-GUI
systems, e.g. server-applications.

VGT scripts are written, or recorded, as scenarios that contain methods
which are usually synonyms for human interactions with the SUT, e.g. mouse
and keyboard events, and bitmap images. These images are used by the tools’
image recognition algorithms to stimulate and assert the behavior of SUT
through its pictorial GUI, i.e. in the same way as a human user. Consequently,

10 CHAPTER 1. INTRODUCTION

OK

Hello World

Example GUI 3 Generation
(VGT) pseudo code

rd

click

AssertExists

OK

Hello World

Figure 1.3: Pseudocode example of a 3rd generation (VGT) test case for a
simple application. GUI components are associated with the application’s GUI
component images (Bitmaps).

VGT scripts are generally intuitive to understand, also for non-technical stake-
holders, since the scripts’ syntax is relatable to how the stakeholders would
themselves interact with the SUT [20], e.g. click on a target represented by
a bitmap and type a text represented by a string. This intuitiveness also
provides VGT with high learnability also by technically awkward users [65].

A pseudo-code VGT script example is shown in Figure 1.3 that performs
the same interactions as the example presented for 2nd generation GUI-based
testing, presented in Figure 1.2, for comparison.

Conceptually, image recognition is performed in two steps during VGT
script playback. First, the SUT’s current GUI state is captured as a bitmap,
e.g. in a screenshot of the computers desktop, which is sent together with
the sought bitmap from the VGT script to the image recognition algorithm.
Second, the image recognition algorithm searches for the sought bitmap in the
screenshot and if it finds a match it returns the coordinates for the match that
are then used to perform an interaction with the SUT’s GUI. Alternatively,
if the image recognition fails, a false boolean is returned or an exception is
raised.

Different VGT tools use different algorithms but most algorithms rely on
similarity-based matching which means that a match, i.e. sought bitmap, is
found if it is within a percentile margin between the identified and sought
bitmap image [20]. This margin is typically set to 70 to 80 percent of the
original image to counteract failures due to small changes to a GUI’s appear-
ance, e.g. change of a GUI bitmap’s color tint. However, similarity-based
matching does not prevent image recognition failure when bitmaps are resized
or changed completely.

Additionally, VGT scripts, similar to 1st and 2nd generation scripts, need
to be synchronized with the SUT’s execution. Synchronization in VGT is
performed with built in functionality or methods that wait for a bitmap(s) to
appear on the screen before the script can proceed. However, these methods
also make VGT scripts slow since they cannot execute quicker than the state
transitions of the GUI, which is a particular challenge for web-systems since
waits also need to take network latency into account.

In summary, VGT is a flexible automated GUI-based test technique that
uses tools with image recognition to interact and assert a SUT’s behavior
through its pictorial GUI. However, the technique’s maturity is unknown and
this thesis therefore aims to evaluate if VGT is applicable and feasible in
industrial practice.

1.3. RESEARCH PROBLEM AND METHODOLOGY 11

1.2.3.4 Comparison

To provide a general background and overview of the three generations of
automated GUI-based testing, some of their key properties have been presented
in Table 1.1. The table shows which properties that each technique has (“Y”)
or not (“N”) or if a property is support by some, but not all, of the technique’s
tools (“S”). These properties were acquired during the thesis work as empirical
results or through analysis of related work. However, they are not considered
to be part of the thesis main contributions even though they support said
contributions.

Several properties are shared by all techniques. For instance, they can
all be used to automate manual test cases but only VGT tools also support
bitmap assertions and user emulation and it is therefore the only technique that
provides results of equal quality to manual tests. Further, all three techniques
are perceived to support daily continuous integration and all techniques require
the scripts to be synchronized with the SUT’s execution. Finally, none of the
techniques are perceived as replacements to manual testing since all of the
techniques are designed for regression testing and therefore only find defects
in system states that are explicitly asserted. In contrast, a human can use
cognitive reasoning to determine if new, previously unexplored, states of the
SUT are correct. Consequently, a human oracle [69] is required to judge if a
script’s outcome is correct or not.

Other properties of interest regard the technique’s robustness to change.
For instance, both 2nd and 3rd generation tools are robust to GUI layout
change, assuming, for the 3rd generation, that the components are still shown
on the screen after change. In contrast, 1st generation tools are fragile to this
type of change since they are dependent on the GUI components’ location
being constant.

However, 1st generation tools, and also 3rd generation tools, are robust to
changes to the SUT’s GUI code whilst 2nd generation tools are not, especially
if these changes are made to custom GUI components, the GUI libraries or
GUI toolkits [12].

Finally, 1st and 2nd generation tools are robust to changes to the GUI
components’ bitmaps since none of the techniques care about the GUI’s ap-
pearance. In contrast, 3rd generation tools fail if either the appearance or the
behavior of the SUT is incorrect.

Consequently, the different techniques have different benefits and draw-
backs that are perceived to make the techniques more or less applicable in
different contexts.

1.3 Research problem and methodology

In this section, a summary of the background and the motivation for the
research performed in this thesis work are presented. These are based on
the challenges and gaps in knowledge and tooling presented in Sections 1.1 to
1.2.3.4. Additionally, the research objective is presented and broken down into
four specific research questions that the thesis work aimed to answer through
an incremental research process that is also presented. Finally, the research
methodology and research methods used during the thesis work are discussed.

12 CHAPTER 1. INTRODUCTION

Property 1st

Gen.
2nd

Gen.
3rd

Gen.
Independent of SUT platform N N Y
Independent of SUT programming language Y S Y
Non-intrusive test execution N S Y
Emulates human user behavior Y N Y
Open-source tool alternatives Y Y Y
Supports manual test case automation Y Y Y
Supports testing of custom GUI components Y S Y
Supports bitmap-based assertions N S Y
Supports testing of distributed systems Y S Y
Supports daily continuous integration Y Y Y
Robust to GUI layout change N Y Y
Robust to system code change Y N Y
Robust to bitmap GUI component change Y Y N
Support script recording (as opposed to manual
scripting)

Y Y S

Script execution time independent of SUT perfor-
mance

N N N

Replacement of other manual/automatic test
practices

N N N

Table 1.1: The positive and negative properties of different GUI-based test
techniques. All properties have been formulated such that a “Y” indicates that
the property is supported by the technique. “N” indicates that the property is
not supported by the technique. “S” indicates that some of the technique’s tools
supports the property, but most don’t.

1.3. RESEARCH PROBLEM AND METHODOLOGY 13

1.3.1 Problem background and motivation for research

Background: Testing is the primary means by which companies verify and
validate (V&V) their software. However, the costs of V&V ranges between 20-
50 percent of the total costs associated with a software development project [1,
28,29], which is a challenge that can be contributed to the extensive industrial
use of manual, tedious, time consuming, and therefore error prone V&V prac-
tices [2–7]. Automated testing is generally proposed as the solution to this
challenge, since automated test scripts execute systematically each time and
with reduced human effort and cost [40]. However, this proposition presents
new challenges for software development companies, such as what automated
testing do they need, how is it performed and how does it provide value?

The most common type of automated testing in practice is automated
unit testing [14, 33], which has been shown to be effective to find software
defects. However, unit tests operate on a low level of system abstraction
and they have therefore been debated to be ill suited for V&V of high level
requirements [15,16]. Automated unit testing therefore has a place in software
development practice but should be complemented with test techniques also
on higher levels of system abstraction to provide full automated coverage of
the SUT [16]. For GUI-driven software this also includes automated testing of
the pictorial GUI as shown to the user.

To acquire GUI automation coverage, many companies use 2nd generation
GUI-based testing for automated system testing, for instance with the tool
Selenium [55]. However, these tools interact with the SUT by hooking into
its GUI libraries, toolkits or similar and therefore do not verify that human
interaction with the SUT’s pictorial GUI can be performed as expected [51].
Such verification requires an automated test technique that can operate on the
same level of abstraction and with the same confidence and results as a human
user.

In addition, most automated test techniques’ are restricted to be used on
SUTs that fulfill the tools’ prerequisites, such as use of specific programming
languages, platforms, interfaces for testing etc [4, 11–13]. These prerequisites
are a particular challenge for legacy, or distributed, systems that are either
not designed to support automated testing or lack the necessary interfaces
for test automation. As a consequence, industry is in need of a flexible test
automation technique with less, or easily fulfilled, prerequisites.

Further, the view that automated testing lowers test related cost is only
partially true because test automation is still associated “hidden” costs and,
in particular, maintenance costs [10, 12, 16, 40, 52]. Therefore, adoption of
automated testing can lower the total development cost of a project by enabling
faster feedback to developers that leads to faster defect resolution, but test
related costs still remain or can even increase. As such, to fulfill industry’s
need for a flexible GUI-based test automation technique, a technique must be
identified that is feasible long-term and which preferably provides quick ROI
compared to manual testing. Such a technique must also provide value in
terms of, at least, equal defect finding ability as manual testing and with low
test execution time to facilitate frequent test execution.

Motivation: In theory, Visual GUI Testing (VGT) fulfills the industrial
need for a flexible, GUI-based, automated test technique due to its unprece-

14 CHAPTER 1. INTRODUCTION

Paper Objective RQ1 RQ2 RQ3 RQ4
A Static evaluation of VGT in

practice
X X X

B Dynamic evaluation of VGT in
practice

X X X

C Challenges, problems and limita-
tions with VGT in practice

X X X

D Maintenance and return on in-
vestment of VGT

X X

E Long-term use of VGT in prac-
tice

X X X

F Model-based VGT combined
with 2nd generation GUI-based
testing

X X

G Failure replication X X

Table 1.2: Mapping of research questions to the individual publications pre-
sented in this thesis.

dented ability to emulate human interaction and assertions through a SUT’s
pictorial GUI, an ability provided by the technique’s use of tools with image
recognition. However, the technique’s body of knowledge is limited, in partic-
ular in regards to empirical evidence for its applicability and feasibility of use
in industrial practice. This lack of knowledge is the main motivator for the
research presented in this thesis since such knowledge is required as decision
support for industrial practitioners to evaluate if they should adopt and use
the technique. Consequently, this research is motivated by an industrial need
for a flexible and cost-effective GUI-based test automation technique that can
emulate end user behavior with at least equal defect-finding ability as manual
testing but with lower test execution time. From an academic point of view,
the research is also motivated since it provides additional empirical evidence
from industry regarding the adoption, use and challenges related to automated
testing.

Research Objective: The objective of this thesis is to identify empirical
evidence for, or against, the applicability and feasibility of VGT in industrial
practice. Additionally, to identify what challenges, problems and limitations
that impede the technique’s short and long-term use. Hence, an overall view
of the current state-of-practice of VGT, including alternative and future ap-
plication areas for the technique. Consequently, knowledge that can be used
for decision support by practitioners and input for future academic research.

Research questions: The research objective was broken down into four
research questions presented below together with brief descriptions of how they
were answered. Further, Table 1.2 presents a mapping between each research
question and the papers included, and presented later, in this thesis.

RQ1: What key types of contexts and types of testing is Visual GUI Test-
ing generally applicable for in industrial practice?

This question addresses the rudimentary capabilities of VGT, i.e. can the tech-

1.3. RESEARCH PROBLEM AND METHODOLOGY 15

nique at all find failures and defects on industrial grade systems? Additionally,
it aims to identify support for what types of testing VGT is used for, e.g. only
regression testing of system and acceptance tests or exploratory testing as
well? This question also addresses if VGT can be used in different contexts
and domains, such as agile software development companies, for safety-critical
software, etc. Support for this question was acquired throughout the thesis
work but in particular in the studies presented in Chapters 2, 3, 4, 6 and 8,
i.e. Papers A, B, C, E and G.

RQ2: To what extent is Visual GUI Testing feasible for long-term use in
industrial practice?

Feasibility refers to the maintenance costs and return on investment (ROI)
of adoption and use of the technique in practice. This makes this question
key to determine the value and long-term industrial usability of VGT. Hence,
if maintenance is too expensive, the time to positive ROI may outweigh the
technique’s benefits compared to other test techniques and render the tech-
nique undesirable or even impractical in practice. This question also concerns
the execution time of VGT scripts to determine in what contexts the tech-
nique can feasibly be applied, e.g. for continuous integration? Support for
this research question was, in particular, acquired in three case studies at four
different companies, presented in Chapters 3, 5, and 6, i.e. Papers B, D and
E.

RQ3: What are the challenges, problems and limitations of adopting, us-
ing and maintaining Visual GUI Testing in industrial practice?

This question addresses if there are challenges, problems and limitations (CPLs)
associated with VGT, the severity of these CPLs and if any of them prohibit
the technique’s adoption or use in practice. Furthermore, these CPLs represent
pitfalls that practitioners must avoid and therefore take into consideration to
make an informed decision about the benefits and drawbacks of the technique,
i.e. how the CPLs might affect the applicability and feasibility of the tech-
nique in the practitioner’s context. To guide practitioners, this question also
includes finding guidelines for the adoption, use and long-term use of VGT in
practice.

Results to answer this question were acquired primarily from three case
studies that, fully or in part, focused on CPLs associated with VGT, presented
in Chapters 3, 4 and 6, i.e. Papers B, C and E.

RQ4: What technical, process, or other solutions exist to advance Visual
GUI Testing’s applicability and feasibility in industrial practice?

This question refers to technical or process oriented solutions that improve
the usefulness of VGT in practice. Additionally, this question aims to identify
future research directions to improve, or build upon, the work presented in
this thesis.

Explicit work to answer the question was performed in an academic study,
presented in Chapter 7, i.e. Paper F, where VGT was combined with 2nd gen-
eration technology to create a fully automated VGT tool. Additional support
was acquired from an experience report presented in Chapter 8 (Paper G)
where a novel VGT-based process was reported from industrial practice.

16 CHAPTER 1. INTRODUCTION

Paper A:
Static

evaluation

Paper B:
Dynamic

evaluation
Paper C: Challenges,

problems and
limitations

Paper D: Maintenance
costs

Paper E: Long-term use of VGT

Paper F: VGT-
GUITAR

Paper G: Fault
replication with

VGT

RQ1:
Applicability

RQ2:
Feasibility

RQ3:
CPLs

RQ4:
Advances

Paper G: Fault
replication with

VGT

Figure 1.4: A chronological mapping of how the studies included in this thesis
are connected to provide support for the thesis four research questions. The
figure also shows which papers that provided input (data, challenges, research
questions, etc.) to proceeding papers. CPLs - challenges, problems and limi-
tations.

1.3.2 Thesis research process

Figure 1.4 presents an overview of the incremental research process that was
used during the thesis work and how included research papers are connected.
These connections consist of research results or new research questions that
were acquired in a study that required, or warranted, additional research in
later studies.

The thesis work began with a static evaluation of VGT (Paper A) that pro-
vided initial support for the applicability and costs associated with VGT. Next,
VGT was evaluated dynamically in an industrial project (Paper B) where VGT
was adopted and used by practitioners. This study provided additional infor-
mation about the applicability and initial results about the feasibility of VGT.
In addition, challenges, problems and limitations (CPLs) were identified that
warranted future research that was performed in Paper C. Paper C concluded
that there are many CPLs associated with VGT but none that prohibit its
industrial use. Therefore, the thesis work proceeded with an evaluation of the
feasibility of VGT in an embedded study where results regarding the long-term
maintenance costs and return on investment (ROI) of VGT were acquired (Pa-

1.3. RESEARCH PROBLEM AND METHODOLOGY 17

per D). These results were acquired through empirical work with an industrial
system (Static analysis) and interviews with practitioners that had used VGT
for several months (Dynamic analysis). However, results regarding the long-
term feasibility of the technique were still missing, a gap in knowledge that
was filled by an interview study at a company that had used VGT for several
years (Paper E). Consequently, these studies provided an overall view of the
current state-of-practice of VGT. In addition they provided support to draw
conclusions regarding the applicability (RQ1) and feasibility (RQ2) of VGT
in practice but also what CPLs that are associated with the technique (RQ3).

Further, to advance state-of-practice, a study was performed where VGT
was combined with 2nd generation technology that resulted in a building block
for future research into fully automated VGT (Paper F)(RQ4). Additional
support for RQ4 was acquired from an experience report from industry (Paper
G) where a novel semi-automated exploratory test process based on VGT was
reported.

Combined, these studies provide results to answer the thesis four research
questions and a significant contribution to the body of knowledge of VGT and
automated testing.

1.3.3 Research methodology

A research methodology is a structured process that serves to acquire data
to fulfill a study’s research objectives [70]. On a high level of abstraction,
a research process can be divided into three phases: preparation, collection
and analysis (PCA). In the preparation phase the study’s research objectives,
research questions and hypotheses are defined, including research materials,
sampling of subjects, research methods are chosen for data collection, etc.
Next, data collection is performed that shall preferably be conducted with sev-
eral methods and/or sources of evidence to enable triangulation of the study’s
results and improve the research validity, i.e. the level of trust in the research
results and conclusions [70–72]. Finally, in the analysis phase, the acquired re-
search results are scrutinized, synthesized and/or equated to draw the study’s
conclusions that can be both positive or negative answers to a study’s research
question(s).

Some research methodologies deviate from the PCA pattern and are instead
said to have a flexible design. Flexible design implies that changes can be
made to the design during the study to, for instance, accommodate additional,
unplanned, data collection opportunities [17].

A researcher can create an ad hoc research methodology if required, but
several common methodologies exist that are used in software engineering re-
search, e.g. case studies [17], experiments [73] and action research [74].

