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Usability of Textile Reinforced Concrete: 

Structural Performance, Durability and Sustainability 

NATALIE WILLIAMS PORTAL 

Department of Civil and Environmental Engineering 

Division of Structural Engineering, Concrete Structures 

Chalmers University of Technology 

ABSTRACT 
Textile reinforced concrete (TRC) is an innovative high performance composite 

material consisting of open multi-axial textiles embedded in a fine-grained concrete 

matrix. Despite the fact that TRC-based research has revealed many promising 

attributes, it has yet to reach its recognition due to a lack of available design tools, 

standards and long-term behaviour. To be able to reach this next stage, consistent test 

methods and reliable models need to be established to reduce uncertainty and the need 

for individual and extensive experimental studies.  

This thesis aims to investigate structural performance, durability and sustainability 

aspects of TRC for its usability in the built environment. The structural performance 

was experimentally and analytically evaluated for the individual material constituents, 

material interaction, as well as global TRC components. The linking of the structural 

performance of these various levels was investigated by means of non-linear finite 

element analysis (FEA). The durability of TRC was characterized according to the 

influence of accelerated ageing based on alkali resistance on the structural 

performance of textile reinforcement. Furthermore, the environmental sustainability 

of TRC was evaluated in comparison to conventional RC using a Life Cycle 

Assessment (LCA). 

The experimental quantification of the structural performance on the material and 

interaction levels was found to be decisive to understand the composite behaviour. In 

general, the bond behaviour in TRC has been identified as a critical feature affecting 

the global behaviour. Particularly for carbon textiles, the bond behaviour needs to be 

improved; an enhancement of the load bearing behaviour was successfully observed 

using surface coatings, short fibres, and high performance concrete. Linking the 

experimental data from the material and interaction levels to the global level in FEA 

led to promising results such that further insight on the actual failure behaviour could 

be gained. The accelerated testing was generally too aggressive for textiles made of 

basalt and AR-glass leading to extensive degradation; however, carbon textiles were 

found to be a promising alternative as they have superior durability properties in an 

alkaline environment without undergoing any strength loss. Through accelerated 

testing, it was found that the exposure time, temperature and test solution need to be 

material specific. The applied sizing or coating on the textiles also had a considerable 

influence on the extent of degradation. Based on the conducted LCA, the reduction of 

the concrete cover in a TRC panel significantly decreased its environmental impact 

compared to traditionally reinforced solutions. Ultimately, the experimental and 

modelling approaches developed in this work can be applied to further characterize 

the short- and long-term behaviour of TRC for the built environment. 

 

Keywords: Textile reinforced concrete (TRC), experimental methods, finite 

element analysis (FEA), durability, sustainability, life cycle assessment (LCA). 
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Användbarhet av textilarmerad betong –  

Konstruktionstekniska aspekter, beständighet och hållbarhet 

NATALIE WILLIAMS PORTAL 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik, Betongbyggnad  

Chalmers tekniska högskola 

SAMMANFATTNING 
Textilarmerad betong (TRC) är ett innovativt och högpresterande kompositmaterial 

bestående av multi-axiella textilarmeringsnät inbäddade i en finkornig betongmatris. 

Trots att forskning om TRC indikerar att det är lovande, så har det ännu inte fått sitt 

erkännande på grund av att det saknas dimensioneringsverktyg, standarder och 

tillräckliga kunskaper om dess långsiktiga beteende. För att kunna uppnå de målen 

krävs enhetliga testmetoder och tillförlitliga modeller för att minska osäkerheten och 

behovet av individuella och omfattande experimentella studier. 

I avhandlingen undersöks konstruktionstekniska, beständighets- och 

hållbarhetsaspekter av TRC för dess användbarhet i den byggda miljön. Den 

konstruktionstekniska prestandan evaluerades både experimentellt och analytiskt, dels 

för de enskilda materialkomponenterna, men också för interaktionen mellan dem och 

det globala beteendet. Kopplingen mellan dessa olika nivåer studerades med hjälp av 

icke-linjära finita element (FE) analyser. Beständigheten hos TRC karaktäriserades 

genom dragförsök på provkroppar utsatta för ett accelererat åldringsförfarande med 

alkali. Därutöver utvärderades den miljöbetingade hållbarheten av TRC i en 

livscykelanalys (LCA), där TRC jämfördes med konventionellt armerad betong. 

Försöken på material- och interaktionsnivåerna var viktiga för att kunna förstå den 

sammansatta strukturens beteende på global nivå. Vidhäftningen mellan 

textilarmeringen och betongmatrisen är en av de kritiska faktorer som påverkar böj- 

och draghållfastheten på den globala nivån och behöver förbättras, särskilt för 

kolfibertextiler. En signifikant förbättring av bärförmågan nåddes genom att 

ytbehandla textilarmeringen samt genom användning av korta fibrer och 

högpresterande betong. Kopplingen mellan försöksresultaten från både material- och 

interaktionsnivå i en förenklad FE-modell på global nivå ledde till goda resultat och 

ytterligare insikt om de faktiska brottmekanismerna. De accelererade åldringstesterna 

var i allmänhet alldeles för aggressiva för textilarmeringen gjord av basalt- och AR-

glasfibrer – de uppvisade omfattande nedbrytning. Kolfiberprodukterna däremot hade 

mycket god alkalibeständighet utan någon hållfasthetsförlust. Åldringstesterna visade 

att exponeringstid, temperatur och kemiskt lösningsmedel bör anpassas 

materialspecifikt. Den applicerade ytbehandlingen hade betydande inverkan på 

beständigheten. Beträffande TRC:s inverkan på miljön, så visade LCA-studien att det 

minskade betongtäckskiktet och elementets totala betongtjocklek signifikant 

reducerade miljöeffekterna för en TRC-panel jämfört med en med konventionell 

armering. Slutligen, de experimentella och numeriska metoder som utvecklats i detta 

arbete kan användas för att karakterisera TRC:s användbarhet i den byggda miljön 

både på kort och på lång sikt. 

 

Nyckelord: Textilarmerad betong, experimentell metodik, finit elementanalys, 

beständighet, hållbarhet, livscykelanalys.  
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1 Introduction 

1.1 Background 

The middle of the 19
th

 century marked the beginning of the use of reinforced concrete 

in structural building applications (Shaeffer, 1992). To this day, research and 

development concerning this common building material continues. Concrete is known 

for having high compressive strength yet it requires reinforcement to compensate for 

its low tensile strength. Steel reinforcement bars are considered as the universal 

reinforcement solution but various alternatives have been applied more recently, such 

as fibre-reinforced polymer (FRP) bars, steel welded-wire mesh, discrete fibres (steel 

or synthetic) (ACI Education Bulletin E2-00, 2000), as well as textile reinforcement. 

Alternative reinforcement materials have been exploited primarily due to the fact that 

conventional reinforced concrete (RC) has a history of being vulnerable to corrosion 

attack leading to loss of structural integrity if the protective medium of concrete were 

to be weakened (Domone et al., 2010). Secondarily, the use of alternative 

reinforcements could reduce the need for a thick concrete cover mandated by EC2 

(EN 1992-1-1, 2008), thus leading to potential reduction of self-weight and material 

resources. Other reasons to deviate from conventional steel reinforcement could be to 

facilitate structural versatility and simplify casting and production methods. 

Textile reinforcement is an alternative reinforcement material consisting of natural or 

synthetic singular technical fibres processed into yarns or rovings which are woven 

into multi-axial textile fabrics having an open mesh or grid structure. When textile 

reinforcement is incorporated into concrete, it is most often termed as Textile 

Reinforced Concrete (TRC). Research and development pertaining to this innovative 

high performance composite material is thought to have commenced at the end of the 

20
th

 century. Research clusters involved in the use of woven or continuous fibres in a 

cementitious matrix were primarily situated in Germany (Curbach et al., 1999, 

Brameshuber, 2006, Scheerer et al., 2015), Israel (Peled et al., 1994), United States of 

America (Mobasher, 2012), United Kingdom (Ohno et al., 1994) and Japan (Hayashi 

et al., 1990, Fujisaki et al., 1993). Overtime this research area has globally progressed 

within Europe, Brazil and China. The extent of research has led to a variety of 

applications: façade panel solutions (Hegger, 2009, Malaga et al., 2012, Shams et al., 

2015), shell structures (Tysmans et al., 2011, Scholzen et al., 2012), pedestrian 

bridges (Hegger et al., 2010b), strengthening applications (Täljsten et al., 2006, 

Papanicolaou et al., 2008, Dai et al., 2009, D’Ambrisi et al., 2011, Ortlepp et al., 

2011, Schladitz et al., 2012, Si Larbi et al., 2012) and corrosion protection (Tang et 

al., 2012, Lohaus et al., 2015).  

For the application of new materials, it becomes of great importance to understand the 

key features and their underlying interaction. In this work, it was of interest to focus 

on the particular application of TRC in the built environment. Accordingly, critical 

features pertinent to TRC in this context could include, e.g. the complex bond 

behaviour between the textile reinforcement and concrete matrix, characterization of 

material variability, and long-term performance. Unfortunately, the current design 

codes or recommendations pertaining to RC, fibre reinforced concrete (FRC) or use of 

FRP bars in concrete are to a certain degree inapplicable to the design of TRC due to 

the aforementioned critical features. Besides, no design standards are yet formalized 

for TRC, such that extensive experimental programs are still needed to acquire 

approval for each individual application (Orlowsky et al., 2011, Lorenz et al., 2015). 
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There exists however a few registered associations, e.g. TUDALIT e.V., thriving 

towards general construction approvals for TRC in Germany. In essence, TRC cannot 

reach its recognition without standardized structural design methods and experimental 

methods. 

 

1.2 Research objectives 

The aim of this thesis is to investigate structural performance, durability and 

sustainability aspects of textile reinforced concrete (TRC) for its usability in the built 

environment. Each of these investigated subjects constitutes an exhaustive array of 

related topics of which most relevant ones were incorporated in this work as 

highlighted in Figure 1.1. Both structural performance and durability are defined as 

subsets of sustainability, as the application of new materials often revolves around 

holistic and sustainable decision making. Structural performance aspects are further 

classified in this thesis at various levels, namely material, interaction and global 

levels. Since TRC is a composite material with a complex heterogeneous structure, it 

is of key importance to evaluate the individual constituents (material) and their 

composite action (interaction) in order to be able to gain an adequate understanding of 

the composite behaviour of a structure (global). Flexural and tensile behaviours of 

TRC were investigated because they are prevailing in typical structures applied in the 

built environment, e.g. façade solutions and slabs. Furthermore, to enable the 

application of a material in the built environment, a wide range of design parameters 

typically need to be fulfilled, yet when dealing with innovative materials in particular, 

the long-term performance (durability) and environmental consequences 

(sustainability) are often most uncertain and thus need to be investigated. 

The specific objectives of the work presented in this thesis are:  

1. To quantify the structural performance of TRC on material, interaction and 

global levels. 

2. To interconnect the structural performance of TRC on material and 

interaction levels to the global level. 

3. To determine the durability of textile reinforcement through the effect of 

accelerated ageing on the structural performance on the material level. 

4. To evaluate the sustainability of TRC versus conventional reinforced concrete 

through the environmental impact from cradle-to-gate. 
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Figure 1.1 Schematic illustration of the research objectives. 

 

1.3 Methodology 

The methodology of this thesis is presented for each of the key features investigated 

in this work. A detailed description of the individual methodologies is provided in the 

following sections. 

 

1.3.1 Structural performance 

The methodology applied for structural performance, related to Objectives 1 and 2, 

encompassed experimental methods on three levels i.e. material, interaction and 

global and numerical modelling was used to link these levels as depicted in Figure 

1.2. The experimental methods conducted on the various levels are:  

> Material Level 

• Concrete matrix: General short-term mechanical properties were 

quantified, such as compressive and tensile properties.  

• Textile reinforcement: Mechanical properties were measured by 

uniaxial tensile testing. 

> Interaction Level 

• Bond behaviour between concrete and textile reinforcement was 

quantified through pull-out tests. 
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> Global Level 

• Four-point bending tests were conducted to quantify the flexural 

behaviour of TRC. 

• The tensile behaviour of TRC was quantified by means of uniaxial 

tensile tests. 

Available standard or recommended experimental test methods were applied in this 

work and are documented accordingly. Test methods which have no standardized 

documentation were primarily developed based on published scientific research 

results related to TRC or similar research fields, e.g. fibre reinforced polymers (FRP) 

in concrete or fibre reinforced concrete (FRC). Deviations in the experimental test 

methods are justified where applicable.  

The experimental results obtained through the applied experimental methods were 

processed and thereafter applied in finite-element analysis (FEA) at a global level. 

The experimental methods needed to be adapted such that they could be applied as 

input data, which will be further explained throughout the thesis. When applicable, 

parameters were calculated using existing empirical equations from, e.g. fib Model 

Code 2010 (2013), in place of characterizing the given behaviour experimentally.  

On the global level, FEA was applied to gain a deeper understanding regarding the 

failure mode and to identify difficulties and uncertainties in the modelling of TRC. 

The commercial software DIANA (DIsplacement ANAlyser) was used to perform the 

analyses. Through modelling, it was also identified whether the experimental methods 

applied were adequate or required further development to be able to better capture a 

given aspect of the relevant structural behaviour. Overall, FEA was applied as a 

complement to experimental investigations.  
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Figure 1.2 Schematic illustration of the methodology pertaining to structural 

performance (Objectives 1 and 2). 
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1.3.2 Durability 

The methodology applied for durability, pertaining to Objective 3, included two main 

processes (see Figure 1.3): experimental methods and interpretation of results. In this 

work, durability was investigated on the material level and related to the chemical 

resistance, viz. alkali resistance, of textile reinforcement. Various commercial textile 

reinforcement materials underwent accelerated ageing tests paired with tensile tests in 

accordance with ISO 10406-1 (2008). Textile reinforcement specimens were aged in a 

simulated concrete pore solution and exposed to the standard specified boundary 

conditions. Alternative boundary conditions were also included in the scope of work 

to investigate the discrete influence of two key variables on material ageing, i.e. 

temperature and pH of a simulated pore solution. Tensile tests were conducted on 

specimens before and after ageing given that the materials could be tested based on 

their level of degradation. Furthermore, the interpretation of the experimental results 

involved the documentation of visual observations before and after testing, data 

processing, as well as statistical analysis of the data to understand the significance and 

variability of the results. Degradation curves in terms of tensile strength versus time 

were established for the given materials. When considered statistically beneficial, 

additional accelerated tests were conducted to further refine the degradation curve. It 

is to say that the selected boundary conditions of these additional tests could 

statistically improve the certainty and correlation of the curves.  

 

Figure 1.3 Schematic illustration of the methodology pertaining to durability 

(Objective 3). 
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1.3.3 Sustainability 

The methodology used to evaluate the sustainability of TRC according to an 

environmental context, related to Objective 4, is presented in Figure 1.4. The 

evaluation was conducted by means of a Life Cycle Assessment (LCA) in accordance 

with ISO 14040 (2006) and ISO 14044 (2006). This method is used to evaluate the 

environmental impact of e.g. building materials. A cradle-to-gate perspective was 

assumed, such that the impact of the extraction to production processes was included 

in the assessment. By doing so, the environmental impact of reducing e.g. the concrete 

cover in TRC structures could be observed when compared to RC. SimaPro (Version 

7.3.3) was used to execute the analysis and a functional unit of 1 m
2
 of reinforced 

concrete was assumed throughout the study. Moreover, to be able to equally compare 

various reinforced concrete alternatives, the one-way bending capacity of an RC 

section of 1 m x 1 m x 0.08 m was selected as a reference. It was assumed that the 

concrete cover could be reduced for textile reinforcement to a minimal value 

providing sufficient bond. The cradle-to-gate inventory data used in this study were 

taken from readily available databases: European Reference Life Cycle Database 3.0 

(ELCD) (European Commission, 2013) and EcoInvent version 3.0 (Swiss Centre for 

Life Cycle Inventories, 2013).  

 

Figure 1.4 Schematic illustration of the methodology pertaining to sustainability 

(Objective 4). 
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1.4 Limitations 

Limitations concerning the overall scope of work revolve around key aspects of 

structural performance, durability and sustainability, as previously illustrated in 

Figure 1.1. Limitations related to more detailed aspects of this thesis and papers can 

be summarized as follows: 

> Long-term tests due to, e.g. creep and shrinkage, were not carried out to 

characterize the mechanical properties of fine-grained concrete (Durability – 

material level) 

> The change in chemical composition on the surface of the aged textile 

reinforcements was not studied.  

> Accelerated ageing of textile reinforcement in a concrete matrix was not a part 

of this thesis. Accordingly, changes in bond between the textile reinforcement 

and concrete matrix were not investigated (Durability – interaction level). 

> Experimental sample sizes were restricted by the available resources. 

> The material inventory data for the LCA were taken from available databases; 

however, the actual materials produced and applied in TRC could have 

differing inventory data which should ideally be obtained or verified by 

producers.  

> The comparative scenario in the LCA was not experimental verified. 

> The material’s use and end-of-life stage, e.g. maintenance, demolition and 

waste management, were not included in the LCA. Scenarios for the 

maintenance and demolition phases deserve considerable attention, deeper 

analysis and knowledge about the long-term performance of the material.  

 

1.5 Outline of thesis 

The thesis contains a synopsis of four papers, denoted as Paper I-IV, as well as an 

introductory section providing the background and methodology concerning the topics 

treated in the papers. Additional experimental findings and discussion are also 

included in the thesis to give emphasis to certain aspects which are related but were 

not covered in the scope of the papers. The following summarizes the outline and 

contents of the thesis:  

Chapter 1 – Introduction 

Background information, research objectives, methodology and limitations are 

provided as the framework of this thesis. 

Chapter 2 – Material Level: Concrete & Textile Reinforcement 

An introduction to relevant properties pertaining to the material level is provided. The 

applied experimental methods and assumptions are also elaborated. This chapter 

primarily refers to Objective 1 and makes reference to Papers I, III and IV.  

Chapter 3 – Durability 

An outlook on the durability of textile reinforcement is covered. Also, the 

investigation of the chemical resistance of textile reinforcement on the material level 

is discussed. This chapter relates to Objective 3 and Paper I. 
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Chapter 4 – Interaction Level: Pull-out Behaviour 

The bond behaviour of TRC and typical pull-out test methods are addressed. The 

applied experimental and numerical methods to determine the bond behaviour 

(interaction level) are explained. This chapter is associated to Objective 1 and Paper 

II. 

Chapter 5 – Global Level: Flexural Behaviour  

The experimental and numerical analysis of the flexural behaviour of TRC on the 

global level is presented. This chapter refers to Objectives 1 and 2 and Paper III. 

Chapter 6 – Global Level: Tensile Behaviour 

Experimental findings and methods related to the quantification of the tensile 

behaviour of TRC are discussed in addition to the enclosed papers. This chapter 

touches upon Objective 1. 

Chapter 7 – Sustainable Potential 
A summary of the conducted LCA study comparing TRC to conventional reinforced 

concrete is included. An outlook on economic and social aspects revolving around 

TRC is discussed. This chapter is related to Objective 4 and Paper IV. 

Chapter 8 – Conclusions and Future Outlook 

The main conclusions of this thesis are discussed in this section along with the 

author’s future outlook on the work. 

References 

Literature included in this thesis is listed alphabetically.  

Appendices 

Additional experimental methods and findings are provided here in Appendices A 

and B. Papers I-IV, acting as the foundation of this thesis, are also enclosed in 

respective appendices. 
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2 Material Level: Concrete & Textile Reinforcement 

At first, the meaning of Textile Reinforced Concrete may not necessarily be obvious 

as it has been designated by various acronyms and terminology overtime:  

> Textile Reinforced Concrete (TRC) (Brameshuber, 2006, Hegger et al., 2011, 

Mechtcherine, 2012),  

> Textile reinforced cement composites (Mobasher, 2012),  

> (Textile) fabric-cement composites (Cohen et al., 2012),  

> Textile reinforced engineered cementitious composites (TR-ECC) (Dai et al., 

2009), 

> Textile Reinforced Mortar (TRM) (Triantafillou et al., 2006),  

> Mineral-Based Composites (MBC) (Täljsten et al., 2006, Orosz, 2013),  

> Fibre reinforced cementitious mortar (FRCM) (D’Ambrisi et al., 2013),  

> Categorized as a Cement-based composites (Mechtcherine, 2013). 

In this thesis, the most common terminology being Textile Reinforced Concrete 

(TRC) is applied. It refers to a composite material encompassing discrete textile 

reinforcement in the form of a grid or open mesh structure made of non-corrosive 

technical fibres embedded in a fine-grained cementitious matrix (see Figure 2.1). A 

main aspect differentiating TRC from other types of cement-based composites e.g. 

FRC is that fibres are bundled and arranged in a discrete open structure which can be 

positioned according to the imposed tensile stresses similar to conventional RC thus 

increasing the load capacity and effectiveness of the fibres in comparison to random 

short fibres in concrete. Accordingly, TRC is often claimed to combine the benefits of 

both RC and FRC as schematically illustrated in Figure 2.2 (Hegger et al., 2006).  

It is important to provide an account of the individual constituents of TRC, namely 

concrete matrix and textile reinforcement, to be able to further comprehend TRC as a 

composite material. The quantification of the mechanical properties of these singular 

materials constitutes the material level of structural performance in this work, 

previously described in Section 1.2. An overview of the applied materials, along with 

the selected experimental methods and assumptions are discussed in Sections 2.1 and 

2.2. Definitions and acronyms provided in this section are consistent with 

Brameshuber (2006) and ACI 440.1 R-06 (2006), unless stated otherwise. 

