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Wireless Energy Transfer by Resonant Inductive Coupling
Rikard Vinge
Department of Signals and systems
Chalmers University of Technology

Abstract

This thesis investigates wireless energy transfer systems based on resonant inductive
coupling with applications such as charging electric vehicles. Wireless energy trans-
fer can be used to power or charge stationary and moving objects and vehicles, and
the interest in energy transfer over the air has grown considerably in recent years.

We study wireless energy transfer systems consisting of two resonant circuits that
are magnetically coupled via coils. Further, we explore the use of magnetic materials
and shielding metal plates to improve the performance of the energy transfer. To
ensure that the wireless energy transfer systems are safe to use by the general public,
we optimize our systems to maximize the transferred power and efficiency subject
to the constraint that the magnetic fields that humans or animals may be exposed
to are limited in accordance with international guidelines.

We find that magnetic materials can significantly increase the coupling between the
two coils and reduce the induced currents and losses in the shielding metal plates.
Further, we design wireless energy transfer systems capable of a peak-value power
transfer of 1.3 kW with 90% efficiency over an air gap of 0.3m. This is achieved
without exceeding the exposure limit of magnetic fields in areas where humans can
be present. Higher levels of transferred power is possible if larger magnetic fields
are allowed.

Keywords: Wireless energy transfer, resonant inductive coupling, induction, reso-
nant circuits, ferrite.
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Abbreviations

FE Finite Element
FEM Finite Element Method
ICNIRP International Commission on Non-Ionizing Radiation Protection
SAE Society of Automotive Engineers
WETRIC Wireless Energy Transfer by Resonant Inductive Coupling
PEC Perfect electric conductor
rms Root mean square

Notations

ω Angular frequency (rad/s)
f Frequency (Hz)
L Inductance (H)
C Capacitance (F)
R Resistance (Ω)
Z Impedance (Ω)
Q Quality factor
k Coupling coefficient
~E Electric field (V/m)
~D Electric flux density (C/m2)
~H Magnetic field (A/m)
~B Magnetic flux density (T)
~A Magnetic vector potential (Tm)
~J Current density (A/m2)
σ Conductivity (S/m)
ε0 Absolute permittivity of vacuum (ε0 ≈ 8.8541878 · 10−12 F/m)
εr Relative permittivity
ε Absolute permittivity (F/m)
µ0 Absolute permeability of vacuum (µ0 = 4π · 10−7 H/m)
µr Relative permeability
µ Absolute permeability (H/m)
c0 Speed of light in vacuum (c0 = 299792458 m/s)
j Imaginary unit

In this thesis, three-dimensional vector quantities are denoted with arrows, and
algebraic matrices and vectors with bold letters, as shown by the examples below.
~X Three-dimensional vector
x n-dimensional vector
X n×m-dimensional matrix
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1
Introduction

This chapter introduces the history of wireless energy transfer, the problems faced
when designing such systems, as well as the objective and methodology of this thesis.

1.1 Background

In the 19th century, Nikola Tesla managed to transfer energy without wires over an
air gap between two axially aligned coils using magnetic fields [18]. This achievement
marks the birth of the research on and development of wireless energy transfer
systems, a technology which has seen a considerable growth during the last few
decades. Applications that have accelerated the development of wireless energy
transfer are, among others, medical implants and mobile devices such as laptops
and cell phones.

In the last few years, the electric car industry has shown an increased interest in
the possibility to charge vehicles wirelessly. Wireless charging stations at parking
lots could ensure that your car is charged when it is time for departure. On the
regular road network, wireless charging stations could be placed at intersections or
along longer stretches of road, extending the operational distance of electric cars.
Other applications can benefit from advances in wireless energy transfer, e.g. electric
trucks in a warehouse can operate continuously if the floor is equipped with wireless
charging tracks. However, simultaneous high efficiency and high power transfer
in wireless energy transfer systems has proven difficult to achieve over moderate
distances in air.

Today, short-distance wireless energy transfer is either based on capacitive or in-
ductive coupling [21]. Capacitive coupling transfers energy by strong and oscillating
electric field between capacitive plates. The number of applications of capacitively
coupled energy transfer is limited by low power transfer, as high power transfer re-
quires very large fields. Inductively coupled energy transfer uses the magnetic field
caused by an alternating current to transfer energy between two or more coils. The
coupling of both inductively and capacitively coupled wireless energy systems, is
rapidly reduced as the transfer distance is increased. Often the distance is limited
to a few centimeters. Another drawback is that objects placed between the capac-
itive plates or coils may interact strongly with the electric or magnetic fields. This
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1. Introduction

interaction tends to decrease the efficiency, lower the amount of transferred power
and increase the losses in the systems. Additionally, strong electric and magnetic
fields can interact with the human body with potentially harmful effects. Therefore,
the European Union has enacted guidelines on the fields strengths that human be-
ings are allowed to be exposed to. In the case of magnetic fields with frequencies up
to 100 kHz, the exposure limit is 6.25µT root mean square (rms) [7].

A method of improving the performance of inductively coupled energy transfer for
larger separation distance between the coils is to utilize resonant circuits for both
the primary and secondary side of the wireless power transfer system. A resonant
inductive coupling energy transfer system is typically designed such that it features
a few resonances. We can exploit these resonance frequencies in combination with
the frequency of operation, i.e. the frequency of the applied voltage, equal to the
resonance frequency of the system. This allows for the transfer of more power
at higher efficiency and over longer distances than non-resonating systems. One
challenge associated with resonant inductive coupling is the high sensitivity of the
frequency of operation in relation to narrow frequency-bands of the wireless transfer
system and its resonance frequencies, which also may drift during operation. If
the energy transfer system resonates at a frequency even slightly different from the
frequency of operation, the amount of transferred power and the efficiency can be
reduced significantly.