Two research methodologies were used extensively during this thesis work:
case studies and experiments. This choice was motivated by the thesis re-
search questions and the studies’ available resources. Action research was,
for instance, not used because it requires a longitudinal study of incremen-
tal change to the studied phenomenon which makes it resource intensive and
places a larger requirement on the collaborating company’s commitment to
the study. Hence, a commitment that many companies are reluctant to give
to an immature research area such as VGT.

18 CHAPTER 1. INTRODUCTION

Research methodologies have different characteristics and thus, inherently,
provide different levels of research validity [72]. Validity is categorized in differ-
ent ways in different research fields but in this thesis it is categorized according
to the guidelines by Runeson and Höst [17], into the following categories:

� Construct validity - The suitability of the studied context to provide
valid answers to the study’s research questions,

� Internal validity - The strength of cohesion and consistency of collected
results.

� External validity - The ability to generalize the study’s results to other
contexts and domains, and

� Reliability/Conclusion validity - The degree of replicability of the
study’s results.

Case studies provide a deeper understanding of a phenomenon in its actual
context [17] and therefore have inherently high construct validity. In addition,
given that a case study is performed in a well chosen context with an ap-
propriate sample of subjects, it also provides results of high external validity.
However, case studies in software engineering are often performed in industry
and are therefore governed by the resources provided by the case company,
which limits researcher control and can negatively affect the results internal
validity.

In contrast, experiments [73] are associated with a high degree of researcher
control. This control is used to manipulate the studied phenomenon and ran-
domize the experimental sample to mitigate factors that could adversely affect
the study’s results. As such, experiments have inherent high internal validity
but it comes at the expense of construct validity since the studied phenomenon
is, by definition, no longer studied in its actual context. In addition, similar
to case studies, the external validity of experimental results depend on the
research sample.

Furthermore, research methodologies can be classified based on if they are
qualitative or quantitative [70], where case studies are associated with quali-
tative data [17], e.g. data from interviews, observations, etc., and experiments
are associated with quantitative data [73], e.g. measurements, calculations,
etc. These associations are however only a rule of thumb since many case stud-
ies include quantitative data to support the study’s conclusions [73] and exper-
iments often support their conclusions with qualitative observations. During
the thesis work, both types of data were extensively used to strengthen the
papers’, and the thesis, conclusions and contributions. This strength is pro-
vided by quantitative results’ ability to be compared between studies, whilst
qualitative data provides a deeper understanding of the results.

1.3.4 Case studies

A case study is defined as a study of a phenomenon in its contemporary con-
text [17, 71]. The phenomenon in its context is also referred to as the study’s
unit of analysis, which can be a practice, a process, a tool, etc., used in an

1.3. RESEARCH PROBLEM AND METHODOLOGY 19

Survey

In
te

rv
ie

w
s

Do
cu

m
en

t
an

d
work

sh
op

san
aly

sis

Exploratory

Explanatory De
sc

rip
tiv

e

A

B

C

D

E

Experiment

F

Experience
report

G

X

TypeX

Legend

- Case study presented in Paper X

- Study of other type presented in Paper X

Y - Research method(s) used in Papers Xs

Figure 1.5: Visualization of the categorization of each of the included papers.

organization, company or similar context. Case studies are thereby a versa-
tile tool in software engineering research since they can be tailored to certain
contexts or research questions and also support flexible design [17]. Addition-
ally, case studies can be performed with many different research methods, e.g.
interviews, observations, surveys, etc [17].

Further, case studies can be classified as single or multiple and holistic or
embedded case studies, where single/embedded refer to the number of contexts
in which the unit (holistic) or units (embedded) of analysis are studied [71].

Case study results are often anecdotal evidence, e.g. interviewees’ per-
ceptions of the research phenomenon, which makes triangulation an essential
practice to ensure result validity [17,71]. Further, case studies should be repli-
cable, which implies that all data collection and analysis procedures must be
systematic and thoroughly documented, for instance in the form of a case
study protocol [71], to establish a clear chain of evidence. A more detailed
discussion about analysis of qualitative data is presented in Section 1.3.6.

Case studies were the primary means of data collection for this thesis and
were conducted with, or at, software development companies in Sweden. These
companies include several companies in the Saab corporation, Siemens Medi-
cal and Spotify. The first case studies, reported in Papers A, B, C, were ex-
ploratory, continued with Paper D that was explanatory and concluded with

20 CHAPTER 1. INTRODUCTION

Paper E that was descriptive, depicted in Figure 1.5. Hence, the thesis work
transitioned from exploration to explanation of the capabilities and properties
of VGT to description of its use in practice. This transition was driven by the
incrementally acquired results from each study, where later studies thereby
aimed to verify the results of earlier studies. Figure 1.5 also includes studies
that were not case studies, i.e. Papers F and G which were an experiment and
an experience report respectively, depicted to show how they were classified in
relation to the other papers included in the thesis.

Furthermore, the performed case studies were all inherently different, i.e.
conducted with different companies, in different domains, with different sub-
jects and VGT tools, which has strengthened both the construct and external
validity of the thesis conclusions. Further, interviews were used for the ma-
jority of the data collection to acquire in depth knowledge about the adoption
and use of VGT. However, quantitative, or quantifiable, data was also acquired
since it was required to compare VGT to other test techniques in the studies,
and the thesis. For instance, quantitative data was acquired to compare the
performance and cost of VGT to both manual test techniques and 2nd genera-
tion GUI-based testing. However, comparisons were also made with qualitative
data, such as practitioners’ perceptions about benefits and drawbacks of dif-
ferent techniques, to get a broad view of the techniques’ commonalities and
differences in different contexts. Thus ensuring that the included studies’ in-
dividual contributions were triangulated with data from different sources and
methods to improve the results internal validity.

1.3.4.1 Interviews

Interviews are commonly used for data collection in case study research and
can be divided into three different types: structured-, semi-structured and
unstructured interviews [71, 75]. Each type is performed with an interview
guide that contains step-by-step instructions for an interview, including the
interview questions, research objectives, etc. In addition, interview guides
shall include a statement regarding the purpose of the study and insurance
of the interviewee’s anonymity, which helps to mitigate biased or untruthful
answers. Further, these types of interviews vary in strictness, which relates to
the makeup of the interview guide as well as the interviewer’s freedoms during
an interview.

Structured interviews: Structured interviews are the most strict [71] and
restrict the interviewer from asking follow up questions or ask the interviewee
to clarify their answers. Therefore, considerable effort should be spent on
the interview guide to test it and to ensure that the interview questions are
unambiguous and valid to answer the study’s research questions. Structured
interview questions can be of different type but multiple-choice or forced-choice
are the most common. Forced choice questions, e.g. Likert-scale questions,
can be analyzed with statistics [76] but require a larger interview sample,
which makes the method costly in terms of resources. Therefore, structured
interviews were not used during the thesis work.

Semi-structured interviews: The second most strict type of interview
is called semi-structured interviews [71], which allow the interviewer to elicit
more in depth or better quality information by asking follow up questions or

1.3. RESEARCH PROBLEM AND METHODOLOGY 21

by clarifying questions to the interviewee. These interviews are therefore suit-
able in descriptive studies, where the studied phenomenon is partly known, or
exploratory studies, where little or nothing is known about the phenomenon.
In both cases, several interviews should be performed where each interview
should add to the researcher’s understanding of the studied phenomenon and
allow the researcher to tailor each consecutive interview, i.e. change the inter-
view questions, to acquire more in depth knowledge. However, care should be
taken when changes are made to ensure that the interview results can still be
triangulated, i.e. the interview questions must not diverge too much between
interviews.

Semi-structured interviews were extensively used during the thesis work
both to explore and describe the use of VGT and its associated CPLs [17].
Further, interview guides were always used but they were seldom changed be-
tween interviews, instead more in depth information was acquired through ad
hoc follow-up questions in each interview. The baseline of common questions
was kept to make triangulation of interview results easier. These interviews
were all recorded, transcribed and analyzed with less rigorous qualitative anal-
ysis or Grounded Theory analysis [77], i.e. rigorous coding analysis [78].

Unstructured interviews: Finally, the least strict type of interviews are
unstructured interviews [71] where interview guides are optional, but recom-
mended, to guide the interview. This type of interview is therefore suitable
for exploratory studies [17] and were primarily used in the thesis work in
pre-studies to acquire contextual information about the research companies
through general questions regarding the companies processes, practices, orga-
nizations, etc. In addition to context information, they also provided baseline
information for additional interviews.

1.3.4.2 Workshops

Workshops are often performed with groups of participants, similar to focus
groups [79] and their purpose is to explore, describe or explain a phenomenon
under study [80] through discussions, brainstorming [81], activity participa-
tion, etc. As such, workshops can be a means to acquire both in depth and
broad information in a short amounts of time, as discussed by Young for the
purpose of requirements elicitation [82].

However, several prerequisites must be fulfilled for a workshop to be suc-
cessful, for instance, the workshop participants must be a well chosen sample,
i.e. with participants of varying experience, roles, age, gender, etc. This pre-
requisite can be challenging to fulfill in industrial studies since access to suit-
able participants is often restricted, for instance due to resource or scheduling
constraints, etc. In addition, some constellations of participants can add bias
to the results. For instance, employees can be reluctant to give their honest
opinions if their managers are present in the workshop which presents a threat
to the results. Additionally, if a sample is too uniform it may not provide
representative results for the whole company or other domains, which is a
threat to the results external validity. Another challenge with workshops is
to keep them in scope of the study, especially if lively, and perhaps interest-
ing, discussions occur, and they should therefore be moderated. Because of
these challenges, workshop results must also be triangulated with, for instance,

22 CHAPTER 1. INTRODUCTION

follow-up interviews, surveys, etc.
A workshop can be designed ad hoc to achieve a specific research objective,

or performed with a standard workshop format, e.g. KJ-Shiba [83]. Regard-
less, workshops must be thoroughly planned. This planning includes sampling
of suitable participants, creation of workshop materials, planning the analysis
procedure, etc.

Workshops were used in several studies included in the thesis, for two rea-
sons. First, to quickly acquire information about a research company’s con-
texts, practices and tools. Hence, exploratory workshops with one or several
participants where unstructured or semi-structured interviews and visual aids,
e.g. white-board drawings, were commonly used. Second, workshops were
used for result verification and triangulation where workshops began with a
presentation of the study’s acquired results followed by discussion and analysis
of key results with the workshop’s participants. These workshops, presented
in Papers B, C and E, were well planned, with predefined workshop materials
such as interview questions, presentation materials, etc., but participants were
mostly sampled with convenience sampling due to resource constraints.

1.3.4.3 Other

Interviews and workshops were the primary methods used in the case studies
included in this thesis. However, other methods were also used during the
thesis work1, some of which will be briefly discussed in this section.

Document analysis: Interviews and workshops acquire first degree data [71,
84], i.e. data directly from a source of information such as an interviewee. In
turn, second degree data is collected indirectly from a source, for instance,
through transcription of a recorded interview. However, document analysis
relies on third degree data [17], which is data that has already been tran-
scribed and potentially analyzed.

From a company perspective, document analysis can be a cost-effective
method of data transference but can be a time-consuming activity for the
researcher, especially in foreign or highly technical domains. Further, third
degree data is created by a third person and can therefore include biases which
means that document root-source analysis is required to identify who created
the document, for what purpose, the age of the information, etc. [17], i.e. to
evaluate the documented information’s validity.

Document analysis was used in the thesis work to acquire information
about the research companies’ processes and practices. In particular, test
specifications were analyzed to give input for empirical work with VGT at the
studied companies, e.g. in Paper A where manual test cases at Saab AB were
automated with two different VGT tools.

Further, this method can be used in a survey to conduct systematic map-
pings and systematic literature reviews [85] of published research papers. How-
ever, due to the limited body of knowledge on VGT, no such study was per-
formed during the thesis work.

Surveys: Surveys are performed on samples of people, documents, soft-
ware, or other group [86] for the purpose of acquiring general conclusions

1In this instance, thesis work refers also to studies performed by the author but not
included in the thesis.

1.3. RESEARCH PROBLEM AND METHODOLOGY 23

regarding an aspect of the sample [71]. For instance, a survey with people can
serve to acquire their perceptions of a phenomenon, document surveys instead
aim at document synthesis [85], etc.

In software engineering research, surveys are often performed with ques-
tionnaires as an alternative to structured interviews [71]. One benefit of ques-
tionnaires is that they can be distributed to a large sample at low cost but if
there is no incentive for the sample to answer the questionnaire, the partici-
pant response-rate can be low, i.e. less than the rule of thumb of 60 percent
that is suggested for the survey to be considered valid.

Questionnaire questions can be multiple-choice, forced-choice or open, i.e.
free text. Forced choice questions are often written as Likert scale ques-
tions [76], i.e. on an approximated ratio-scale between, for instance, totally
disagree and totally agree. In turn, multiple choice questions can ask par-
ticipants to rank concepts on ratio-scales, e.g. with the 100 dollar bill ap-
proach [87]. However, questions can have other scales such as nominal, ordinal
or interval scales [88]. These scales serve different purposes and it is therefore
important to choose the right type to be able to answer the study’s research
questions. Regardless, questionnaire creation is a challenge since the questions
must be unambiguous, complete, use context specific nomenclature, etc., to
be of high quality. Therefore, like interview guides, questionnaires must be
reviewed and tested prior to use.

Questionnaires were used during the thesis work to verify previously gath-
ered results and to acquire data in association with workshops. Explicitly,
among the research papers included in this thesis, a questionnaire survey was
used in Paper E. The results of the surveys were then analyzed qualitatively
or with formal or descriptive statistics, discussed further in Section 1.3.6, to
test the studies’ hypotheses or answer the studies’ research questions.

Observation: Observations are fundamental in research and can be used
in different settings and performed in different ways, e.g. structured or un-
structured [89]. One way to perform an observation is the fly on the wall
technique, where the researcher is not allowed to influence the person, pro-
cess, etc., being observed. Another type is the talk-aloud protocol, where the
observed person is asked to continuously describe what (s)he is doing [17]. As
such, observations are a suitable practice to acquire information about a phe-
nomenon in its actual context and can also provide the researcher with deeper
understanding of domain-specific or technical aspects of the phenomenon.

However, observation studies are associated with several threats, for in-
stance the Hawthorne effect, which causes the observed person to change
his/her behavior because they know they are being observed [90]. There-
fore, the context of the observation must be taken into consideration as well
as ethical considerations, e.g. how, what and why something or someone is
being observed [17]. An example of unethical observation would be to observe
a person without their knowledge.

Planned observation, with an observation guide, etc., was only used once
during the thesis work to observe how manual testing was performed at a
company. However, observations were also used to help explain results from
the empirical studies with VGT, i.e. in Papers A and D.

24 CHAPTER 1. INTRODUCTION

1.3.5 Experiments

Experimentation is a research methodology [73] that focuses on answering what
factor(s) (or independent variable(s)) that affect a measured factor of the phe-
nomena (the dependent variable(s)). As such, experiments aim to compare the
impact of treatments (change of the independent variable(s)) on the dependent
variable(s).

Experimental design begins with formulation of a research objective that
is broken down into research questions and hypotheses. A hypothesis is a
statement that can be either true or false that the study will test, for instance
the expected outcome of a treatment on the dependent variable. Therefore,
experiments primarily aim to acquire quantitative or quantifiable data, which
can be analyzed statistically to accept or reject the study’s hypotheses and
answer the study’s research questions.

However, experiments are also affected by confounding factors [73], i.e. fac-
tors outside the researcher’s control that also influence the dependent variable.
These factors can be mitigated through random sampling that cancels out the
confounding factors across the sample [91] such that measured changes to the
dependent variable are caused only by changes to the independent variable(s).

However, in some contexts, e.g. in industry, it is not possible to random-
ize the studied sample and instead quasi-experiments need to be used [73,92].
Whilst controlled experiments are associated with a high degree of internal va-
lidity but lower construct validity (due to manipulation of contextual factors),
quasi-experiments have lower internal validity but higher construct validity
since they are performed in a realistic context.

Further, compared to case studies, controlled experiments have high repli-
cability, i.e. an experiment with a valid experimental procedure can be repli-
cated to acquire the same outcome as the original experiment. It is therefore
common that publications that report experimental results present the exper-
imental procedure in detail and make the experimental materials available to
other researchers.

Experiments were performed as part of two papers included in the thesis,
i.e. Papers A and F. In Paper A, the applicability of VGT to test non-animated
GUIs was compared to testing of animated GUIs. Additionally in Paper F, to
compare the false test results generated by 2nd and 3rd generation GUI-based
testing during system and acceptance tests.

1.3.6 Data analysis

Research methodologies and methods provide the researcher with results that
sometimes are enough to support, or answer, a study’s research questions.
However, in most studies the results, by themselves, are not enough and they
must therefore be analyzed.

Research results can be classified as qualitative, e.g. statements, and quan-
titative, e.g. numbers, [70], as stated in Section 1.3.3. However, regardless of
data type, results must be triangulated [17, 71], which for qualitative data
can be a challenge. The reason is because qualitative methods generally pro-
duce large quantities of information that are difficult to overview and syn-
thesize. This challenge can be solved by quantifying the information through
coding [78] where statements, observations, etc., are clustered in categories

1.3. RESEARCH PROBLEM AND METHODOLOGY 25

defined by codes that can then be analyzed individually to identify support
for the study’s research question(s). This practice is key in Grounded Theory
research [77] and is recommended to acquire a strong chain of evidence [71]
and can be performed in different ways. However, a general recommendation
is that it is performed by several people to mitigate coding bias.

During the thesis work, coding was only used for the data analysis in Paper
F since the study relied exclusively on qualitative data. Previous studies,
included in the thesis, all include empirical work and/or quantitative data,
which justified the use of less stringent analysis methods since the results of
these studies were triangulated with data sources of different type.