 

Figure 2.1 Overview of Textile Reinforced Concrete: casting process (left) and 

hardened TRC component (right). 
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Figure 2.2 Combined effects of RC and FRC forming TRC [Adopted from (Hegger 

et al., 2006)] 

 

2.1 Concrete matrix 

The concrete matrix applied in TRC differs from that typically used in conventional 

steel reinforced concrete. Fine-grained concrete also defined as mortar is typically 

prescribed for TRC, where the maximum aggregate size is typically < 2 mm. Self-

compacting and highly flowable concrete is primarily needed to adequately penetrate 

the openings of the textile reinforcement structure to allow for adequate bond and load 

transfer from the concrete to the reinforcement. This minimal aggregate size could 

however increase shrinkage and the need for larger quantities of cement paste; as 

such, a slight increase in maximum aggregate size to 4-6 mm could be considered 

while bearing in mind the desired design thickness of the TRC structure. 

Moreover, the matrix should be designed to be chemically compatible with the 

selected reinforcement, i.e. in terms of alkalinity, while providing the required 

strength properties, mechanical behaviour and suitable characteristics for the 

specimen geometry and production method (Brameshuber, 2006). For instance, the 

concrete matrix could also be designed such that the alkalinity and hydration kinetics 

be altered (Butler et al., 2009) or by modifying the morphology at the interface of the 

textile reinforcement by means of polymer coatings along with nanoclay (Scheffler et 

al., 2009d). Additions of silica fume or high alumina cement, for example, can be 

incorporated in the mix to lower the alkalinity (Bentur et al., 2006).  

For the past several decades, there have been concerns about the sustainability and 

reduction of CO2 gas emissions as a consequence of cement production. According to 

statistics from 2013, the production causes the generation of approximately 700 kg 

CO2 per ton of cement (Svensk Betong, 2015), which is why the substitution of 

cement with pozzolans like fly ash has been explored. For example, Mueller et al. 

(2015) investigated the use of reactive powder concrete (RPC) with textile 

reinforcement, whereby a large portion of the clinker was replaced by class F fly ash 

without causing a loss of performance. Another environmentally friendly concrete 

applied in TRC included the use of so-called green concrete which is made of a blast 

furnace slag binder from a by-product in the production of iron and a liquid sodium 

silicate solution as an activator (Bentland, 2015). 
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2.1.1 Concrete composition 

Concrete, defined as a composite material, comprises aggregates or particles which 

are embedded into a binding medium. The binding medium most often consists of 

hydraulic cement, i.e. Portland cement, mixed with water (Mehta et al., 2006). In so-

called modern concrete mixtures which were included in this work, admixtures were 

incorporated to modify concrete properties in a variety of ways. The concrete 

mixtures used throughout the work in this thesis differed due to the fact that 

experimental tests were conducted within various project frameworks. The source of 

the constituents also varied, such that a direct comparison of all experimental results 

is not applicable. However, a general description of the concrete mixtures used is 

given in the following.  

In general, the applied mixes were self-compacting with a w/c of approximately 0.4 

and a maximum aggregate size, dmax, of 4 mm. The chemical admixture applied was a 

polymer-based superplasticizer which reduces the surface tension of water during 

mixing, thus allowing the concrete consistency to increase without additional water. 

Using such high range water-reducing admixtures gives way to the reduction of the 

water-cement ratio, which in turn increases the strength of the concrete. Mineral 

admixtures in the form of natural pozzolanic materials, e.g. fly ash and silica fume, 

were also included as concrete components in this work. These admixtures are 

primarily applied to improve the workability of fresh concrete, enhance the resistance 

of concrete to e.g. thermal cracking, reduce costs when replacing large amounts of 

cement (Mehta et al., 2006), and potentially reduce the associated environmental 

impact. Furthermore, filler materials, particularly derived from quartz, were 

incorporated in the developed mixtures to improve the particle size distribution of the 

mix. An overview of the constituents used in the fine-grained concrete mixtures 

developed is illustrated in Figure 2.3 and exemplified in Table 2.1. The fresh concrete 

properties, e.g. slump, particle density, yield stress and plastic viscosity, were 

investigated to be able to make appropriate adjustments to reach a suitable concrete 

mix for certain cases. These methods are, however, not further described here as they 

are beyond the scope of this thesis.  

 

Figure 2.3 Common constituents used in the fine-grained concrete mixtures. 
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Table 2.1 Exemplified fine-grained concrete mix for TRC (Paper III). 

 

 

2.1.2 Mechanical properties 

Mechanical properties related to the fine-grained concrete were either quantified using 

short-term standardized experimental methods or calculated, using e.g. fib Model 

Code 2010 (2013) [fib MC 2010] or EN 1992-1-1 (2008) [EC2], depending on the 

extensity of the experimental program in each project. Ideally, it is most exact to 

characterize the mechanical properties of concrete experimentally and thereafter 

compare these to the outcome of the available empirical expressions, as is exemplified 

later. These expressions are based on certain underlying assumptions, e.g. cement type 

and aggregate size, such that they should be verified using experimental results. The 

relations presented in fib MC 2010 are said to be adequate as a first approximation for 

self-compacting concrete and to a certain degree apply to green concrete, i.e. 

replacement of a ration of cement by pozzolans.  

Moreover, when quantifying the properties at the material level, it was important to 

understand which parameters are the most critical to further interpret the behaviour at 

the interaction (Section 4) and global levels (Sections 5 and 6), as well as those 

necessary to conduct non-linear finite element analysis (FEA) (Section 5.3). For plain 

concrete, the investigated mechanical properties, categorized according to 

compression and tension, are summarized in Table 2.2. The compression properties 

include compressive strength, ultimate strain, modulus of elasticity and Poisson’s 

ratio, while tensile properties comprise tensile strength and softening behaviour, i.e. 

crack-opening curve. It is important to clarify that the tests presented in Table 2.2 

were conducted under varying conditions, wherein the projects, test equipment, 

methods and concrete mix differed. The experimental work included in the papers 

associated to this thesis was conducted at the Danish Technological Institute (DTI). 

Experiments in addition to these were conducted at SP Technical Research Institute of 

Sweden (SP) and The Swedish Cement and Concrete Research Institute (CBI). The 

details pertaining to these additional experiments are reported in Appendix A. The 

purpose of discussing these additional tests is to demonstrate that the mechanical 
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properties of concrete can be obtained using an array of approaches which all provide 

varying levels of output and accuracy. 

Table 2.2 Summary of mechanical properties quantified for concrete. 

 

Compressive properties 

The compressive strength of a concrete mix should be quantified experimentally as a 

minimum, particularly at an age of 28 days, as most empirical equations estimate 

other mechanical properties from the characteristic or mean compressive strength at 

28 days. It could also be important to examine the early stages of compressive 

strength development when concerned with production and installation. In this work, 

two methods were applied to characterize the compressive strength, i.e. basic and 

more elaborate cylinder compressive tests, denoted as Methods 1 and 2, respectively. 

Other related properties, being the modulus of elasticity, Poisson’s ratio and ultimate 

strain were also measured using Method 2 (see Appendix A). When concerned with 

the design of thin structures, the need to evaluate the size and slenderness effects as a 

function of the test specimen geometry could arise (Brockmann, 2006). These effects 

were however not further experimentally investigated in this scope of work.  

Method 1: Cylinder test (Paper III): The compressive strength of hardened concrete, 

fc, is typically determined experimentally by means of cylindrical test specimens as 

per EN 12390-3 (2009) with varying acceptable nominal sizes, refer to e.g. EN 

12390-1 (2012). This test method, denoted as Method 1, is rather straightforward to 

conduct yet it generates but a single value corresponding to the applied compressive 

force. The maximum applied compressive force at failure, F, is divided by the cross-

sectional area of the specimen, Ac, to yield the compressive strength. In this work, 

compressive tests were conducted on cylindrical specimens (Ø150/300 mm and 

Ø100/200 mm) at DTI. Due to the limited output of this method, other mechanical 

properties were estimated using available empirical expressions.  
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Method 2: Cylinder test (Appendix A): The compressive properties of hardened 

concrete in addition to the compressive strength can be characterized using more 

comprehensive test methods. Using Method 2, the compressive strength, axial and 

radial strains, Modulus of elasticity as well as Poisson’s ratio, etc. can be determined 

due to the inclusion of a more detailed experimental setup. It is beneficial to generate 

such detailed material properties primarily for the sake of yielding more accurate 

analyses results and to be able to proceed with design. The preparation time and need 

for more complex measurement equipment are disadvantages of this method. In this 

work, these tests were carried out at SP in accordance with EN 12390-3 (2009) and 

EN 12390-13 (2013), on small cylinders (Ø54/110 mm) after 28 days of curing. The 

use of small cylinders was justified due to the small aggregate size (dmax < 4 mm) and 

experimental setup constraints. Further details pertaining to the experimental setup 

and procedure are described in Williams Portal et al. (2015a) and Appendix A. 

Tensile properties – Tensile strength & softening behaviour 

The tensile properties of plain concrete, i.e. tensile strength and fracture energy, can 

be estimated using the compressive strength of the concrete at 28 days. As previously 

mentioned, however, it is more accurate to experimentally quantify the mechanical 

properties of concrete, particularly if the mixture encompasses unconventional 

constituents. As such, determining the fracture properties of plain concrete in tension 

can be achieved using various experimental methods, e.g. uniaxial tension tests or 

indirect methods. The tensile properties of fine-grained concrete for TRC have been 

measured using different methods. For instance, notched beams tested in three point 

bending in combination with FEA (Brockmann, 2007) as well as uniaxial tensile tests 

on cylinders and thin dog-bone specimens have been investigated (Brockmann, 2006). 

When concerned with TRC as a strengthening material, the quantification of tensile 

properties of the composite could be of greater interest. Orosz et al. (2010) have 

studied these aspects using wedge-splitting tests and uniaxial tensile tests on dog-bone 

specimens. 

In this work, three different methods were applied which produce varying levels of 

experimental output. Firstly, the tensile strength was obtained by means of indirect 

splitting tests (Paper III) and direct tensile tests (Appendix A), indicated as Methods 

1 and 2. Method 2 is a simplified method only allowing for the quantification of the 

tensile strength due to the nature of the test setup. The uniaxial tensile test (UTT) 

(Method 3), a direct and reliable method (RILEM TC 187-SOC, 2007), was 

performed to quantify both the tensile strength and softening behaviour, i.e. stress-

crack opening curve (Appendix A). Furthermore, there could also be a need to 

evaluate if there is an underlying effect of the specimen or notch size on the results; 

however, these effects have not been further studied in this work.  

Method 1: Indirect splitting tests (Paper III): The indirect method of tensile splitting 

is often applied as an alternative to uniaxial tension tests. This method consists of 

loading a concrete cylinder placed on its side in a similar testing machine to that used 

for compression testing. The tensile cylinder splitting strength or tensile strength, fct,sp, 

can be calculated based on the maximum yielded load and specimen geometry using 

the denoted standard. A limitation of this method is such that the state of stress of the 

cylinder is biaxial (σx and σy) which results in the tensile strength to be higher than the 

uniaxial tensile strength, i.e. direct tensile strength, but lower than the flexural 

strength, i.e. modulus of rupture. This method however provides consistent results 

(minimal scatter), and is practical since it requires the same equipment and specimen 
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as the compressive strength test (Domone et al., 2010). The axial tensile strength, fctm, 

is thought to have a linear relationship with fct,sp , which is independent of the concrete 

grade (fib Bulletin No. 42, 2008). A correlation coefficient describing this relationship 

has been debated overtime and has been specified as 1.0 in this work according to fib 

MC 2010. Moreover, Method 1 was applied in this work on cylinders (Ø150/300 mm) 

at DTI as per EN 12390-6 (2009). Concerning the input data applied in FEA, the 

yielded tensile strength value was included in conjunction with a calculated fracture 

energy value and an existing concrete softening relationship available in commercial 

software, as further described in Section 5.3. 

Method 2: Direct tensile test (Appendix A): Direct tensile tests included in this work 

generate the axial tensile strength of the plain concrete. The outcome of this test is the 

applied tensile load and corresponding machine displacement. The tensile strength, ft, 

is determined by dividing the failure load by the cross-sectional area of the specimen. 

The softening behaviour could not be characterized due to the nature of the 

experimental setup (hinged end supports). Using the tensile strength obtained from 

this method to calculate the fracture energy could likely yield more reasonable results 

in comparison to applying the converted splitting tensile strength from Method 1. 

Furthermore, Method 2 was performed on cylindrical specimens (Ø54/100 mm) 

according to SS 13 72 31 (2005) at CBI. The same concrete was also tested using 

Method 3, such that a comparison between these methods could be effectuated. 

Method 2 was observed to yield a lower tensile strength by 37 %, which could be due 

to the difference in specimen diameter or influence of the notch size. The result of this 

method can be applied in FEA similarly to that specified for Method 1. 

Method 3: Uniaxial tension test (UTT) (Appendix A): UTTs are a direct and reliable 

test method to determine the tensile properties of plain concrete. The stress-

deformation curve is obtained using this detailed method, which can be used to derive 

the softening behaviour of the concrete. As well, the fracture energy, GF, can be 

calculated from the area under the stress-crack opening relationship. Similar to 

Method 2: cylinder test, the characterization of these additional data is valuable for 

the outcome of analysis and design, however at the expensive of time and level of test 

difficulty. In this work, Method 3 was performed on notched cylinders 

(Ø 100/100 mm) with fixed end conditions at SP based on RILEM TC 187-SOC 

(2007) and RILEM TC 162-TDF (2001). More details related to this experiment are 

provided in Appendix A. 

Comparison with empirical equations 

The experimental results were compared to the outcome of selected available 

empirical expressions for fracture energy and tensile strength (see Table 2.3). The 

average compressive strength (71.5 MPa) resulting from Method 2: cylinder tests 

(Appendix A) corresponding to the same concrete tested in the UTTs was applied in 

the calculations. Through this comparison, it becomes clear that a) equations for 

normal weight or lightweight aggregate concrete are not entirely suitable for fine-

grained concrete and b) that the maximum aggregate size, dmax, is an important 

parameter which should be reflected in the equations to yield more comparable results 

to that of the experiments for fine-grained concrete.  
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Table 2.3 Experimental results versus estimated values. 

 

Idealized models 

Despite the fact that concrete is a complex heterogeneous material, it has been 

idealized as a homogeneous material on the macroscale in modelling related to TRC 

(Hartig, 2011), as well as in this work. Both the material and cracking behaviour of 

the concrete matrix need to be incorporated in modelling to yield a realistic composite 

behaviour. The cracking behaviour is characterized by the linear-elastic uniaxial 

tensile behaviour of the matrix, while the post-cracking resistance can be described by 

a tension softening curve or brittle failure (Hartig, 2011). Furthermore, the crushing 

behaviour of concrete is described by the compressive stress-strain relationship. There 

exists various types of tension softening and compression functions available in TNO 

DIANA (2014) which have been applied in this work due to limited experimental 

data. As well, a constitutive crack model (Total Strain) was implemented to describe 

both tensile and compressive behaviours with one stress-strain relationship. When 

having access to measured detailed material properties, these data can be incorporated 

directly as input in modelling without the need for idealized models. More 

information related to the applied material models are provided in Section 5 and 

Paper III. 

 

2.2 Textile reinforcement 

Textile reinforcement is a composite material consisting of a heterogeneous structure. 

To understand the complex behaviour of this material, it should be examined at 

several observational levels, e.g. macroscopic to microscopic (see Figure 2.4). Fibres 

are categorized according to their origin as being either naturally occurring, e.g. jute 

and flax, or man-made, e.g. nylon, carbon and glass (Fangueiro, 2011). The 
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production differs depending on the nature of the fibre, i.e. inorganic or organic, and 

selected details pertaining to the production are covered later on. Fibres can be used 

to produce individual fibres of continuous length, also known as filaments, which are 

characterized by a diameter ranging between 7-27 µm depending on the material type 

(Bentur et al., 2006, Brameshuber, 2006). A sizing material is typically applied to the 

filaments to provide surface protection and improve the interaction between them in 

an assembled group (Dejke, 2001). The assembling of continuous filaments can be 

achieved by either twisting or grouping filaments together parallely. Based on the 

method applied, the terminology differs, wherein yarn often describes the group of 

twisted filaments, while tow or roving denotes bundled filaments in parallel. The 

parallel filament bundles are often used for reinforcing applications as they present 

smaller structural elongation in comparison to other forms of assemblies 

(Brameshuber, 2006). For improved bond in concrete, the surface features and volume 

of a yarn can be modified by texturing or crimping using added crimps, coils or loops 

along its length (Fangueiro, 2011). Furthermore, the number of filaments incorporated 

in a bundle is based on the desirable end thickness (Mahadevan, 2009), strength 

properties and application. The fineness of a yarn is measured in tex (g/1000 m) and is 

a function of the number of filaments, average filament diameter and density. The 

number of filaments in a bundle is often denoted as, e.g. 24K meaning 24 000 

filaments. Fibres and yarns/rovings can be further grouped to create textile structures 

using numerous methods to produce nonwoven, woven, knitted or braided fabrics. 

Regardless of the grouping method, textile reinforcement are typically classified as 

being two-dimensional planar or conventional (2D), three-dimensional (3D), 

directionally oriented (DOS) or hybrid structures. These structures are further 

described based on the direction of the yarns/rovings: mono, bi-, tri- or multi-axial 

(Fangueiro, 2011). In the case of a bi-axial case, the mesh/grid comprises two groups 

of yarns/rovings, warp (0°) and weft (or fill) (90°), interconnected orthogonally (see 

Figure 2.5). In tri and multi-axial cases, there are intermediate yarns/rovings 

diagonally placed in reference to the warp and weft directions. A 3D mesh generally 

consists of two individual 2D layers of woven yarns/rovings which are connected by, 

e.g. a spacer warp knit (Fall, 2011), made of a different fibre material (see Figure 2.5). 

For a detailed discourse on the common manufacturing techniques and influential 

factors related to fibres, yarns and textile reinforcement structures refer to Fangueiro 

(2011). 

A suitable fibre for use in textile reinforcement should fulfil some basic requirements 

(Brameshuber, 2006): high fibre/yarn tensile strength at break (i.e. tenacity), high 

ultimate elongation at break, a modulus of elasticity superior to that of the 

cementitious matrix, as well as being resistant to an alkaline environment. Without 

these basic properties, the textile reinforcement cannot adequately take tensile stresses 

and allow for sufficient crack development in a concrete structure. Long-term 

properties which are important to consider consist of, e.g. consistent bond between the 

reinforcement and matrix and small relaxation under permanent load. Furthermore, 

the initial production cost, material availability and the ease of production are critical 

factors that also come into consideration.  

Benefits of incorporating a mesh/grid structure in concrete include a homogeneous 

microcracking state dissipating energy over the entire volume, a notable increase in 

ductility and a low-weight to strength ratio (Mobasher, 2012). The geometric 

characteristics of the mesh/grid in terms of, e.g. yarn/roving bundle size, cross-

sectional area, spacing of open structure (i.e. density), warp/weft cross-points (i.e. 
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junctions) and stability of the woven structure, greatly impact the interaction between 

the reinforcement and concrete. For instance, the mesh/grid spacing will primarily 

influence the crack spacing and width, while the stability of the woven structure as 

well as the strength and stiffness of the cross-points can influence the bond strength. 

The type of woven structure and yarn crimp has also been observed to have a 

significant influence the bond behaviour and flexural performance (Peled et al., 2003).  

 

Figure 2.4 The different levels of the heterogeneous structure of textile 

reinforcement embedded in a matrix: a) photo of cross-section of 

embedded 2D carbon grid in matrix; b) magnification of warp and weft 

roving node (1 mm); c) magnification of roving-matrix interface 

(250 µm); d) magnification of filaments in weft roving (50 µm). 

 

 

Figure 2.5 Examples of applied textile reinforcement structures in TRC. 

 

2.2.1 Applied fibre materials 

Fibres which have generally been used and explored in TRC include, but are not 

limited to: alkali-resistant glass (AR-glass), carbon, basalt, aramid, polypropylene, 

polyvinyl-alcohol (PVA) with polyvinyl chloride (PVC) coating as well as hybrid 

variants. The work presented in this thesis primarily focused on the application of 
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AR-glass, basalt and carbon, because these materials have been most readily available 

(see Figure 2.6). Besides, TRC building applications have primarily focused on the 

use of AR-glass and carbon fibre materials (Mechtcherine, 2012). Brief descriptions 

of the applied materials are provided in the following and for additional information 

related to commonly applied fibres in concrete, the reader can turn to, e.g. 

Brameshuber (2006), Bentur et al. (2006), Mobasher (2012) and Wulfhorst et al. 

(2006). 

 

Figure 2.6 Examples of investigated textile reinforcements: a) AR-glass, b) 

carbon, c) basalt. 

AR-glass 

AR-glass is often coined as the most cost effective and readily available textile 

reinforcement solution in comparison to carbon (Büttner et al., 2010). Glass fibres are 

chemical fibres derived from inorganic non-metallic raw materials (Wulfhorst et al., 

2006). The raw materials needed to produce AR-glass are primarily silica sand (SiO2) 

and the addition of up to 15-16 wt-% zirconium oxide (ZrO2) to provide a superior 

alkali resistance (Bentur et al., 2006, Brameshuber, 2006), which are proportioned 

through a batching process. The production of AR-glass yarns consist of the following 

processes (Brameshuber, 2006, Wulfhorst et al., 2006): 

> Melting process of raw materials between 1250-1350 °C → molten glass 

> Fiberization of molten glass, i.e. wet-spinning process (25-150 m/s) → 

filaments (Ø 9-27 µm) 

> Sizing/coating (organic polymers) on filament → surface wetting and bonding 

of filaments (Parnas et al., 2007).  