In this thesis, we study wireless energy transfer systems based on resonant inductive
coupling. The systems consist of two circuits, the first located in the ground, referred
to as the primary side of the wireless transfer system, and the second located above
ground, referred to as the secondary side. The system is inductively coupled via
coils and it also contains capacitors, which we use to tune the performance of the
energy transfer system.

1.2 Objective

This thesis addresses three important parts of resonant inductive energy transfer.
First, circuit models are studied to gain knowledge on how the circuit component
parameters influence the efficiency and magnitude of the power transfer. In the
circuit models, the applied voltages and currents are assumed to be time harmonic.
Next, the coil geometry is used in a field model to compute the magnetic field
and its associated induced currents and voltages in the frequency domain. The
coils are approximated by two-dimensional axisymmetric models and the hysteresis
in ferromagnetic material is neglected. Finally, a wireless energy transfer system
is optimized by means of a gradient-based method, where the design parameters
describe the geometry and circuit components. Design suggestions for different
situations are also given. Performance-wise, the goal is to transfer a few kW of
power over an air gap of 0.3m with high efficiency, where we attempt to limit the
magnetic field strength in regions where human beings may be present.

2



1. Introduction

1.3 Methodology

In this thesis, the study of wireless energy transfer using resonant inductive coupling
is conducted in three steps: (i) the electrical circuits; (ii) the coil geometries; and (iii)
optimization of the coil geometry and circuit components. The circuits are studied
by nodal analysis, where the problem is solved both analytically and numerically.
The studies are based on previous work within the area of wireless energy transfer
circuit theory and reflected load theory. The coil design is studied for the case of
axisymmetric geometry. Initially, Biot-Savart’s law is used to analyze coils in free
space in MATLAB [19] by computing the self and mutual inductance. The effects of
different geometrical parameters, such as the number of coil winding and coil radius,
are investigated. Next, a coil model including ferromagnetic materials, metals and
ground is created. This model is simulated by means of the Finite Element Method
(FEM) using COMSOL [3]. Finally, the wireless energy transfer system is optimized
with respect to coil geometry and circuit components using gradient-based algo-
rithms in TOMLAB [20], a MATLAB toolbox for solving optimization problems. The
optimization is carried out in two steps. In the first step, we optimize the coil geom-
etry to maximize the magnetic coupling between the coils. In the second step, we
optimize the circuit parameters of the wireless energy transfer system to maximize
the efficiency and power transfer.

3
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2
A theoretical system model

This chapter describes the theory on which the work of this thesis is based. First,
the electric circuits used to transfer power are analyzed using circuit theory. Next,
the electromagnetic theory behind induction is reviewed and analytical formulas for
the inductances based on integration of the magnetic vector potential are presented.

2.1 Wireless energy transfer system circuit

The circuit used for the energy transfer system in this thesis contains a capacitor,
C1, in series with the coil on the primary side and a capacitor C2 in parallel to the
coil on the secondary side. A diagram of the circuit is shown in Fig. 2.1. The voltage

uG

RG v1

C1
i1

L1u1

M

L2 u2

i2

C2 RLuL

Figure 2.1: Circuit diagram with capacitor C1 in series with the coil on the primary
side. A voltage uG is applied to the primary circuit on the left, inducing a voltage
uL in the secondary circuit on the right.

uG is supplied by a power generator with resistance RG. The energy is transferred
between the two circuits over an air gap via the inductive coupling of the two coils,
with self-inductance L1 and L2 and mutual inductance M . The two circuits are
inductively coupled with the coupling coefficient

k = M√
L1L2

. (2.1)

The two capacitors, C1 and C2, are included in the circuits to control the performance
of the energy transfer system. The load-resistance RL represents the battery we

5



2. A theoretical system model

want to charge. We can describe the circuit in Fig. 2.1 with Kirchhoff’s voltage and
current law

uG −RGi1 −
i1

jωC1
− u1 = 0,

i2 + jωC2u2 + u2

RL
= 0,

where u1 and u2 are related to i1 and i2 by Faraday’s law

u1 = jωL1i1 + jωMi2,

u2 = jωMi1 + jωL2i2.
(2.2)

In Appendix A.1, we study how the power delivered to the load RL depends on
the circuit components in Fig. 2.1. In Appendix A.2, we derive an expression for
the maximum efficiency of the power transfer, where it is assumed that the reso-
nance frequencies of the primary and secondary circuits are equal and identical to
the frequency of operation of the wireless energy transfer system. The maximum
efficiency increases monotonically with k. These results indicate that it is useful
to maximize the coupling coefficient to achieve simultaneous high power and high
transfer efficiency.

2.1.1 Resonant circuits

A basic building block of a resonant wireless energy transfer system is the resonant
circuit. A simple resonating circuit consists of a resistor R, an inductor L and
a capacitor C, connected either in series or in parallel, as shown in Fig. 2.2. In a

R L
C

(a)

R L C

(b)

Figure 2.2: (a) Series and (b) parallel RLC circuit.

frequency interval around ω0 = (LC)−1/2 the energy in the resonant circuit oscillates
between electric energy stored in the capacitor and magnetic energy stored in the
inductor. The losses in the resonator are due to resistance R.

2.1.1.1 Quality factor and bandwidth

Currents and charges in the resonating circuit stores energy in electric and magnetic
fields. This stored energy is dissipated by Ohmic and radiative losses. The quality

6



2. A theoretical system model

factor, or Q-factor, of a circuit with resonance frequency ω0 is defined as

Q = ω0
W

P
= 2π stored electric and magnetic energy

energy dissipated during one period ,

where W is the total energy stored in the resonator by the electric and magnetic
fields and P is the resistive power loss during one period. A high Q-factor implies
that the circuit can store a large amount of energy in comparison to the energy
dissipated during one period. For the resonance frequency ω0, the quality factor can
be expressed as

Q =


ω0L
R
, series resonating circuit

R
ω0L

, parallel resonating circuit
The bandwidth of a resonant circuit is

BW = ω0

Q
.