Further, quantitative data can be analyzed statistically, either with de-
scriptive or formal methods [93,94]. Descriptive statistics are used to visualize
data to provide an overview of the data, e.g. in graphs and plots, which for
larger data sets can be particularly helpful since it helps establish patterns,
distributions and other insights to the data. Descriptive statistics were par-
ticularly helpful in Paper D to visualize and draw conclusions regarding the
maintenance costs and return on investment of VGT.

In contrast, formal statistics are mathematical methods that are used to
compare, correlate, or evaluate data to find statistically likely patterns, e.g.
to compare if two data sets are (statistically) significantly different. Formal
statistical analysis was used in several of the studies included in the thesis, i.e.
Papers A, D, E and F, most often performed with the Student T-Test, the
Wilcoxon rank-sum test or the Mann-Whitney U test [95].

Further, formal statistical methods can be split into two different cate-
gories, parametric and non-parametric tests [93, 96], where parametric tests
provide statistical results of high precision but are associated with more pre-
requisites than non-parametric tests. These prerequisites include that the data
set should be normally distributed, that the sample is of suitable size, etc.
However, these prerequisites are often difficult to fulfill in industrial studies
and therefore it is argued that the use of parametric tests should be avoided
in favor of non-parametric tests in software engineering research [96], despite
the fact that non-parametric tests lower statistical precision. Due to the in-
dustrial focus of the thesis work, most formal statistical analysis performed in
the included studies were non-parametric, limited primarily by lack of normal
distribution in the acquired data sets.

In summary, research results can be both qualitative and quantitative and
analyzed with both descriptive and formal statistics, all used during this thesis
work to strengthen the validity of the studies’ conclusions. Hence, quantitative
data was used to statistically compare VGT tools and VGT to other test tech-
niques, triangulated with qualitative data to explain the quantitative results
and vice versa.

26 CHAPTER 1. INTRODUCTION

P
a
p

e
r

N
a
m

e
D

o
m

a
in

S
iz

e
(S

/
M

/
L

)
C

it
y

D
e
v
e
lo

p
m

e
n
t

p
ro

c
e
ss

(e
s)

T
e
st

st
ra

te
g
y

V
G

T
to

o
l

A
,

C
an

d
G

S
aa

b
A

B
S

af
et

y
-c

ri
ti

ca
l

ai
r-

tr
a
ffi

c
m

a
n

a
g
em

en
t

so
ft

w
a
re

M
G

o
th

en
b

u
rg

P
la

n
-d

ri
ve

n
a
n

d
A

g
il

e
M

a
n
u

a
l

sy
st

em
a
n

d
a
cc

ep
-

ta
n

ce
te

st
in

g
S

ik
u

li
(P

y
th

o
n

A
P

I)

B
S

aa
b

A
B

M
is

si
o
n

-
cr

it
ic

a
l

m
il

i-
ta

ry
co

n
tr

o
l

so
ft

w
a
re

M
J
ä
rf

ä
ll

a
P

la
n

-d
ri

ve
n

a
n

d
A

g
il

e
M

a
n
u

a
l

sy
st

em
a
n

d
a
cc

ep
-

ta
n

ce
te

st
in

g
,
a
u

to
m

a
te

d
u

n
it

te
st

in
g

S
ik

u
li

(P
y
th

o
n

A
P

I)

D
S

aa
b

A
B

S
af

et
y
-c

ri
ti

ca
l

ai
r-

tr
a
ffi

c
m

a
n

a
g
em

en
t

so
ft

w
a
re

M
V

ä
x
jö

P
la

n
-d

ri
ve

n
a
n

d
A

g
il

e
M

a
n
u

a
l

sy
st

em
a
n

d
a
cc

ep
-

ta
n

ce
te

st
in

g
S

ik
u

li
(P

y
th

o
n

A
P

I)

D
S

ie
m

en
s

M
ed

ic
al

L
if

e-
cr

it
ic

a
l

m
ed

ic
a
l

jo
u

r-
n

al
sy

st
em

s

S
G

o
th

en
b

u
rg

A
g
il

e
(S

cr
u

m
)

M
a
n
u

a
l

sc
en

a
ri

o
-b

a
se

d
a
n

d
ex

p
lo

ra
to

ry
sy

st
em

a
n

d
a
c-

ce
p

ta
n

ce
te

st
in

g
,

a
u

to
m

a
te

d
u

n
it

te
st

in
g

J
A

u
to

m
a
te

E
S

p
ot

if
y

E
n
te

rt
a
in

m
en

t
st

re
a
m

in
g

a
p

-
p

li
ca

ti
o
n

L
G

o
th

en
b

u
rg

/
S

to
ck

h
o
lm

A
g
il

e
(S

cr
u

m
)

M
a
n
u

a
l

sc
en

a
ri

o
-b

a
se

d
a
n

d
ex

p
lo

ra
to

ry
sy

st
em

,
a
cc

ep
-

ta
n

ce
a
n

d
u

se
r

ex
p

er
ie

n
ce

te
st

in
g
,

a
u

to
m

a
te

d
u

n
it

,
in

te
-

g
ra

ti
o
n

a
n

d
sy

st
em

te
st

in
g
.

S
ik

u
li

(J
av

a
A

P
I)

T
ab

le
1.

3:
S

u
m

m
a
ry

o
f

ke
y

ch
a
ra

ct
er

is
ti

cs
o
f

th
e

co
m

pa
n

ie
s/

d
iv

is
io

n
s/

gr
o
u

p
s

th
a
t

to
o
k

pa
rt

in
th

e
st

u
d
ie

s
in

cl
u

d
ed

in
th

e
th

es
is

.
In

th
e

co
lu

m
n

“
si

ze
”

th
e

co
m

pa
n

ie
s’

co
n

te
xt

s
a
re

ca
te

go
ri

ze
d

a
s

sm
a
ll

(S
),

m
ed

iu
m

(M
)

a
n

d
la

rg
e

(L
)

w
h
er

e
sm

a
ll

is
le

ss
th

a
n

5
0

d
ev

el
o
pe

rs
,

m
ed

iu
m

is
le

ss
th

a
n

1
0
0

d
ev

el
o
pe

rs
a
n

d
la

rg
e

is
m

o
re

th
a
n

1
0
0

d
ev

el
o
pe

rs
in

to
ta

l.
N

o
te

th
a
t

S
a
a
b

A
B

re
fe

rs
to

ex
p
li

ci
t

d
iv

is
io

n
s/

co
m

pa
n

ie
s

w
it

h
in

th
e

S
a
a
b

co
o
rp

o
ra

ti
o
n

.
A

P
I

-
A

p
p
li

ca
ti

o
n

P
ro

gr
a
m

m
in

g
In

te
rf

a
ce

.

1.4. OVERVIEW OF PUBLICATIONS 27

1.4 Overview of publications

The following section will present summaries of the studies included in this
thesis, including their research objectives, methodology, results and contribu-
tions. These studies were primarily performed in Swedish industry at compa-
nies with different organizations, processes and tools that develop both safety-
critical systems as well as non-safety critical applications. An overview of these
companies has been presented in Table 1.3 based on a set of characteristics
that was acquired for to all companies, which includes size, domain, used test
techniques, etc.

1.4.1 Paper A: Static evaluation

Paper A, presented in Chapter 2, is titled “Automated System Testing us-
ing Visual GUI Testing Tools: A Comparative Study in Industry”. The pa-
per presents a single, embedded, case study at the safety-critical air-traffic
management software development company Saab AB in the Swedish city of
Gothenburg.

Research Objective: The main research objective of the study was to
acquire initial support for the applicability of VGT in industrial practice.
Specifically, its ability to automate system and acceptance tests for automated
GUI-based regression testing.

Methodology: The case study consisted of two phases where two VGT
tools, one commercial referred to as CommercialTool2 and an open source,
called Sikuli [20, 54], were evaluated. In Phase 1, static evaluation was per-
formed of the tools to acquire their different properties. In addition, four ex-
periments were performed to compare the tools’ image recognition algorithms’
ability to test animated and non-animated GUIs.

In Phase 2, 10 percent of an industrial test suite of 50 manual test cases was
automated in each tool. These test cases were carefully chosen after a manual
regression test of one of Saab’s main product’s subsystems, in continuation
called the SUT. The SUT had in the order of multiple 100K lines of code,
had a non-animated GUI and a comprehensive manual test suite. During test
automation, measurements were taken on the development time, lines of code
and script execution time. These were then compared statistically to determine
if there was any statistically significant difference between the tools.

Results: Twelve (12) properties were identified in the static evaluation
that showed that the two tools had different favorable properties. For in-
stance, whilst CommercialTool had faster image recognition and support for
automated test failure mitigation, Sikuli was free of charge and generally more
user friendly. Further, in the experiment, CommercialTool had higher success-
rate than Sikuli for non-animated GUIs but Sikuli had better success-rate for
animated GUIs.

In Phase 2, the development time and execution time of the SUT’s entire
test suite was estimated based on the developed test scripts. These estimates
showed that adoption of VGT could provide positive return on investment
within one development iteration of the SUT compared to manual testing.
Additionally, the estimates showed that the execution time of the suite was

2For reasons of confidentiality we cannot disclose the name of the tool

28 CHAPTER 1. INTRODUCTION

3.5 hours, which was an improvement of 4.5 times compared to manual testing
that took 16 hours on average.

Further, none of the null hypotheses in regards to development time, lines
of code and execution time could be rejected. The study therefore concludes
that there is no statistical significant difference between the two tools on any
of these measures. Therefore, since the tools could successfully automate the
industrial test cases, the study provides initial support that VGT is applicable
for automation of manual system test cases in industrial practice.

Contributions: The study’s main contributions are as such:

CA1: Initial support for the applicability of VGT to automate manual scenario-
based industrial test cases when performed by experts,

CA2: Initial support for the positive return on investment of the technique,
and

CA3: Comparative results regarding the benefits and drawbacks of two VGT
tools used in industrial practice.

This work also provided an industrial contribution to Saab with decision sup-
port regarding which VGT tool to adopt.

1.4.2 Paper B: Dynamic evaluation

Paper B, presented in Chapter 3, is titled “Transitioning Manual System Test
Suites to Automated Testing: An Industrial Case Study”. The paper presents
a single, holistic, case study at the mission-critical military control system
software development company Saab AB in the Swedish city of Järfälla.

Research Objective: The objective of the study was to acquire support
for the industrial applicability of VGT when adopted and used by practitioners.
Additionally, to identify challenges, solutions, costs of adoption and use of
VGT and finally the practitioners’ perceptions about the technique.

Methodology: The case study was performed in collaboration with Saab,
where two testers used the open source VGT tool Sikuli to automate several
manual test suites, at Saab referred to as acceptance test descriptions or ATDs,
for the system in the continuation called the SUT. The SUT was mission
critical, tested with 40 ATDs containing approximately 4000 use cases with a
total execution time of 60 man weeks (2400 hours).

The study consisted of three phases, where Phase 1 was an exploratory pre-
study performed to elicit the company’s expectations on VGT, the company’s
test practices, SUT information, etc. In Phase 2, a four month project was
conducted where the testers automated three out of the 40 ATDs with VGT,
during which data collection was performed through telephone and e-mail due
to the geographical distance between the researchers and the company. Finally
in Phase 3, semi-structured interviews were used to verify the study’s previous
results and elicit the practitioners’ perceptions about Sikuli and VGT.

Results: The study’s results were divided into three parts according to
the study’s phases, i.e. pre-study, case-study and post-study. The pre-study
provided contextual information and showed that Saab needed VGT because
of the high costs associated with the SUT’s manual testing.

1.4. OVERVIEW OF PUBLICATIONS 29

Further, the case study showed that the VGT scripts had been im-
plemented as 1-to-1 mappings of the manual test cases and therefore con-
sisted of small use cases, combined in meta-models, into longer test scenarios.
This architecture was perceived beneficial to lower development and mainte-
nance costs since the modular design facilitated change and reuse of use case
scripts [40].

In addition, the VGT scripts executed 16 times faster than the manual
tests, identified all regression defects the manual tests found but also defects
that were previously unknown to the company. These additional defects were
found by changing the order of the test scripts between executions that resulted
in stimulation of previously untested system states. As such, VGT improved
both the test frequency and the defect-finding ability of Saab’s testing com-
pared to their manual ATD testing.

However, six challenges were found with VGT; including high SUT-Script
synchronization costs, high maintenance costs of older scripts or scripts writ-
ten by other testers, low (70 percent) success-rate of Sikuli’s image recognition
when used over a virtual network connection (VNC) (100 percent locally), un-
stable Sikuli behavior, etc. These challenges were solved with ad hoc solutions;
for instance, minimized use of VNC, script documentation, script coding stan-
dards, etc.

Additionally, three months into the study a large change was made to the
SUT that required 90 percent of the VGT scripts to be maintained. This
maintenance provided initial support for the feasibility of VGT script main-
tenance, measured to 25.8 percent of the development cost of the suite. The
scripts’ development costs were also used to estimate the time to positive ROI
of automating all 40 ATDs, which showed that positive ROI could be achieved
within 6-13 executions of the VGT test suite.

Finally, the post-study showed that VGT was perceived as both valuable
and feasible by the testers, despite the observed challenges.

Contributions: The main contributions provided by this study are as
such:

CB1: Support that VGT is applicable in industrial practice when adopted and
applied by practitioners in an industrial project environment,

CB2: Additional support that positive ROI can be achieved from adopting
VGT in practice,

CB3: Initial support that the maintenance costs of VGT scripts can be feasi-
ble, and

CB4: Challenges and solutions related to the adoption and use of VGT in the
studied project.

Consequently the study supports the contributions made by Paper A regarding
the industrial applicability of VGT but also provides initial feasibility support
for the technique. However, the study also reported several challenges with
the technique that warranted further research.

30 CHAPTER 1. INTRODUCTION

1.4.3 Paper C: Challenges, problems and limitations

Paper C, presented in Chapter 4, is titled “Visual GUI Testing in Practice:
Challenges, Problems and Limitations”. The paper presents a multiple, holis-
tic, case study with results from two cases. The first case was performed at
the safety-critical air-traffic management software development company Saab
AB in the Swedish city of Gothenburg, referred to as Case 1, whilst the second
case was the case presented in Paper B, referred to as Case 2.

Research Objective: The objective of the study was to identify chal-
lenges, problems and limitations (CPLs) associated with the adoption and use
of VGT in practice and general solutions to these CPLs. A secondary objective
was also to find support for the ROI of adopting VGT.

Methodology: Both cases were performed independently of each other
with engineers that transitioned manual test suites into VGT. This design
allowed contextual CPLs and solutions to be distinguished from general CPLs
and solutions. CPLs were primarily collected in Case 1, triangulated with
results from Case 2, and systematically analyzed to determine the CPLs origin,
generalizability, commonality to other CPLs, perceived impact, etc. These
properties were then used to classify the CPLs into three tiers of varying
abstraction.

In addition, metrics on development costs and execution time were ac-
quired, which were used to estimate the time to positive ROI of adopting
VGT in comparison to manual testing, in both cases.

Results: 58 CPLs were identified in the study that were classified into
three tiers with 26 unique CPL groups on the lowest tier (Tier 3), grouped
into eight more abstract groups (Tier 2) and finally related to three top tier
CPL root causes (Tier 1). Further, 34 out of the 58 CPLs related to the tested
system, 14 to the test tool (Sikuli) and 10 to third party software (VNC and
simulators). Hence, more than twice of the CPLs were associated with the
SUT compared to the VGT tool.

The Tier 3 CPLs were also classified into six themes to analyze their impact
on VGT, which, based on the study’s results and related work, showed that
the CPLs had varying impact but were also common to other automated and
manual test techniques. This analysis also served to identify four general solu-
tions to mitigate half of the study’s identified CPLs. These solutions included
systematic development of failure and exception handling, script documen-
tation, minimized use of remote script execution over VNC and systematic
SUT-script synchronization.

In addition, measured development costs were used to calculate the time
to positive ROI of adopting VGT in the two cases, which showed that positive
ROI would be achieved after 14 executions of the VGT suite in Case 1 and
after 13 executions in Case 2. Additionally, based on the results and related
work [16], a theoretical ROI cost model was created to serve for future research
into the feasibility of VGT, which would, in addition to development costs, also
take maintenance costs into consideration.

Finally, the study provided additional support for the defect finding ability
of VGT since nine, in total, previously unknown defects were reported, three
in Case 1 and six in Case 2.

Contributions: The main contributions of this work are as such:

1.4. OVERVIEW OF PUBLICATIONS 31

CC1: 29 unique groups of challenges, problems and limitations (CPLs) that
affect the adoption or application of VGT in industrial practice,

CC2: Four general solutions that solve or mitigate roughly half of the identified
CPLs, and

CC3: Results regarding the development costs, execution time, defect-finding
ability and ROI of the use of VGT in industrial practice.

Additionally, the paper provides a general contribution to the body of knowl-
edge of automated testing that currently only holds limited empirical support
regarding CPLs [97].

1.4.4 Paper D: Maintenance and return on investment

Paper D, presented in Chapter 5, is titled “Maintenance of Automated Test
Suites in Industry: An Empirical study on Visual GUI Testing”. The paper
presents a multiple, holistic, case study with results from the two companies
Saab AB in Växsjö and Siemens Medical.

Research Objective: The objective of the study was to evaluate the
maintenance costs associated with VGT scripts. Hence, results essential to
support the feasibility of the use of VGT in industrial practice.

Methodology: The study was divided into two phases performed at Siemens
Medical and Saab AB that were chosen through convenient sampling since
companies that have used VGT for a longer period of time are rare.