> Bundling of filaments → yarns (e.g. 400-6600 number of filaments) 

Carbon 

Carbon fibres are synthetic chemical fibres that can be produced by two methods: 1) 

based on polyacrylonitrile (PAN) and 2) based on meso phases pitch (petroleum). 

Production method 1 is discussed here as this one is most commonly used in TRC 

applications and is also reflected in the LCA (Section 7); nevertheless, each method 

aims for carbon fibres having at least 90 % carbon content (Wulfhorst et al., 2006). 

The production of carbon yarns involve the following processes (Brameshuber, 2006, 

Wulfhorst et al., 2006): 

> Wet-spinning, i.e. polymerization, of organic polymer resin polyacrylonitrile 

→ chemical fibres  

> Thermal stabilization of fibres (200-300 °C), i.e. removal of non-carbon atoms 

through oxidation → unmeltable fibres 

> Carbonization and graphitization of fibres (1000-3000 °C), i.e. aligning 

graphite layers parallel to fibres → carbon fibres from PAN, i.e. High tenacity 
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(HT)-fibres (1500-1700 °C) or High modulus of elasticity (HM)-fibres (2200-

3000 °C)  

> Drawing of processed fibres → filament (Ø 7 to 15 µm) 

> Sizing/coating on filaments 

> Bundling of filaments → yarns/rovings 

Basalt 

Basalt fibres can be categorized as mineral non-organic or man-made fibres. The 

origin of the mineral derives from volcanic rock. Due to its natural formation process, 

its raw material content and morphology can differ greatly depending on its source. 

This variability in raw materials poses a challenge, as it can have a large influence on 

the chemical and mechanical properties and durability of the fibres (Förster et al., 

2010). As a consequence of this uncertainty, man-made modified basalt fibres have 

even been explored in work by Förster et al. (2011). Accordingly, the production of 

basalt yarns is similar to that of glass due to their chemical composition, such that 

simple and conventional processes and equipment can be applied which makes it cost-

effective (Sim et al., 2005, Wei et al., 2010). The diameter of basalt filaments can 

range between 9-22 µm (Soukhanov et al., 2014). The applied sizing and coating 

applied at the end of the production process particularly influence the durability and 

bond behaviour of basalt fibres in a concrete matrix (Hempel et al., 2015) 

Qualitative assessment 

A qualitative assessment of general mechanical and chemical properties including 

corrosion and temperature resistance, bond quality, in addition to demand and 

production cost for selected reinforcement materials is presented in Table 2.4 (from 

Paper IV). Each criterion is assessed on a scale from Low to High (1-3) based on a 

relative comparison between conventional steel reinforcement, uncoated AR-glass, 

carbon and basalt textile reinforcements for use in concrete. All criteria were also 

weighted equally in this evaluation; however, depending on the application at hand, 

there could be a need to consider a different evaluation scheme. For example, 

temperature resistance may not be of a concern for certain applications, such that this 

criterion could be weighted according to the importance level.  

The main highlights which can be drawn from the quantitative evaluation summarized 

in Table 2.4, as well as further remarks are mentioned in the following: 

> Carbon fibre is a superior solution in terms of chemical durability but 

drawbacks are relatively high initial cost and low availability for use in 

construction applications. The bond properties of carbon can be improved by 

means of polymer-based coatings.  

> Steel reinforcement is a relatively good solution but has a known risk of 

corrosion. It also has the disadvantage of having a high environmental impact, 

which is further discussed in Section 7. 

> AR-glass is the least favourable mainly due to it being instable under 

increasing temperature loads. It is however seen as the most cost-effective and 

readily available textile reinforcement alternative. 

> Despite the fact that basalt and AR-glass are similar chemically, basalt scored 

higher primarily due to the temperature resistance properties. Basalt appears to 

be a promising solution due to the availability of raw materials and affordable 

production methods; however, it is important to note that the applied sizing or 

coating is a critical factor influencing the durability properties.   
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2.2.2 Microstructure 

TRC is differentiated from ordinary steel reinforced concrete mainly by its complex 

heterogeneous structure (Möller et al., 2005, Häußler-Combe et al., 2007). A textile 

reinforcement yarn consists of numerous filaments which inhibit the even penetration 

of the fine-grained concrete matrix between the filaments. The inner filaments, as a 

result, have less contact with the fine-grained concrete matrix depending on the size 

of the fill-in zone. The fill-in zone is the depth at which adhesive load transfer can take 

place between the filaments and the matrix. The inner zone, i.e. core, is defined as the 

filaments having less contact with the matrix but assuming that frictional load transfer 

between the filaments remains possible (Hartig et al., 2008). The yarn structure 

embedded in a matrix along with these abovementioned associated zones is 

conceptualized in Figure 2.7 (left). 

 

Figure 2.7 Conceptualized yarn/roving structure (left) [Adopted from (Hartig et 

al., 2008)] and idealized stress distribution across uncoated and 

coated yarn/roving (right). 

The heterogeneous bond between the textile reinforcement mesh/grid and matrix can 

differ greatly depending on, e.g. fibre type, binding type, surface smoothness, and 

rheology of the concrete matrix. The impregnation of the textile mesh/grid using, e.g. 

polymer-based coatings, is often used to eliminate the highly heterogeneous structure 

of the yarn/roving. The penetration of the coating into the yarn/roving activates more 

internal filaments, which in turn improves the load transfer between the filaments 

(Morales Cruz et al., 2015). Ideally, the aim is to activate the entire yarn/roving to 

achieve a constant stress distribution across the yarn/roving cross-section as illustrated 

in Figure 2.7 (right). This configuration can be seen as analogous to a uniform bond 

surface between the cement matrix and reinforcement. Enhanced bond strength and 

composite tensile strength due to added surface coatings has been reported in various 

studies, e.g. in Büttner et al. (2008) and Scheffler et al. (2009c). The modification of 

the surface roughness using sand fillers and coatings has also been found to have a 

positive impact on the bond (Morales Cruz et al., 2015). Coatings applied to entire 

sections of textile reinforcement mesh/grid can furthermore influence the stiffness and 

draping characteristics. Other benefits include added surface protection during 

handling and within an alkaline environment. A more detailed account of how the 

tensile strength of a TRC member could be potentially altered by utilizing different 

textiles, binding types, and surface modifications is further discussed in Paper IV.  
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2.2.3 Mechanical properties 

Textile reinforcement is primarily incorporated into concrete to carry the tensile 

stresses developed under loading of a TRC member. The characterization of the 

tensile behaviour of textile reinforcement under a uniaxial tensile stress state was 

focused on in this work. In general, textile reinforcement under uniaxial tensile 

loading has linear-elastic and brittle behaviour such that it undergoes a so-called 

sudden failure upon reaching ultimate stress.  

Due to the fact that textile reinforcement consists of a heterogeneous structure of 

interwoven yarns/rovings made up of single filaments, it is important to specify the 

corresponding component level of the examined tensile properties. For instance, an 

unprocessed filament has been shown to have greater tensile strength in comparison to 

a yarn due to the fact that processing causes so-to-say a loss of material strength 

through material defects and uneven stress distribution between the individual 

filaments (Brameshuber, 2006). Further loss of strength occurs for yarns/rovings 

processed in a mesh/grid structure as well as for the finalized mesh/grid embedded 

into a matrix (Morales Cruz et al., 2015). In the composite form, the bond between the 

individual filaments and cementitious matrix becomes the primary factor influencing 

the resulting effective tensile strength of the textile reinforcement (Paper IV). In 

various cases, the tensile properties have been determined or idealized at the 

yarn/roving level (see Idealized models). This level is however inadequate to describe 

the composite behaviour of a TRC member in, e.g. macroscale modelling or 

component design. Consequently, the tensile behaviour of the textile reinforcement 

mesh/grid was characterized in this work.  

Measurements 

General material and mechanical properties are commonly provided by the textile 

reinforcement producers/suppliers, which include geometric parameters of the mesh, 

weight, applied coating, tensile strength, modulus of elasticity and elongation 

(ultimate break), but are not limited to these parameters. However, the experimental 

methods used to obtain the mechanical properties related to the textile reinforcement 

are not standardized; they vary based on the source and are sometimes undisclosed. 

Whether the provided data represent characteristic or average values is also not 

provided. In effect, the quality of the available data and comparability of different 

materials remain uncertain.  

As summarized in Table 2.5, examples of available standards pertaining to the 

investigation of the tensile behaviour of single-filaments, yarns or textile fabrics 

mainly derive from the textile industry. It should be pointed out that there are, 

however, no all-encompassing standard methods to characterize the tensile behaviour 

of a mesh/grid structure made of technical fibres. In this work, the extensive standards 

established for fibre reinforced polymer (FRP) reinforcement for concrete, namely 

ISO 10406-1 (2008) and ISO 10406-2 (2008), were applied as they were to some 

extent more applicable to textile reinforcement mesh/grids. To make use of the 

provisioned tensile test method in ISO 10406-1 (2008), adaptations of the method 

were necessary, e.g. end anchorage and strain measurement technique, which are 

further described in Paper I. 

Based on the standard test method for tensile testing provisioned in ISO 10406-1 

(2008), individual rovings were cut from a grid structure with a remaining 2 mm 

projection of the cross-points (cross-threads). The tests were carried out using a 
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universal testing machine (Sintech 20D) depicted in Figure 2.8. The deformation was 

measured by a Messphysik video extensometer ME46 with backlight technique in the 

background and digital camera in the foreground. The main benefit of using this 

deformation measurement technique is such that the ultimate strain could be captured. 

Further details pertaining to this experiment are documented in Paper I and Williams 

Portal et al. (2014a).  

 

Figure 2.8 Overview of the tensile test setup and reference metal cross-pins  

(from Paper I) (left) and exemplified results for carbon textile 

reinforcement (right). 

The maximum tensile force, Fu, tensile rigidity, EA, and ultimate strain, εu, of the 

textile reinforcement were the general outputs of this test method, yet these can also 

be converted to tensile strength, fu, and Young’s modulus, E, of the material as 

indicated in ISO 10406-1 (2008). The tensile rigidity was calculated from the load-

strain relation as the secant modulus between the load level at 20 % and 50 % of the 

tensile capacity. In this particular case, the tensile properties were determined for one 

direction of the grid. In the case of differing yarns/rovings along the warp and weft 

directions, the tests could be conducted in both directions to characterize more 

detailed data.  

(ISO 6939, 1988, ASTM D3379-75, 1989, ISO 4606, 1995, ISO 5079, 1995, ISO 

11566, 1996, ISO 3341, 2000, ISO 2062, 2009, ISO 13934-1, 2013, ISO 13934-2, 

2014) 

(Van de Velde et al., 2003, Smarter Building Systems, 2010, Vetrotex, 2011, Saertex, 

2013)  
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Idealized models  

To model the composite behaviour of TRC, the material and failure behaviour of the 

textile reinforcement is required. The bond behaviour between the filaments, as well 

as between the concrete matrix and reinforcement is a critical input which is further 

covered in Section 4. Due to the highly heterogeneous structure of textile 

reinforcement, the accurate experimental quantification of the material and failure 

behaviour is a challenging task. Accordingly, idealized models have been applied in 

the modelling of TRC to attempt to describe the mechanical behaviour of textile 

reinforcement at various levels, i.e. micro, meso and macroscale. In this thesis, only 

an overview of selected models is included to recognize the related research efforts 

which have been made overtime. A detailed discourse of the various idealized models 

which have been applied to describe the behaviour of the textile reinforcement can be 

found in, e.g. Hartig (2011) and Peiffer (2008). 

The choice of an appropriate idealized model can be made based on the level of 

modelling. At filament level (microscale), a linear-elastic stress-strain law has been 

typically proposed to describe the tensile behaviour (Banholzer, 2004). When it comes 

to the tensile behaviour of the textile yarn/roving (mesoscale/macroscale), however, 

various idealized stress-strain laws have been suggested and applied in numerical 

modelling: 

> Linear-elastic material law similar to that describing a filament (see Figure 

2.9a);  

> Delayed activation of the filaments within a yarn/roving at load initiation due 

to initial crimping/undulation and post-strength resistance caused by 

successive filament rupture, applied by e.g. Richter (2005) (see Figure 2.9b); 

> Linear-elastic material law and unloading curve considering gradual rupture 

of filaments, applied by e.g. Bruckermann (2007) (see Figure 2.9c); 

> Linear-elastic material law and post-strength resistance from intact filaments, 

applied by e.g. Krüger (2004) (see Figure 2.9d). 

> Two-branch curve with delayed activation and increase in stiffness, applied 

by e.g. Schladitz et al. (2012) on macroscale level modelling of TRC 

strengthened beams. 

Another approach to describe the behaviour of textile reinforcement in TRC is the 

application of fibre bundle models and damage models, which were developed by e.g. 

Lepenies (2007). Fibre bundle models describe the load sharing and redistribution 

between the fibres, whereas this particular damage model describes the change in 

cross-sectional yarn/roving area due to the successive rupture of the filaments in the 

yarn/roving.  
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Figure 2.9 Constitutive laws for reinforcement yarns/rovings  

[Adopted from (Hartig, 2011)]. 

The geometrical representation of the yarns/rovings should also be considered in 

addition to the constitutive laws. As a first attempt to simplify the heterogeneous 

structure of a yarn/roving, a so-called smeared behaviour consisting of a 

homogeneous circular cross-section with one bond interface with the matrix can be 

assumed. This assumption was made in this work because there are underlying 

difficulties involved in defining internal bond interfaces and appropriate filament 

subdivisions, as well as to minimize the computation time of the analyses (Section 5). 

Numerous studies have focused on developing suitable subdivision schemes and 

associated models for yarns/rovings, e.g. Hegger et al. (2006) and Banholzer (2004). 

Such models are typically calibrated by comparing numerical and experimental results 

as well as by using parametric studies (Hartig, 2011). Further details pertaining to 

these models are not included in this thesis.  

Research related to the modelling of textile reinforcement as a mesh/grid in a 2D 

space is vague, yet it is assumed that a smeared or bundled approach is typically 

implemented. It is to say that the idealized material behaviour and filament 

subdivision scheme that is applied for an individual yarn/roving also applies to all 

yarns/rovings present within a mesh/grid. For the case of a thin TRC specimen loaded 

in uniaxial tension or one-way bending, it could be appropriate to consider but the 

loaded longitudinal yarns/rovings in a model. Accordingly, the amalgamation of these 

individual loaded yarns/rovings into one compact yarn/roving can be effectuated as a 

smeared approach. This method was included in this work and is further elaborated in 

Section 5 and Paper III. 

 

2.3 Summary 

A general account of the two main constituents of TRC, concrete matrix and textile 

reinforcement, was given in this section. The experimental methods applied to 

quantify the mechanical properties pertaining to both the concrete matrix and textile 

reinforcement were also discussed (Objective 1). More specific findings and 

reflections are provided in the following: 
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> Simplified versus more complex experimental methods, e.g. tensile splitting 

tests versus uniaxial tensile tests, were presented in this work to quantify the 

compressive and tensile properties of fine-grained concrete. 

• Simplified methods yielded less output, such that empirical expressions 

were used to gain further material properties (Paper III). 

• Complex methods yielded more detailed output and understanding of 

the behaviour, whereby the empirical expressions could be verified by 

means of experimental results.  

• The extent of available resources is however most often the limiting 

factor governing the extensiveness of the applied experimental 

methods.  

> Estimating mechanical properties for fine-grained concrete, e.g. fracture 

energy and tensile strength, using available empirical equations yielded 

overestimated values. 

• The equations for normal weight or lightweight concrete do not 

adequately predict the behaviour of fine-grained concrete.  

• A parameter such as the maximum aggregate size, dmax, should be 

reflected in the expressions in order to yield more appropriate 

estimations for fine-grained concrete. 

> Concrete was idealized as a homogeneous material in modelling (Paper III).  

• Models describing the cracking and crushing behaviour of concrete 

were incorporated.  

> A method to determine the tensile properties of a yarn/roving extracted from a 

textile reinforcement mesh/grid was successfully developed and applied 

(Paper I).  

• Mechanical properties of textile reinforcement fibres, yarns/rovings or 

mesh/grid are inconsistently characterized such that available data 

becomes uncertain. 

• Without consistency of the material and mechanical properties of 

textile reinforcement products, it remains difficult to proceed with 

design and application.  

> The tensile behaviour of a yarn/roving extracted from a mesh/grid represents 

the most expected behaviour of the reinforcement in a TRC composite.  

• For 2D macroscale modelling of a TRC composite, the tensile 

behaviour of the extracted yarn/roving was applied in a smeared 

approach to reflect the loaded parts of the mesh/grid structure (Paper 

III).  

• These data can be used in combination with idealized models which 

describe the tensile behaviour of yarn/rovings. 

> Textile reinforcement was idealized as having a compact circular cross-section 

in modelling (Paper III). 

• Complex yarn/roving subdivision schemes incorporate uncertainties, 

require validation and parametric studies, and they can become 

numerically expensive.  

• For more detailed levels of evaluation, e.g. multi, meso and 

microscales, the use of a more intricate yarn/roving cross-section can 

be justified.  
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3 Durability 

A concrete structure should be designed, constructed and maintained to ensure 

durability over a required service life (CEB-FIP MC90, 1993). The durability of a 

structure is important so that it can fulfil a safe functionality, while reducing costs, 

energy, extraction and production of new materials, maintenance, rehabilitation, 

replacement and deconstruction. To incorporate durability into design, the long-term 

performance of the applied building materials should be known or should be 

projectable using experiments or models. In the case of TRC, however, the long-term 

performance of such a novel building material is rather limited. Research pertaining to 

the durability properties of similar fibre-based reinforced composites, namely FRC 

and FRP, has been referred to in this work. It is thought that these characteristics 

could to some degree provide some insight on the long-term performance of TRC.  

Fibre-based reinforcements embedded in a concrete matrix are typically most affected 

by chemical attack due to the presence of an alkaline environment (Bentur et al., 

1990). A universal method to assess the durability performance of fibre-based 

reinforcements in concrete is nonetheless non-formalized and applicable methods 

could vary depending on the nature of the fibre (Bentur et al., 1990). In this work, the 

effect of accelerated ageing on the tensile properties of textile reinforcement materials 

was investigated (Objective 3, Paper I). The conducted experiments were initially 

based on a standard method for FRP materials, yet a range of boundary conditions 

with respect to temperature and pH level were tested to investigate the loss of strength 

and physical changes.  

 

3.1 Assessing durability 

The durability performance is most accurately measured in real-time (Mechtcherine, 

2012); though due to time constraints, accelerated aging tests or experimentally 

calibrated numerical models are typically applied to predict the long-term 

performance of materials. Durability is a broad term which consists of deteriorating 

processes such as chemical attack, fire resistance, freezing and thawing (ACI 544.5R-

10, 2010). The durability performance pertaining to chemical attack on fibres is 

focused on in this context. A common method found in literature to accelerate the 

ageing of fibres in the form of FRP rods or textile reinforcement consists of 

immersing them in a simulated or an actual concrete pore solution, while 

simultaneously being exposed to high temperature (Micelli et al., 2004, Cuypers et al., 

2007a). Others have exposed textile reinforcement cast in concrete to varying 

temperatures or moisture conditions (Butler et al., 2009, Scheffler et al., 2009d, Butler 

et al., 2010, Mumenya et al., 2010). A collection of other experimental methods 

applied to different types of fibres can be found in ACI 544.5R-10 (2010) and Bentur 

et al. (2006). Nonetheless, methods to assess the durability performance of common 

textile reinforcements used in TRC are not formalized.  

When turning to existing recommendations for FRC and FRP, the level of description 

varies. For instance, in ACI 544.1R-96 (2002) related to FRC, it is stated that the 

durability performance is typically evaluated through changes in strength and 

toughness of the composite material exposed to either natural or accelerated ageing 

conditions. The accelerated tests could involve the immersion of a specimen in a hot 

water bath, yet no further guidelines are provided to carry out the assessment. In a 
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more recent document, ACI 544.5R-10 (2010), an overview of experimental studies 

applied to various types of fibres is provided. The compilation of an all-encompassing 

test method, e.g. related to degradation due to chemical attack, has not been attempted 

likely due to the differing degradation processes involved for each fibre type. In 

general, a systematic approach to develop an accelerated test to aid in predicting the 

service life of building components and materials was previously covered in ASTM 

E632-82 (1996), which has been withdrawn without being replaced.  

Recommended experimental methods to assess durability seem to be primarily 

established for FRP. For instance, similar methods to assess the durability of FRP 

materials are presented in both ISO 10406-1 (2008) and Japan Society of Civil 

Engineers (1997). As per these guidelines, the durability performance related to the 

alkali-resistance of the reinforcement should be assessed through tensile testing of 

specimens aged by means of accelerated testing in a simulated alkaline environment 

at an elevated temperature. In this work, ISO 10406-1 (2008) was used as a guideline 

for accelerated testing on textile reinforcement. 