This implies that a high Q-resonator also has a narrow bandwidth, and the frequency
range of resonant behavior of the circuit is limited.

2.1.1.2 Coupled resonators

When isolated from each other, i.e. k = 0, the resonance frequencies of the primary
and secondary resonance circuits in Fig. 2.1 are

ω1 = 1√
C1L1

and ω2 = 1√
C2L2

. (2.3)

However, k > 0 implies that the two resonators are magnetically coupled to each
other and can exchange energy. The two circuits become a single circuit with reso-
nance frequencies that deviate from ω1 and ω2. For RL →∞, the input impedance
of the circuit in Fig. 2.1 is

Zin = v1

i1
=

(
jωL1 + 1

jωC1

) (
jωL2 + 1

jωC2

)
+ ω2M2

jωL2 + 1
jωC2

. (2.4)

At resonance, the reactance of the circuit is zero, i.e. = (Zin) = 0. Next, we
use Eq. (2.4) and solve = (Zin) = 0 to find the resonance frequencies ωsys of the
magnetically coupled system. The result is a fourth degree polynomial with the
solutions

ωsys = ± 1√
2

√√√√ω2
1 + ω2

2 ±
√

(ω2
1 + ω2

2)2 − 4ω2
1ω

2
2 (1− k2)

1− k2 , (2.5)

when expressed in terms of Eq. (2.1) and Eq. (2.3). The interesting system resonance
frequencies are positive and thus we can discard two of the solutions in Eq. (2.5). If
the capacitors are chosen such that ω1 = ω2 = ω0, the coupled circuit resonates at

ωsys = ω0√
1± k

. (2.6)

It is clear that as the coupling coefficient k increases, the resonance frequencies of
the coupled circuit are shifted away from the resonant frequencies of the individual
resonance circuits.

7



2. A theoretical system model

2.1.2 Circuit components

In this section, we model the circuit components of the wireless power transfer
system for a class of physical situations that allow for analytical treatment.

2.1.2.1 Inductance for simple coil geometries

One objective in the design problem in this thesis is to compute the magnetic fields
due to currents flowing in coils. If the physical size of the system and its com-
ponents is much smaller than the wavelength associated with the exciting current,
the magnetic field ~H can be found from the quasi-magnetostatic Ampère’s law of
induction

∇× ~H = ~J,

where ~J is the current density. It is convenient to formulate the problem in terms
of the magnetic vector potential ~A instead of the magnetic field, using the relation

~A = ∇× ~B.

Ampère’s law for the magnetic vector potential for problems with permeability µ is
then formulated as

∇×
(
µ−1∇× ~A

)
= ~J. (2.7)

One method to solve Eq. (2.7) is to use the FEM, which is a computational method
for solving partial differential equations. With the FEM, the magnetic fields can
be solved for complex geometries and material properties. For sufficiently simple
problems, Eq. (2.7) can be solved analytically, using e.g. Biot-Savart’s law [2].

From the magnetic flux density, we can calculate the magnetic flux through a surface
S and surface normal n̂ as

Φ =
∫∫

S

~B · n̂ ds. (2.8)

If a current I1 flows through a coil 1, the self-inductance of coil 1 and the mutual
inductance of an coil 2 is defined as

L1 = L11 = Φ11

I1
,

M = L21 = Φ21

I1
,

(2.9)

where Φ11 and Φ21 are the magnetic flux through coil 1 and 2, respectively, due to
the current flowing in coil 1.

The self-inductance for a single, circular wire loop in vacuum, as shown in Fig. 2.3(a),
can be expressed analytically [8] as

L = µ0a
(

ln
(8a
r

)
− 2

)
, (2.10)

8



2. A theoretical system model

if the current is confined to the surface of the wire, and

L = µ0a
(

ln
(8a
r

)
− 7

4

)
, (2.11)

if the current density is uniform over the wire cross section. The analytical expression

a r

(a)

a

b

h

(b)

Figure 2.3: (a) Single conductive wire loop of loop radius a and wire radius r. (b)
Two axially aligned wire loops of loop radius a and b respectively and separated a
distance h.

for the mutual inductance between two thin, circular and coaxial wire loops in free
space, as shown in Fig. 2.3(b), is

M = µ0
√
abm3/2C(m) = µ0

√
ab

[(
2√
m
−
√
m

)
K(m)− 2√

m
E(m)

]
, (2.12)

where a and b are the radii of the two wire loops and

m = 4ab
(a+ b)2 + h2 ,

where h is the distance between the loop centers. The functions C(m), K(m) and
E(m) are the complete elliptic integrals.

For a coil with N turns of a thin wire, we get rather simple expressions for the
inductances if all turns coincide with the same circular loop. If two such coils are
placed coaxially, the self- and mutual inductance become

L1 = N2
1µ0a

(
ln
(8a
r1

)
− 2

)
,

L2 = N2
2µ0b

(
ln
(

8b
r2

)
− 2

)
,

M = N1N2µ0
√
abm3/2C(m),

(2.13)

9



2. A theoretical system model

where the wire radius of coil 1 and 2 is r1 and r2, respectively. The number of turns
is N1 and N2 for coil 1 and 2, respectively. The radius of coil 1 is a and the radius
of coil 2 is b.

A more realistic model of an axisymmetric coil is to take the N single-turn wire
loops and use their actual locations as they are distributed in space. The mutual
inductance between two such coils is the sum of the contribution from all loops in
one coil to all loops in the other,

M =
N1∑
i=1

N2∑
j=1

Mij =
N1∑
i=1

N2∑
j=1

µ0

√
aibjm

3/2
ij C(mij), (2.14)

where i = 1, 2, ...N1, j = 1, 2, ...N2, ai (bj) the radius of loop i (j) of the first (second)
coil and

mij = 4aibj
(ai + bj)2 + h2

ij

.