Phase 1 was exploratory where three semi-structured interviews were per-
formed to elicit practitioners’ perceptions about VGT, VGT maintenance and
experienced CPLs. At the time of the study, Siemens Medical had transitioned
100 out of 500 manual test cases into VGT with the VGT tool JAutomate [67]
for the purpose of lowering the costs associated with manual scenario-based
testing and to raise the quality of one of the company’s systems.

In Phase 2, an empirical study was performed at Saab AB where a de-
graded [16] VGT suite was maintained by a researcher and a developer in two
steps. First, the VGT suite was maintained for another version of the SUT
which gave insights into the worst case maintenance costs of VGT suites. Sec-
ond, the maintained VGT suite was migrated to a close variant to the SUT
which gave insights into the costs of frequent maintenance of VGT suites. Fif-
teen (15) representative test scripts were maintained in total during the study,
where representativeness was determined through analysis of the VGT suite
and manual test specifications for the SUT. During the maintenance, measure-
ments were taken on maintenance time per script, division of maintenance of
images and script logic, number of found defects and script execution time.
These measurements were then compared statistically to evaluate:

1. The difference in maintenance costs of frequent and infrequent mainte-
nance.

2. The difference in maintenance costs of images and scripts, and

3. The difference between VGT development and maintenance costs,

32 CHAPTER 1. INTRODUCTION

Finally, the measurements were visualized in the theoretical cost model
developed in Paper C.

Results: Statistical analysis of the acquired measurements provided sev-
eral insights into the costs associated with VGT script development and main-
tenance. First, the costs of frequent maintenance was found to be statistically
significantly lower than infrequent maintenance. Second, the maintenance
costs of logic and images are equal in degraded VGT test suites but image
maintenance is significantly lower if the test suite is maintained frequently.
Finally, the maintenance cost of a script, per iteration of maintenance, is lower
than the development cost of the script, regardless of frequent or infrequent
maintenance.

Further, eight defects were identified during the study, some during the
maintenance effort and others by running the VGT scripts, which provides
further support for the defect finding ability of VGT.

0 100 200 300 400 500 600

1500

1000

500

0

20% manual
testing

(Fictional
project)

7% manual
testing
(Saab)

In-frequent VGT script maintenance

Frequent VGT script maintenance

45 180 532

weeks

Cost
(Hours)

VGT script
development

Figure 1.6: Model of the measured development and maintenance costs of VGT
compared to the costs of manual testing.

Figure 1.6 presents a visualization of the time to positive ROI of VGT
adoption and use compared to manual regression testing based on extrapo-
lated cost data from the study. In the figure, VGT script development and
frequent maintenance is shown with a solid line and VGT script develop-
ment and infrequent maintenance with a long-dashed line . Further, manual
testing at Saab, which was seven percent of the total development costs of the
project, which had 60 week iterations, is shown with a short-dashed line to
be compared to a fictional project with 20 percent manual testing shown with
a mixed long- and short-dashed line . Gray, dashed, vertical lines
show when positive ROI is reached in the different cases.

In the fictional project, positive ROI is reached in 45 weeks, i.e. within
one development iteration of the project. However, in Saab AB’s context,
positive ROI would only be reached in 180 weeks if frequent maintenance was
used and in an infeasible 532 weeks with infrequent maintenance. Hence, VGT

1.4. OVERVIEW OF PUBLICATIONS 33

script maintenance is feasible but a VGT suite requires frequent maintenance if
positive ROI is to be reached in a reasonable amount of time. Additionally, the
time to positive ROI is dependent on the amount of manual testing performed
in a project, i.e. in a project with more manual testing, positive ROI is reached
faster. These results were supported by the interviews at Siemens Medical
(Phase 1) where VGT script maintenance was associated with substantial cost
and required effort, i.e. up to 60 percent of the time spent on VGT each week.
However, despite these challenges, the technique was still considered beneficial,
valuable and mostly feasibly by the practitioners.

Contributions: The main contributions of this study are as such:

CD1: That maintenance of VGT scripts is feasible in practice, shown both
through qualitative and quantitative results from two companies with
two different VGT tools,

CD2: That maintenance of a VGT script:

(a) when performed frequently is significantly less costly than when
performed infrequently,

(b) is significantly less costly per iteration of maintenance than devel-
opment, and

(c) images are significantly less costly than maintenance of script logic.

CD3: That VGT scripts provide value to industrial practice, shown both with
qualitative statements from practitioners and the technique’s defect find-
ing ability where eight defects were found using the technique, and

CD4: A ROI cost model based on actual data from industrial practice that
verifies that this theoretical cost model is valid for automated test adop-
tion and maintenance.

Hence, VGT can be feasible in practice but additional research was still
warranted after the study to verify these results after long-term (years) use of
VGT in practice.

1.4.5 Paper E: Long-term use

Paper E, presented in Chapter 6, is titled “On the Long-term Use of Visual
GUI Testing in Industrial Practice: A Case Study”. The paper presents a
single, embedded, case study with results from the company Spotify.

Research Objective: The objective of the study was to evaluate the
long-term use of VGT in industrial practice, including short- and long-term
challenges, problems and limitations (CPLs) and script maintenance costs. A
secondary objective was to evaluate what alternative techniques that are used
to VGT and to evaluate their benefits and drawbacks.

Methodology: The study was divided into three steps where Step 1 was
a pre-study, at Spotify, to acquire information about the company’s use of
VGT, willingness to participate in the study and what people to interview in
the study (acquired through snowballing sampling [98]), etc.

In Step 2, four interviews were conducted with five employees at Spotify
that had detailed knowledge about how VGT and alternative automated test

34 CHAPTER 1. INTRODUCTION

techniques were used at the company. Additionally, the interviews were com-
plemented with two workshops, one exploratory in the beginning of the study
and one with one person to verify previously collected results and to identify
the company’s future plans for VGT.

Finally, VGT was statistically compared to an alternative test technique
developed by Spotify (the Test Interface) based on properties acquired in the
interviews that were quantified based on the techniques’ stated benefits and
drawbacks.

Results: VGT was adopted at Spotify after an attempt to embed inter-
faces for GUI testing (the Test interface) into the company’s main application
had failed due to lack of developer mandate and high costs. Further, be-
cause the application lacked the prerequisites of most other test automation
frameworks, VGT became the only option. VGT was adopted with the tool
Sikuli [54] and its success could be accounted to three factors:

1. The use of an incremental adoption process that began with a pilot
project,

2. The use of best engineering practices to create scripts, and

3. The use of a dedicated adoption team.

Several benefits were observed with VGT, such as value in terms of found
regression defects, robust script execution in terms of reported false test results,
feasible script maintenance costs in most projects, support for testing of the
release ready product, support for integration of external applications without
code access into the tests, etc. Additionally, VGT integrated well with the
open source model-based testing tool Graphwalker for model-based Visual GUI
Testing (MBVGT). MBVGT made reuse and maintenance of scripts more cost-
effective.

However, several drawbacks were also reported, such as costly maintenance
of images in scripts, inability to test non-deterministic data from databases,
limited applicability to run tests on mobile devices, etc. Because of these draw-
backs, Spotify abandoned VGT in several projects in favor of the originally
envisioned “Test interface” solution which became realizable after the adop-
tion of VGT due to VGT’s impact on the company’s testing culture. Hence,
VGT had shown the benefits of automation which gave developers mandate
to adopt more automation and create the Test interface. These interfaces
are instrumented by Graphwalker models that use the interfaces in the source
code to collect state information from the application’s GUI components that
is then used to assert the application’s behavior. This approach is beneficial
since it notifies the developer if an interface is broken when the application is
compiled, which ensures that the test suites are always maintained.

Additionally, the Test interface has several benefits over VGT, such as
better support for certain test objectives (e.g. tests with non-deterministic
data), faster and more robust test execution, etc. However, the Test interface
also has drawbacks, such as inability to verify that the pictorial GUI conforms
to the application’s specification, inability to perform interactions equal to a
human user, required manual synchronization between application and scripts,
lack of support for audio output testing, etc.

1.4. OVERVIEW OF PUBLICATIONS 35

Analysis based on quantification of these properties, i.e. benefits and draw-
backs, also showed that there is significant difference between VGT and the
Test interface. Hence, the techniques have divergent properties that make the
more or less suitable in different contexts.

Finally, based on the study’s results, results from Papers B and C and re-
lated work [99], a set of 14 guidelines were synthesized to provide practitioners
with decision support and guidance to avoid pitfalls during adoption, use and
long-term use of VGT in practice.

Contributions: The main contributions of this paper are that:

CE1: VGT can be used long-term in industrial practice, as shown by Spotify’s
use of Sikuli for many years,

CE2: VGT has several benefits, including its flexible use that allows it to
integrate external applications into the tests and test products ready for
customer delivery,

CE3: VGT has many challenges, including robustness issues, possibly due to
the immaturity of the technique’s tools,

CE4: There are alternatives to VGT in practice with benefits such as higher
robustness but with drawbacks that they do not verify that the pictorial
GUI conforms to the system’s specification, etc.

CE5: A set of 14 guidelines to support the adoption, use and long-term use of
VGT in industrial practice.

The study thereby complements the missing results from Paper D regarding
the long-term feasibility of VGT in practice.

1.4.6 Paper F: VGT-GUITAR

Paper F, presented in Chapter 7, is titled “Conceptualization and Evaluation
of Component-based Testing Unified with Visual GUI Testing: an Empirical
Study”. The paper presents a combined study with an experiment and a case
study performed in an academic setting.

Research Objective: The objective of the study was to compare the
differences in fault-finding ability of 2nd and 3rd generation (VGT) tools with
respect to false test results for system and acceptance tests. A secondary
objective was to combine the tool GUITAR with Sikuli into a hybrid tool
called VGT-GUITAR and evaluate the two tools’ capabilities on open source
software.

VGT-GUITAR: VGT-GUITAR is an experimental tool that was devel-
oped based on the tool GUITAR’s GUI ripping and MBT functionality [58],
explained in Section 1.2.3. VGT-GUITAR extends GUITAR’s ripper with
bitmap ripping to acquire screenshots of the SUT’s GUI components. These
screenshots are then used during replay of test cases, generated by GUITAR,
in a VGT driver (a Sikuli script) to interact with the SUT’s pictorial GUI
rather than by hooking into the SUT. For additional detail about the tool, see
Chapter 7.

Methodology: The study began with an experiment where a custom built
GUI-based application was mutated using GUI mutation operators, defined

36 CHAPTER 1. INTRODUCTION

during the study, to create 18 faulty versions of the application. A test suite
was then generated for the original version of the application that was executed
with GUITAR and VGT-GUITAR (Independent variable) on each mutant to
measure the number of correctly identified mutants, false positives and false
negative test results (Dependent variables). The dependent variables were then
analyzed to compare the two techniques in terms of reported false positives
and negatives for system and acceptance tests, where system tests evaluated
the SUT’s behavior whilst acceptance tests also took the SUT’s appearance
into account. In addition the execution time of the scripts in the two tools
were recorded and compared.

The study was concluded with a case study where GUITAR and VGT-
GUITAR were applied on three open source applications to identify support
for the tools’ industrial applicability.

Results: Statistical analysis of the experiment’s results showed that 3rd

generation scripts report statistically significantly more false positives for sys-
tem tests than 2nd generation tools and that 2nd generation tools report sta-
tistically significantly more false negative results for acceptance tests. These
results could be explain by observations of the scripts’ behavior on different
mutants and relate to how the two techniques stimulate and assert the SUT’s
behavior, i.e. through hooks into the SUT or by image recognition. As an
example, if the GUI’s appearance was changed such that a human could still
interact with it, e.g. by making a button larger, the 3rd generation scripts
would report a false positive result since the image recognition would fail.
However, the 2nd generation scripts would pass since the hook to the button
still remained. In contrast, if the GUI’s appearance was changed such that
a human could not interact with it, e.g. by making a button invisible, the
2nd generation scripts would produce a false negative since the hook allowed
the script to interact with the invisible button. However, the 3rd generation
scripts would successfully fail because the image recognition would not find a
match. The results of the experiment therefore indicate that a combination of
the 2nd and 3rd generation techniques could be the most beneficial because of
their complementary behavior for system and acceptance tests.

The proceeding case study did however show that VGT-GUITAR is not
applicable in industrial practice since the tool had zero percent success rate
on any of the open source applications, caused by technical limitations in the
tool, e.g. in reality it could not capture screenshots of all GUI components.
Additionally, the test cases were generated for GUITAR that can, for instance,
interact with a menu item without expanding the menu, i.e. functionality
that is not supported by 3rd generation tools. Hence, further development is
required to make VGT-GUITAR applicable in practice but the tool still shows
proof-of-concept for fully automated 3rd generation GUI-based testing due to
its successful use for the simpler application in the experiment.

Contributions: This study thereby provides the following main contri-
butions:

CF1: Comparative results regarding the fault-finding ability of 2nd and 3rd

generation GUI-based tools in terms of false test results for system and
acceptance tests.

CF2: Initial support that a completely automated 3rd generation test tool

1.4. OVERVIEW OF PUBLICATIONS 37

could be developed even though the tool developed in the study, VGT-
GUITAR, still requires additional work to become applicable in practice.

As such, the study primarily provides an academic contribution regarding
future research directions for VGT but also results regarding the applicability
of different GUI-based test technique’s use for system and acceptance testing.

1.4.7 Paper G: Failure replication

Paper G, presented in Chapter 8, is titled “Replicating Rare Software Failures
with Exploratory Visual GUI Testing”. The paper presents an experience
report provided by Saab AB in Gothenburg about how VGT was used to
replicate and resolve a defect that had existed in one of the company’s systems
for many years. As such, unlike the previously included papers, this paper did
not have any research objective or methodology and this section therefore only
present a summary of the report.

Experience report: The report presents how the company had received
failure reports from their customers for several years regarding a defect in one
of their systems that caused it to crash after long term use (3-7 months). These
customer failure reports were however not sufficient to identify the defect and
additional failure replication was therefore required. However, because the
defect manifested so seldom in practice it was deemed too costly to resolve
with manual practices, instead all customers were informed about the defect
and were recommended to reboot the system with even frequency to mitigate
failure.

In 2014 one of the company’s developers found a way to remove the defect
with a semi-automated test process that combined the principles of exploratory
testing with VGT. In the process, a small VGT script was used to provide
stimuli to the tested system’s features in individual, mutually exclusive, com-
ponents (methods). After each run, the script was modified by changing, or
removing, methods that interacted with features that were perceived to not
contribute to the manifestation of the defect, thereby incrementally ruling out
which feature(s) caused the failure. Consequently an approach common to ex-
ploratory testing; simultaneous learning, test design and test execution [41,42].
The reason for the use of VGT for the process was because of the system’s
legacy that restricted the use of any other test automation framework.

By using the developed process, Saab AB was able to replicate the failure
within 24 hours and resolve its defect within one calendar week. The defect
was a small memory allocation leak, i.e. memory was not properly deallocated
after a bitmap on the GUI had been rendered, but over time the leak built up
to critical levels that caused the system to crash.

Post analysis of this case showed that the defect could have been found
manually, at equal cost to the VGT approach but this defect analysis had
to be performed by an engineer with specific technical knowledge about the
system, which only a few developers at the company possessed. As such, this
case shows that automated testing can provide value to a company in terms
of quality gains rather than lowered costs.

Contributions: The main contributions of this experience report are as
such:

38 CHAPTER 1. INTRODUCTION

CG1: A success-story from industrial practice that shows that VGT can be
used to replicate and resolve non-frequent and nondeterministic defects,
and

CG2: A case where automated testing was paired with manual practices to
create a novel, semi-automated, test practice, implying that similar pro-
cesses can be achieved with other, already available, test frameworks in
practice.

Additionally this case provides implicit support of the benefits of collabora-
tion between academia and industry since it was academic transfer of VGT
knowledge to Saab AB that resulted in the company’s success story.

1.5 Contributions, implications and limitations

The objective of the thesis work was to find empirical evidence for, or against,
the applicability and feasibility of VGT in industrial practice. In particular,
what types of testing VGT can be used for, what the maintenance costs as-
sociated with VGT scripts are and what challenges, problems and limitations
(CPLs) are associated with the short and long-term use of the technique in
practice. Additionally, the research aimed to find ways to advance the indus-
trial applicability of VGT and outline areas of future VGT research.

Evidence to fulfill this objective were collected through an incremental
research process that included studies in academia and Swedish industry with
several VGT tools and research methods. The individual contributions of these
studies can be synthesized to answer this thesis research questions, as mapped
in Table 1.4, which represent four key contributions:

1. Empirical evidence for the industrial applicability of Visual GUI Test-
ing for different types of testing, i.e. regression, system, and acceptance
testing of both deterministic and non-deterministic defects, and in dif-
ferent contexts, i.e. for daily continuous integration, for safety-critical
and non-safety critical software.

2. Empirical evidence for the industrial feasibility of Visual GUI testing,
including associated script maintenance costs and reasonable time to
positive return on investment, given that frequent maintenance is used
and a suitable amount of effort is spent on manual testing prior to VGT
adoption.

3. Empirical evidence that there are challenges, problems and limitations
associated with Visual GUI Testing that affect the adoption, short and
long-term use of the technique in industrial practice, and

4. Technical and process solutions to advance Visual GUI Testing’s indus-
trial applicability, currently and in the future.