 

3.2  Durability characteristics of fibres 

An overview of pertinent durability characteristics and research related to fibre-based 

reinforcement for concrete is presented here. A focus on AR-glass, basalt and carbon 

fibres is taken as these materials have been studied in this thesis. Over time, a 

particular emphasis has been made on the durability aspects of glass fibres in 

concrete, such that a significant amount of research findings is available for this 

material compared to the other considered fibre types.  

Common degradation processes related to fibre-based reinforcement in concrete are 

(Bentur et al., 2006): fibre degradation due to chemical attack, fibre-matrix interfacial 

physical interactions, fibre-matrix interfacial chemical interactions, and volume 

instability and cracking. These processes are important to highlight, as the 

characterization of the long-term performance of a TRC can be complex due to 

singular or combined degradation processes. For further details on these processes, 

refer to Bentur et al. (2006). Another critical factor influencing the durability and 

interface of fibre-based reinforcements in a concrete matrix is the applied surface 

sizing/coating. This topic can easily become elaborate particularly when overseeing 

solutions for various fibre types. Therefore, it is only briefly addressed in the 

following.  

 

3.2.1 AR-glass fibres 

AR-glass fibres undergo strength loss in cementitious matrices over a long-term 

perspective (Purnell, 1998). These fibres are in fact facing similar damage 

mechanisms which are present in glass-fibre reinforced concrete (Butler et al., 2009). 

Hydroxide ions (OH
-
) present in an alkaline solution react with the silica groups (Si-

O-Si) of the glass fibre network which build up hydrated surfaces and dissolved silica 

(Scheffler et al., 2009c). Furthermore, due to the production process, the AR-glass 

fibre surface is marked by small defects and/or weak zones which lead to strength 

loss. Consequently, these so-called weak zones make way for local displacements, 

pitting corrosion and stress concentrations when placed in an alkaline environment 

(Purnell, 1998, Orlowsky et al., 2005). It is important to note that the corrosion attack 
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of AR-glass fibres in terms of reactive products has been found to differ when 

exposed to a NaOH-solution compared, i.e. formation of brittle shell and spalling, to a 

cement solution, i.e. pitting (Scheffler et al., 2009a). As such, the extent of the 

reaction is said to be dependent on numerous factors such as the composition of the 

alkaline solution and of the glass fibre, as well as accelerated exposure time and 

temperature (Scheffler et al., 2009a). In addition, the densification of the matrix at the 

fibre interface due to the continued hydration process of the concrete has also been 

noted to cause potential degradation and change in bond properties (Zhu et al., 1997). 

Attempts to improve the durability of AR-glass include the reduction of the pH-level 

in the cementitious matrix particularly near the fibres, as well as the inclusion of a 

hydrophobic protection layer, e.g. epoxy or styrene butadiene, around fibres or 

rovings to act as a diffusion barrier against the alkaline solution (Scheffler et al., 

2009c, Büttner et al., 2011, Raupach et al., 2011). Further research on this topic 

included the incorporation of insoluble epoxy resins or chemically reactive 

dispersions, e.g. cement/silica fume/poly (vinyl acetate), on the AR-glass roving 

surface (Büttner et al., 2010). For instance, Büttner et al. (2009) examined the 

reduction of the long-term strength loss by means of adding coating to the 

reinforcement and polymers to the concrete to alter the water transport within the pore 

structure and decrease the alkali content around the textile reinforcement. The impact 

of varying the alkalinity, hydration kinetics and granulometry of binder on the 

durability of AR-glass fibres in concrete was studied in Butler et al. (2009) and Butler 

et al. (2010). 

The time-dependent ageing effects of AR-glass yarns embedded in a matrix 

characterized using double-sided yarn pull-out tests were modelled in Butler et al. 

(2011). The microstructural changes at the fibre-matrix interface were correlated to 

the crack-bridging effect of a yarn on the mesoscale. The time-dependent strength loss 

of AR-glass fibres in concrete has been also investigated and predicted using 

developed corrosion models (Purnell, 1998, Orlowsky et al., 2005). For example, 

Orlowsky et al. (2005) verified the use of a mathematical approach including effects 

of initial pitting corrosion and diffusion controlled chemical attack in later stages of 

deterioration. These existing models were thereafter adapted to investigate weathering 

effects on strength loss with respect to humidity, temperature, pH level and 

composition of the glass fibres (Orlowsky et al., 2006, Cuypers et al., 2007b). The 

developed knowledge was later on applied to predict the long-term performance of an 

AR-glass reinforced TRC pedestrian bridge (Hegger et al., 2010b). 

 

3.2.2 Basalt fibres 

The published durability aspects revolving around basalt fibres have been rather 

contradictory. Basalt fibres have a distinct difference in chemical composition 

compared to AR-glass whereby the presence of high iron content has been found to 

decrease its alkali-resistance (Scheffler et al., 2009a, Scheffler et al., 2009b). Basalt 

fibres and yarns have been shown to have higher alkali resistance in comparison to E-

glass when submerged in simulated concrete conditions of saturated calcium 

hydroxide, Ca(OH)2, (pH = 13.2) (Van de Velde et al., 2003). Others have reported 

that basalt and E-glass fibres have rather similar alkali resistance, such that they both 

undergo surface damage, i.e. loss of volume, and lose tensile strength with increasing 

exposure to accelerated ageing in a sodium hydroxide (NaOH) solution (Sim et al., 

2005, Wei et al., 2010). Nevertheless, it is thought that a comparison between the 
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alkali resistance of basalt and AR-glass fibres would lead to more conclusive remarks, 

as it is well-established that E-glass fibres are not suitable for use in concrete (Bentur 

et al., 2006). It has been reported by Scheffler et al. (2009b) that unsized basalt fibres 

age differently in NaOH (pH > 14) than in cement solution (pH = 12.8-12.9) (i.e. 

calcium containing solutions), whereby visible peeling of the fibre surface was caused 

by the former and pitting/hole formation due to the latter conditions. Moreover, it is 

interesting to note that the rate of alkaline attack for basalt fibres in both NaOH and 

cement solution occurred more rapidly than for the AR-glass fibres. Similar 

degradation observations were noted for unsized basalt fibres by Förster et al. (2010). 

The mechanical performance of unsized commercial basalt fibres to chemically 

modified fibres before and after undergoing accelerated ageing in an alkaline media 

was investigated by Förster et al. (2011). In which, the degradation of the fibres was 

observed to be similar in both a 3-ionic (NaOH, KOH, Ca(OH)2) and NaOH solution, 

i.e. progressive formation of a peeling shell. However, the addition of certain 

compounds, i.e. Al2O3, MgO, was observed to moderately improve the tensile 

strength or modulus after accelerated ageing. Furthermore, to overcome these 

degradation issues, attempts to improve the durability of basalt fibres using similar 

surface coatings applied to AR-glass fibres, e.g. styrene butadiene, have been recently 

investigated (Hempel et al., 2015). In general, the applied coating or sizing (Hempel 

et al., 2015) and chemical composition (Förster et al., 2010, Förster et al., 2011) of 

basalt fibres are critical factors influencing the durability properties of basalt fibres in 

an alkaline environment.  

 

3.2.3 Carbon fibres 

Carbon fibres can be made from different components, i.e. PAN and pitch, as 

aforementioned in Section 2.2.1, whereby the given composition influences the 

characteristics of the fibres (Dejke, 2001). Most types of carbon fibres, e.g. HM-PAN, 

high performance (HP)-Pitch and HT-PAN, have been revealed to be highly resistant 

to acid, alkali and organic solvents (Machida et al., 1993). Likewise, carbon fibres 

have been generally categorized as being chemically inert (Micelli et al., 2004, 

Scheffler et al., 2009c), such that they can be suitable for environmental exposure. For 

instance, after immersion in an alkali solution (1 M NaOH) for 28 days, carbon fibres 

were marked by minimal tensile strength and volume reduction as well as an absence 

of reaction products at the surface (Sim et al., 2005). Remarkably, a slight increase of 

strength after undergoing accelerated testing has also been observed for carbon fibres 

by e.g. Hegger et al. (2010a) and in Paper I. The cause of the noted increase is likely 

related to the so-called stiffening or interlocking of the applied surface coating at high 

temperatures as reported in Hegger et al. (2010a) and de Andrade Silva et al. (2014). 

Relating back to carbon-FRC, Katz et al. (1996) observed that HM-PAN carbon fibres 

embedded in a concrete matrix increased in tensile strength and toughness during 

early ages (< 30 days) which was followed by a drop in mechanical properties as a 

result of matrix densification. The extent of this degradation was found to be a 

function of the concrete composition. Others have reported that nearly negligible 

change in strength was noted for carbon-FRC composites aged in water at elevated 

temperatures for a year (ACI 544.1R-96, 2002). Moreover, the influence of elevated 

temperatures on the interfacial properties of uncoated and polymer-coated carbon 

yarns embedded in a concrete matrix was investigated by de Andrade Silva et al. 

(2014). Through double-sided pull-out tests, it was observed that the maximum pull-
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out load remained unaffected for uncoated yarns exposed to a preheating load up to 

200 °C. As for coated yarns, an increase in bond was noted after preheating up to 

150 °C due to stiffening of the applied coating. As preheating loads were increased to 

400 °C and 600 °C, matrix, fibre and polymer coating degradation became apparent.  

 

3.3 Experimental work  

Accelerated ageing tests paired with tensile tests were performed as per ISO 10406-1 

(2008) to assess the durability performance of TRC in terms of alkali-resistance 

(Paper I). The change in physico-mechanical properties of various commercially 

available textile reinforcements was documented and evaluated. The ability for the 

reinforcements to retain their tensile capacity was also quantified in the form of 

empirical degradation curves.  

 

3.3.1 Materials 

The textile reinforcement materials tested consisted of commercially available 

products made of AR-glass, basalt and carbon as shown in Figure 3.1. General 

properties obtained from the producers/distributors for each product are summarized 

in Table 3.1. It is important to note that the tested materials are considered as products 

and the properties resulting from the accelerated ageing do not represent the overall 

properties of these reinforcement materials. Many influential factors need to be taken 

into consideration, such as the amount and type of applied coating/sizing, quality of 

the product and material defects, to name a few. 

 

Figure 3.1 Overview of textile reinforcement materials applied in accelerated 

ageing: a) AR-glass; b) basalt; c) carbon. 
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Table 3.1 General properties of the studied reinforcement materials (Paper I). 

 

 

3.3.2 Test description 

The direct tensile tests applied in this series of tests were previously discussed in 

Section 2.2.3 and elaborated in Paper I. In order to yield a relative comparison, 

tensile tests were conducted on both reference and aged specimens, denoted as pre- 

and post-immersed, respectively. Accelerated tests were conducted on linear pieces of 

commercially available textile reinforcement products primarily using specifications 

provisioned in ISO 10406-1 (2008). The accelerated test boundary conditions 

specified in ISO 10406-1 (2008) consist of a prepared alkaline solution (pH > 13) and 

a temperature of 60 ±3 °C for 30 days. It was of further interest to gain an 

understanding as to whether the high alkaline solution or the temperature could be 

controlling degradation parameters for the tested textile reinforcement products. The 

effect of the exposure time of the specimens to the accelerated environment was also 

studied. The additional boundary conditions investigated in this work are summarized 

in Table 3.2 and a detailed account of the specimen and test preparations can be found 

in Paper I. 

 

Table 3.2 Experimental test matrix (Paper I). 
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3.3.3 Evaluation 

Visual observations 

Visual observations consisted of examining and reporting the external appearance of 

the pre- and post-immersion specimens in terms of colour, surface and shape. 

Documentation and discussion related to the visual observations can be found in 

Paper I and Williams Portal et al. (2015b) 

Experimental results 

The main measurements acquired from the direct tensile tests included the load versus 

strain, as aforementioned in Section 2.2.3. To further characterize the observed 

behaviour of the pre- and post-immersed materials, the ultimate tensile capacity, Fu, 

ultimate strain, εu, and tensile rigidity, EA, were extracted from these results as 

recommended in ISO 10406-1 (2008). Moreover, to measure the relative mechanical 

degradation of the post-immersed reinforcement, the tensile capacity retention rate, 

RET, and tensile rigidity retention rate, REA, were calculated. The former is suggested 

in ISO 10406-1 (2008), while the latter was proposed in Paper I as an additional 

comparative parameter. 

The applied load versus strain depicts a brittle material behaviour for all tested 

materials, see Figure 3.2 and Paper I. The carbon specimens were marked by a 

general increase in tensile strength for all tested cases, which could be perceived as 

this particular material can withstand the various exposure conditions. As for the 

basalt and AR-glass samples aged according to the standard conditions of Case 1, they 

were not measurable due to the extent of degradation, with the exception of specimens 

aged for five days (B1-5, A1-5). The tensile capacity and the ultimate strain were 

observed to significantly decrease for Cases 2 and 3. It was not possible to provide 

concluding remarks regarding the effect of Case 4 on AR-glass and basalt. 
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Figure 3.2 Applied load versus strain of tested textiles: carbon (a), basalt (b) and 

AR-glass (c), note the differing scales (Paper I).  

Statistical evaluation 

To determine the statistical significance of the experimental results and identify 

existing trends, confidence intervals were calculated for the tensile capacity and 

tensile rigidity retention rates as depicted in Figure 3.3 and further discussed in Paper 

I. A significant increase in tensile capacity was noted for the carbon specimens tested 

according to the standard conditions (Case 1). Major trends were identified for the 

AR-glass and basalt reinforcement products, such that AR-glass was found to be 

temperature sensitive particularly at 60 °C (Case 2) and could retain slightly more 

tensile strength (65 %) than basalt (52 %) while being exposed to 20 °C, pH 14, 

10 days (Case 3). It was observed that the tensile rigidity did not provide any notable 

differences compared to the reference mean value.  

Empirical exponential models of the degradation of the tensile retention rate were 

developed as a function of temperature and time, as detailed in Paper I. The 

developed degradation curves, illustrated in Figure 3.4, have an overall good 

correlation with the experimental findings. The use of such models could aid in 

describing expected behaviours for given textile reinforcement products based on the 

outcome of this experimental method. 
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Figure 3.3 The tensile capacity retention rate (left) and tensile rigidity retention 

rate (right) (Paper I).  

 

 

Figure 3.4 Empirical degradation curves for the selected basalt and AR-glass 

products (Paper I).  
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3.4 Summary 

The effect of accelerated ageing in terms of chemical attack, viz. alkali-resistance, on 

the structural behaviour of textile reinforcement at the material level has been 

investigated (Objective 3, Paper I). Using a standard method typically applied to 

FRP along with certain adaptations, the change in physico-mechanical properties of 

various commercially available textile reinforcements was documented and evaluated 

using direct tensile tests. A method to describe the degradation of the tensile capacity 

based on the outcome of the experiments was proposed in this work.  

Certain drawbacks and suggested modifications related to the applied accelerated 

ageing method specified in ISO 10406-1 (2008) are: 

> The method does not provide any guidelines for the interpretation of the 

results. 

• Based on the output of this method, the use of empirical degradation 

models could aid in describing expected behaviours for given products, 

as demonstrated in this work. 

• Expected tensile strength loss limits could be defined based on 

previous knowledge related to FRP and FRC. 

• The chemical degradation and surface changes of the textile 

reinforcement could be investigated using microscopy.  

> The method does not allow for the quantification of an actual lifespan of 

materials. 

• Could apply a similar approach used in e.g. (Dejke, 2001) to convert 

the test conditions to real-time conditions. 

> The boundary conditions may overestimate or inadequately represent realistic 

boundary conditions of reinforcement in a concrete matrix.  

• Testing in an actual pore solution or reinforcement specimen cast in 

concrete could be an alternative. 

• Testing of the composite could include the effect of matrix 

densification at the reinforcement/matrix interface (Bentur et al., 

1990).  

> The boundary conditions are too aggressive and not suitable for all tested 

textile reinforcement materials. 

• Testing at different time intervals (e.g. minutes-weeks) and 

temperature ranges (e.g. 20-60°C). 

• The pH level of the test solution could be decreased (related to 

previous point to reflect actual pore solution). 

• Drying/wetting cycles could be more appropriate for certain types of 

fibres, e.g. natural fibres (Bentur et al., 2006). 

• Materials could be subjected to various tensioning loads during 

accelerated ageing, whereby time upon failure would become an 

independent variable.  

Accordingly, the drawbacks and suggestions provided for this method along with 

findings from other relevant research efforts could be a good starting point towards 

the development of an experimental guideline which could be further applicable to 

TRC.  
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4 Interaction Level: Pull-out Behaviour 

Textile reinforced concrete is a three-phase material consisting of textile 

reinforcement, concrete matrix and an interface. The force transferred from the brittle 

concrete matrix to the reinforcement is governed by the quality of the bond between 

the reinforcement and matrix (Mobasher, 2012). A critical factor influencing the 

global structural behaviour of TRC is in fact the complex compatibility between the 

textile reinforcement yarn/roving and the cementitious matrix (Zastrau et al., 2003), 

due to the heterogeneous structure of the yarn/rovings (see Section 2.2.2). This 

interfacial behaviour, categorized as the interaction level in this work, becomes a 

critical input parameter for numerical models developed to analyse the structural or 

component behaviour of TRC, denoted as the global level (Paper III).  

Pull-out tests, a common method applied to study the bond or pull-out behaviour of 

reinforcement embedded in a matrix, have been developed and executed in this work 

(Objective 1, Paper II). It was of key interest to extract the local-bond stress-slip 

behaviour from pull-out tests of TRC reinforced by either basalt or carbon 

reinforcement grid. The local-bond behaviour was thereafter applied in both simple 

(1D) and more advanced models (3D) to yield global structural/component behaviour. 

The numerical results from the 1D and 3D models were compared to validate the 

simplifications assumed in the 1D model. A reasonable level of correlation was 

obtained between both numerical results and experimental findings. Moreover, the 

idealized local-bond behaviour established in Paper II was further applied as input in 

an FE-model of a one-way slab in Paper III (Section 5.3). A complementary study in 

addition to the papers was also conducted solely on carbon reinforcement grid to 

observe the use of an improved and modified pull-out testing technique. The influence 

of applied coatings and pull-out of a single roving versus single roving attached to a 

grid was investigated.  

 

4.1 Bond behaviour  

The interaction between the concrete matrix and reinforcement is characterized by the 

bond behaviour. The bond is responsible for different features of the structural 

behaviour at the serviceability and ultimate limit states (SLS, ULS) (fib Model Code 

2010, 2013). It is to say that bond has an impact on the crack development (i.e. width 

and spacing), tension stiffening and curvature at SLS, while the strength at end 

anchorages are affected at ULS. It is important to note that the bond behaviour of 

textile reinforcement to concrete is inherently different from that of conventional steel 

reinforcement primarily due to the geometry and structure of the mesh/grid, surface 

roughness, applied coating, stiffness of yarn/roving, concrete matrix, as well as 

processing techniques. The effect of several of these parameters on the bond 

properties of TRC have been evaluated experimentally by e.g. Peled et al. (2003), 

(Krüger, 2004), Xu et al. (2007), Sueki et al. (2007), Ortlepp et al. (2008), Lorenz et 

al. (2012) and Zhang et al. (2013).  
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The stress transfer mechanisms occurring between the concrete matrix and textile 

reinforcement (or fibre) are typically divided into three stages, shown in Figure 4.1, 

after Mobasher (2012) and Richter et al. (2002): 

> Stage I – Elastic: 

 The linear response signifies perfect bond between reinforcement and 

matrix (i.e. adhesive bond).  

> Stage II – Non-linear:  

 Pre-peak, partial debonding starts (external filaments) and spreads 

along embedded length. 

 Post-peak, successive debonding until entire embedded length is 

debonded.  

> Stage III – Dynamic: 

 Individual filaments start to slide out dynamically (i.e. due to frictional 

bond)  

Overall, the force is transmitted by adhesion and friction between the reinforcement 

and the concrete. The load transfer between the filaments enclosed in the yarn/roving 

will however occur either based on adhesion or friction depending on the quality of 

the bond or so-called fill-in zone (refer to Section 2.2.2). The bond quality differs 

across the depth of yarn/roving which causes a complex failure mechanism involving 

the partial rupture and pull-out of singular filaments. This phenomenon has been 

coined as sleeve-core failure mechanism (Bentur et al., 2006) or telescopic failure 

(Bartos, 1987). A way to avoid complex failure is to impregnate or treat the 

yarn/roving with a coating, e.g. epoxy, which in turn helps create a homogeneous yarn 

structure leading to a more uniform bond interface between the yarn and the concrete 

matrix. This material alteration ideally results in a uniform pull-out failure of the yarn 

from the concrete and higher bond strength (Xu, 2004), however, it is believed at the 

expense of less deformation capacity due to a supposed increase in reinforcement 

stiffness.  

 

Figure 4.1 Idealized pull-out slip response of embedded textile reinforcement in 

concrete and local shear strength behaviour [Adopted from 

(Mobasher, 2012)](a) and an alternative local shear strength 

behaviour [Adopted from (Xu, 2004)] (b).  
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4.2 Pull-out testing 

The characterization of the bond behaviour of textile reinforcement yarns embedded 

into a concrete matrix has been most commonly effectuated by means of two types of 

test configurations, namely one- or double-sided pull-out tests (Banholzer, 2004). It is 

to say that one-sided tests consist of applying a pull-out force on the free end of a yarn 

embedded in a concrete matrix while measuring the applied load and resulting active 

yarn displacement. As for double-sided tests, a crack bridging scenario is idealized by 

introducing a localized crack in the specimen which is bridged by one or more yarns. 