The self-inductance of a coil with N windings with wire radius ri, loop radius ai
and an axial distance between winding i and j of hij, where i = 1, 2, ..., N and
j = 1, ..., i− 1, i+ 1, ...N is

L =
N∑
i=1

µ0ai

(
ln
(8ai
ri

)
− 2

)
+

N∑
j=1
j 6=i

µ0
√
aiajm

3/2
ij C(mij)

 , (2.15)

where mij is here defined as

mij = 4aiaj
(ai + aj)2 + h2

ij

.

Note that Eq. (2.15) assumes that the current is confined to the surface of the wires.
If the current flows uniformly through the whole cross section of the wires, the
expression for the self-inductance in Eq. (2.11) should be used, i.e. the constant 2 is
replaced by 7/4. We see from Eq. (2.15) that the contribution from winding i comes
from the self-inductance of winding i and the mutual inductance between winding i
and all remaining windings. If N is large, the mutual inductance contribution can
become dominant.

2.1.2.2 Coil resistance

A simple circuit model of a resistive coil is an ideal inductor connected in series with
a resistor, as shown in Fig. 2.4.

The resistance of the coil wire can be calculated if the material properties and
frequency of operation is known. The skin depth [8] can be used to approximately
describe how an alternating current penetrates into a solid conductor and it is defined
as

δ =
√

2
µσω

. (2.16)
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R

L

Figure 2.4: Circuit model of a coil with wire resistance R and inductance L.

Copper has the relative permeability µr ≈ 1 and conductivity σ = 5.80 · 107 S/m [2],
which yields the skin depth 0.2 mm at a frequency of 100 kHz. For a conductor
shaped as a cylinder of circular cross section with length L and radius r, the resis-
tance can easily be estimated in two important extreme cases

R =


L

σπr2 , r � δ,

L
2πσrδ , r � δ.

(2.17)

Thus, solid wires with r � δ have significantly higher as compared to wires with
r � δ for alternating currents.

Another drawback of solid wires is the so-called proximity effects, i.e. nearby wires
induces currents that further increases the resistance of the coil [17]. An attractive
alternative to the solid wire is the so-called litz wire, which is manufactured from
thin, insulated wire strands that are woven together into a braid. The dimensions of
the strands are chosen such that their radius is much smaller than the skin depth, in
order to ensure that current flows through the full cross section of the strands. This
makes the resistance of the litz wire relatively small and approximately constant for
frequencies below the frequency where the skin depth is comparable to the strand
radius. A litz wire braid features some insulation and air between the strands and,
thus, the effective area of the litz wire is less than about 0.9 times the braid area [5].

2.1.2.3 Self-resonant coils

At low frequency, it is sufficient to model a coil as an ideal inductor in series with
a resistance, while the behavior at higher frequencies can be significantly different.
Assuming a time-harmonic current excitation, a coil becomes self-resonant when its
wire length is approximately equal to half the wavelength in free-space at the excita-
tion frequency. A simplistic model of this behavior is to connect a parasitic capacitor
in parallel to the inductor and resistance [12], see Fig. 2.5. This self-resonance can be
exploited in wireless energy transmission. In Ref. [10], for example, an efficiency of
40% is achieved over a distance of 2m using self-resonant coils. However, the analysis
of such a system requires the solution of the complete Maxwell’s equations, whereas
this thesis is focused on quasi-magnetostatic realizations of wireless power-transfer
systems. Thus, we limit the length of the coil wires such that the self-resonance
of the coils occur at significantly higher frequencies than that of the frequency of
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R

L

Cp

Figure 2.5: Circuit model of a self-resonant coil with wire resistance R, inductance
L and a parasitic capacitance Cp.

operation. The length limitation is related to the self-resonance frequency ωr, as

ωr ≈
πc

l
= πc0

l
√
εrµr

,

where c is the speed of light in the surrounding medium, c0 the speed of light in
vacuum and l the wire length. A coil with self-inductance L resonates at

ω2
r = 1

LCp
=
(

πc0

l
√
εrµr

)2

,

where Cp is the parasitic capacitance of the coil. The coils should behave inductive
at the frequency of operation. Thus, at the frequency of operation ω0, the following
relation must be satisfied

1
ω0Cp

� ω0L.

We rewrite this expression to find a constraint for the wire length,

l2 �
(

πc0

ω0
√
εrµr

)2

.

This is equivalent to the equation

ξl2 =
(

πc0

ω0
√
εrµr

)2

, where ξ � 1.

Thus, the wire length is constrained by

l <
πc0

ω0
√
ξεrµr

. (2.18)

The value of the parameter ξ should be at least 10 for the coil to be mainly inductive
at ω0.

If we wind the coil wire around a material with high permeability µr, the effective
permeability for the coils is increased compared to the permeability of air. The exact
value of the effective permeability is difficult to determine, and we approximate an
effective relative permeability as

µeff
r ≈

µr + 1
2

for a situation with the material with high permeability on one side of the coil and
air on the other side as shown in Fig. 2.7(a).
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2.1.2.4 Load resistance

The load-resistance RL in the power transfer system circuit represents the battery
being charged. The impedance of a real battery varies during a charging cycle [1].
A good charging system should therefore be able to handle varying load-resistances.
A battery has a low internal resistance to reduce the dissipated heat in the battery
as it delivers a current to an external load, such as the motor in an electric vehicle.