Together, these four contributions lets us draw the conclusion that VGT
fulfills the industrial need for a flexible GUI-based test automation technique
and is mature enough for widespread use in industrial practice. This conclu-
sion is of particular value to companies that have GUI-based systems that

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 39

lack the prerequisites, e.g. specific technical interfaces, required by other test
automation frameworks since VGT finally provides these companies with the
means to automate tests to lower cost and raise software quality. However,
there are still many challenges, problems and limitations (CPL) associated
with VGT that are pitfalls that could prohibit the successful adoption, or
longer term use, of the technique in practice. Pitfalls that must be taken into
consideration by adopting companies and addressed, and mitigated, by future
academic research.

The continuation of this section will present the detailed syntheses of the
included research papers’ individual contributions and how they provide sup-
port for the thesis objective and main conclusion.

1.5.1 Applicability of Visual GUI Testing in practice

VGT is first and foremost a test technique and its applicability must therefore
be judged on its ability to find defects. Ample support for the defect-finding
ability of VGT was provided in the thesis from Papers B, C, D and indicated
in E, where it was reported that VGT identified all defects found by man-
ual scenario-based regression testing but also new defects that practitioners
said would not have been found without VGT. Hence, the technique can find
defects with equal, or even greater, efficiency than manual, scenario-based,
system testing. As such, VGT provides concrete value in practice and a suit-
able complement to existing test techniques, a conclusion also supported by
explicit statements from practitioners in Papers B, D and E. Additionally, the
experience report in Paper G shows that VGT can be used to find unknown,
non-deterministic and infrequent defects.

Further, support for the thesis conclusions were acquired with several differ-
ent VGT tools, i.e. Sikuli [54], JAutomate [67] and CommercialTool. Different
benefits and drawbacks were identified with the tools but their core function-
ality, i.e. image recognition, make them equally applicable in practice. Ad-
ditionally, image recognition is what provides VGT with its main benefit, its
flexibility to test almost any GUI-driven system regardless of implementation
language, operating system or even platform. This provides industrial practi-
tioners with unprecedented ability to automate not only their SUT’s but also
the SUT’s environment, e.g. simulators, external software, etc. Thereby allow-
ing test cases that previously had to be performed manually to be automated,
a statement supported by Papers A, B, C and E. However, these conclusions
assume that the SUT has an accessible pictorial GUI, i.e. VGT has limited
or no usability for systems that lack GUI’s, such as server or general backend
software.

40 CHAPTER 1. INTRODUCTION

P
.

ID
C

o
n
tr

ib
u

ti
o
n

su
m

m
a
ry

R
Q

1
R

Q
2

R
Q

3
R

Q
4

A
C

A
1

V
G

T
is

ap
p

li
ca

b
le

fo
r

a
u

to
m

a
ti

o
n

o
f

m
a
n
u

a
l

sc
en

a
ri

o
-b

a
se

d
in

d
u

st
ri

a
l

te
st

ca
se

s
X

C
A

2
In

it
ia

l
su

p
p

or
t

fo
r

th
e

p
o
si

ti
ve

re
tu

rn
o
n

in
ve

st
m

en
t

o
f

V
G

T
X

C
A

3
C

om
p

ar
at

iv
e

re
su

lt
s

o
n

b
en

efi
ts

a
n

d
d

ra
w

b
a
ck

s
o
f

tw
o

V
G

T
to

o
ls

X
X

B
C

B
1

V
G

T
ap

p
li

ca
b

le
in

a
n

in
d

u
st

ri
a
l

p
ro

je
ct

en
v
ir

o
n

m
en

t
X

C
B

2
P

os
it

iv
e

R
O

I
a
ch

ie
va

b
le

a
ft

er
a
d

o
p

ti
o
n

o
f

V
G

T
in

p
ra

ct
ic

e
X

C
B

3
In

it
ia

l
su

p
p

or
t

th
a
t

th
e

m
a
in

te
n

a
n

ce
co

st
s

o
f

V
G

T
sc

ri
p

ts
ca

n
b

e
fe

a
si

b
le

X
C

B
4

C
h

al
le

n
ge

s
an

d
so

lu
ti

o
n

s
re

la
te

d
to

th
e

a
d

o
p

ti
o
n

a
n

d
u

se
o
f

V
G

T
X

C
C

C
1

29
u

n
iq

u
e

gr
ou

p
s

o
f

ch
a
ll

en
g
es

,
p

ro
b

le
m

s
a
n

d
li

m
it

a
ti

o
n

s
(C

P
L

s)
th

a
t

a
ff

ec
t

V
G

T
X

C
C

2
F

ou
r

ge
n

er
al

so
lu

ti
o
n

s
th

a
t

so
lv

e
o
r

m
it

ig
a
te

ro
u

g
h

ly
h

a
lf

o
f

th
e

id
en

ti
fi

ed
C

P
L

s
X

C
C

3
D

ev
el

op
m

en
t

co
st

s,
ex

ec
u

ti
o
n

ti
m

e,
d

ef
ec

t-
fi

n
d

in
g

a
b

il
it

y
a
n

d
R

O
I

o
f

V
G

T
X

X
D

C
D

1
M

ai
n
te

n
an

ce
o
f

V
G

T
sc

ri
p

ts
is

fe
a
si

b
le

in
p

ra
ct

ic
e

X
C

D
2

T
h

at
m

ai
n
te

n
a
n
ce

o
f

V
G

T
(f

re
q
u

en
t,

im
a
g
es

,
m

a
in

te
n

a
n

ce
)

is
co

st
-e

ff
ec

ti
ve

X
C

D
3

V
G

T
sc

ri
p

ts
p

ro
v
id

e
va

lu
e

to
in

d
u

st
ri

a
l

p
ra

ct
ic

e
(e

.g
.

fi
n

d
s

d
ef

ec
ts

)
X

C
D

4
A

R
O

I
co

st
m

o
d

el
b

a
se

d
o
n

d
a
ta

fr
o
m

in
d

u
st

ri
a
l

p
ra

ct
ic

e
X

E
C

E
1

V
G

T
ca

n
b

e
u

se
d

lo
n

g
-t

er
m

in
in

d
u

st
ri

a
l

p
ra

ct
ic

e
X

X
C

E
2

V
G

T
h

as
se

ve
ra

l
b

en
efi

ts
in

in
d

u
st

ri
a
l

p
ra

ct
ic

e
X

C
E

3
V

G
T

h
as

m
an

y
ch

a
ll

en
g
es

X
C

E
4

T
h

er
e

ar
e

al
te

rn
a
ti

ve
s

to
V

G
T

in
p
ra

ct
ic

e
w

it
h

so
m

e
b

en
efi

ts
ov

er
V

G
T

X
C

E
5

14
gu

id
el

in
es

to
su

p
p

o
rt

th
e

a
d

o
p

ti
o
n

,
u

se
a
n

d
lo

n
g
-t

er
m

u
se

o
f
V

G
T

in
in

d
u

st
ri

a
l
p

ra
ct

ic
e

X
X

X
F

C
F

1
C

om
p

ar
at

iv
e

re
su

lt
s

re
g
a
rd

in
g

2
n

d
a
n

d
3
rd

g
en

er
a
ti

o
n

G
U

I-
b

a
se

d
to

o
ls

’
a
b

il
it

ie
s

X
X

C
F

2
In

it
ia

l
su

p
p

or
t

fo
r

co
m

p
le

te
ly

a
u

to
m

a
te

d
3
rd

g
en

er
a
ti

o
n

te
st

in
g

X
G

C
G

1
V

G
T

is
ab

le
to

re
p

li
ca

te
a
n

d
re

so
lv

e
n

o
n

-f
re

q
u

en
t

a
n

d
n

o
n
d

et
er

m
in

is
ti

c
d

ef
ec

ts
X

C
G

2
V

G
T

ca
n

b
e

p
ai

re
d

w
it

h
m

a
n
u

a
l
p

ra
ct

ic
es

to
cr

ea
te

n
ov

el
,

se
m

i-
a
u

to
m

a
te

d
,

te
st

p
ra

ct
ic

es
X

S
u

m
1
2

9
5

3

T
ab

le
1.

4:
M

a
p
p
in

g
o
f

th
e

in
d
iv

id
u

a
l

co
n

tr
ib

u
ti

o
n

s
p
re

se
n

te
d

in
S

ec
ti

o
n

1
.4

to
th

e
th

es
is

re
se

a
rc

h
qu

es
ti

o
n

s.
P

-
P

a
pe

r,
ID

-
Id

en
ti

fi
er

o
f

co
n

tr
ib

u
ti

o
n

,
C

o
n

t.
-

C
o
n

tr
ib

u
ti

o
n

,
R

Q
X

-
R

es
ea

rc
h

qu
es

ti
o
n

X
,

C
P

L
s

-
C

h
a
ll

en
ge

s,
p
ro

bl
em

s
a
n

d
li

m
it

a
ti

o
n

s.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 41

Furthermore, in contrast to other automated test techniques, VGT enables
regression testing of acceptance tests since, as discussed in Section 1.2.1, ac-
ceptance tests only differ from system tests in terms of the domain information
embedded in the test scenarios, e.g. domain information that also includes the
appearance of the SUT’s GUI. Hence, since image recognition allows VGT to
emulate a human user, it stands to reason that acceptance tests can also be
automated, a conclusion also supported by Papers B and F. However, scenario-
based scripts can only find defects in system states that are explicitly asserted,
which, currently, delimits the use of VGT to automated acceptance regression
testing. Acceptance testing otherwise requires cognitive reasoning and there-
fore a human oracle [69], which implies that it must be performed manually
by an end user.

Additionally, VGT scripts execute faster than manual scenario-based test
cases, reported in Paper B as much as 16 times faster than manual tests.
However, more importantly, VGT scripts execute almost without cost and
can therefore improve test frequency of GUI-based system tests, perceivably
from weekly executions to daily execution or even per code commit. As a
consequence, VGT can significantly improve the frequency of quality feedback
to the system’s developers and raise the system’s quality.

However, VGT scripts are still slow in comparison to other automated test
techniques, i.e. hundreds of automated unit tests can be executed at the same
time as one VGT script. This conclusion presents a potential challenge for the
use of VGT in practice, especially for continuous deployment where software,
on commit, is automatically tested, delivered and deployed to the software’s
customer, discussed further in Section 1.5.2.

Further, whilst a unit test stimulates an individual software component, a
single VGT script can stimulate all components of an entire sub-system, which
thereby makes VGT an efficient means of achieving software component cover-
age. Additionally, a unit test only provides the tester with detailed knowledge
of what component is broken, it does not provide information regarding what
feature of the system is broken. In contrast, a VGT script can identify what
feature of the system is broken but not in what component the defect resides.
This observation implies that automation is required on several levels of system
abstraction to provide test coverage of both software components and features
of the software. In addition, it shows the value of VGT in practice since it
is the only automated test technique that asserts the SUT’s behavior through
the same interface as the user.

However, VGT is not a replacement for existing techniques, e.g. manual
regression testing, since, despite its defect-finding ability, it can only find de-
fective SUT behavior that is explicitly asserted. In contrast, a human tester
can observe faulty system behavior regardless of where or how it manifests
on the GUI. However, as presented in Papers D and E, VGT can, and there-
fore only should, be used to mitigate costly, repetitive and error-prone manual
testing, complemented with manual test practices, such as exploratory testing
that finds new defects [42,43].

As such, the results provided by this thesis show that VGT is applicable
in industrial practice. A conclusion supported by results regarding the tools
flexibility of use, improved test execution speed and defect-finding ability over
manual testing. However, the technique is slower than other automated test

42 CHAPTER 1. INTRODUCTION

techniques, suffers from immature tooling and is suggested to report statis-
tically significantly more false positives for system tests than 2nd generation
GUI-based testing. VGT should therefore be complemented with other auto-
mated test techniques to provide complete test coverage of a SUT, in particular
in continuous delivery contexts.

1.5.2 Feasibility of Visual GUI Testing in practice

In order for VGT to be usable in practice it is not enough that it is applicable, it
also needs to be feasible. Feasibility refers to the practical and cost-effective use
of a technique over a longer period of time, which implies that the development
and maintenance costs of scripts need to provide positive return on investment
(ROI) compared to alternative testing practices, e.g. manual testing, over
time.

VGT is best compared to manual regression testing because both tech-
niques fulfill the same test objective and use the same types of inputs and
outputs for SUT stimulation and assertion. Such a comparison is also valu-
able since manual GUI-based testing is the only available alternative for many
companies [100], e.g. due to SUT legacy or other missing prerequisites for
other automated test techniques.

However, feasibility also involves test execution time since VGT is primarily
an automated regression testing technique which implies that VGT scripts
should be executed frequently to provide fast feedback to developers, i.e. a
practice that would be prohibited by too slow execution time.

Initial data on development costs and execution time of VGT scripts were
acquired in Papers A, B and C and were used in the respective papers to cal-
culate time to positive ROI. However, these results were acquired for different
sized VGT suites and compared to varying manual test execution costs, which
make them incomparable. Therefore the results were recalculated for the de-
velopment, but not maintenance, of a fictional VGT suite of 100 test cases
instead of 10, 300 and 33 test cases reported in Papers A, B and C respec-
tively. These fictional development costs were then compared to the average
total time spent on manual testing per iteration in the three cases (263 man-
hours). Hence, in contrast to previous work where script development time
was compared to the cost of running the manual test suites. This comparison
thereby identifies how many times the VGT suite needs to be executed, af-
ter development, to equal the amount of manual testing that could have been
performed for the same cost, i.e. the number of executions that are required
for VGT adoption to provide positive ROI. Furthermore, the execution time
of each fictional test suite was calculated that gives insights into the frequency
with which the test suites can be executed in practice, i.e. hourly, daily or on
only an even less frequent basis. The inputs and results of these calculations
are presented in Table 1.5.

The table shows that the development costs of a VGT suite are consid-
erable, i.e. in the order of hundreds of hours. However, once developed, the
VGT suite provides positive ROI after 2.3 test suite executions, on average,
compared to the total cost of manual testing with equivalent test cases.

Additionally, the table shows that the execution time of VGT suites can be
significant and we therefore conclude that execution of a full VGT suite does

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 43

Paper Manual
test
costs

Script
dev.
time

Dev.
time
of 100
scripts

Script
exe.
time

Exe.
time
of 100
scripts

Positive
ROI
after

A 150 mh 195
min

325 hours 3 min
27 sec

5 hours
45 min

2 exe.

B 488 mh 206
min

344 hours 18-36
sec

30-60
minutes

2 exe.

C 150 mh 387
min

645 hours 27
min

45 hours 3 exe.

Mean 263 mh 262
min

438
hours

10
min 4
sec

17 hours
15 min

2.3 exe

Table 1.5: Table that summarizes the estimated results on development time,
execution time and ROI of 100 VGT test cases from the results acquired in Pa-
pers A, B and C. Script development time is compared to the average time
spent on manual testing in the three projects, 263 hours. In compar-
ison, the calendar time spent in a six month project with 20 percent testing is
192 hours. mh. - Man-hours, Dev. - Development, Exe. - Execution, ROI
- Return on investment, Min - Minutes, Sec - Seconds.

not support faster than continuous integration on a daily basis. Therefore,
test script prioritization is required to run VGT tests for regression testing
and continuous integration on a hourly basis. However, in comparison to in-
dustrial state-of-practice of weekly manual regression tests, VGT still provides
significantly improved test frequency [40].

Additionally, as can be seen in Table 1.5 the development costs and execu-
tion time for the VGT suite reported in Paper C was significantly higher than
in the other two cases. The reason was because the test suite was developed to
be robust, which was achieved by implementing several steps of failure mitiga-
tion code in the scripts and the test suite architecture. As such, we conclude
that the architecture of VGT scripts play a role for the feasibility of VGT
test development, which implies that there are VGT script best practices that
should be followed, e.g. modularized test script design, scripts should be as
short and linear as possible, etc. Further, more robust scripts take longer time
to execute, which can stifle their use for continuous integration if the entire
test suite needs to be executed often. As such there may exist a required
tradeoff between robustness and execution time that needs to be taken into
account during VGT script adoption and development.

However, the estimations presented in Table 1.5 do not take VGT script
maintenance into account. VGT maintenance was evaluated explicitly in Pa-
pers D and E, where Paper D provided support for the feasibility of VGT
script maintenance in two parts. First, the study showed, with statistical
significance, that frequent maintenance of a VGT suite is less costly than in-
frequent maintenance. Additionally, maintenance per script per iteration of
maintenance is lower than the development cost of a script, i.e. there is value
in maintaining scripts rather than to rewrite them, and the cost of maintain-

44 CHAPTER 1. INTRODUCTION

ing images is lower than script logic. Second, the quantitative results were
visualized in a ROI cost model, presented in Section 1.4.4 in Figure 1.6. These
results indicate, in a best case, that the development and maintenance costs of
a VGT suite provides positive ROI within on development iteration, given that
at least 20 percent of the project’s cost is associated with manual testing and
that maintenance is performed frequently. However, if a company currently
spends less time on manual testing and if scripts are maintained infrequently,
the time to positive ROI could be several years, in Saab AB’s case 532 weeks
(or over 10 years).

Consequently, successful long-term use of VGT has several prerequisites.
First, VGT needs to be integrated into the company’s development and test
process and the company’s organization needs to be adopted to the changed
process, e.g. to facilitate the need for frequent maintenance. Second, the
developed VGT suite should follow engineering best practice, i.e. be based
on a modularized architecture, have suitable amounts of failure mitigation,
etc [40]. Further, test scripts shall be kept as short and linear as possible to
mitigate script complexity, which is also mitigated by coding standards that
improve script readability. Third, test automation should first, and foremost,
be performed of stable test cases since this practice mitigates unnecessary
maintenance costs and aligns with the techniques’ primary purpose to per-
form regression testing. Additional factors were reported in Paper D, some
that are common to other automated test techniques, but it is unknown how
comprehensive this set of factors is and future research is therefore required
to expand this set.