In this case, the successive crack opening is measured along with the load applied at 

the ends of the concrete specimen. Similar pull-out tests have also been applied on 

individual fibres/filaments to characterize the bond behaviour at another resolution of 

investigation. Another feature which is important to consider when concerned with 

the composite behaviour of a TRC structure is the bond behaviour of the textile 

reinforcement mesh in the concrete matrix. The presence of the transversal yarns in a 

textile reinforcement mesh introduces mechanical anchorage for the longitudinal 

yarns (Bentur et al., 2006, Mobasher, 2012) which is neglected when characterizing 

the bond behaviour of a smooth longitudinal fibre or yarn. This feature was 

exemplified in e.g. Peled et al. (1998) and Lorenz et al. (2012), wherein the pull-out 

behaviour of the textiles embedded in a matrix was tested.  

In this work, it was of interest to determine the bond behaviour of a textile 

reinforcement grid embedded in a concrete matrix, such that a double-sided 

unsymmetrical pull-out test setup was developed and adapted based on relevant 

literature for this purpose (refer to Table 4.1). Thin panel specimens 

(400 x 100 x 15 mm) were reinforced by one centrically placed layer of reinforcement 

grid made of either carbon or basalt (see Figure 4.2). An individual roving was 

isolated by means of the defined crack bridge and loaded to obtain smeared pull-out 

behaviour (see Figure 4.3). The defined embedment length was generally decided 

according to the distance of the cross-threads, which is further specified in Paper II. 

Various embedment lengths were selected to be able to quantify the bond capacity and 

associated failure modes, e.g. pull-out and rupture. Additional information pertaining 

to these pull-out tests can be found in Paper II and Williams Portal et al. (2014b). 

 

 

 

 

(Peled et al., 1998, Banholzer, 2004, Krüger, 2004, Xu, 2004, Banholzer, 2006, Sueki et al., 2007, Butler et al., 

2009, Brameshuber et al., 2010a, Jun et al., 2010, Aljewifi, 2011, Barhum et al., 2012, Lorenz et al., 2012, 

Mobasher, 2012, Lorenz et al., 2013, Hempel et al., 2015, Lorenz et al., 2015) 
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Table 4.1 Summary of experimental methods applied to characterize various 

levels of pull-out behaviour in textile reinforced concrete. 
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Figure 4.2 Overview of textile reinforcement grids applied in the pull-out tests: a) 

Carbon; b) Basalt; (Paper II). 

 

 

Figure 4.3 Sketch of experimental setup (left) and specimen configuration (right) 

(Paper II). 

 

4.2.1 Experimental results 

The outcome of the pull-out tests resulted in the applied force and crack-opening 

displacement (see Paper II). From these output, the average maximum force and the 

respective average crack-opening displacement, i.e. total slip, were calculated along 

with the standard deviation. Table 4.2 reports a summary of the experimental findings 

of this study. The failure mechanism denoted as pull-out, was often observed to be a 

telescopic failure (i.e. partial rupture and pull-out) which was previously explained as 

being a common failure phenomenon in Section 4.1. 

Furthermore, these pull-out results were observed to have a rather large variability 

particularly as the embedment length increased, as can be noted by the standard 

deviation (Table 4.2). It is believed that the causes of variability can be associated to: 

uneven bond penetration through cross-section of roving, potential bond irregularities 
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along embedment length (weak zones), human error in sample preparation, defects 

along the reinforcement, limited experimental sample size (i.e. three samples), and 

even the measurement and loading precision.  

Table 4.2 Experimental findings of the pull-out study – average values (std dev). 

 

The evaluation of the pull-out tests commenced with two primary inputs, namely the 

experimental pull-out results and material properties. A first estimation of the local 

bond-slip was thereafter derived from the experimental results as further explained in 

Section 4.2.2. By means of a 1D bond model, the calibration of the local bond-slip 

relationship was effectuated. The underlying assumptions included in the 1D bond 

model were thereafter verified using a more complex 3D FE-model. The numerical 

solutions in the form of force versus total-slip relationships were compared to the 

experimental results as described in the following sections.  

 

4.2.2 Local bond stress-slip function 

A suitable local bond stress-slip relationship should give results on the global level 

that correlate with the measured global bond behaviour. The shape of the local bond 

stress-slip function is dependent on numerous parameters, e.g. material properties of 

the concrete matrix, reinforcement geometry and surface, as well as the configuration 

and stiffness of the mesh cross-threads. Numerical or analytical methods are 

commonly applied to estimate a local bond-slip function. For instance, a suggested 

local bond-slip function shape pertaining to FRP rebar is provisioned in fib Model 

Code 2010 (2013), while a range of research efforts have focused on analytical 

solutions for TRC-based cases (Zastrau et al., 2003, Sueki et al., 2007, Lorenz et al., 

2012). Within this scope of work, local bond stress-slip functions for both basalt and 

carbon reinforced TRC were calibrated to match the experimental results as presented 

in Paper II. A first estimate of a local bond-slip function was made according to the 

experimental results related to the test specimens constituting a short embedment 

length. This first estimate was then used as input in a global analysis resulting in a 

force versus crack opening relation. From comparisons with the measured results, the 

local bond versus slip was corrected in several steps until reasonable agreement was 

found on global level. Further details regarding the assumptions and corrections 

applied are mentioned in Paper II. This calibrated local behaviour, shown in Figure 

4.4, was subsequently applied in numerical models simulating the pull-out behaviour 

(see Section 4.3), as well as input data in the analyses of the four-bending tests based 

on carbon reinforced TRC (see Section 5.2.1).  
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Figure 4.4 Calibrated local bond-slip for basalt reinforced TRC (a) and carbon 

reinforced TRC (b) (Paper II). 

 

4.3 Numerical modelling 

An analytical 1D bond-slip model developed by Lundgren et al. (2012), originally 

applied for corroded and uncorroded ribbed steel reinforcement, was adapted to 

describe a textile reinforcement yarn (see Paper II). The singular pull-out yarn, which 

uniformly bridged both anchorage ends (i.e. Short and Long zones) was idealized to 

have a homogeneous circular cross-section section and singular external bond 

interface. The geometric influence of the surrounding reinforcement mesh (lateral 

yarns) was not taken into account. In essence, the differential equation expressing 

equilibrium conditions along the reinforcement in tension was solved.  

Furthermore, a 3D FE-model, as illustrated in Figure 4.5, was developed in DIANA 

based on the unsymmetrical double-sided pull-out test conducted. Further details 

related to the model development are provided in Paper II. The analyses were non-

linear as they described the non-linear behaviour of the bond stress-slip relationship 

between the concrete matrix and textile reinforcement. An example of the numerical 

results from the 3D FE-model is depicted in Figure 4.6, where the reinforcement bond 

stress evaluation could be captured. Also, the numerical results obtained from these 

analyses were compared to the experimental results and 1D bond-slip model results as 

shown in Paper II. Main assumptions and differences between the 1D bond-slip 

model and 3D model are provided in Table 4.3.  

 

Figure 4.5 Overview of 3D FE-model (Paper II). 
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Figure 4.6 Bond stress evolution captured by 3D FE-model for basalt Short specimens 

at different steps related to various slips (0.01 mm, 0.1 mm, 0.3 mm and 

0.92 mm) (a) and force versus total slip curves with indicated slip steps (b). 
 

Table 4.3 Key differences between the 1D and 3D models. 

 

 

4.4 Additional investigations 

An improved and modified pull-out testing technique was additionally studied in this 

work (see Figure 4.7). This content is in addition to the enclosed papers; highlights of 
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this preliminary study are presented here to provide further insight on the test method 

and bond behaviour. Detailed information related to these tests is provided in 

Appendix B. The main simplification of this method is such that the embedment 

length was defined by cutting away a part of the tested roving within the anchorage 

length. In the majority of the existing test methods, the embedment length is often 

defined in a secondary section of the specimen using a saw cut or prescribed breaking 

point as applied in Paper II. Furthermore, a valuable added feature was the use of a 

video extensometer technique to capture the active end-slip of the reinforcement 

relative to the concrete end. In a preliminary study, the pull-out tests were performed 

on several TRC specimens reinforced by either one layer of carbon textile grid or 

reinforced by a single carbon roving in order to determine the effect of the grid 

structure and cross-threads on the bond behaviour. In both tested cases, solely one 

roving was subjected to a pull-out force. The reinforcement surface was also modified 

using epoxy or a polymer based coating. A general observation from Figure 4.8 is 

such that the epoxy coated grid had on average superior bond strength and less active 

slip. This result indicates that the epoxy enhanced the stiffness of the cross-threads 

influencing the anchorage and allowed for a more homogeneous failure of the roving.  

 

Figure 4.7 Experimental pull-out setup (left) and specimen configuration (right). 

 

 
Figure 4.8 Example force versus active end slip results for roving (a) and grid (b) 

(refer to Appendix B). 
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4.5 Summary 

It has been discussed that the interfacial bond between textile reinforcement and the 

concrete matrix is greatly heterogeneous. The characterization of the bond behaviour 

is thus critical in order to understand the global structural behaviour of TRC. The 

bond behaviour of textile reinforcement embedded in a concrete matrix was 

experimentally and numerically investigated in this work (Objective 1, Paper II). 

This level of evaluation involves the interaction level of the structural performance of 

TRC. The main findings of this section are presented in the following: 

> The two-sided pull-out tests of an individual yarn from a textile mesh was 

successfully applied in this work. 

• The embedment length was varied, for both carbon and basalt textiles, 

to determine the differing failure modes, e.g. pull-out, rupture or 

combination (telescopic).  

• Larger standard deviation was generally observed as the embedment 

length increased which can be explained due to the potential inclusion 

of increased material defects.  

• Due to the inherent smoothness of the uncoated carbon textiles, much 

larger embedment lengths are required to yield rupture/anchorage in 

comparison to other textiles, e.g. basalt and AR-glass.  

• The measurement techniques could be further tailored to include an 

extensometer at the crack-opening location. 

• It could be worth investigating the influence of the end anchorage 

configuration on the bond behaviour, e.g. if there is an effect on the 

bond strength or introduction of eccentricities.  

> The first assumption of a local bond stress-slip relationship based on the short 

embedment lengths appeared to be reasonable for both carbon and basalt. 

These first assumptions were verified using simplified (1D) and complex 

models (3D) to compute the so-called global force versus total slip behaviour. 

This output was thereafter compared to the experimental results. 

• Overall favourable agreement was noted between the applied 1D, 3D 

models and experimental results in terms of initial stiffness up to the 

peak load.  

• The post-peak behaviour was less accurately captured by the models 

especially as the embedment length increases which could be due to 

several reasons, e.g. assumption of constant reinforcement area after 

the peak and inaccurate experimental measurement of slip.  

> The underlying assumptions in the 1D bond model, e.g. neglecting concrete 

strains, was successfully shown to have a minimal effect using the 3D FE-

model.  

> Additional studies showed that there are underlying differences between the 

bond behaviour of the grid structure versus the individual roving. 

• The cross-threads of the grid, especially when coated by epoxy, greatly 

increase the anchorage of the roving being pulled.  

• The level of investigation, i.e. macro, meso- or microscales, thus 

influences the chosen configuration and reinforcement arrangement of 

the pull-out test. 

• The use of video extensometers was shown to be a reliable way to 

accurately capture the end slip of the textile roving with respect to the 

concrete specimen.  
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5 Global Level: Flexural Behaviour 

TRC in the form of a structural component was experimentally investigated in flexure. 

This level of investigation was defined as the global level of structural performance 

in this work as aforementioned in Section 1.2 (Objective 1). Furthermore, the ability 

to interconnect the structural performance on the material and interaction levels to 

the global level was studied by means of FEA (Objective 2). The major findings 

presented in this section are presented in Paper III; however, additional experimental 

findings obtained by the author are also included to gain further insight.  

The non-linear behaviour of TRC can be characterized by its flexure behaviour in 

combination with the tensile and bond behaviours. Based on the given application of 

the TRC structure, the applicable load combinations need to be taken into 

consideration. For example, in the case of a sandwich façade panel, which can be 

exposed to various load combinations, i.e. shear and tension forces and bending 

moments (Shams et al., 2014), the combined load effects need to be investigated. The 

one-way flexural behaviour of TRC in the form of thin slabs (Peled et al., 1999, 

Krüger, 2004) or as a beam strengthening solution (Schladitz et al., 2012) is typically 

studied by means of four-point bending tests which was also applied in this work.  

 

5.1 Overview 

We turn to a case of a one-way slab reinforced by textile reinforcement under four-

point bending to discuss the flexural behaviour of TRC. The load versus midspan 

deflection is depicted in Figure 5.1 along with indicated loading states. There are 

technically three applicable states for TRC, but four are typically defined to draw a 

parallel between conventionally reinforced concrete and TRC (Brameshuber, 2006): 

State I (uncracked concrete), State IIA (crack formation), State IIB (crack 

stabilization), and State III (failure). 

 

Figure 5.1 Load versus mid-span deflection for a TRC one-way slab under four-

point bending, with indicated stages. 

State I corresponds to the elastic state of the uncracked TRC member, where the 

stiffness is said to be entirely a function of the concrete matrix (Brameshuber, 2006). 
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First cracking takes place once the tensile strength of concrete is reached, which 

thereafter initiates tensile stresses in the textile reinforcement within the cracked 

region. The transfer of load from the concrete to the reinforcement in the crack 

location is effectuated by means of the bond. Multiple crack formation, marked by 

load jumps or snap-back, follows with a minimal increase in load, defined as State IIa. 

The initial size of the load jumps is also largely a function of e.g. the interfacial bond 

between textile and matrix, stiffness of textile and reinforcement ratio. Apparent loss 

of stiffness and decrease in load jump is observed within this state resulting from the 

crack formation. The crack formation eventually stabilizes in State IIb, which is 

marked by a gain of stiffness said to be governed by the properties of the textile 

reinforcement (Orosz et al., 2010). This gain in stiffness is often denoted as strain 

hardening in the case of uniaxial tension (Brameshuber, 2006) but can be seen as a 

form of deformation hardening in flexure. Ideally, when State III is reached, the 

failure of TRC occurs when the textile reinforcement undergoes linear elastic 

deformations until reaching its ultimate limit load causing a brittle failure. 

Nevertheless, despite the fact that carbon and AR-glass fibres have no plastic 

capacity, the heterogeneous yarn structure causes the uneven pull-out or slippage of 

individual filaments particularly in the case of non-coated yarns. As such, failure is 

typically marked by a combination of pull-out and rupture in practice (Bentur et al., 

2006). Generally speaking, in the case of a pull-out failure, a more ductile failure 

(dashed line) could also take place at the expense of lower reinforcement utilization. 

State I is essentially outlining the limit for serviceability limit state design for the case 

of TRC façade panels. Concerning the design of load bearing TRC structures, e.g. 

beam or slab, in the ultimate limit state, the flexural capacity applied for design 

should fall within State IIb. A certain safety factor would, however, need to be applied 

to the ultimate capacity in order to prevent brittle failure. 

 

5.2  Experimental work 

The experimental work related to the investigation of the flexural behaviour of TRC 

encompassed various studies listed in the following. It is important to highlight that 

there have been deviations in the use of materials, geometry and test setup in these 

studies. Accordingly, it is not the aim of the author to draw direct comparisons 

between all the results, yet to point out the observed flexural behaviours, bring along 

improvements and provide general remarks. The selected studies presented in this 

thesis are summarized in Table 5.1. 

 

Table 5.1 Test series conducted to characterize the flexural behaviour of TRC.  
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5.2.1 Test series 1  

Rectangular TRC one-way slabs were cast and tested at DTI in a two part test series, 

denoted as Test series 1A and 1B. Firstly in Test series 1A, it was of interest to 

observe the application of different densities of carbon textiles in a conventional slab 

thickness (80 mm) commonly applied in façade panels. The reduction of the thickness 

to 50 mm in combination with commonly applied textile alternatives was studied in 

Test series 1B as well as the effect of mesh overlapping. In practice, it has been 

established that TRC slabs for façade panels can be produced having a thickness of 

30 mm (Kulas et al., 2011). Further slab thickness reduction was explored in the 

subsequent Test series 2 and 3. The experimental results and related analysis 

associated to these tests have been documented in detail in Williams Portal (2013), 

(Williams Portal et al., 2013) and Paper III. As such, only a brief account of the work 

completed will be discussed here. 

Experimental details 

The flexural behaviour of rectangular one-way TRC slabs (800 x 200 x 80 mm and 

1000 x 200 x 50 mm) reinforced by one layer of textile reinforcement (cover 

thickness 7.5 mm) was investigated using four-point bending tests. The four-point 

bending test consisted of the slab being placed upside down compared to when it was 

cast and the load was applied from beneath. The specimen geometry and test setup, 

however slightly differed due to attempted improvements in the test setup, yet a 

loaded span length of 400 mm remained constant.  

Materials  

The TRC specimens consisted of the concrete mixture previously specified in Table 

2.1 (Section 2.1). In Test series 1A, three woven carbon textile meshes having 

differing linear densities and spacing were investigated, while carbon, AR-glass and 

basalt meshes were tested in Test series 1B (see Figure 5.2). Two mesh configurations 

were studied: a) whole mesh and b) spliced mesh with an overlap of 100 mm only for 

AR-glass and basalt. The purpose of investigating a spliced mesh with an overlap was 

to observe whether the selected length could adequately transfer loads. Splices are 

often introduced in the case of scaling-up structures and become critical in terms of 

defining anchorage and load transfer. The warp yarns were placed longitudinally in 

the specimens such that these yarns were loaded during the test. This loading direction 

also corresponds to the loading direction applied in the pull-out tests (Section 4.2). A 

test matrix for this test series is provided in Table 5.2. It should be noted that 

throughout this work the cross-sectional area of a yarn, Af, was calculated as the ratio 

between the linear density of the yarn, Tex, and fibre density, ρ. Thereafter, this area 

was multiplied by the amount of longitudinal yarns positioned within the width of the 

specimen to yield the cross-sectional area of longitudinal reinforcement, At,l. Also, the 

reinforcement ratio was calculated as the ratio between At,l and the gross specimen 

cross-sectional area, Ac.  
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Figure 5.2 Overview of textile reinforcement meshes used in Test Series 1 (Paper 

III). 

 

Table 5.2 Test series 1 test matrix (Paper III). 
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Results: Test series 1A 

The flexural load versus midspan deflection curves along with the crack formation for 

the TRC slabs reinforced by the various carbon textiles are depicted in Figure 5.3. The 

flexural load corresponds to the total load applied to the test specimen. General 

observations which can be drawn are: 

> Pre-cracking behaviour (State I) was governed by concrete stiffness (≤ 10 kN). 

> First cracking (State IIa) was marked by an unloading branch followed by 

multiple cracking indicated by the apparent load jumps. 

> The stabilization of crack formation and resulting deformation hardening 

(State IIb) was not significantly apparent, yet a larger load increase was noted 

for the Medium specimen. 

> The failure mechanisms (State III) included rupture and delamination. 

 

Figure 5.3 Test series 1A – Experimental results for all specimens (Williams 

Portal et al., 2013) and Paper III. 

Results: Test series 1B 

The flexural load versus midspan deflection curves for the TRC specimens reinforced 

by carbon, basalt and AR-glass are provided along with specific observations in 

Figure 5.4 to Figure 5.6, respectively. General observations pertaining to the results 

are: 

> Pre-cracking behaviour (State I) was governed by concrete stiffness (≤ 4 kN). 

> First cracking (State IIa) was marked by an unloading branch due to, e.g. the 

brittle nature of load redistribution to the textiles, low reinforcement ratio or 

poor bond. Multiple cracking took place solely for basalt and carbon. 

> The stabilization of crack formation and so-called deformation hardening 

(State IIb) only occurred for carbon specimens.  

> The observed failure mechanism (State III) included yarn rupture and partial 

rupture with pull-out (telescopic failure).  

> The overlapping length was sufficient as the load level and failure mode were 

comparable to specimens without splices. 
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Figure 5.4 Test series 1b – Flexural load versus midspan deflection for TRC slabs 

reinforced by carbon textiles, average values (std dev) (Paper III). 

 

 

Figure 5.5 Test series 1B – Flexural load versus midspan deflection for TRC slabs 

reinforced by basalt textiles, average values (std dev) (Paper III). 

 

 

Figure 5.6 Test series 1B – Flexural load versus midspan deflection for TRC slabs 

reinforced by AR-glass textiles, average values (std dev) (Paper III). 
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Comparison 

A comparison of the flexural results related to Test series 1A and 1B is presented in 

Table 5.3 using two parameters, namely the first crack stress, σcr, and apparent 

flexural strength, σu. These parameters were calculated based on linear elastic 

assumptions and therefore do not yield the true flexural stress states after cracking. 

The first crack stress and apparent flexural strength were calculated based on the 

experimental first cracking flexural load, Fcr, and maximum flexural load, Fu, in 

relation to the loaded span and specimen geometry. From the results, the first cracking 

stress is expectedly lower for Test series 1A due to the larger cross-sectional area. 

Taking a look at the apparent flexural strength values, the 50 mm TRC specimens 

reinforced by carbon textiles (C1-C3) resulted in superior or so-to-say effective 

composite behaviour. It is interesting to note that despite the larger reinforcement 

ratio included in the 80 mm Medium slabs, the apparent flexural strength was 

nevertheless greater for the C1-C3 slabs likely due to improved bond or anchorage 

length. A general conclusion which can be drawn is that the ultimate flexural 

behaviour is highly governed by not only the reinforcement ratio, but foremost by the 

bond or utilization of the textile embedded in the concrete matrix. 