Using reflected load theory and assuming that the two resonating circuits are set to
individually resonate at ω1 = ω2 = ω0, where ω0 is the frequency of operation, we
can prove that the efficiency of the energy transfer maximizes if the load-resistance
is chosen according to

Ropt
L = R2

Q2
2√

1 + k2Q1Q2
. (2.19)

where Q1 and Q2 are the quality factors of the two resonators. Equation (2.19)
is derived in Appendix A.2. For Q1 ≈ Q2 � k the expression for the optimal
load-resistance simplifies to

Ropt
L ≈ ωL2

k
. (2.20)

In Eq. (2.20), L2 and k are characteristics of the coils and these are difficult to change
after the wireless energy transfer system has been manufactured. We can, however,
change the frequency of operation if the capacitors C1 and C2 are variable. With
control over the frequency and the capacitors, the resonance peak can be shifted in
frequency and an optimal load-resistance achieved for a broader set of frequencies
than a system working at a single frequency.

2.1.2.5 Model of the generator resistance

This section describes a potential power source for the wireless energy transfer sys-
tem, utilizing a rectifying and switching network to convert the 50Hz power grid AC
to the frequency of operation of the energy transfer system. Other power sources are
possible and the main result of this section is to estimate the generator resistance.

A simple example of a power source is a rectifier (four diodes) and switching network
(four power MOSFET transistors), as shown in Fig. 2.6. The resistance of this
network is, approximately, that of two of the diodes and two of the transistors in
series. Typical values for the drain-source resistance of a power MOSFET transistor
is in the range of 25mΩ to 100mΩ when it conducts a current from the source to
the drain. The corresponding resistance of a diode is approximately 100mΩ. Thus,
the resistance of this power source is in the range of 250mΩ to 400mΩ.

13
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−

+

uG

+

−
v1

Figure 2.6: Circuit diagram of a simple power generator that converts 50Hz grid
AC to kHz.

2.1.2.6 Higher frequency components

The output from the switching network in Section 2.1.2.5 is approximately a square
voltage. The Fourier components of a normalized square signal f(t) is

f(t) = 4
π

∞∑
n=1,3,5,...

1
n

sin
(2nπt

T

)
, (2.21)

where T is the period of the signal. From Eq. (2.21), it is given that the first
overtone is located at three times the frequency of the fundamental frequency. For
a frequency of operation of 85 kHz and a resonator quality factor of 100 this means
that the bandwidth is less than 10 kHz from the center peak. The first overtone
has a frequency of 255 kHz, i.e. basically no energy of the overtones is stored in
the resonator. Thus, the fundamental frequency is dominant in a wireless power
transfer system with reasonably high Q-values.

2.2 Numerical modelling with the FEM

Problems that include conductive, dielectric and magnetic materials and compli-
cated geometries require more sophisticated tools than Biot-Savart’s law. Instead,
we use the full Ampère’s law, which we express in terms of the magnetic vector
potential as

∇×
(
µ−1∇× ~A

)
= ∂ ~D

∂t
+ ~J,

where ~D is the electric displacement field. Faraday’s law gives

∇× ~E = − ∂

∂t

(
∇× ~A

)
,

which allows for the introduction of the curl-free quantity ∇φ as

∇×

 ~E + ∂ ~A

∂t

 = ∇× (−∇φ) = 0.
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The total current density ~J is the combined eddy current density and a source
current density ~Je. Thus, we have

~J = σ ~E + ~Je,

~D = ε ~E,
(2.22)

and
~E = −∇φ− ∂ ~A

∂t
, (2.23)

where σ is the conductivity and ε is the permittivity. The axisymmetric problem
with ~A = ϕ̂Aϕ(r, z) automatically yields ∇ · ~A = 0 and we set φ = 0. This allows
us to to write the current density and electric displacement field as

~J = −σ∂
~A

∂t
+ ~Je,

~D = −ε∂
~A

∂t
.

(2.24)

Next, we combine Eq. (2.22), Eq. (2.23) and Eq. (2.24) with Ampère’s law and find

σ
∂ ~A

∂t
+ ε

∂2 ~A

∂2t
+∇×

(
µ−1∇× ~A

)
= ~Je (2.25)

In frequency-domain studies, we work with time-harmonic quantities and this en-
ables us to write Eq. (2.25) as(

jωσ − ω2ε
)
~A+∇×

(
µ−1∇× ~A

)
= ~Je. (2.26)

We can solve Eq. (2.26) with boundary conditions for complicated geometries with
conductive, dielectric and magnetic materials by means of the FEM. From the so-
lution to Eq. (2.26), we can calculate the currents and voltages everywhere in the
problem geometry. Thus we can calculate the voltages induced over the coils due to
current excitations in the coils. The coil model can no longer be fully described by
only the self- and mutual inductance and coil resistance, but must be described by
the full impedance matrix

Z =
[
Z11 Z12
Z21 Z22

]
=
[
R11 + jωL11 R12 + jωL12
R21 + jωL21 R22 + jωL22

]
, (2.27)

where R11 and R22 are the self-resistances, L11 and L22 are the self-inductances and
L12 and L21 the mutual inductances as before. The quantities R12 and R21 are called
the mutual resistance. Due to reciprocity of the problem we have Z12 = Z21. In the
following, the simplified notation for the resistances and inductances in Tab. 2.1 is
used.

The voltages over the coils, i.e. u1 and u2 in Fig. 2.1, can be related to the currents
flowing through them via the impedance matrix Z as

u = Zi,
m[

u1
u2

]
=
[
Z11 Z12
Z12 Z22

] [
i1
i2

]
.

(2.28)

15



2. A theoretical system model

Table 2.1: Notation used for the self- and mutual resistance and inductance for
the energy transfer system consisting of the coils and surrounding objects.

Notation in Eq. (2.27) New notation
Self-resistance R11 and R22 R1 and R2
Mutual resistance R12 and R21 R12
Self-inductance L11 and L22 L1 and L2
Mutual inductance L12 and L21 M

The elements of the impedance matrix is found by the following procedure. If we
force the current through the secondary coil to be zero, i.e. i2 = 0, we find

u1 = Z11i1,

u2 = Z21i1.
(2.29)

Given an imposed current i1, we compute the induced voltages u1 and u2 by the
FEM. Finally, we get Z11 = u1/i1 and Z21 = u2/i1. Similarly, if we force the current
through the primary coil to be zero, we find

u1 = Z12i2,

u2 = Z22i2.
(2.30)

Now, we get Z12 = u1/i2 and Z22 = u2/i2.