In summary we conclude that VGT is feasible in industrial practice with
development and maintenance costs that are significant, yet manageable and
provide positive return on investment. However, there are still challenges
associated with the maintenance of VGT scripts that require suitable practices,
organizational change as well as technical support, to be mitigated.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 45

Description Affect Impact Support
1 VGT scripts (Sikuli) take over

the computer during execu-
tion

Usage Low E

2 VGT documentation, guide-
lines and APIs, are lacking

Adoption Low B

3 Maintenance is affected by
script readability, complexity,
etc.

Maintenance Low B

4 1-to-1 (manual-script) test
cases are not always suitable

Maintenance Medium B,C

5 Manual test specifications
don’t always support script-
ing

Adoption Medium B,C

6 VGT tools (Sikuli and JAu-
tomate) are immature/not ro-
bust

Usage Medium A,B,C,E

7 Image recognition is volatile,
fails randomly

Maintenance Medium A,B,C

8 Script tuning (Synchroniza-
tion, image similarity) is time
consuming

Maintenance Medium B,C,E

9 SUT deficiencies (bugs, miss-
ing functionality) prohibit
scripting

Adoption High B,C

10 Dynamic/non-deterministic
output is a challenge for VGT
scripts

Usage High A,E

11 VGT script image mainte-
nance costs are significant

Maintenance High E

12 VGT scripts (Sikuli) have lim-
ited applicability for mobile
testing

Usage High E

13 Remote script execution
(VNC) negatively affects
image recognition success rate

Adoption High B,C

Table 1.6: Summary of key reported CPLs. For each CPL, its affect and impact
has been ranked. Affect refers to what the CPL affects (Adoption, Usage or
Maintenance). Impact on how serious (Low, Medium or High) its presence
is for a company. Column “Support” indicates in which studies the CPL was
reported. The table is sorted based on impact.

46 CHAPTER 1. INTRODUCTION

P
h

a
se

#
G

u
id

e
li

n
e

D
e
sc

ri
p

ti
o
n

A
d

o
p

ti
o
n

1
M

a
n

a
g
e

e
x
p

e
c
ta

ti
o
n

s
It

is
n

o
t

su
it

a
b
le

/
p

o
ss

ib
le

to
a
u

to
m

a
te

a
n
y
th

in
g

a
n

d
ev

er
y
th

in
g

w
it

h
V

G
T

,
co

n
si

d
er

w
h

a
t

is
a
u

to
m

a
te

d
a
n

d
w

h
y
?

2
In

c
re

m
e
n
ta

l
a
d
o
p

ti
o
n

A
st

a
g
ed

a
d

o
p

ti
o
n

p
ro

ce
ss

th
a
t

in
cr

em
en

ta
ll

y
ev

a
lu

a
te

s
th

e
va

lu
e

o
f

V
G

T
is

su
it

a
b

le
to

m
in

im
iz

e
co

st
if

th
e

te
ch

n
iq

u
e

is
fo

u
n

d
u

n
su

it
a
b

le
.

3
U

se
a

d
e
d

ic
a
te

d
te

a
m

A
d

ed
ic

a
te

d
te

a
m

ca
n

id
en

ti
fy

h
ow

/
w

h
en

/
w

h
y

to
u

se
V

G
T

.
4

U
se

g
o
o
d

e
n

g
in

e
e
ri

n
g

V
G

T
co

st
s

d
ep

en
d

o
n

th
e

a
rc

h
it

ec
tu

re
o
f

te
st

s/
te

st
su

it
es

a
n

d
en

g
in

ee
ri

n
g

b
es

t
p

ra
ct

ic
es

sh
o
u

ld
th

er
ef

o
re

b
e

u
se

d
,

e.
g
.

m
o
d

u
la

ri
za

ti
o
n

.
5

C
o
n

si
d

e
r

u
se

d
so

ft
w

a
re

D
iff

er
en

t
so

ft
w

a
re

so
lu

ti
o
n
s,

e.
g
.

V
G

T
to

o
ls

a
n

d
th

ir
d

p
a
rt

y
so

ft
w

a
re

,
sh

o
u

ld
b

e
ev

a
lu

-
a
te

d
to

fi
n

d
th

e
b

es
t

so
lu

ti
o
n

fo
r

th
e

co
m

p
a
n
y
’s

n
ee

d
s.

U
se

6
C

h
a
n

g
e

ro
le

s
V

G
T

ca
n

re
q
u

ir
e

n
ew

ro
le

s
to

b
e

tr
a
in

ed
,

w
h

ic
h

is
a
ss

o
ci

a
te

d
w

it
h

a
d

d
it

io
n

a
l

co
st

.
7

D
e
v
e
lo

p
m

e
n
t

p
ro

c
e
ss

V
G

T
sh

o
u

ld
b

e
in

te
g
ra

te
d

in
to

th
e

d
ev

el
o
p

m
en

t
p

ro
ce

ss
,

e.
g
.

d
efi

n
it

io
n

o
f

d
o
n

e,
a
n

d
th

e
S

U
T

’s
b

u
il

d
p

ro
ce

ss
,

i.
e.

a
u

to
m

a
ti

c
ex

ec
u

ti
o
n

.
8

O
rg

a
n

iz
a
ti

o
n

N
ew

ro
le

s
re

q
u

ir
e

o
rg

a
n

iz
a
ti

o
n

a
l

ch
a
n

g
es

th
a
t

ca
n

d
is

ru
p

t
d

ev
el

o
p

m
en

t
b

ef
o
re

th
e

n
ew

w
ay

s
o
f

w
o
rk

in
g

se
tt

le
.

9
C

o
d

e
c
o
n
v
e
n
ti

o
n

s
C

o
d

e
co

n
v
en

ti
o
n

s
h

el
p

im
p

ro
ve

re
a
d

a
b

il
it

y
a
n

d
m

a
in

ta
in

a
b

il
it

y
o
f

th
e

sc
ri

p
ts

.
1
0

M
in

im
iz

e
re

m
o
te

te
st

s
F

o
r

d
is

tr
ib

u
te

d
sy

st
em

s,
V

G
T

sc
ri

p
ts

sh
o
u

ld
b

e
ru

n
lo

ca
ll

y
o
r

u
se

V
G

T
to

o
ls

w
it

h
b

u
il

t
in

re
m

o
te

te
st

ex
ec

u
ti

o
n

su
p

p
o
rt

L
o
n

g
-t

e
rm

1
1

F
re

q
u

e
n
t

m
a
in

te
n

a
n

c
e

T
h

e
te

st
p

ro
ce

ss
n

ee
d

s
to

p
re

ve
n
t

te
st

ca
se

s
d

eg
ra

d
a
ti

o
n

to
k
ee

p
V

G
T

m
a
in

te
n

a
n

ce
co

st
s

fe
a
si

b
le

lo
n

g
-t

er
m

.
1
2

M
e
a
su

re
T

h
e

co
st

s
a
n

d
va

lu
e

o
f

V
G

T
sh

o
u

ld
b

e
m

ea
su

re
d

to
id

en
ti

fy
im

p
ro

ve
m

en
t

p
o
ss

ib
il

it
ie

s,
e.

g
.

n
ew

w
ay

s
o
f

w
ri

ti
n

g
sc

ri
p

ts
.

1
3

V
e
rs

io
n

c
o
n
tr

o
l

sc
ri

p
ts

W
h

en
th

e
n
u

m
b

er
o
f

S
U

T
va

ri
a
n
ts

g
ro

w
,

so
d

o
th

e
te

st
su

it
es

a
n

d
th

ey
sh

o
u

ld
th

er
ef

o
re

b
e

ve
rs

io
n

co
n
tr

o
ll

ed
to

en
su

re
S

U
T

co
m

p
a
ti

b
il

it
y.

1
4

S
U

T
li

fe
-c

y
c
le

P
o
si

ti
ve

re
tu

rn
o
n

in
ve

st
m

en
t

o
f

V
G

T
a
d

o
p

ti
o
n

o
cc

u
rs

a
ft

er
a
t

le
a
st

o
n
e

it
er

a
ti

o
n

,
so

h
ow

lo
n
g

w
il

l
th

e
S

U
T

li
ve

?

T
ab

le
1.

7:
S

u
m

m
a
ry

o
f

gu
id

el
in

es
to

co
n

si
d
er

d
u

ri
n

g
th

e
a
d
o
p
ti

o
n

,
u

se
o
r

lo
n

g-
te

rm
u

se
o
f

V
G

T
in

in
d
u

st
ri

a
l

p
ra

ct
ic

e.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 47

1.5.3 Challenges, problems and limitations with Visual
GUI Testing in practice

Sections 1.5.1 and 1.5.2 showed that VGT is applicable and feasible in indus-
trial practice but also mentioned challenges, problems and limitations (CPLs)
with the technique. These CPLs were primarily acquired in Papers B, C and
E and have been summarized in Table 1.6. In the table, each CPL has been
classified based on what phase of VGT it affects the most, i.e. adoption, e.g.
adoption, implementation or creation of test scripts, usage, e.g. running the
tests or using the tests for specific test purposes or SUTs and maintenance, e.g.
script maintenance or long-term use of VGT in a project. Further, the impact
of each CPL is classified as low, medium or high, where low means that it is
an annoyance but requires little or no mediation, medium means that it has
a negative effect that can be removed but requires mediation and high means
that it has a negative effect but can only be mitigated, not removed, through
mediation. Mediation, in turn, implies change to a company’s procedures,
organization, VGT scripts, SUT, etc.

Table 1.6 shows that many VGT CPLs relate to the technique’s or its tools’
immaturity, e.g. lack of robustness of both image recognition and the tools
themselves. As the technology matures these should be less of a problem.
Further, contextual factors, such as the test environment, seems to play an
important role, e.g. scripting can be prohibited by poor manual test specifica-
tions, external applications or defects in the SUT. These observations indicate
an interplay between many factors and it is therefore unlikely that any one,
or a simple, solution can be found to solve all the CPLs. Instead, as dis-
cussed in Section 1.5.2, VGT requires process, organizational and technical
changes to be applicable and feasible. Regardless, the results of this thesis
show that most CPLs can be solved or mitigated, as presented in Papers B
and C. Consequently, no CPL was identified that prohibits the technique’s use
in practice but several CPLs are considered more sever, e.g. the reported need
for substantial image maintenance in Paper E.

To provide practitioners with support to avoid these CPLs and the pitfalls
with the VGT, Paper E presented a set of 14 guidelines for the adoption, use
and long-term use of VGT in industrial practice. These guidelines are based
on best practices collected from all the studies presented in this thesis and
have been summarized in Table 1.7. However, this set of guidelines is not
comprehensive and future research is therefore required to expand this list.

Consequently, the results of this thesis show that there are many CPLs as-
sociated with VGT that must be considered by industrial practitioners during
the adoption, use or maintenance of VGT or VGT scripts. However, these
CPLs also provide an academic contribution regarding potential future re-
search areas, i.e. future research to improve the technique’s applicability and
feasibility in practice.

1.5.4 Solutions to advance Visual GUI Testing

The conclusion that VGT is applicable and feasible in industrial practice opens
up the possibility to also focus research on the advancement of the technique’s
use in practice. Advances that were studied in two of the thesis included

48 CHAPTER 1. INTRODUCTION

papers, i.e. Papers F and G.

In Paper F, initial research was performed towards fully automated VGT
by creating a proof-of-concept tool, VGT-GUITAR. VGT-GUITAR was shown
not to be applicable in practice due to technical limitations in the tool but the
study outlines a foundation for flexible, automated, GUI-based, exploratory
testing, i.e. an approach that could have considerable impact in practice to
lower test related costs and improve software quality. Additionally, this ap-
proach could perceivably mitigate the development and image maintenance
costs of VGT through automated acquisition of images from the SUT. Hence,
a technical advancement that would improve the applicability and feasibility
of the current VGT technique in practice.

Further, Paper G reported a novel test process for semi-automated fault
replication with VGT. The process combines the practices of exploratory test-
ing with stimuli provided by a simple VGT script and advances VGT by show-
ing its applicability for finding infrequent and non-deterministic defects. In
addition, the process provides companies with a means of improving their
long-term test practices since long-term tests are generally performed over
weeks or months in practice but generally without SUT stimuli. VGT could
provide such stimuli on the same level of abstraction as a human user and
thereby improve the representativeness of the test results for actual use of the
SUT in practice.

These individual contributions imply that VGT is applicable for more than
regression testing in practice, an observations that roots in its ability to emu-
late end-use behavior. Further, these results imply that VGT can be used in
contexts when the expected output can not be acquired as an oracle, instead,
a more basic oracle, e.g. a crash oracle, can be used together with a human
oracle to find defects, as reported in Paper G. Paper F also indicates that ex-
pected outputs can be automatically acquired through GUI ripping but future
work is required to develop and evaluate the theoretical foundation presented
in Paper F.

In summary, solutions already exist to advance the applicability of VGT,
e.g. by combining VGT with human oracles in semi-automated test practices
or processes. Further, advances in tooling can, through future work, enable
new and more advanced types of automated GUI-based testing based on VGT.

1.5.5 Implications

This thesis presents results with implications for both industrial practice and
academia, e.g. decision support for practitioners and input for future academic
research.

1.5.5.1 Implications for practice

The main implication of this thesis is that VGT can be adopted and used in
industrial practice, also over longer periods of time. This implies that compa-
nies with test (or software) related problems such as lacking interfaces required
by other test frameworks, e.g. due to SUT legacy, or high test related costs,
etc., now have a viable option for test automation. Additionally, adoption of
VGT can help improve the test automation culture in a company, i.e. endorse

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 49

or mandate process, organizational or SUT changes that enable additional test
automation in a company, as reported in Paper E.

For companies that have test automation, VGT provides a complement
to their existing testing toolbox. In particular, VGT can provide high-level
test automation for companies that currently test only on lower levels of sys-
tem abstraction. However, VGT is not a replacement for manual GUI-based
testing, instead it provides a suitable complement to mitigate the need for
repetitive manual testing. This can reduce costs for the company by releasing
resources, i.e. testers, which can instead focus on other types of testing, e.g.
exploratory testing. Additionally, it may also raise the enjoyment of daily work
for the individual, i.e. the human tester or developer. Statements supported
by interview results from Papers B, D and E.

Further, because VGT scripts can run more frequently than manual tests,
VGT can improve system quality [40]. This is an important implication of this
work because it is not only of industrial benefit, but also of benefit to society,
especially for safety-critical software systems, e.g. air-traffic management and
medical systems, since improved quality can imply higher safety.

Another implication is that defect identification of infrequent and non-
deterministic defects, e.g. defects that only manifest after longer periods of
manual system interaction, are no longer out of scope due to cost. This result
also implies that companies can improve their long-term test practices with
continuous, user-emulated, stimuli that improve the tests’ representativeness
for use of the system in practice, as shown in Paper G.

Consequently, VGT provides several benefits to industrial practice by im-
proving companies’ test processes and thereby their software quality, improved
software quality that benefits society as a whole.

1.5.5.2 Future research

This thesis provides fundamental support to the body of knowledge on VGT
regarding the technique’s applicability and feasibility. As such, this research
presents a stepping stone for future research to advance the technique and
automated testing in practice. In this section we have divided future research
into five different tracks; fundamental, technical, process, psychological and
related research, and discuss how each track could be pursued.

Fundamental : Fundamental future research on VGT regards additional
support for the conclusions of this thesis, e.g. studies in more companies
and contexts. The studies included in this thesis were performed with several
companies, VGT tools and domains but more work is required to strengthen
the body of knowledge of VGT and to ensure the generalizability of the results.
Future work can also identify more CPLs and solutions to said CPLs as well as
quantitative support for the long-term applicability of VGT. Hence, research
in more types of contexts, companies and for other types of systems, e.g. web-
systems, but also longitudinal research that follows the entire VGT life cycle
from adoption to use to long-term use of the technique.

Technical : Technical future research refers to technical advancement of
the technique itself, its tools and the image recognition algorithms it is built
on. These improvements could help mitigate the CPLs identified with VGT,
e.g. the robustness of available VGT tools, image recognition algorithms as

50 CHAPTER 1. INTRODUCTION

well as costs associated with image maintenance.

In addition, this track refers to research into novel technical solutions based
on VGT such as completely automated VGT, as outlined by Paper F. This
research could also help solve the image maintenance CPL associated with
VGT, for instance through GUI ripping which would also allow VGT scripts
to easily be migrated between variants of a SUT, since, as reported in Paper E,
test script logic can be reused between variants of an application but images
cannot.

Process: This track regards research into processes and practices to im-
prove the adoption, use or maintenance of VGT, the importance of which
discussed in Papers D and E. For instance, adoption of VGT should be per-
formed incrementally, developed test scripts should be short and linear, the
test suite should have a modularized architecture, etc. Paper E presented
a set of best practice guidelines for VGT but additional work is required to
create a more comprehensive set and to evaluate the current ones validity and
impact in more companies and domains. This track also includes research into
how VGT should be incorporated with other test techniques and practices in
a company, e.g. when and how to use VGT to lower cost and raise software
quality. As discussed in Section 1.5.1, VGT can test that a SUT’s features are
working correctly but not where in the code a defect is, and VGT therefore
needs to be complemented with testing on lower levels of system abstraction,
especially for continuous delivery and deployment [45]. However, how to effi-
ciently combine VGT with other automated test techniques is still a subject
of future research.