 

Table 5.3 Four-point bending results for Test series 1A and 1B (stated in average 

values with std dev) 

 
 

5.2.2 Test series 2 and 3 

In Test series 2 and 3, thin rectangular TRC specimens of 20 mm were cast and tested 

at CBI. The purpose of conducting these test series was to explore the influence of 

numerous features on the one-way flexural behaviour: 2D versus 3D carbon textile 

configurations, high strength concrete mixtures, application of coatings and addition 

of short random fibres. These results are presented in addition to the enclosed papers.  



CHALMERS, Civil and Environmental Engineering 

 
57 

Experimental details 

The flexural behaviour was investigated using four-point bending tests based on EN 

12390-5 (2009). Specimens (700 x 100 x 20 mm) were cast using a similar procedure 

to that applied in Test series 1, yet two layers of reinforcement were incorporated 

here. Spacing between the two layers (12 mm) was chosen to correlate with the fixed 

geometry of the 3D carbon grid. The corresponding cover thickness of each layer was 

therefore set to approximately 4 mm. After casting, the samples were removed from 

their formwork after 24 hours and stored in water until testing, which differed from 

Test series 1. Furthermore, the tests were conducted using a servo-mechanical testing 

machine (Instron 1195) and displacement-controlled load. The one-way slabs were 

placed on roller supports with a span of 600 mm. The load P was distributed by two 

point loads each applying a load of P/2 onto the specimen with a distance 200 mm 

apart from each other. On opposite sides of the samples, two LVDTs captured the 

midspan displacement with respect to the top surface. An average displacement value 

was thereafter computed. The flexural load referred to in the following consists of the 

total applied load P.  

Materials 

Two types of textile reinforcements, 2D and 3D carbon, were investigated (see Figure 

5.7). Test series 2 was further split into two parts, 2A and 2B, wherein 2A included a 

TRC reinforced by 2D carbon textile coated by 15 %-wt styrene-butadiene resin 

(SBR) applied by the manufacturer, while 2B comprised a study on additional surface 

modifications applied to the same 2D carbon textile. The surface modification was 

achieved after production in the laboratory using either epoxy or another variant of 

polymer coating. The concrete applied in Test series 2, termed as high-performance 

concrete (HPC), had an fc of 71.5 MPa at 28 days (see Appendix A). Test series 3 

differed from the other studies as it explored the use of reactive-powder concrete 

(RPC), selected short random fibres along with the 2D carbon textile from Test series 

2A. The RPC mix applied in this test series had an fc of 147 MPa at 28 days. 

Additional details related to the mix design and mechanical properties of the RPC can 

be found in Mueller et al. (2015). Material properties for the 2D carbon textile were 

presented and measured in Paper I. The same carbon roving (24K, bundle of 24 000 

filaments) is incorporated in the 3D carbon textiles. The 3D textile also comprises a 

low-modulus polyester (PET) spacer which is said to merely have a function of 

improving the stability of the textile unit (Amzaleg et al., 2013). The tested specimen 

details for Test series 2 and 3 are specified in Table 5.4. 

 

Figure 5.7 Textiles applied in Test series 2 and 3 with specified load orientation: 

2D carbon textile (a) and 3D carbon textile (b).  



CHALMERS, Civil and Environmental Engineering 

 
58 

Table 5.4 Test series 2 and 3 test matrix. 

 

Results: Test series 2 

The experimental findings for Test series 2A and 2B are presented in the form of 

flexural load versus midspan deflection curves and are accompanied by respective 

specimen documentation in this section. In all tests, the textile reinforcement did not 

reach its tensile strength, yet the tests were terminated according to either large 

deflection or effects of poor bond, i.e. pull-out of reinforcement without further crack 

development. The flexural behaviour of the specimens reinforced by the two layers of 

2D carbon textile versus one layer of 3D carbon textile had some underlying 

differences (see Figure 5.8 and Figure 5.9). For the 2D carbon specimens, poor bond 

between the textile and matrix was observed resulting in minimal crack formation, 

maximum flexural loads occurring at lower midspan deflection compared to the 3D 

carbon specimens, followed by apparent yarn pull-out. It is thought that the PET 

spacer enhanced the stability and interaction of the textile reinforcement layers in the 

cross-section. When loaded in the O1 direction, the PET fibres interlaced around the 

warp yarns appeared to improve the bond and crack development. In the O2 direction, 

the weft yarns have a denser spacing due to the shift in the spacing on the top and 

bottom layers. As a result, a denser and finer crack pattern was noted for these 

specimens. The orientation of the 3D carbon textile in the specimen appeared to have 

an effect on the load levels by nearly half, which is likely due to the surface waviness 

(irregularities) and stabilisation of the warp yarns when loaded in O2 which delayed 

the uniform yarn activation. 
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Figure 5.8  Test series 2A: Flexural load versus midspan deflection for 2D carbon 

textiles (a) and test specimen (b). 

 

 

Figure 5.9  Test series 2A: Flexural load versus midspan deflection for 3D carbon 

textiles (a) and tested specimens (b). 

To further improve the bond of the 2D carbon textile, the surface of this textile was 

modified as previously mentioned in Test series 2B. The epoxy coating was found to 

significantly enhance the flexural behaviour of the composite (≈ 400 % increase in 

maximum flexural load), while minimal improvements were noted for the polymer 

coating, as depicted in Figure 5.10. Through optical microscopy, it could be detected 

that the epoxy and polymer coatings were concentrated on the outer filaments and 

hardly penetrated the depth of the dense array of carbon filaments. Additionally, it is 

thought that the curing conditions of the specimens greatly affected the efficacy of the 

applied coatings, particularly SBR and the additional polymer. Curing in air has been 

reported to improve the bond between the textile and matrix (Colombo et al., 2013), 

but this topic is not further discussed in this scope of work. Furthermore, the crack 

development and spacing pertaining to the 2D carbon textile variants were compared 

in Figure 5.11. The epoxy coating greatly impacted the crack development in 
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comparison to the polymer which had no noticeable improvement. Pertinent findings 

derived from these results are further summarized in Table 5.5, along with results 

from Test series 3.  

 

Figure 5.10  Test series 2B: Flexural load versus midspan deflection for modified 

2D carbon textiles versus reference (a) and enlargement of grey zone 

(b). 

 

 

Figure 5.11 Test series 2A & 2B: Crack spacing comparison of HPC reinforced by 

2D carbon textiles with varying coatings.  
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Results: Test series 3 

The four-point bending results for Test series 3 are depicted in this section. The 

flexural load versus midspan deflection curves are illustrated in Figure 5.12. The 

textile reinforcement did not reach its tensile strength in these tests, as the tests were 

terminated according to either large deflection, bending cracks propagating through 

entire specimen thickness or effects of poor bond, i.e. pull-out of reinforcement 

without further crack development. The poor results observed for the RPC 2D carbon 

grids are thought to result from a low reinforcement ratio in combination with a poor 

bond. In such a brittle and high strength concrete matrix, the addition of 1 vol-% short 

carbon fibres (Tenax
®
 A HT C124, 12 mm) as well as the surface modification using 

a polymer coating greatly improved the bond (through crack-bridging) and toughness 

of the material. These applied improvements however introduced large variability 

within the results due to the lack of control with the fibre dispersion and uneven 

coating surface. These presented experimental results are further analysed and 

compared to those of Test series 2 in Table 5.5.  

 

Figure 5.12 Test series 3: Flexural load versus midspan deflection for RPC with 

2D carbon textiles, 2D carbon textiles & short carbon fibres (1 vol-%), 

and modified 2D carbon textiles (a) and enlargement of grey zone (b). 

Comparison: Test series 2 and 3 

The flexural results shown in Table 5.5 can be directly compared for specimens 

having the same concrete mix and reinforcement amount. In addition, similar to that 

presented for Test series 1, the apparent flexural strength was computed here for 

comparison purposes. In general, the apparent flexural strength values were greater 

for the RPC specimens (Test series 3) mainly due to a higher first cracking 

load/maximum load resulting from the higher concrete tensile strength. The reference 

2D carbon grid proved to perform similarly in both HPC and RPC slabs, whereby 

surface modifications or the addition of short fibres were shown to improve the 

flexural behaviour.  
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Table 5.5 Summary of Test series 2 and 3 presented as average values (std dev). 

 

 

5.3 FE-results and discussion  

It was of key interest to investigate if the material properties (Section 2) and 

experimental bond behaviour (Section 4) could be linked to the global behaviour of a 

TRC specimen under bending stresses through finite element analysis (FEA) 

(Objective 3). For that reason, a 2D macro-scale FE-model of a TRC one-way slab 

based on the carbon textile reinforced specimens presented in Test Series 1B (Section 

5.2.1 and Paper III) was developed using the commercial software DIANA 

(DIsplacement ANAlyser) with pre- and post-processor Midas FX+.  
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5.3.1 Model parameters  

The complete geometry of the specimen and experimental setup were modelled in 

order to be able to yield a crack development pattern comparable to the experimental 

results (see Figure 5.13). An element size of 2.5 x 2.5 mm was selected for the entire 

geometry based on work conducted in Pettersson et al. (2014). The element types 

prescribed for the individual components are summarized in Paper III and additional 

fundamental details pertaining to the element types can be found in TNO DIANA 

(2014). The point load was applied as a fixed deformation and equilibrium was solved 

using secant tangent iterations which yielded the most stable solution. The self-weight 

was assumed to be negligible in the analysis as it was found to have a minor influence 

on the overall results such that it’s bending moment corresponded to 2 % of the total 

bending moment of the applied load. Deformation controlled loading was applied so 

that a more accurate computation of the behaviour could be achieved especially 

during the cracking state.  

 

Figure 5.13 Idealized FE-model and special features (Paper III).  

 

5.3.2 Material models 

Textile reinforcement 

A macroscale 2D model motivates the need for the idealization of smeared and 

homogenized material components and properties; as such the textile reinforcement 

mesh was simplified as a monolithic bar (see Figure 5.14). The yarns in the 

longitudinal direction of the specimen which are predominantly loaded under one-way 

bending were bundled in a monolithic yarn similar to what has been applied in other 

modelling approaches (Holler et al., 2004, Azzam et al., 2011, Williams Portal et al., 

2013, Williams Portal et al., 2014d). A linear-elastic stress-strain law with no limiting 

tensile strength was assigned to the monolithic bar (refer to Section 2.2.3). The tensile 

properties of the carbon textile reinforcement in Test Series 1 were not explicitly 

quantified. Some degree of material data was available from the producer which were 

related to the mesh properties as provided in Paper III. Alternatively, it could also be 

possible to characterize a more representative tensile behaviour of the textile 

reinforcement embedded in the matrix using a stress-strain curve obtained through 

uniaxial tensile tests of the TRC combination in question (see Section 6). One bond 

interface between the monolithic bar and concrete matrix was defined, such that the 

relative displacement between external and internal filaments was assumed to be 

negligible. Modelling with two interfaces between the external and internal filaments 
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have indicated insignificant differences when compared to modelling with one bond 

interface (Holler et al., 2004). Nonetheless, the iterative and time consuming methods 

required to quantify the relative displacement between the filaments would likely be 

more appropriate for more detailed modelling scales, i.e. meso- and microscales. 

Moreover, the local bond stress-slip relationship presented in Section 4.2.2 was 

assigned to describe this bond behaviour. The contact perimeter corresponding to each 

individual yarn, Cf, was summed to correspond to a so-called equivalent contact 

perimeter of the monolithic bar, Ct,l; the same method was applied for the equivalent 

area, At,l.  

 

Figure 5.14  Depiction of the monolithic bar assumption (t is the thickness of the 

cross-section and s is the c/c yarn spacing).  

Concrete 

The concrete matrix was modelled as a homogeneous material using material 

properties presented in Paper III and described in Section 2.1. In essence, the 

compressive strength and tensile splitting strength of the corresponding concrete were 

quantified and the fracture energy and modulus of elasticity were estimated using fib 

Model Code 2010 (2013). The mechanical behaviour of the concrete material was 

assumed to follow typical curves for compressive and tensile behaviours provided by 

TNO DIANA (2014). The tension softening and compressive behaviours of concrete 

were incorporated in the model by means of a non-linear Hordijk tension softening 

model and Thorenfeldt compression curve. The Thorenfeldt curve is based on the 

compressive strength obtained from 300 mm long cylinder specimens (Section 2.1.2), 

such that correction was found to be necessary after the peak compressive strength, fc, 

to take into consideration the size effect as a result of the selection of smaller element 

sizes in the model as suggested by Zandi Hanjari (2008). This modification allowed 

for the localization of strains in single element rows. In tension, a crack band width 

equal to the element size (2.5 mm) was chosen because the cracks generally localized 

in single element rows. A total strain based crack model with rotating crack was 

defined for the concrete elements, wherein the crack direction continuously rotates 

according to the principal directions of the strain vector (TNO DIANA, 2014). Other 

features that were taken into consideration were the voids in the concrete that were 

occupied by the lateral cross-yarns of the textile mesh in reality. As such, the tensile 

strength and fracture energy were reduced at these localized concrete elements. The 

reduction was calculated based on an estimated loss of concrete area at the lateral 

roving locations. Reducing the tensile strength and fracture energy could also be 

justified by the fact that stress concentrations and crack formation typically occur at 

the lateral yarn locations. By introducing this feature in the model, crack initiation 

was found to take place at these locations which approximately corresponded to the 

experimental results.  
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5.3.3 Results  

A reasonable agreement between the numerical and experimental results was obtained 

in terms of crack development, deflections, maximum load, and failure mode, as 

summarized in Table 5.6 and shown in Figure 5.15. The analyses resulted in a slight 

over prediction of the ultimate capacity and indicated that failure was governed by 

bond which was ambiguous in the four-point bending tests. 

Table 5.6 Experimental versus FE-analysis results (Paper III). 

 

 

 

Figure 5.15  Comparison of experimental and FE-results along with contour plots 

after first cracking and at failure (Paper III). 
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5.4 Summary 

The flexural behaviour of TRC specimens reinforced by available textile 

reinforcement was investigated using four-point bending (Objective 1, Paper III). 

The principle outcomes and associated commentary are: 

> The 80 mm rectangular TRC specimens with the Medium carbon textiles 

resulted in the highest flexural load and crack development (Test series 1A). 

> The 50 mm rectangular TRC specimens with the carbon textiles proved to 

have superior flexural behaviour (Test series 1B). 

• The reinforcement ratio of the other investigated reinforcement 

materials should be increased to be comparable to the specimens 

reinforced by carbon.  

> Splicing of the reinforcement mesh/grid was effectively investigated for 

certain material combinations through four-point bending (Test series 1B).  

• The overlap length should be individually defined based on the applied 

reinforcement grid.  

• Pull-out tests could also be applied to identify an adequate overlap 

length.  

> Casting the specimens while fastening the reinforcement mesh/grid to the 

formwork ensured accurate placement of the reinforcement. 

• This method is also presumed to have reduced the initial waviness of 

the reinforcement mesh/grid. 

The additional experimental findings presented for thin TRC specimens using high 

performance concretes and 2D and 3D carbon textiles depicted possible material 

improvements and further potential applications of TRC. The apparent benefits of 

including additional surface coatings, short fibres and the effect of surface unevenness 

were discussed in this work. Overall it was observed that the interfacial bond between 

the matrix and reinforcement had a governing effect on the flexural behaviour, while 

the reinforcement ratio had a secondary effect. Further evaluations related to all test 

series could include: the influence of the specimen size, increased reinforcement ratio, 

casting method, curing conditions, and measurement technique.  

An approach linking flexural tests of TRC specimens to simplified numerical models 

was presented. The implementation of experimental input data obtained from both 

material and interaction levels in macro-scale modelling was shown to be a promising 

approach in terms of comparing numerical results to experimental results on a global 

level, whereby improved insights in the failure mechanism could be obtained 

(Objective 2, Paper III). The main findings and suggested developments are: 

> The developed non-linear FE-model can be used to understand the failure 

mechanism which is otherwise ambiguous to capture experimentally. 

> Simplified FE-models such as presented, which are calibrated by experimental 

data, can be useful for preliminary design.  

> The applied bond behaviour (interaction level – Section 4) is a critical input 

parameter to be able to capture the correct crack development, load-deflection 

relationship and failure mechanism. 

• Inclusion of bond of internal filaments could likely further improve the 

results, but this feature is challenging to accurately quantify and could 

be computationally demanding.  

> The characterization of detailed input data on the material level (Section 2) is 

also paramount in order to minimize errors in numerical analyses. 
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6 Global Level: Tensile Behaviour  

The tensile behaviour of TRC as a composite was characterized experimentally using 

uniaxial tensile tests. This level of investigation constitutes the global level of 

structural performance in this work as previously stated in Section 1.2 (Objective 1). 

The study focused on TRC specimens made of 2D and 3D carbon textiles embedded 

in a high-performance concrete (HPC) matrix, similar to that covered in Section 5.2.2. 

Digital image correlation (DIC) was utilized to evaluate the deformations and crack 

development over the course of testing. These presented findings are in addition to the 

papers included in this thesis.  

Textile reinforcement is primarily incorporated in a matrix to carry the tensile loads of 

a structure. For that reason, the composite behaviour of TRC can be rightly captured 

by means of its tensile behaviour. The tensile behaviour of TRC is typically measured 

using uniaxial tensile tests. According to Colombo et al. (2013), the tensile behaviour 

characterized by means of uniaxial tensile tests can be affected by factors such as 

reinforcement amount and geometry, reinforcement position, curing conditions, 

displacement rate and size effect. The test setup, end clamping configuration and 

specimen geometry have also been shown to influence the experimental results 

(Hartig et al., 2012). The uniaxial tensile test arrangement for TRC has been 

extensively researched such that guidelines are provided in the draft recommendation 

from RILEM TC 232-TDT (Brameshuber et al., 2010b). 

 

6.1 Overview 

A parallel is drawn between the tensile behaviours of concrete/mortar and textile 

reinforced concrete in Figure 6.1 to highlight the possible enhancements of using 

TRC. It is clear that the brittle behaviour of the concrete/mortar after first cracking is 

eliminated with TRC allowing for the formation of multiple cracks and so-called 

strain hardening. These behavioural stages are similar to that previously described for 

the flexural behaviour in Section 5 and will not be further explained. A differing 

aspect is such that the tensile strength of the textile is typically compared to the stress-

strain behaviour of TRC to observe the strain hardening effect as well as the 

effectivity of the interfacial bond, as emphasized in Figure 6.2. Also, it is interesting 

to note the positive effect of including short fibres on the tensile behaviour (see Figure 

6.1). Improvements can include enhanced bond and load transfer to the reinforcement 

(marked by smoothness of curve), and increased tensile strength and elongation. 

Similar findings were also shown in Section 5 related to the flexural behaviour. 

 

Figure 6.1 The expected tensile behaviour of a conventional mortar and concrete 

(a) and textile reinforced concrete (b) [Adopted from (Orosz, 2013) 

and (Brameshuber, 2006)]. 
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Figure 6.2 Idealized typical stress-strain relationship for TRC indicating rupture 

and anchorage failure [Adopted from (Lorenz et al., 2013)] 

 

6.2  Experimental work 

The tensile behaviour of TRC as a composite was characterized by means of uniaxial 

tensile tests based on the relevant section of the draft recommendation from RILEM 

TC 232-TDT (Brameshuber et al., 2010b). In this recommendation, there are two 

types of tests presented, namely dumbbell and rectangular, wherein the latter type was 

applied in this work. This type of specimen was primarily selected in order to make 

use of the same formwork applied for the flexural test specimens (Section 5). As such, 

the specimens were 700 x 100 x 20 mm and consisted of HPC (Appendix A) and two 

layers of carbon textile reinforcement grid. The 2D and 3D carbon textiles applied in 

the flexural tests, Test series 2 and 3, were also included in these tests (see Figure 5.7, 

Section 5). The tensile strength based on the orientation, denoted as Orientation 1 and 

2 (O1 and O2), of the 3D carbon textiles was tested. As previously depicted in Figure 

5.7, O1 consists of the weft yarns being placed longitudinally and rotated laterally in 

O2. Details pertaining to the tested specimens are listed in Table 6.1. The specimens 

were cured in water and stored in standard laboratory conditions several days prior to 

testing at 28 days to allow for surface preparations. The effect of the curing method is 

known to have a discernible influence on the tensile behaviour of TRC (Colombo et 

al., 2013), yet this was not further investigated in this scope of work.  

 

Table 6.1 Tensile test specimen details. 
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6.2.1 Test setup 

The uniaxial tensile tests were carried out in an electro-mechanical universal testing 

machine (Sintech 20D). Specimens were loaded under displacement control, while the 

load and machine displacement were recorded in a data acquisition system (sampling 

rate of 10 Hz). The ends of the specimens were clamped between two stiff steel plates 

(see Figure 6.3) which transfer the load to the specimen by friction. The applied 

clamp pressure and contact area were chosen to prevent slippage between the clamp 

and specimen. Additional thin neoprene rubber sheets were placed in the contact areas 

to avoid local stress concentrations. As depicted in Figure 6.3, the specimens and 

clamping devices were aligned in a frame to ensure centric loading. Thereafter, the 

clamps were connected to the test machine via hinged connections and the frame was 

removed. Moreover, metal plates painted with a speckle pattern were attached on 

either side of the clamping devices as reference points to measure the average 

deformation of the specimen related to the measuring range (see Figure 6.4). Two 

virtual extensometers were defined according to these reference points in a digital 

image correlation (DIC) system (refer to Section 6.3). 