We use Eq. (2.28) to calculate the power dissipated in the coils. The complex power
is defined as

S = uTi∗ = (Zi)Ti∗ = iTZTi∗,

where the complex current is

i =
[
iR1 + jiI1
iR2 + jiI2

]
.

This gives us the net complex power delivered to the transformer represented by
Eq. (2.28) as

S =iTZTi∗ =
[
Z11(iR1 + jiI1) + Z12(iR2 + jiI2)
Z21(iR1 + jiI1) + Z22(iR2 + jiI2)

]T [
iR1 − jiI1
iR2 − jiI2

]
=

=Z11|i1|2 + Z22|i2|2 + Z12
(
iR1 i

R
2 + iI1i

I
2 + j

(
iR1 i

I
2 − iR2 iI1

))
+

+ Z21
(
iR1 i

R
2 + iI1i

I
2 + j

(
iR2 i

I
1 − iR1 iI2

))
.

The resistive losses correspond to the real part of the complex power. Thus, the
resistive losses are

P = < (S) = R11|i1|2 + 2R12
(
iR1 i

R
2 + iI1i

I
2

)
+R22|i2|2, (2.31)
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and we find that it is desirable to reduce the self-and mutual resistances in order to
achieve a transformer with low losses.

We validate the FEM models with analytical formulas and extrapolate the results
from the FEM computations in Appendix B.

2.2.1 Effects of nearby conductive and magnetic materials

The magnetic field at the interface between medium 1 and medium 2 satisfies the
boundary conditions

n̂ ·
(
µ1 ~H1 − µ2 ~H2

)
= 0, (2.32)

n̂×
(
~H1 − ~H2

)
= ~Js, (2.33)

where ~H1 and ~H2 are the magnetic fields in medium 1 and 2, respectively. Fur-
ther, n̂ is the surface normal of the interface that points away from medium 2. In
Eq. (2.32), µ1 denotes the permeability of medium 1 and µ2 denotes the permeability
of medium 2.

At high frequencies, we often approximate metals as perfect electrical conductors
(PECs), i.e. the skin depth δ → 0. There are no electric or magnetic fields in the
interior of a PEC for ω = 0 [2]. For such a situation, the normal boundary condition
in Eq. (2.32) gives that the normal component of the magnetic field is zero at the
interface to a PEC. Further, if medium 2 is a PEC, the surface current density on
the surface of medium 2 is described by

~Js = n̂× ~H1.

At the interface between two magnetic materials with permeability µ1 and µ2, the
(quasi-) static magnetic field may rapidly change direction. We assume that the
magnetic field in medium 1 has the magnitude H1 and it makes an angle α1 to the
normal n̂. Similarly, the angle α2 and the magnitude H2 of the magnetic field in
medium 2 yields the boundary conditions

µ1H1 cosα1 = µ2H2 cosα2,

H1 sinα1 = H2 sinα2,

which gives the direction of the magnetic field in medium 2 as

α2 = tan−1
(
µ2

µ1
tanα1

)
.

Thus, we consider a situation where the permeability of medium 1 is much larger
than the permeability of medium 2. Then, the magnetic field at the interface in
medium 2 is almost perpendicular to the interface, regardless of α1. A nonconductive
and ferromagnetic material often used in transformer applications is ferrite [14].
Ferrites can be manufactured by mixing iron powder into ceramic materials and they
can have relative permeabilities up to the order of several tens of thousands [6, 13].
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2.2.2 Reluctance of a wireless energy transfer system

The magnetic induction system shown in Fig. 2.7(a) can be thought of as a magnetic
circuit, similar to an electric circuit. Figure 2.7(b) shows a magnetic circuit where
the magnetomotive force Ni yields a magnetic flux Φ through the reluctance R
according to

Ni = RΦ.
We estimate the reluctance of a simple energy transfer system shown in Fig. 2.7.
The system consists of two coaxial coils of equal radius b, which are placed a distance
d apart. The system is equipped with two ferrite plates of circular shape with a hole
at the center. These annulus plates have thickness h, inner radius a, outer radius
c, and relative permeability µr. Below, we assume that a < b < c. We assume that

a
b c

d

r = 0

h

Ra2Ra1

Rf

Rf

(a)

Ni

Rf

Ra1

Rf

Ra2

(b)

Figure 2.7: (a) Axisymmetric schematic of a energy transfer system consisting of
two coils of radius b and two circular ferromagnetic plates of inner radius a, outer
radius c and thickness h. The coils are separated by a distance d. (b) Circuit
diagram of the magnetic circuit in Fig. 2.7(a).

there are no fringing effects of the magnetic field in the air gap and that no fields
leak out from the backside of the ferrites. Then, the reluctance of the two air gaps
are

Ra1 = d

µ0π (b2 − a2) ,

Ra2 = d

µ0π (c2 − b2) .

We approximate the magnetic flux average path in the ferromagnetic plates to extend
from the radius r1 to the radius r2, where

r1 = 1
2(a+ b),

r2 = 1
2(b+ c).
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Thus, we can integrate the contributions to the reluctance from ring segments of
width dr, i.e.

dR = dr

µ0µr · 2πrh
, (2.34)

between r1 and r2 and this yields an approximate reluctance of one of the ferrites as

Rf = 1
µ0µr · 2πh

ln
(
r2

r1

)
= 1
µ0µr · 2πh

ln
(
b+ c

a+ b

)
.