Consequently, this track primarily focuses on research into improving best
practice guidelines for how VGT should be adopted and used in industrial
practice and in different contexts. In addition, this track includes development
of novel practices and processes, as presented in Paper G, i.e. processes that
make use of VGT for semi-automated testing.

Psychology : The thesis explored the enjoyment of using VGT in Papers
B and D but enjoyment is only one factor that affect the use of a tool or
technique in practice, other factors such as stress, motivation, etc. are also
of interest. Hence, psychological factors that could affect practitioners’ per-
ception of the technique and which could potentially be improved through
improved tooling or practices. This research could also help answer why VGT
has only seen moderate adoption in practice so far and why adoption of VGT
seems to facilitate adoption of additional automation in a company as reported
in Paper E. Additionally, this research could provide further insights to guide
the research in the aforementioned fundamental and process oriented research
tracks, e.g. what factors to focus on to improve the technique’s applicability
or feasibility in practice.

Related research: This track relates to generalization of the results of
this thesis for other automated test techniques. For instance, this thesis re-
ports several CPLs and solutions that are general to other automated test
techniques. However, future research is required to analyze if said solutions
are applicable for other test techniques in practice. Further, only a few solu-
tions were reported for the CPLs, but it is possible that solutions that exist for
other techniques can be migrated to solve VGT CPLs. Hence, cross-technical
migration of solutions to common CPLs.

1.5. CONTRIBUTIONS, IMPLICATIONS AND LIMITATIONS 51

Research
question

Internal
validity

External
validity

Construct
validity

Reliability/
conclusion
validity

RQ1:
Applica-
bility

High High High Moderate

RQ2:
Feasibil-
ity

High High High Moderate

RQ3:
CPLs

Moderate Moderate High Moderate

RQ4:
Future

Moderate Moderate Moderate High

Table 1.8: Summary of the threats to validity of the thesis results for each of
the thesis research questions. CPLs - Challenges, problems and limitations.

In addition, this thesis showed that it is possible to expand the applicability
of VGT by combining it with manual practices and human oracles, a practice
that is assumed to be generalizable to other automated test techniques and
thereby warrants future research. Such research is of industrial interest, and
importance, since it could theoretically allow companies to reuse existing tools
and techniques for new purposes, thereby expanding their usefulness and im-
prove the company’s developed software.

Finally, this track includes research of how to extend or improve other
test techniques with VGT capabilities, as outlined in Paper F where a hybrid
tool for GUI-based testing was created. This research was performed with
the 2nd generation GUI-based tool GUITAR but similar development could
be done for other tools, e.g. the commonly used tool Selenium [55], to allow
these tools to also assert the SUT’s behavior through the SUT’s pictorial GUI.
Thus providing the tools with a wider range of applicability in practice.

1.5.6 Threats and limitations of this research

This section presents an analysis of the threats to validity of the results and
conclusions presented in this thesis. Threats to validity were analyzed based
on the internal, external and construct validity as well as reliability/conclusion
validity of the work [71]. A summary of the evaluated validity for each research
question has been presented in Table 1.8 where validity is classified either as
low, moderate or high.

1.5.6.1 Internal validity

Internal validity refers to the cohesion and coherence of the results that sup-
port a research question. This was achieved in the thesis with an incremen-
tal research process where each study was based on the results, or gaps of
knowledge, from previous studies. Additionally, as can be seen in Table 1.4,
the papers included in this work provide multiple support for each research

52 CHAPTER 1. INTRODUCTION

question and also results that complement each other. For instance, the quan-
titative results regarding the feasibility of VGT (Papers B and D could be
triangulated by statements from practitioners that had used the technique for
a longer period of time (Papers D and E). Similar connections were found for
results that support the applicability, for instance regarding the technique’s
defect finding ability, both for regression testing (Papers B, C, D and E) and
for infrequent/non-deterministic defects, (Paper F). Therefore the internal va-
lidity of the conclusions for research questions 1 and 2 are considered high.

However, the internal validity of identified CPLs is only considerate mod-
erate because different, unique, CPLs were identified in different studies. This
observation implies that there could be additional CPLs that can emerge in
other companies and domains.

Lastly, the internal validity regarding advances of VGT are also perceived
to be moderate because these results were only provided from two studies, i.e.
Paper F and G, which had specific focuses that are perceived narrow compared
to the many possible advances to VGT as outlined in Section 1.5.5.2.

1.5.6.2 External validity

External validity refers to the generalizability of the results or conclusions for
other contexts and domains. The external validity of the conclusions regard-
ing the applicability and feasibility of VGT are considered high because the
results for these conclusions were acquired in different companies and with
different VGT tools. Additionally, the research results come from both com-
panies developing safety-critical software as well as agile companies developing
non-safety-critical applications.

CPLs were acquired in the same contexts as the technique’s applicability
and feasibility but many of the reported CPLs were context dependent and it
is unknown how comprehensive the set of identified CPLs are. Therefore the
external validity for this research question is only considered moderate. How-
ever, the reported practitioner guidelines were triangulated with both studies
on VGT in different contexts and domains as well as related research. As such
the external validity of these guidelines is considered high, but more work is
required to expand and evaluate this set of guidelines in the future.

Finally, for VGT advances, the external validity of the results are only
considered moderate because the thesis only includes two studies, Papers F
and G, which provide insights into explicit advances of the technique and it is
therefore unknown how valuable advances in these areas would be for different
industrial contexts and domains.

1.5.6.3 Construct validity

Construct validity refers to the research context’s ability to provide valid re-
sults to answer the study’s research questions. Most of the studies presented
in this thesis were conducted in industrial practice and they are therefore per-
ceived to have provided results of high construct validity to research questions
1, 2 and 3. However, research question 4, had less industrial support, only
Paper G, whilst the other main contributor to the question, Paper F, was per-
formed as an experiment in an academic setting with software applications,

1.6. THESIS SUMMARY 53

and tools, with limited representativeness for software in industrial practice.
Therefore, the construct validity for question 4 is only considered moderate.

1.5.6.4 Reliability/conclusion validity

Reliability/conclusion validity refers to the ability to replicate the study with
the same results. The majority of the studies presented in this thesis were in-
dustrial case studies which implies that none of these studies can be replicated
exactly. To mitigate this threat, the research methodology of each study has
been presented in detail, a practice that is perceived to allow the validity of
the studies to be judged without replication, triangulate the studies’ results
between the studies and replicate the studies in similar contexts. Further,
an effort has been made in this thesis to outline the overall research process
for the thesis work. However, due to the lack of replicability, of the major-
ity of the studies, the overall reliability/conclusion validity of this research
is considered moderate with the exception of the study presented in Paper
F that presents an academic experiment that would be replicable by another
researcher provided the study’s research materials.

1.6 Thesis summary

The objective of this thesis was to find evidence for, or against, the indus-
trial applicability and feasibility of Visual GUI Testing (VGT). This objective
was motivated by the industrial need for a flexible technique to test software
systems at high levels of system abstraction to alleviate the need for manual
testing techniques that are often costly, tedious and error-prone.

The thesis work followed an incremental research methodology that began
with exploratory studies to evaluate the applicability of VGT in practice. The
research proceeded with studies to explain the challenges, problems and limi-
tations (CPLs) and maintenance costs associated with the technique and was
concluded with a study to verify the previously collected results and acquire
evidence for the long-term use of VGT in industrial practice. Lastly, potential
advances of VGT were evaluated that also outlined new areas of research and
development for, or based on, VGT.

The results of these studies show that VGT is applicable and feasible in
industrial practice, where applicability was supported by results on:

� Faster test execution speed and improved test frequency over manual
testing,

� Equal or greater defect finding ability than manual test cases,

� Ability to identify infrequent and non-deterministic defects that are too
costly to find manually,

� Ability to verify the conformance of a SUT’s behavior and appearance
through the SUT’s pictorial GUI, and

� Flexibility of use for any system with a GUI regardless of implementation
language, operating system or platform.

54 CHAPTER 1. INTRODUCTION

In turn, the feasibility of the technique was supported by results on:

� Positive return on investment (ROI) of VGT adoption if frequent main-
tenance is performed,

� Maintenance costs that per iteration of maintenance per script are sig-
nificantly lower than the development cost per script,

� Script execution times that allow VGT to be used for daily continu-
ous integration, development and delivery, which also contributes to the
applicability of VGT, and

� Results from industry that show its feasible use over many months or
even years.

However, acquisition of these results also uncovered many challenges, prob-
lems and limitations associated with the technique, which include, but were
not limited to:

� Robustness problems associated with present-day VGT tools and the
image recognition algorithms they use,

� Substantial costs associated with maintenance of images,

� Required, costly to achieve, synchronization between scripts and SUT
execution, and

� Environmental factors that affect the adoption, use or maintenance of
VGT scripts, but also

� 14 practitioner oriented guidelines that serve to ease the adoption and
use of VGT in industrial practice.

However, none of the identified CPLs was perceived, in our studies, to prohibit
the use of VGT in industrial practice.

Because of the identified support for VGT, advances to the technique itself
were also evaluated. First, by combining VGT with automated GUI com-
ponent ripping, model-based testing and test case generation a more fully
automated VGT approach was outlined. However, only initial results were
acquired but enough to warrant future research which could help mitigate the
costs of development and need for image maintenance reported from indus-
trial practice. Second, an experience report from industry reported the use
of VGT in a semi-automated exploratory process, which provides a broader
research contribution since it shows that automated tools and techniques can
be combined with manual practices to cover additional test objectives.

In summary, this thesis shows that VGT is applicable and feasible in in-
dustrial practice with several benefits over manual testing. The thesis also
provides cost information and CPLs that are pitfalls that industrial practi-
tioners must consider to make an informed decisions about VGT adoption. As
such, this work provides a clear contribution for a wider industrial adoption
of Visual GUI Testing. In addition, the thesis advances the knowledge on
GUI-based testing and outlines several important areas of future research.

Papers A – G not included in the online version.

Bibliography

[1] B. Hailpern and P. Santhanam, “Software debugging, testing, and veri-
fication,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[2] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-
directed test scripts,” in Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on. IEEE, 2009, pp. 408–418.

[3] ——, “Creating GUI testing tools using accessibility technologies,”
in Software Testing, Verification and Validation Workshops, 2009.
ICSTW’09. International Conference on. IEEE, 2009, pp. 243–250.

[4] M. Finsterwalder, “Automating acceptance tests for GUI applications in
an extreme programming environment,” in Proceedings of the 2nd Inter-
national Conference on eXtreme Programming and Flexible Processes in
Software Engineering. Citeseer, 2001, pp. 114–117.

[5] A. Leitner, I. Ciupa, B. Meyer, and M. Howard, “Reconciling manual
and automated testing: The autotest experience,” in System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference on.
IEEE, 2007, pp. 261a–261a.

[6] A. Memon, “GUI testing: Pitfalls and process,” IEEE Computer, vol. 35,
no. 8, pp. 87–88, 2002.

[7] E. Dustin, J. Rashka, and J. Paul, Automated software testing: intro-
duction, management, and performance. Addison-Wesley Professional,
1999.

[8] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
testing in an industrial environment,” Communications of the ACM,
vol. 41, no. 5, pp. 81–86, 1998.

[9] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[10] M. Grechanik, Q. Xie, and C. Fu, “Experimental assessment of manual
versus tool-based maintenance of GUI-directed test scripts,” in Soft-
ware Maintenance, 2009. ICSM 2009. IEEE International Conference
on. IEEE, 2009, pp. 9–18.

235

236 BIBLIOGRAPHY

[11] Y. Cheon and G. Leavens, “A simple and practical approach to unit
testing: The JML and JUnit way,” ECOOP 2002Object-Oriented Pro-
gramming, pp. 1789–1901, 2006.

[12] E. Sjösten-Andersson and L. Pareto, “Costs and Benefits of Structure-
aware Capture/Replay tools,” SERPS06, p. 3, 2006.

[13] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat,
E. Khamissi, and J. Noujaim, “GUICOP: Specification-Based GUI Test-
ing,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 747–751.

[14] M. Olan, “Unit testing: test early, test often,” Journal of Computing
Sciences in Colleges, vol. 19, no. 2, pp. 319–328, 2003.

[15] E. Weyuker, “Testing component-based software: A cautionary tale,”
Software, IEEE, vol. 15, no. 5, pp. 54–59, 1998.

[16] S. Berner, R. Weber, and R. Keller, “Observations and lessons learned
from automated testing,” in Proceedings of the 27th international con-
ference on Software engineering. ACM, 2005, pp. 571–579.

[17] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[18] R. Potter, Triggers: GUIding automation with pixels to achieve data
access. University of Maryland, Center for Automation Research, Hu-
man/Computer Interaction Laboratory, 1992, pp. 361–382.

[19] L. Zettlemoyer and R. St Amant, “A visual medium for programmatic
control of interactive applications,” in Proceedings of the SIGCHI con-
ference on Human factors in computing systems: the CHI is the limit.
ACM, 1999, pp. 199–206.

[20] T. Yeh, T. Chang, and R. Miller, “Sikuli: using GUI screenshots for
search and automation,” in Proceedings of the 22nd annual ACM sym-
posium on User interface software and technology. ACM, 2009, pp.
183–192.

[21] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based soft-
ware engineering,” in Proceedings of the 26th international conference
on software engineering. IEEE Computer Society, 2004, pp. 273–281.

[22] I. Sommerville, Software engineering, 6th ed. Addison-Wesley Profes-
sional, 2000.

[23] M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software quality and agile
methods,” in Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual International. IEEE,
2004, pp. 520–525.

[24] J. Highsmith and A. Cockburn, “Agile software development: The busi-
ness of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

BIBLIOGRAPHY 237

[25] G. Myers, C. Sandler, and T. Badgett, The art of software testing. Wi-
ley, 2011.

[26] I. Sommerville, “Software Engineering. International computer science
series,” 2004.

[27] D. Graham, “Requirements and testing: Seven missing-link myths,”
Software, IEEE, vol. 19, no. 5, pp. 15–17, 2002.

[28] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit testing,”
Empirical Software Engineering, vol. 11, no. 1, pp. 5–31, 2006.

[29] T. Ericson, A. Subotic, and S. Ursing, “TIM - A Test Improvement
Model,” Software Testing Verification and Reliability, vol. 7, no. 4, pp.
229–246, 1997.

[30] T. M. King, A. S. Ganti, and D. Froslie, “Enabling automated integra-
tion testing of cloud application services in virtualized environments,” in
Proceedings of the 2011 Conference of the Center for Advanced Studies
on Collaborative Research. IBM Corp., 2011, pp. 120–132.

[31] C. Lowell and J. Stell-Smith, “Successful Automation of GUI Driven
Acceptance Testing,” in Proceedings of the 4th International Conference
on Extreme Programming and Agile Processes in Software Engineering
(XP 03), Berlin, Heidelberg, 2003, pp. 331–333.

[32] E. Gamma and K. Beck, “JUnit: A cook’s tour,” Java Report, vol. 4,
no. 5, pp. 27–38, 1999.

[33] L. Williams, G. Kudrjavets, and N. Nagappan, “On the effectiveness of
unit test automation at Microsoft,” in Software Reliability Engineering,
2009. ISSRE’09. 20th International Symposium on. IEEE, 2009, pp.
81–89.

[34] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 366–
427, 1997.

[35] J. Ryser and M. Glinz, “A scenario-based approach to validating and
testing software systems using statecharts,” in Proc. 12th International
Conference on Software and Systems Engineering and their Applications.
Citeseer, 1999.

[36] R. Binder, Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[37] B. Regnell and P. Runeson, “Combining scenario-based require-
ments with static verification and dynamic testing,” in Proceedings
of the Fourth International Workshop on Requirements Engineering-
Foundations for Software Quality (REFSQ98), Pisa, Italy. Citeseer,
1998.

[38] R. Miller and C. Collins, “Acceptance testing,” Proc. XPUniverse, 2001.

238 BIBLIOGRAPHY

[39] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

[40] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. Mantyla, “Benefits and
limitations of automated software testing: Systematic literature review
and practitioner survey,” in Automation of Software Test (AST), 2012
7th International Workshop on. IEEE, 2012, pp. 36–42.

[41] J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect detection effi-
ciency: Test case based vs. exploratory testing,” in Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International
Symposium on. IEEE, 2007, pp. 61–70.

[42] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in 2005 International Symposium on Empirical Software Engi-
neering, 2005. IEEE, 2005, p. 10.

[43] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, and K. Bhatti,
“An experiment on the effectiveness and efficiency of exploratory test-
ing,” Empirical Software Engineering, pp. 1–35, 2014.

[44] P. Schipani, “End User Involvement in Exploratory Test Automation
for Web Applications,” Ph.D. dissertation, TU Delft, Delft University of
Technology, 2011.

[45] H. Holmström-Olsson, H. Alahyari, and J. Bosch, “Climbing the” Stair-
way to Heaven”–A Mulitiple-Case Study Exploring Barriers in the Tran-
sition from Agile Development towards Continuous Deployment of Soft-
ware,” in Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on. IEEE, 2012, pp. 392–399.

[46] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactor-
ing challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 50.

[47] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” Software Engineering: A
Practitioner’s Approach, 2001.

[48] K. Beck and C. Andres, Extreme programming explained: embrace
change. Addison-Wesley Professional, 2004.

[49] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 476–485.

[50] E. Alégroth, R. Feldt, and L. Ryrholm, “Visual gui testing in practice:
challenges, problemsand limitations,” Empirical Software Engineering,
vol. 20, no. 3, pp. 694–744, 2014.

BIBLIOGRAPHY 239

[51] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization
and Evaluation of Component-based Testing Unified with Visual GUI
Testing: an Empirical Study,” in Proceedings of the 8th IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST 2015), Graz, 2015.