 

Figure 6.3 Overview of the specimen geometry and end clamp detail. 

 

 

Figure 6.4 Tensile test setup and special features. 
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6.2.2 Results 

The general expressions which were applied in this discussion are based on 

Brameshuber et al. (2010b). The composite stress 𝜎𝑐 and textile reinforcement stress, 

𝜎𝑡, at a given uniaxial force can be calculated based on Eq. (6.1) and (6.2), 

respectively. These equations can also be modified to calculate the ultimate strength 

of composite, 𝜎𝑐𝑢, or the textile reinforcement, 𝜎𝑡𝑢, by introducing the ultimate 

uniaxial force, 𝐹𝑢. 

 𝜎𝑐 =
𝐹

𝐴𝑐
  Eq. (6.1) 

where 𝐹 is the uniaxial tensile force (N), and 𝐴𝑐 is the concrete gross cross-sectional 

area, i.e. width multiplied by height (mm
2
). 

 𝜎𝑡 =
𝐹

𝐴𝑡,𝑙
  Eq. (6.2) 

where 𝐹 is the uniaxial tensile force (N), and 𝐴𝑡,𝑙 is the cross-sectional area of the 

longitudinal reinforcement being tested (mm
2
) (see, Section 5.2.1) 

The reinforcement did not reach its tensile strength in any case and testing could have 

continued, yet these tests were terminated due to anchorage failure marked by 

increased pull-out of the reinforcement seen via the DIC results (see Section 6.3). It is 

interesting to note that the presented tensile test results primarily differed from the 

four-point bending test (Section 5.2.2) because the applied pressure of the clamping 

devices increases the bond strength at the ends. In effect, the transfer length becomes 

reduced allowing for, in general, additional more closely spaced cracks and reduced 

crack widths.  

In Section 2.2, the so-called successive loss of tensile strength from filament to 

composite level was discussed. This loss of strength or rather efficiency of the 

reinforcement in the composite form can be captured via uniaxial tensile tests. The so-

called coefficient of efficiency (COE) is applied in this work to quantify the 

reinforcement efficiency. COE is the ratio between the maximum tensile strength of 

the reinforcement in the composite and the tensile strength of the yarn (Hegger et al., 

2008). Alternatively, this coefficient can be calculated by dividing the maximum load 

of the composite by the maximum tensile force corresponding to the total 

reinforcement quantity acting in uniaxial tension (Colombo et al., 2013). According to 

work by Colombo et al. (2013), a ratio above unity signifies that the interaction 

between the reinforcement and matrix could lead to a tension stiffening effect, while a 

ratio inferior to unity indicates a weak bond strength. In this thesis, the COE was 

calculated using the average maximum tensile force of the carbon yarn measured to be 

1.88 kN leading to a tensile strength of 2132 MPa (Section 2.2, Paper I). 

The direct test results, load versus global deformation curves, are depicted in Figure 

6.5 and Figure 6.6, while relevant experimental findings are tabulated in Table 6.2. 

The tensile stress at first crack corresponding to the composite, 𝜎𝑐,1 , was rather 

similar for all specimens, yet slightly lower for the 3D carbon reinforced panels 

probably because the actual amount of reinforcement area including the spacer is 

larger. When comparing the reinforcement stresses at first cracking,  𝜎𝑡,1, it can be 

seen that higher stresses are developed for the 2D and 3D carbon textiles (O1). In the 

case of O2, the PET fibres interlaced around the warp yarns as well as the initial 

waviness of the warp yarns are thought to cause a delayed activation of the loaded 

yarns. It should be noted that the area of the PET fibres was assumed to be negligible 
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when computing the reinforcement stress. The panels reinforced by the 2D carbon 

textiles were able to sustain nearly the same average maximum tensile load as the 

samples reinforced by 3D carbon textiles. The major differences noted, however, are 

such that the crack development was minimal and crack openings were much larger 

for the 2D carbon specimens. The cause for this differentiating behaviour is the 

weaker bond between the reinforcement and the matrix (COE 0.53). This resulted in 

significantly larger pull-out of the yarns observed at the crack openings thus leading 

to larger displacement. The maximum tensile stress of the reinforcement,  𝜎𝑡𝑢, was 

also lower for the panels reinforced by 2D carbon textiles. Moreover, the large 

variability in the results for these specimens can be attributed to the fact that the 

amount of longitudinal yarns slightly differed within the specimen cross-section. As 

for the 3D carbon reinforced specimens, multiple and micro-cracking was observed 

particularly in the case of O1. The roughness of the PET fibres interlaced around the 

warp yarns and the spacer appears to generally increase the bond in comparison to the 

two individual layers of 2D carbon textile (COE 0.69-0.70). In the case of O1, the 

warp yarns placed laterally in the cross-section significantly and positively influence 

the crack development and resulting displacement. As for O2, an inferior crack 

development, similar to the 2D carbon textile, was noted which could possibly be 

owing to the smoothness of the weft yarns placed laterally in this case. This observed 

behaviour for O2 greatly differs compared to the results in flexure (Section 5.2.2), 

where multiple cracks were noted i.e. 1-2 compared to 6-10 cracks. To explain this 

major difference, it is thought that the curvature of the specimen in flexure helps to 

increase the bond for small slips by activating the lateral cross-yarns of the top textile 

layer, i.e. the smooth weft yarns, which is not the case in the uniaxial tensile test. As 

aforementioned in Section 5.2.2, there is a shift in the spacing between the weft yarns 

and if both layers are so-to-say equally activated, additional stress concentrations 

could be introduced in the cross-section which in turn induces further crack formation.  

Overall, it could be worth attempting to further improve the interfacial bond of these 

given TRC combinations to yield more favourable tensile behaviour. Methods to 

improve the bond were previously covered in Section 5 and at the beginning of 

Section 6. Additionally, the available anchorage length in the test configuration could 

be increased with the aim of reaching the tensile strength of the textile yarns. Further, 

to avoid cracking from occurring in the end anchorage, which was not discussed here 

but is in fact an underlying problem in this test, the ends could be additionally 

reinforced or a notch could be introduced at the centre of the specimen.  

 

Figure 6.5 Load versus global deformation for TRC specimens reinforced by 3D 

carbon textiles (O1, O2): deformation of 0-18 mm (a) and 0-5 mm (b). 
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Figure 6.6 Load versus global deformation for TRC specimens reinforced by 2D 

carbon textiles: deformation of 0-18 mm (a) and 0-5 mm (b). 

 

Table 6.2 Summary of tensile test result presented as average values (std dev). 
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6.2.3 Correlation to flexural behaviour 

The COE calculated based on tensile test results presented in Section 6.2.2 were 

applied to calculate the bending moment resistance of the identical TRC specimens 

tested in flexure (Test series 2A, Section 5.2.2). The average bending moment 

resistance from experiments, MRd, and the estimated bending moment resistance, 

MRd,e, can be calculated according to Eq. (6.3) and (6.4), respectively.  

 𝑀𝑅𝑑 = 𝐹𝑢 ∙
𝐿

6
  Eq. (6.3) 

where 𝐹𝑢 is the maximum flexural load (kN) and 𝐿 is the support span (600 mm) from 

Section 5.2.2. This equation is based on the bending moment diagram from four-point 

bending test. 

 𝑀𝑅𝑑,𝑒 = 0.9𝑑 ∙ 𝐶𝑂𝐸 ∙ 𝑓𝑡 ∙ 𝐴𝑡,𝑙  Eq. (6.4) 

where 𝑑 is the effective depth (only including layer in tensile zone) (mm), 𝐶𝑂𝐸 is the 

coefficient of efficiency from tensile tests (-), 𝑓𝑡 is the tensile strength of a yarn 

(MPa), and 𝐴𝑡,𝑙 is the cross-sectional area of longitudinal yarns in the layer in the 

tensile zone (mm
2
). 

It is thought that the calculated differences between the average experimental and 

estimated values shown in Table 6.3 can be primarily attributed to the differing 

available anchorage length and the clamping featured in the uniaxial tensile test. 

These factors, in turn, overestimate the tensile capacity and COE compared to the 

flexural tests. It is also important to note that there is a larger difference calculated for 

the specimens with the 3D carbon textile in the orientation O2. The tensile behaviour 

of this configuration was marked by minimal crack formation, while the flexural 

behaviour differed greatly as previously discussed in Sections 5.2.2 and 6.2.2. It is to 

say that there was an improved bond in flexure for small slips but better end 

anchorage in the tensile test setup. Furthermore, adding a coefficient to reflect this 

difference could be an option as suggested in e.g. Hegger et al. (2008). However, if 

the failure mode in both the flexural and tensile tests would have been rupture, this 

difference would likely be minimized. These calculations however do illustrate the 

possible correlation between the tensile and flexural behaviours of TRC.  

 

Table 6.3 Comparison of the analytical bending moment resistance based on 

COE and the experimental bending capacity. 
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6.3 Evaluation using Digital Image Correlation (DIC) 

During tensile testing, deformations and crack development were recorded on one 

side of each specimen using an optical full-field deformation measurement system 

ARAMIS
TM

 12M by GOM. This system makes use of Digital Image Correlation 

(DIC) technique with a stereoscopic camera setup, i.e. two charge-coupled device 

(CCD)-cameras with 12-megapixel resolution (Figure 6.7). DIC is an accurate non-

contact measurement technique which has been proven to be an applicable method for 

the crack opening measurement of concrete structures (Corr et al., 2007, McCormick 

et al., 2010, Skarzynski et al., 2013).This technique involves the sequential mapping 

of the deformation of a defined speckled surface area using a series of digital images 

captured during loading. It is to say that displacements are calculated by mapping the 

same pixels between a discretized subset of pixels from an undeformed reference and 

deformed digital image as per Figure 6.8 (Pan et al., 2009). The quality of the applied 

random speckled pattern can influence the results, as it acts as the deformation tracer 

from image to image. For additional details related to the underlying calculations 

involved in DIC, refer to e.g. Pan et al. (2009). 

 

Figure 6.7 Setup of DIC method for tensile tests.  

 

 

Figure 6.8 Fundamental concept of DIC [Adopted from (Pan et al., 2009)]. 
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Within the speckled region of the TRC specimen under testing, the following features 

were investigated using DIC in this work (see Figure 6.9): 

> Virtual extensometers were defined at relevant reference points. 

• Strains within a defined measurement area, i.e. extensometer 1 and 2, 

(Figure 6.10) and successive crack opening at a defined location could 

be evaluated (Figure 6.11).  

> Cross-sectional cut was defined along the length of the specimen. 

• Major strain versus cross-sectional length could be plotted which 

illustrates the successive formation and location of cracks by major 

strain peaks (Figure 6.12). 

 

Figure 6.9 Illustration of selected features identified in the DIC system. 

When comparing the reinforcement stress and the average strain extracted from the 

virtual extensometers, it is clear from Figure 6.10 that there was a pull-out failure of 

the TRC specimens reinforced by 3D carbon textiles. The stress-strain curve 

presented for the carbon yarn illustrates the strain hardening and rupture limits. It is to 

say that if the bond or anchorage length would be improved, the stress-strain curve of 

the specimens would shift towards the slope of the carbon yarn curve, as depicted in 

Figure 6.2. A similar behaviour would also be the case for the 2D carbon textiles.  

 

Figure 6.10 Reinforcement stress and average strain curve depicted for TRC 

specimens with 3D carbon textiles versus carbon yarn. 
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The use of virtual extensometers at prescribed crack locations is illustrated in Figure 

6.11. As the loading increases, a given crack opening in terms of displacement can be 

followed successively. Additionally, the location of the crack formation along the 

length of the specimen can be monitored by means of a cross-sectional cut as shown 

in Figure 6.12. These two methods can be combined to retrieve detailed output data 

which could be useful for e.g. validation of models and design in SLS.  

 

Figure 6.11 Load versus average strain (a) and monitoring of successive crack 

openings with virtual extensometers (b).  

 

 

Figure 6.12 Load versus average strain (a) and major strain versus length in x-

direction for selected load levels (b).  

  



CHALMERS, Civil and Environmental Engineering 

 
77 

6.4 Summary 

The tensile behaviour of TRC specimens reinforced by carbon textile reinforcement 

was investigated using uniaxial tensile tests (Objective 1). The use of digital image 

correlation (DIC) to further document and investigate the test results was explored in 

this work. The principle outcomes and associated commentary are: 

> It can be concluded from these results that the bond and end anchorage are 

critical factors that influence the tensile behaviour of TRC. 

• Pull-out failure was observed for all tested specimens. 

• A significant difference was noted for the crack development 

particularly related to the 3D carbon textile in orientation O2 compared 

to observations in flexure (Section 5.2.2). It appears as if the utilisation 

of the 3D textile (O2) is additionally influenced by the curvature of the 

specimen in flexure such that the bond was enhanced for small slips. 

The tensile capacity and COE are however overestimated due to the 

available anchorage length and clamping in the tensile test. 

• The interfacial bond between the carbon textiles and matrix can be 

improved by e.g. alternative curing conditions or casting methods, 

finer concrete matrix, surface coatings (Section 4.4, Appendix B).  

• The anchorage can also be improved by e.g. increasing the anchorage 

length in the test setup or increasing the strength of the specimen in the 

anchorage zone via epoxy or additional reinforcement.  

> The correlation of the tensile and flexural behaviour was compared using the 

coefficient of efficiency (COE). 

• The COE was applied to calculate an estimated bending moment 

resistance which proved to be comparable to the experimental average 

results from Section 5.2.2 with a difference ranging between 11-47 %. 

• Underlying differences in the results can be primarily attributed to the 

differing end anchorage and clamping in the tensile and flexure tests 

which alter the boundary conditions.  

> DIC proved to be a valuable and accurate method to measure the strains and 

crack development of tested TRC specimens. 

• These data can be useful when attempting to validate models or 

concerning the design in SLS.  
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7 Sustainable Potential  

TRC-based research has touched upon numerous facets of this innovative composite 

material, for instance its structural functionality, durability, production, applicability 

and design. There has, however, been a lack of research related to the sustainability of 

this material. It is recognized that a more cyclical way of thinking is needed to fill in 

the gaps. It is to say that comprehensive studies touching upon health and safety, 

aesthetics and long-term environmental aspects are required in addition to 

standardization of testing and construction methods (Scheerer et al., 2015). Few 

publications are available regarding this topic, e.g. Nahum et al. (2015), Williams 

Portal et al. (2014c), and Tomoscheit et al. (2011).  

Due to the fact that the term sustainability encompasses three main pillars, i.e. 

environmental, economic and social, it would be most adequate to assess their 

interaction for a given material or structure. In this thesis, the assessment of the 

environmental sustainability of TRC is presented resulting from Paper IV and 

answering Objective 4. Whereby, a Life Cycle Assessment (LCA) was applied to 

assess the environmental impact associated to TRC versus conventional reinforced 

concrete according to a cradle-to-gate perspective. Furthermore, the economic and 

social aspects are reflected upon as a final note.  

 

7.1 Environmental sustainability  

The advancement of principles for sustainable development in construction is 

ongoing. An example of this development is the harmonization of standards for 

construction materials mandated by requirement no. 7 of EU’s Construction Products 

Regulation (Regulation (EU) No 305/2011 of the European Parliament and of the 

Council 2011). Currently there exist numerous methods to evaluate the so-called 

sustainability of materials, but there remains a lack of continuity and transparency. An 

underlying discrepancy exists particularly when new materials are introduced, as most 

often data pertaining to these materials are not available in existing life-cycle 

databases. In this case, the use of equivalent material data similar to the applied 

materials is often considered as an alternative. Then again, the collection of specific 

data pertaining to new materials still needs to be justified. 

In this work, the environmental sustainability of TRC was evaluated using a Life 

Cycle Assessment (LCA) in accordance with ISO 14040 (2006) and ISO 14044 

(2006). This method is typically used to evaluate the environmental impact of, e.g. 

building materials, assemblies or products. A cradle-to-gate perspective was 

considered in this case, signifying that the environmental impact related to the 

extraction to production processes were included. The main purpose of doing this 

analysis was to observe the associated environmental impact related to the reduction 

of the concrete cover in TRC slabs in comparison to a reference RC slab. Details 

related to the data acquisition, applied comparative case study, selected impact 

methods and results are provided in the following sections.  
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7.1.1 Impact assessment 

Data acquisition  

SimaPro (Version 7.3.3) was used to compute the LCA and a functional unit of 1 m
2
 

of reinforced concrete with a certain bending moment capacity was assumed for this 

study. The cradle-to-gate inventory data used in this study were taken from readily 

available databases: European Reference Life Cycle Database 3.0 (ELCD) (European 

Commission, 2013) and EcoInvent version 2.2 (Swiss Centre for Life Cycle 

Inventories, 2013). The material combinations included in this analysis were 

conventional steel RC, as well as carbon, basalt and glass TRC. Two studies, denoted 

as primary and sensitivity, were conducted to evaluate the environmental 

sustainability of the reinforced concrete alternatives as well as to verify the choice of 

inventory data in the primary study. A summary of the selected data for the respective 

studies is presented in Table 7.1. In the primary study, the same concrete type was 

assumed for all alternatives. Concrete was solely characterized by the cement content 

in the sensitivity study, as this constituent is considered to be the most energy-

intensive in a concrete mix. It should be noted that the inventory data was selected 

based on the most suitable available option for the given material. For more accurate 

inventory data, relevant data could be collected for the specific material using 

standardized methods, which was out of the scope of this thesis.  

 

Table 7.1 Summary of inventory data used in LCA study (Paper IV). 
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Comparative case study 

To be able to objectively compare the reinforced concrete alternatives in the LCA 

study, it was necessary to define a comparative example. In this particular case, the 

one-way bending capacity of an arbitrary steel RC section (1 m x 1 m x 0.08 m) was 

selected as a reference, whereby the thickness fulfilled the minimum cover 

requirements. It was essentially of interest to observe the environmental impact of 

reducing the concrete cover in a TRC solution. The TRC solutions were so-to-say 

calibrated in terms of thickness and amount of reinforcement to meet the flexural 

capacity of the reference specimen. A major difference between the TRC and 

reference specimens is such that a coefficient of efficiency, 𝑘1, was applied to the 

tensile strength of the textile reinforcement due to the effect of bond capacity when in 

composite form. A comparison between the one-way bending capacity and panel 

thickness is depicted in Figure 7.1 for considered alternatives. The input parameters 

and resulting calculated values for all alternatives are tabulated in Table 7.1. Details 

pertaining to the calculations are presented in Paper IV. It is without a doubt that 

other parameters, reference specimens, applications or mechanical behaviours could 

have also been used as appropriate comparative parameters. 

 

Figure 7.1 One-way bending capacity versus thickness for reinforced concrete 

alternatives (Paper IV). 

Impact methods  

The outcome of the LCA studies included the total energy consumption and 

environmental performance of the reinforced concrete alternatives. There are 

numerous standardized methods which can be used to quantify the environmental 

impact of a given product or material combination. In Paper IV, two impact 

assessment methods were applied: 1) Cumulative Energy Demand (CED) method and 

2) CML 2001. Method 1 consists of the summation of the energy resources in MJ per 

functional unit, which considers both non-renewable energy resources and renewable 

energy resources. As for Method 2, the environmental impact, presented as a 

normalized score related to the World in 1990, is assessed according to baseline 

indicators, i.e. global warming potential (GWP100), ecotoxicity, etc. To obtain more 

information about the impact assessment methods refer to Pré Consultants (2010). 
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7.1.2 Selected results from primary study 

The results based on the CED method are presented in Figure 7.2 and Figure 7.3 along 

with a summary of pertinent findings. In Figure 7.2, the CED is only compared 

between reinforcement alternatives, such that the results pertaining to 1 kg of material 

were compared to the values normalized according to the functional unit of 1 m
2
. As 

for Figure 7.3, the CED results pertaining to the reinforced concrete alternatives 

normalized based on the functional unit are presented. 

 

Figure 7.2 Cumulative energy demand of reinforcement alternatives, 1 kg versus 

functional unit of 1 m
2
 (Paper IV). 

 

Figure 7.3 Cumulative energy demand of primary study (reinforced concrete 

alternatives), functional unit of 1 m
2 

(Paper IV). 

In Paper IV, the normalized environmental impact based on the CML 2001 impact 

method was presented for the primary study. Based on the presented baseline 

indicators, namely abiotic depletion, acidification, global warming (GWP 100) and 

total ecotoxicity, steel RC was found to have the greatest environmental impact. As 

for the TRC alternatives, basalt had the lowest impact, followed by carbon and glass. 

It is clear that a reduction in concrete thickness also plays a part in the reduction of the 

associated environmental impact. For further details, refer to Paper IV. 
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7.1.3 Selected results from sensitivity analysis  

The choice of inventory data applied in the primary study was evaluated in the 

sensitivity study using the same impact methods. Other possible data options were 

added to the analysis to identify if there are underlying differences in the observed 

trends in the primary study. The additional data sets incorporated and associated 

acronyms are listed in Table 7.1. The results based on the CED method are presented 

in Figure 7.4 in addition to a summary of pertinent findings. In general, similar trends 

obtained in the primary study are also observed in the sensitivity study.  

 

Figure 7.4 The sensitivity of the cumulative energy demand for reinforced 

concrete alternatives, functional unit of 1 m
2
 (Paper IV). 