Thus, the total reluctance of the energy transfer system is

Rtot = d

µ0π (b2 − a2) + d

µ0π (c2 − b2) + 2
µ0µr · 2πh

ln
(
b+ c

a+ b

)
. (2.35)

To estimate the contributions to the total reluctance, we assume that the two air gaps
have the same area. Possible parameter values that create such ferrite geometries
are a = 0.05 m, b = 0.26 m and c = 0.37 m. If we set the distance between the coils
to d = 0.3 m and the ferrite thickness to h = 0.02 m, the contributions to the total
reluctance are

Ra1 = 1.13 · 106 H−1,

Ra2 = 1.13 · 106 H−1,

Rf = 4.45 · 106

µr
H−1.

(2.36)

Equation (2.36) shows that if the relative permeability of the ferrites is large, e.g.
µr > 100, the reluctance in the ferrites is small compared to the reluctance of the air
gaps. Thus, the magnetic flux flowing through the coils is limited by the reluctance
of the air gap, even if the ferrite thickness h is small.
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3
Method for design and

optimization

The study of the wireless energy transfer systems in this thesis is split up in three
parts: (i) circuit design; (ii) coil design; and (iii) optimization. In this chapter, the
circuits are studied by numerical computation. The coil design and the effects of
shielding plates, ferrites and ground are studied using analytical and FEM mod-
els. The optimization varies the geometry of the coils, shielding plates and ferrites
to maximize the coupling coefficient while keeping the magnetic fields within the
guidelines decided by ICNIRP. The optimized coil geometry is then used together
with the circuit model to optimize the power transfer and efficiency.

3.1 Circuit models

The circuit described in Chapter 2, also shown in Fig. 3.1, is analyzed using a MATLAB
script. We solve the matrix problem in Equation (3.1)

uG

RG v1

C1
i1

Z
i2

C2 RLuL

Figure 3.1: Circuit diagram with capacitor in parallel on the primary side.


1
RG

1 0 0
−1 Z11 + 1

jωC1
0 Z12

0 0 1
RL

+ jωC2 1
0 Z21 −1 Z22



v1
i1
uL
i2

 =


uG
RG
0
0
0

 , (3.1)
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to find all currents and voltages in the circuit. Here, the impedances Z11, Z12, Z21
and Z22 are given in Eq. (2.26) and they are computed by FEM or by simplified
analytical expressions. Given the solution to Eq. (3.1), the power dissipated in the
load is given by

PL = |uL|2

RL
,

and the power transfer efficiency by

η = PL

< (uGi∗1) .

3.2 Coil design

The coil design study is divided into two parts. First, the effects on the coil char-
acteristics in free space due to the geometry of the coils are analyzed. Next, we
introduce conducting and magnetic materials in the geometry and study their im-
pact. The free-space models are based on the analytical expression given in Section
2.1.2.1, while the more complicated cases in the second part are studied by means
of the FEM. The coil windings are placed in a grid pattern with Nr (radial) and Nz
(axial) wires. The total number of coil windings is thus N = NrNz.

3.2.1 Free-space coil models

The effects of the geometry of the coils are studied in free space using the expressions
for the self- and mutual inductance for spatially distributed coils given in Eq. (2.15)
and Eq. (2.14), respectively. In free space, the resistance of the coils only depends
on the wire resistance, which is calculated by Eq. (2.17). These calculations are
simple and fast and the study is done by means of parametric sweeps.

The coils are described by their geometry, material and type of wire, i.e. solid or litz
wire. The geometrical parameters are the coil radius, the wire radius, the distance
between wire windings, the number of windings and the location of the coils. From
the expressions in Eq. (2.15) and Eq. (2.14), it is clear that both the self- and mutual
inductance increase with larger coil radius and number of coil windings. Similarly,
the total length of the wire, and thus the wire resistance, is directly proportional
to the radius and number of windings. The wire radius influences mainly the self-
inductance and resistance.

For the frequencies of interest, it is clear that the resistance of a litz wire is lower
than that of a solid wire, where it is assumed that the radius of the wire strands
constituting the litz wire is small enough and the total conductive area of the litz
wire is comparable to the solid wire.

From Chapter 2, we know that the coupling coefficient plays an important role in
the performance of a wireless energy transfer system. The coupling coefficient is

22



3. Method for design and optimization

non-trivial for the spatially distributed coil system and it is this behavior that is the
main focus of the parametric study for the free-space coil models.

3.2.2 Modelling of adjacent objects

The coaxial coils of the free-space models are also implemented in a FEM solver. In
addition, different components present in a more realistic wireless transfer system
between the ground and the bottom of a vehicle are introduced and their effects on
the resistance, inductance and magnetic field is evaluated. In detail, we analyze the
effect of metallic shielding plates in the ground and in the car chassis, ferrites around
the coils. The FEM solver is compared to analytical expressions in Appendix B.1
and it is demonstrated that the two techniques compare well for computations of
the inductance, magnetic flux, flux density, resistance and induced voltage. Further,
in Appendix B.2, we investigate the convergence of the adaptive mesh refinement
used in the FEM computations. After one adaptive mesh refinement, we find that
the estimated error is less than 0.1% for the self-resistance, mutual resistance, self-
inductance and mutual inductance.

3.2.2.1 Geometry and computational domain boundary

The magnetic fields caused by the currents in the coils tend rather slowly towards
zero as the distance to the coils tend to infinity. It is impossible to solve the magnetic
field problem in an infinitely large region and the computational domain is therefore
extended by a so-called infinite element domain, which is terminated by the Dirichlet
boundary condition Aϕ = 0 on the outer boundary. Infinite elements are useful for
unbounded problems, such as the one studied in this thesis, but requires that the
solution varies slowly in the infinite elements [22]. This is achieved by placing the
infinite element domain at a sufficiently large distance from the coils.

COMSOL’s AC/DC-interface can simulate both solid and litz wire using the “single-
turn” and “multi-turn” coil domains, respectively [4]. Both kinds of coil types can
be excited with voltage or current sources.