[52] E. Horowitz and Z. Singhera, “Graphical user interface testing,” Tech-
nical report Us C-C S-93-5, vol. 4, no. 8, 1993.

[53] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in Software Engineering
(ICSE), 2013 35th International Conference on. IEEE, 2013, pp. 72–81.

[54] T. Chang, T. Yeh, and R. Miller, “GUI testing using computer vision,”
in Proceedings of the 28th international conference on Human factors in
computing systems. ACM, 2010, pp. 1535–1544.

[55] A. Holmes and M. Kellogg, “Automating functional tests using Sele-
nium,” in Agile Conference, 2006. IEEE, 2006, pp. 6–pp.

[56] T. Lalwani, M. Garg, C. Burmaan, and A. Arora, UFT/QTP Interview
Unplugged: And I Thought I Knew UFT!, 2nd ed. KnowledgeInbox,
2013.

[57] W.-K. Chen, T.-H. Tsai, and H.-H. Chao, “Integration of specification-
based and CR-based approaches for GUI testing,” in Advanced Informa-
tion Networking and Applications, 2005. AINA 2005. 19th International
Conference on, vol. 1. IEEE, 2005, pp. 967–972.

[58] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: an in-
novative tool for automated testing of GUI-driven software,” Automated
Software Engineering, vol. 21, no. 1, pp. 65–105, 2014.

[59] I. K. El-Far and J. A. Whittaker, “Model-Based Software Testing,” En-
cyclopedia of Software Engineering, 2001.

[60] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
survey on model-based testing approaches: a systematic review,” in Pro-
ceedings of the 1st ACM international workshop on Empirical assessment
of software engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) 2007. ACM, 2007, pp. 31–36.

[61] P. Fröhlich and J. Link, “Automated test case generation from dy-
namic models,” ECOOP 2000 Object-Oriented Programming, pp. 472–
491, 2000.

[62] M. Utting and B. Legeard, Practical model-based testing: a tools ap-
proach. Morgan Kaufmann, 2007.

[63] M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

240 BIBLIOGRAPHY

[64] E. Alégroth, “On the Industrial Applicability of Visual GUI Testing,”
Department of Computer Science and Engineering, Software Engineering
(Chalmers), Chalmers University of Technology, Goteborg, Tech. Rep.,
2013.

[65] E. Börjesson and R. Feldt, “Automated System Testing using Visual GUI
Testing Tools: A Comparative Study in Industry,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on. IEEE, 2012, pp. 350–359.

[66] T.-H. Chang, “Using graphical representation of user interfaces as visual
references,” in Proceedings of the 24th annual ACM symposium adjunct
on User interface software and technology. ACM, 2011, pp. 27–30.

[67] E. Alégroth, R. Feldt, and H. Olsson, “JAutomate: a Tool for System-
and Acceptance-test Automation,” ICST, 2012.

[68] TestPlant. (2013, Feb.) eggPlant. [Online]. Available:
http://www.testplant.com/

[69] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive sur-
vey of trends in oracles for software testing,” Technical Report Research
Memoranda CS-13-01, Department of Computer Science, University of
Sheffield, Tech. Rep., 2013.

[70] R. Harrison and M. Wells, “A meta-analysis of multidisciplinary re-
search,” in Conference on Empirical Assessment in Software Engineering
(EASE), 2000, pp. 1–15.

[71] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[72] J. A. Maxwell, Qualitative research design: An interactive approach.
Sage Publications, Incorporated, 2004.

[73] C. Wohlin, P. Runeson, and M. Höst, Experimentation in software engi-
neering: an introduction. Springer Netherlands, 2000.

[74] M. Brydon-Miller, D. Greenwood, and P. Maguire, “Why action re-
search?” Action research, vol. 1, no. 1, pp. 9–28, 2003.

[75] C. Robson, Real world research: a resource for social scientists and
practitioner-researchers. Blackwell Oxford, 2002, vol. 2.

[76] M. Matell and J. Jacoby, “Is there an optimal number of alternatives for
Likert scale items? I. Reliability and validity.” Educational and psycho-
logical measurement, 1971.

[77] B. G. Glaser and A. L. Strauss, The discovery of grounded theory: Strate-
gies for qualitative research. Transaction Publishers, 2009.

[78] C. B. Seaman, “Qualitative methods in empirical studies of software en-
gineering,” Software Engineering, IEEE Transactions on, vol. 25, no. 4,
pp. 557–572, 1999.

BIBLIOGRAPHY 241

[79] R. Barbour and J. Kitzinger, Developing focus group research: politics,
theory and practice. Sage Publications Limited, 1999.

[80] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for tech-
nology transfer in practice,” Software, IEEE, vol. 23, no. 6, pp. 88–95,
2006.

[81] S. Kausar, S. Tariq, S. Riaz, and A. Khanum, “Guidelines for the selec-
tion of elicitation techniques,” in Emerging Technologies (ICET), 2010
6th International Conference on. IEEE, 2010, pp. 265–269.

[82] R. R. Young, “Recommended requirements gathering practices,”
CrossTalk, vol. 15, no. 4, pp. 9–12, 2002.

[83] S. Shiba, “The Steps of KJ: Shiba Method,” 1987.

[84] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311–341, 2005.

[85] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[86] F. J. Fowler Jr, Survey research methods. Sage publications, 2008.

[87] P. Berander and A. Andrews, “Requirements Prioritization,” Engineer-
ing and Managing Software Requirements, 2005.

[88] A. Bowling, Techniques of questionnaire design. Open University Press,
Maidenhead, UK, 2005.

[89] A. Bryman, “The debate about quantitative and qualitative research: a
question of method or epistemology?” British Journal of Sociology, pp.
75–92, 1984.

[90] G. Wickström and T. Bendix, “The” Hawthorne effect”what did the
original Hawthorne studies actually show?” Scandinavian journal of
work, environment & health, pp. 363–367, 2000.

[91] V. Kampenes, T. Dyb̊a, J. Hannay, and D. K Sjøberg, “A systematic
review of quasi-experiments in software engineering,” Information and
Software Technology, vol. 51, no. 1, pp. 71–82, 2009.

[92] T. D. Cook, D. T. Campbell, and A. Day, Quasi-experimentation: Design
& analysis issues for field settings. Houghton Mifflin Boston, 1979.

[93] L. Briand, K. El Emam, and S. Morasca, “On the application of measure-
ment theory in software engineering,” Empirical Software Engineering,
vol. 1, no. 1, pp. 61–88, 1996.

[94] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” Software Engineering, IEEE
Transactions on, vol. 28, no. 8, pp. 721–734, 2002.

242 BIBLIOGRAPHY

[95] W. H. Kruskal, “Historical notes on the Wilcoxon unpaired two-sample
test,” Journal of the American Statistical Association, vol. 52, no. 279,
pp. 356–360, 1957.

[96] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in IEEE Inter-
national Conference on Software Engineering (ICSE), 2011.

[97] D. Rafi, K. Moses, K. Petersen, and M. Mantyla, “Benefits and limita-
tions of automated software testing: Systematic literature review and
practitioner survey,” in Automation of Software Test (AST), 2012 7th
International Workshop on, june 2012, pp. 36 –42.

[98] C. Kendall, L. R. Kerr, R. C. Gondim, G. L. Werneck, R. H. M. Macena,
M. K. Pontes, L. G. Johnston, K. Sabin, and W. McFarland, “An empir-
ical comparison of respondent-driven sampling, time location sampling,
and snowball sampling for behavioral surveillance in men who have sex
with men, Fortaleza, Brazil,” AIDS and Behavior, vol. 12, no. 1, pp.
97–104, 2008.

[99] T. Hellmann, E. Moazzen, A. Sharma, M. Z. Akbar, J. Sillito, F. Maurer
et al., “An Exploratory Study of Automated GUI Testing: Goals, Issues,
and Best Practices,” 2014.

[100] D. Hoffman, “Cost benefits analysis of test automation,” STAR West,
vol. 99, 1999.

[101] P. Li, T. Huynh, M. Reformat, and J. Miller, “A practical approach to
testing GUI systems,” Empirical Software Engineering, vol. 12, no. 4,
pp. 331–357, 2007.

[102] P. Hsia, D. Kung, and C. Sell, “Software requirements and acceptance
testing,” Annals of software Engineering, vol. 3, no. 1, pp. 291–317, 1997.

[103] P. Hsia, J. Gao, J. Samuel, D. Kung, Y. Toyoshima, and C. Chen,
“Behavior-based acceptance testing of software systems: a formal sce-
nario approach,” in Computer Software and Applications Conference,
1994. COMPSAC 94. Proceedings., Eighteenth Annual International.
IEEE, 1994, pp. 293–298.

[104] T. Graves, M. Harrold, J. Kim, A. Porter, and G. Rothermel, “An em-
pirical study of regression test selection techniques,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 10, no. 2, pp.
184–208, 2001.

[105] D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and
D. North, “The RSpec Book: Behaviour Driven Development with
RSpec, Cucumber, and Friends,” Pragmatic Bookshelf, 2010.

[106] A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth, “Automated
GUI performance testing,” Software Quality Journal, pp. 1–39, 2011.

BIBLIOGRAPHY 243

[107] J. Andersson and G. Bache, “The video store revisited yet again: Ad-
ventures in GUI acceptance testing,” Extreme Programming and Agile
Processes in Software Engineering, pp. 1–10, 2004.

[108] M. Jovic, A. Adamoli, D. Zaparanuks, and M. Hauswirth, “Automating
performance testing of interactive Java applications,” in Proceedings of
the 5th Workshop on Automation of Software Test. ACM, 2010, pp.
8–15.

[109] A. Memon, M. Pollack, and M. Soffa, “Hierarchical GUI test case gen-
eration using automated planning,” Software Engineering, IEEE Trans-
actions on, vol. 27, no. 2, pp. 144–155, 2001.

[110] P. Brooks and A. Memon, “Automated GUI testing guided by usage
profiles,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM, 2007, pp. 333–
342.

[111] A. Memon, “An event-flow model of GUI-based applications for testing,”
Software Testing, Verification and Reliability, vol. 17, no. 3, pp. 137–157,
2007.

[112] T. Illes, A. Herrmann, B. Paech, and J. Rückert, “Criteria for Software
Testing Tool Evaluation. A Task Oriented View,” in Proceedings of the
3rd World Congress for Software Quality, vol. 2, 2005, pp. 213–222.

[113] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual
network computing,” Internet Computing, IEEE, vol. 2, no. 1, pp. 33–38,
1998.

[114] L. Fowler, J. Armarego, and M. Allen, “Case tools: Constructivism and
its application to learning and usability of software engineering tools,”
Computer Science Education, vol. 11, no. 3, pp. 261–272, 2001.

[115] S. Eldh, H. Hansson, and S. Punnekkat, “Analysis of Mistakes as a
Method to Improve Test Case Design,” in Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth International Conference on.
IEEE, 2011, pp. 70–79.

[116] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in Empirical Software Engineering, 2005. 2005 International
Symposium on, nov. 2005, p. 10 pp.

[117] J. J. Gutiérrez, M. J. Escalona, M. Mej́ıas, and J. Torres, “Generation
of test cases from functional requirements. A survey,” in 4ş Workshop
on System Testing and Validation, 2006.

[118] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: preliminary assessment,” in Software Engineering (ICSE), 2011
33rd International Conference on. IEEE, 2011, pp. 1066–1071.

244 BIBLIOGRAPHY

[119] D. R. Hackner and A. M. Memon, “Test case generator for GUITAR,” in
Companion of the 30th international conference on Software engineering.
ACM, 2008, pp. 959–960.

[120] V. Vizulis and E. Diebelis, “Self-Testing Approach and Testing Tools,”
Datorzinātne un informācijas tehnolog̀ijas, p. 27, 2012.

[121] E. Alégroth, R. Feldt, and H. Olsson, “Transitioning Manual System
Test Suites to Automated Testing: An Industrial Case Study,” ICST,
2012.

[122] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse en-
gineering of graphical user interfaces for testing,” in Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), 2003, pp.
260–269.

[123] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in ACM
SIGSOFT Software Engineering Notes, vol. 28. ACM, 2003, pp. 118–
127.

[124] K. Li and M. Wu, Effective GUI testing automation: Developing an
automated GUI testing tool. Sybex, 2004.

[125] smartbear. (2013, Feb.) TestComplete. [Online]. Available:
http://smartbear.com/products/qa-tools/automated-testing-tools

[126] E. Börjesson, “Multi-Perspective Analysis of Software Development: a
method and an Industrial Case Study,” CPL, 2010.

[127] B. Beizer, Software testing techniques. Dreamtech Press, 2002.

[128] K. Beck, Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[129] C. Ebert, “The impacts of software product management,” Journal of
Systems and Software, vol. 80, no. 6, pp. 850–861, 2007.

[130] C. Mongrédien, G. Lachapelle, and M. Cannon, “Testing GPS L5 acquisi-
tion and tracking algorithms using a hardware simulator,” in Proceedings
of ION GNSS, 2006, pp. 2901–2913.

[131] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Visual vs. DOM-Based
Web Locators: An Empirical Study,” in Web Engineering, ser. Lecture
Notes in Computer Science. Springer, 2014, vol. 8541, pp. 322–340.

[132] S. Wagner, “A model and sensitivity analysis of the quality economics
of defect-detection techniques,” in Proceedings of the 2006 international
symposium on Software testing and analysis. ACM, 2006, pp. 73–84.

[133] K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical observa-
tions on software testing automation,” in Software Testing Verification
and Validation, 2009. ICST’09. International Conference on. IEEE,
2009, pp. 201–209.

BIBLIOGRAPHY 245

[134] C. Liu, “Platform-independent and tool-neutral test descriptions for au-
tomated software testing,” in Proceedings of the 22nd international con-
ference on Software engineering. ACM, 2000, pp. 713–715.

[135] M. Fewster and D. Graham, Software test automation: effective use of
test execution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

[136] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in Reverse Engineering (WCRE), 2013 20th Working Con-
ference on. IEEE, 2013, pp. 272–281.

[137] A. Kornecki and J. Zalewski, “Certification of software for real-time
safety-critical systems: state of the art,” Innovations in Systems and
Software Engineering, vol. 5, no. 2, pp. 149–161, 2009.

[138] A. Höfer and W. F. Tichy, “Status of empirical research in software engi-
neering,” in Empirical Software Engineering Issues. Critical Assessment
and Future Directions. Springer, 2007, pp. 10–19.

[139] E. Börjesson and R. Feldt, “Automated system testing using visual GUI
testing tools: A comparative study in industry,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Con-
ference on. IEEE, 2012, pp. 350–359.

[140] A. Marchenko, P. Abrahamsson, and T. Ihme, “Long-term effects of
test-driven development a case study,” in Agile Processes in Software
Engineering and Extreme Programming. Springer, 2009, pp. 13–22.

[141] H. Kniberg and A. Ivarsson, “Scaling Agile@ Spotify,” online], UCVOF,
ucvox. files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-
11. pdf, 2012.

[142] N. Olsson and K. Karl. (2015) Graphwalker: The Open Source Model-
Based Testing Tool. [Online]. Available: http://graphwalker.org/index

[143] J. Carver, “The use of grounded theory in empirical software engineer-
ing,” in Empirical Software Engineering Issues. Critical Assessment and
Future Directions. Springer, 2007, pp. 42–42.

[144] J. Saldaña, The coding manual for qualitative researchers. Sage, 2012,
no. 14.

[145] M. Weinstein. (2002) TAMS Analyzer for Macintosh OS X: The native
Open source, Macintosh Qualitative Research Tool. [Online]. Available:
http://tamsys.sourceforge.net/

[146] C. Wohlin and A. Aurum, “Towards a decision-making structure for
selecting a research design in empirical software engineering,” Empirical
Software Engineering, pp. 1–29, 2014.

[147] N. J. Nilsson, Principles of artificial intelligence. Tioga Publishing,
1980.

246 BIBLIOGRAPHY

[148] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[149] E. Alégroth, “Random Visual GUI Testing: Proof of Concept,” Pro-
ceedings of the 25th International Conference on Software Engineering
& Knowledge Engineering (SEKE 2013), pp. 178–184, 2013.

[150] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[151] B. N. Nguyen and A. Memon, “An Observe-Model-Exercise* Paradigm
to Test Event-Driven Systems with Undetermined Input Spaces,” IEEE
Transactions on Software Engineering, vol. 40, no. 3, pp. 216–234, 2014.

[152] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 2006.

[153] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at system and func-
tional levels,” in Proceedings of the 3rd IEEE International Conference
on Software Testing, Verification, and Validation Workshops (ICSTW
2010), Paris, France, 2010, pp. 110–119.

[154] L.-O. Damm, L. Lundberg, and C. Wohlin, “Faults slip through a con-
cept for measuring the efficiency of the test process,” Software Process:
Improvement and Practice, vol. 11, no. 1, pp. 47–59, 2006.

[155] N. Nyman, “Using monkey test tools,” STQE–Software Testing and
Quality Engineering Magazine, 2000.

[156] L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing real-time
systems with genetic algorithms,” in Proceedings of the 2005 conference
on Genetic and evolutionary computation. ACM, 2005, pp. 1021–1028.

[157] V. T. Rokosz, “Long-term testing in a short-term world,” IEEE software,
vol. 20, no. 3, pp. 64–67, 2003.

[158] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms soft-
ware with quviq quickcheck,” in Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang. ACM, 2006, pp. 2–10.

[159] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT symposium on Foundations of
software engineering. ACM, 2002, pp. 1–10.