As shown in Paper IV, similar to that demonstrated with the total cumulative energy 

demand, the primary study represented the lower-bound solution also for the 

normalized environmental impact. The variation of the concrete or so-to-say cement, 

C2 and C3, did not illustrate any notable differences; however it could be worthwhile 

comparing in future work to data pertaining to a normal density concrete mix. A 

significant difference was observed between the steel inventory data, which is 

believed to be due to the fact that S1 was related to larger steel sections. Concerning 

the TRC alternatives, the carbon alternative appeared to have a tendency to have a 

lower environmental impact based on the majority of the indicators. However, the 

sensitivity of this data selection could not be effectuated according to the available 

data. No significant differences could be noted between the glass data sets. Lastly, it is 

important to note that there was a large variation observed for the basalt TRC 

alternatives, such that the select basalt data sets only contributed to 0-36 % of the total 

impact. See Paper IV for additional discussion related to the environmental impact 

results. 
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7.2 Outlook on economic and social aspects 

Numerous aspects need to be considered in addition to the structural performance and 

durability in order for TRC to become an accepted building material as a replacement 

or addition to conventional RC structures. As aforementioned, the sustainability of a 

material in terms of environmental, economic and social aspects is becoming more 

relevant nowadays. The environmental aspects touched upon in the previous section 

(Section 7.1) should ideally be evaluated in correlation to economic and social aspects 

to obtain a more holistic representation of the sustainability of TRC. The scope of this 

thesis did not include the analysis of these additional variables. Though, a 

comprehensive study supervised at CBI pertaining to the sustainability of TRC for 

renovation of buildings in comparison to commonly used solutions can be found in 

Carlsson et al. (2014). Even though the study is related to renovation of buildings, the 

assessment methods applied could also be relevant to a case study regarding new 

construction. 

 

7.2.1 Economic aspects 

The economic aspects can be evaluated using a Life-cycle cost analysis (LCC) and 

risk assessment (risk versus long-term stability) (Carlsson et al., 2014). There are 

many available calculation tools developed for this type of analysis which include for 

example a defined time perspective and projected interest rate. The incurred costs 

over the life-cycle of the material or structure are typically considered which are 

derived from production, transportation, installation, maintenance, replacement and 

demolition. A question which is commonly asked regarding TRC is the production 

costs in comparison to conventionally applied RC. Due to the fact that the production 

of textile reinforcement meshes for use in concrete structures is limited, particularly 

concerning carbon fibres, the cost is consequently higher. However, as the demand 

and acceptance for TRC increases, it is presumed that the cost will decrease as a 

result. Another relevant factor to take into consideration is the long-term performance 

of the building materials, which involves the maintenance and durability. Particularly 

TRC reinforced by carbon textiles can have a potential long-term payback, as a result 

of its superior durability properties. 

 

7.2.2 Social aspects 

The evaluation of social aspects is often based on a qualitative analysis of health and 

comfort, aesthetics as well as preservation of cultural identity. In terms of new 

construction, the architects and/or clients play a larger role in setting the restrictions 

of the building design and external appearance. There could be a demand for 

lightweight, flexible and aesthetically appealing structures simultaneously, which is 

challenging to meet. Accordingly, the boundaries of TRC are being pushed due to 

such demands for innovative shapes and structures. For example, new production 

methods are currently being developed to cast so-called folded TRC structures (Koch 

et al., 2015). When dealing with the sustainable renovation of dwellings, social 

aspects become extremely important to consider as the implementation of renovation 

directly affects the residents over prolonged periods. Changes effectuated to existing 

buildings also require that these are performed according to the buildings’ 

prerequisites. The selected technical solutions should therefore attempt to preserve the 

buildings functionality and expected identity in the given context. Furthermore, the 
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evaluation of a sustainable renovation is effected by the existing building’s 

prerequisites and customer’s interest in relation to the client and the profit (Carlsson et 

al., 2014). 

 

7.3 Summary 

The sustainability, more specifically in terms of environmental aspects, was assessed 

for TRC in relation to RC using a case study (Objective 4, Paper IV). LCA 

according to a cradle-to-gate perspective was applied to assess the environmental 

sustainability of TRC. This study was limited to a particular case study involving the 

flexural behaviour of TRC slabs related to a reference RC slab. The flexural 

behaviour was estimated analytically, yet could be worth verifying experimentally in 

further studies. The main conclusions and remarks associated to this section are: 

> In the primary study, the possible reduction of concrete cover thickness in 

TRC proved to bring upon environmental benefits whereby the cumulative 

energy demand and environmental impact could be reduced. 

• TRC reinforced by basalt yielded the least cumulative energy demand 

and carbon the least environmental impact.  

• The environmental sustainability can also be evaluated more 

comprehensively using numerous impact methods which cover a wider 

range of impact indicators or parameters.  

> A sensitivity study incorporated alternative inventory data was applied to 

verify the results obtained from the primary study.  

• Similar trends were observed compared to the primary study, such that 

TRC in general appears to have superior environmental sustainability 

compared to RC.  

> Further improvements to the LCA can include the use of a cradle-to-cradle 

perspective to identify potential long-term paybacks, as well as the use of a 

more homogeneous set of life-cycle inventory data. The use of uncertainty 

analyses can also be incorporated to further increase the certainty of the 

results. 

> It could be worth including economic and social aspects in the assessment of 

the sustainable potential of TRC to further support the presented findings and 

overall acceptance of TRC as a building material.  
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8 Conclusions and Future Outlook 

8.1 Concluding remarks 

Structural performance, durability and sustainability aspects of TRC have been 

investigated by means of numerous experimental and numerical methods in this 

thesis. It has been established that TRC is not only a sustainable solution, yet it can be 

produced as structures incorporating varying thicknesses, textile materials, 

reinforcement ratios and shapes which could be translated into e.g. façade elements or 

slabs for the built environment. Textiles made of carbon fibres were found to be a 

promising alternative as they have superior mechanical properties as well as durability 

properties in an alkaline environment. In general, the bond behaviour in TRC has been 

identified as a critical feature which needs to be improved, particularly for carbon 

textiles, using e.g. surface coatings, short fibres, or alternative casting and curing 

methods.  

Moreover, the scope of this work was further divided to address four specific 

objectives as presented in the introduction. The general conclusions pertaining to 

these objectives are summarized in this section. For a detailed account of the 

concluding remarks related to these objectives, refer to Papers I-IV as well as the 

summary sections included at the end of each chapter enclosed in this thesis.  

Experimental and numerical methods were applied to quantify the structural 

performance of TRC on the material, interaction and global levels (Objective 1). 

Through these various investigations it was found that:  

> The mechanical behaviour of the concrete matrix on a material level should be 

characterized using experimental methods as the available empirical 

expressions are not adapted for this type of fine-grained matrix. 

> The experimental methods applied for concrete should be further evaluated 

based on the size effect of test specimens particularly when the application is 

dealing with thin TRC panels.  

> On the material level, the tensile properties of the textile reinforcement should 

be quantified using uniaxial tensile tests based upon the corresponding level of 

investigation, e.g. for a structural component, the textile reinforcement mesh 

or yarn removed from the mesh should be characterized. The use of video 

extensometer techniques were found to aid in capturing the ultimate behaviour 

of the textile. Alternatively, uniaxial tensile tests of TRC panels leading to 

yarn rupture could also be applied to yield the tensile behaviour of the textile 

mesh in the composite.  

> The interaction of the textile reinforcement and matrix should be 

experimentally quantified using pull-out tests according to the corresponding 

level of investigation (see the point above). For the case of a TRC structure, 

incorporating the textile mesh in the test specimens versus single yarns yields 

more representative bond behaviour as effects of mechanical anchorage are 

incorporated.  

> A local bond stress-slip relationship can accurately be characterized from pull-

out specimens having short embedment lengths as verified using simplified 

and complex models.  

> Video extensometer techniques can be applied to more accurately capture the 

resulting slip of the textile yarn in relation to the specimen cross-section.  
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> The interfacial bond between the matrix and textile is a critical factor affecting 

the flexural behaviour of TRC slabs on a global level tested in four-point 

bending. The addition of coatings to the textiles (i.e. epoxy), as well as the 

addition of short fibres improved the bond and resulting flexural behaviour of 

thin carbon reinforced TRC panels.  

> Similar to the flexural tests, the tensile behaviour of TRC panels reinforced by 

carbon textiles on a global level tested in uniaxial tension was also found to be 

greatly influenced by the interfacial bond among other factors such as the end 

clamping and available anchorage length.  

> The extent of interaction between the textile reinforcement and matrix was 

measured via the coefficient of efficiency (COE) which indicated that 

relatively poor bond was the case for the tested carbon reinforced TRC panels, 

which led to pull-out failure.  

> The tensile and flexural behaviours of TRC can be correlated using the COE 

with a certain degree of error. For example, the differing available anchorage 

length and end clamping in the tensile tests, which overestimate the tensile 

capacity and COE, are underlying reasons for the observed discrepancies.  

> For the 3D carbon textile (O2), significantly differing crack development was 

observed between the tensile and flexural results. It is thought that a superior 

bond for small slips led to superior crack development. In flexure, the 

curvature of the specimen could have been responsible for the further 

activation of the lateral yarns in both layers.  

> Digital image correlation applied in the TRC tensile tests is a valuable tool 

which can be applied to capture crack development and strain field during 

testing. 

 

Through FE-analysis, the structural performance related to the experimentally 

quantified material and interaction level data was interconnected to the global level 

(Objective 2). The following conclusions can be made based on the realization of this 

task:  

> Linking the experimental output from the material and interaction levels in a 

simplified macro-scale FE-model on the global level led to promising results, 

whereby insight on the actual failure behaviour was enabled. The underlying 

accuracy of the modelling output on the global level can be further improved 

by refining the experimental methods applied on the various levels of 

investigation.  

> Characterizing the tensile properties of the textile reinforcement (mesh or yarn 

removed from mesh) on the material level was found to be suitable for the 

presented 2D macroscale FE-model. These data in combination with a 

bundled-bar approach appeared to be an acceptable idealization. 

> The numerical output can be further improved in terms of minimizing error by 

incorporating: a) detailed and accurate characterization of properties on 

material, interaction and global levels; b) modifying the stress-strain curve for 

the textile reinforcement to include a two-branch curve with a change in 

stiffness to take into account the loss of stiffness within the reinforcement due 

to partial rupture; c) else obtaining the tensile behaviour directly from uniaxial 

tensile tests on TRC panels to incorporate the composite effect; d) more 

accurate force-slip measurements from pull-out particularly concerning the 

post-peak behaviour.  
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The durability of textiles was characterized by means of measuring the degradation of 

the tensile properties of textile products before and after accelerated chemical ageing 

(Objective 3). Through this evaluation, it was discovered that: 

> The use of a standardized accelerated test method typically applied to FRP 

was found to be too aggressive for certain textile reinforcement products (e.g. 

made of basalt and AR-glass).  

> The tested carbon textile reinforcement product was shown to have a superior 

alkali resistance based on the applied accelerated ageing test method.  

> The degradation of textiles was additionally investigated using alternative 

exposure times, temperatures and test solutions. Degradation curves 

particularly for the tested basalt and AR-glass products were established based 

on a statistical correlation between the test conditions.  

> The coatings/sizings applied to the textile reinforcement during production 

greatly influence the degradation of the reinforcement exposed to an alkaline 

environment (related to AR-glass and basalt).  

> It is difficult to suggest a standardized test method for accelerated testing 

related to chemical attack of textile reinforcement materials in general as they 

degrade differently based upon their chemical composition and origin.  

> It is further important to be able to correlate the accelerated time to a realistic 

time period for design purposes.  

 

The environmental sustainability of TRC versus that of conventional RC was 

evaluated using LCA with a cradle-to-gate perspective (Objective 4). This evaluation 

resulted in the following: 

> The reduction of the concrete cover thickness possible in TRC panels was 

shown to yield a reduction in cumulative energy demand and environmental 

impact using a comparative case study related to RC panels.  

> The trends derived from the primary study were verified using comparative 

and available inventory data in the sensitivity study.  

> Key features related to the assessment of the economic and social 

sustainability of TRC were deliberated. Similar assessment methods, e.g. LCC 

and qualitative assessment, can be applied for both new construction or 

renovation applications in the built environment.  
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8.2 Future outlook 

For future research related to TRC, the following key areas are suggested: 

> The continued advancement of standardization of material production 

processes and experimental methods is recommended to enhance the certainty 

of the material quality and expected performance. 

> It is worthwhile to further validate and improve existing models using detailed 

experimental data for design purposes. 

> There remains a need for real-time durability testing of textile reinforcement 

and TRC to validate the long-term material performance projected from 

accelerated testing and models.  

> It could be an interesting application to consider the design of load-bearing 

structures using a combined solution of conventional RC with TRC (e.g. with 

carbon textiles) to reduce the steel reinforcement ratio and weight of the 

structure. 

> To further enhance the prospects of TRC as an alternative building material, it 

is important to execute a comprehensive evaluation based on an actual case 

study and detailed inventory data. This study should include an environmental 

cradle-to-cradle perspective (LCA) in combination with economic and social 

aspects. 
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Appendix A Experimental methods for concrete 

A.1 Compression properties 

Additional information regarding the tests conducted to determine the compression 

properties of concrete is presented here. 

Method 2: Cylinder tests 

Specimen: Cylinders were initially cast with dimensions of Ø54/200 mm in plastic 

cylindrical moulds and were sawn to their final length prior to testing. The specimens 

were demoulded and stored in water at approximately 20 °C until testing. 

Test setup: Testing was conducted using a GCTS servo-hydraulic machine with a 

stiff load frame (load cell rated up to 1.5 MN and accuracy within 1 %). Inductive 

displacement transducers (range  2.50 mm and relative error < 1 %) were used as 

instrumentation for axial and circumferential deformation measurements. Refer to 

Figure A.1. 

Test details: The tests were conducted at SP. Initially, the compressive strength, fc, 

was determined in accordance with EN 12390-3 (2009) to define stress levels for the 

test cycle used to determine the stabilized secant modulus of elasticity, Ec,s, according 

to EN 12390-13 (2013) (Method B). A limitation of these tests is that only the 

compressive strength and the secant modulus are obtained, yet one of the benefits of 

introducing a cyclic load is to minimize the risk of potential settlement of the loading 

surfaces. The stress-strain relationship in compression was determined for specimens 

with the same concrete and dimensions. Measurements were performed in accordance 

with the same aforementioned standards, with the exception that the load was applied 

using deformation control with a displacement rate of 0.12 mm/min.  

The compressive strength, fc, was defined as the peak stress and the ultimate strain, 

cu, was defined as the corresponding strain. The elastic properties, i.e. modulus of 

elasticity, Ec, and Poisson’s ratio, νc, were evaluated as the secant modulus between 

the lower, l, of 5 MPa and upper stress levels, u, of fc/3. The axial strain, a, was 

calculated as the ratio of mean axial deformation and gauge length (distance between 

rings), while the radial strain, r, was calculated from the circumferential deformation 

measurements. The volumetric strain, vol, corresponded to the summation of axial 

strain and two times the radial strain. Poisson’s ratio,, was determined as the ratio of 

radial to axial strain. See Figure A.2 for a summary of results. 

In principle, both methods presented are suitable to determine the compressive 

properties, i.e. secant modulus and compressive strength of concrete, yet the first one 

is evaluated according to a standardized method and the other directly from the 

material’s stress-strain curve. It is important to note that from Figure A.2 (b), there 

exists a standard deviation between the yielded compressive strength values.  
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Figure A.1 Compressive test setup and instrumentation for axial and 

circumferential deformation measurements. 

 

 
Figure A.2 Overview of compressive test results: stress-strain diagram (a), axial 

stress-strain (b) and Poisson’s ratio versus stress (c). 
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A.2 Tensile properties 

Additional information regarding the tests conducted to determine the tensile 

properties of concrete is presented here. 

Method 2: Direct tensile test  

Specimen: Cylindrical specimens (Ø54/100 mm) were tested after 28 days. The 

cylinders were first glued to solid steel cylindrical end caps with epoxy resin. After 24 

hours of drying, the specimens along with the steel end caps were axially fixed in the 

test machine. 

Test setup: The tests were conducted using a universal servo-mechanical testing 

machine with a load cell of 100 kN (Instron 1195) under load-controlled conditions 

wherein the loading rate was 0.05 MPa/s. Cylindrical specimens were attached to the 

machine by means of a hinge connection between the steel cylindrical end caps and 

the testing machine. 

Test details: Direct tensile tests were performed according to SS 13 72 31 (2005) at 

CBI. The measured results include the tensile load and overall machine displacement, 

i.e. global displacement. The tensile strength, ft, is obtained by dividing the failure 

load by the cross-sectional area of the specimen. The end conditions applied in this 

test setup did not allow for the characterization of the softening behaviour. The test 

setup and an example of tensile stress versus global displacement results are presented 

in Figure A.3.  

 

Figure A.3 Overview of tensile test results (a) and test setup (b). 

 

Method 3: Uniaxial tension test (UTT) 

Specimen: Tests were performed on notched cylinders (Ø 100/100 mm) with fixed 

end conditions after 28 days of curing. Cylinders were initially cast with dimensions 

of Ø 100/200 mm in steel cylindrical moulds and were sawn to their final length prior 

to testing. The notches were sawn on each side of the centreline of the specimen with 

a depth of 15 mm and width of 3 mm (see Figure A.4 (a)), whereby amounting to a 

combined depth of 30 % of the specimen width. The diameter across the notch was 
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measured at three separate locations along the perimeter and the average value was 

used to calculate the corresponding cross-sectional area at the notch. 

Test setup: The same testing device as previously specified for Method 2: Cylinder 

tests was used in order to suppress rotations of the load platens that could lead to 

bending failure (see Figure A.4 (b)). As well, the device was pre-tensioned with a load 

of 150 kN and the load cell was rated up to 200 kN. The deformation was applied at a 

rate of 0.003 mm/min and measured locally over the cylinder notch with three 

inductive displacement transducers with a gauge length, lg, of 30 mm. The 

deformation was calculated as the mean value of the three displacement gauges.  

Test details: The tests were conducted at SP based on RILEM TC 187-SOC (2007) 

and RILEM TC 162-TDF (2001). The stress-deformation curve shown in Figure A.5 

was used to derive the softening behaviour of the concrete material according to 

equations provisioned in RILEM TC 187-SOC (2007). The tensile stress, σ, was 

derived by dividing the load by the effective cross-section, Aeff, at the notch. The 

tensile strength, ft, is defined as the peak stress and deformation at peak stress, δtu, 

which takes place at the onset of macro cracking. The crack opening w, in the post-

peak regime, was calculated by subtracting the elastic deformation, δe, from the 

measured deformation, δ. Since the notch obstructed the direct measurement of the 

modulus of elasticity in tension, the ratio E/lg was replaced by the elastic stiffness, K, 

which was evaluated directly from the tensile stress-deformation curve. The fracture 

energy GF was thereafter calculated from the area under the stress-crack opening 

relationship. 

 

Figure A.4 Tensile test specimen geometry (not to scale) (a) and experimental test 

setup for the uniaxial tensile test (UTT) (b). 

 



CHALMERS, Civil and Environmental Engineering 

 
A.5 

 

Figure A.5 Overview of UTT results: stress-deformation curve (a) and definition 

of crack-opening relationship (b). 
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Appendix B Pull-out testing of TRC 

Details related to the additional pull-out investigations for TRC are presented here. 

Test method  

A modified double-sided pull-out test was studied in addition to the content presented 

in the enclosed papers. The main simplification of this method is such that the 

embedded length is defined by means of cutting away a part of the yarn within the 

anchorage length as previously illustrated. A video extensometer technique 

(Messphysik Video Extensometer ME46 with pattern recognition) was used instead of 

physical extensometers to capture the active end-slip of the reinforcement relative to 

the concrete end.  

Preliminary study  

A preliminary study was conducted to evaluate the modified pull-out test method 

according to Table B.1. The pull-out tests were performed on specimens reinforced by 

either one layer of carbon textile grid or reinforced by an individual carbon yarn in 

order to determine the effect of the grid structure and cross-threads on the bond 

behaviour. Surface modifications were also studied using a polymer coating and 

epoxy (see Section 5.2.2). The embedment length was chosen to be 100 mm, however 

several embedment lengths will be tested in future experiments to obtain a pull-out 

force versus embedment length relationship for a given TRC configuration. A step-

by-step procedure applied in the preliminary round of tests is presented in Figure B.1. 

Table B.1 Preliminary test matrix. 

 

 

 

Figure B.1 Overview of the step-by-step procedure applied. 
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B.2 

Results and added value of method 

Images captured via video extensometer techniques along with the associated force 

versus active end slip curves are shown in Figure B.2 for both grid and roving. For the 

reference case, the effect of the cross-threads (spacing of 18 mm) becomes apparent 

by sudden load dips signifying that any defect or change of area related to the tested 

roving can inherently affect the bond. The reference grid had more mechanical 

anchorage which generally decreased the bond strength, yet further experiments are 

required to make conclusive remarks due to the observed uncertainty. The epoxy grid 

versus roving had on average superior bond strength and less active slip due to the 

enhanced stiffness and mechanical anchorage provided by the entire grid structure. 

Overall, the addition of epoxy to the roving or grid was shown to increase the bond 

strength and also led to a more homogeneous distribution of stresses to the 

reinforcement resulting in e.g. the rupture of the roving in the case of the grid.   

 

 

Figure B.2 Images of the end slip and force versus active end slip for reference 

and epoxy coated grid and roving.   
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B.3 

The added value of this developed pull-out method compared to the two-sided method 

applied in Section 4 (Paper II) is summarized in Table B.2. 

 

Table B.2 Summary of added value of the developed pull-out method. 

 