An example of the geometry of the problem is shown in Fig. 3.2. The model is
axisymmetric with respect to the z-axis and the computational domain is truncated
by an infinite element domain. Details of the primary and secondary coils are shown
in Fig. 3.3. Note that there is only metal shielding on the secondary side, which
represent the vehicle chassis.

3.2.2.2 Shielding metal-plates

We study the effects of shielding the magnetic fields with metal plates both in the
car and in the ground. The metal shield in the car represents the car chassis, which
is usually constructed of iron. We investigate shielding from three kinds of metal:
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3. Method for design and optimization

Figure 3.2: Computational geometry for a typical wireless power transfer system.
The geometry is axisymmetric and the z-axis is the axis of symmetry. The primary
side consists of the primary coil surrounded by ferrite. The secondary side consists
of the secondary coil surrounded by ferrite. A metal plate is present to shield the
region above the secondary coil from magnetic fields.

iron (highly ferromagnetic); steel (somewhat ferromagnetic); and aluminum (non-
magnetic). Shielding the primary coil from ground with metal is not necessarily
beneficial because it is unproblematic to have strong magnetic fields in the ground
and the eddy current in metal plate typically exceed the eddy currents in the ground
when the shield is absent. Therefore, we investigate two cases: (i) metal in both the
car and in the ground; and (ii) metal only in the car.
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(a)

(b)

Figure 3.3: Detail of the geometry of (a) the secondary side and (b) the primary
side. The geometry is axisymmetric with respect to the z-axis. The coils windings
are represented as circles on a grid.

3.2.2.3 The dielectric properties of ground

The ground beneath the energy transfer system can feature both resistive and dielec-
tric losses. The conductivity and permittivity of moist ground at radio frequencies
is studied in Ref. [16], and we use these material properties to study the losses in
the ground.

3.2.2.4 Estimating the magnetic flux density

To quantify the magnetic flux density magnitude, we probe the magnetic flux density
at five sampling points along a vertical line at z = 0.85 m, which are located between
the two coils. As we excite the primary coil by the current Ip

exc = 1 A, we get the
magnetic flux density values ~Bp

i at the five sampling points indexed i = 1, .., 5.
Similarly, a new computation with Is

sec = 1 A yields Bs
i . We then estimate the

magnetic flux density ~Bi at point i during operation of the wireless energy transfer
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system as

~Bi = ~Bp
i + ~Bs

i =
 ~Bp

i

Ip
exc

 Ip
circuit +

 ~Bs
i

Is
exc

 Is
circuit,

where the quantities Ip
circuit and Is

circuit are the currents in the primary and secondary
coil, i.e. i1 and i2 according to Eq. (3.1). Next, we assume that the magnitude of
the currents in the two coils are equal, i.e.

|Ip
circuit| = |Is

circuit| = Imax.

Here, we let Imax be the maximum allowed current in the coils and it is limited by
the specifications of the wires used for the windings in the coils. In the following,
we use Imax = 20 A. Further, we assume the phase difference between the currents
in the two coils is 90°. With these approximations, we can estimate the worst-case
magnitude of the magnetic flux density during operation as

∣∣∣ ~Bi

∣∣∣ ≈

∣∣∣∣∣∣
 ~Bp

i

Ip
exc

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
 ~Bs

i

Is
exc

∣∣∣∣∣∣
2


1/2

Imax. (3.2)

3.3 Coil optimization

A general, nonlinear optimization problem can be written as

minimize
x

f(x),

subject to:
lb ≤ x ≤ ub,
llin ≤ Ax ≤ ulin,
lnl ≤ fnl(x) ≤ unl,

where x is a vector of the design parameters and f(x) is the objective function.
There are three kinds of constraints: (i) upper and lower bounds on the parameters
in x of the form lb ≤ x ≤ ub; (ii) linear constraints of the form llin ≤ Ax ≤ ulin;
and (iii) nonlinear constraints of the form lnl ≤ fnl(x) ≤ unl.

The main goal of the optimization procedure is to maximize the coupling coefficient
of the two coils and, simultaneously, minimize the magnetic flux density in regions
where humans (or animals) can be present.

The objective function is defined as

f(x) = −αk(x)
ktyp

+ (1− α)pB(x), (3.3)

where α ∈ [0, 1] is a weight that determines the relative importance of the two terms
−k(x)/ktyp and pB(x). Here, k(x) is the coupling coefficient and ktyp is its typical
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value, where we use the constant ktyp = 0.1 in the following. The penalty function
pB(x) is defined as

pB(x) =

(
1
N

∑N=5
i=1

(
| ~Bi(x)|2

)4
)1/4

B2
max

, (3.4)

where | ~Bi| is the estimated magnetic flux density during operation of the wireless
energy transfer system according to Eq. (3.2). In Eq. (3.4), the estimated magnetic
flux density magnitude

∣∣∣ ~Bi

∣∣∣ is squared to make pB(x) differentiable everywhere.
Further, Bmax = 8.84µT is the peak-value limit of the human exposure to magnetic
fields given by ICNIRP. The parameter α is used in the following manner. We first
set α = 1 and optimize with respect to the design parameters x. We then decrease α
slightly and start a new optimization from the solution retrieved from the previous
run. If the difference in α is small the optimized solution of the new objective
function should be close to that of the previous. This procedure gives information
on how the objective function depends on the weight α and can help us design the
wireless energy transfer system with two conflicting objectives, namely −k(x)/ktyp
and pB(x).

3.3.1 Gradient-based optimization

The gradient descent method is a powerful first-order optimization algorithm suit-
able for problems where the gradient of the objective function is continuous. The
method converges from the initial design in the design space towards the closest lo-
cal optimum. The gradient descent method may, however, converge slowly. Unless
the problem is known to be convex, it is difficult to know if an optimum is local or
global.

Gradient-based optimization exploits a multivariable, continuously differentiable ob-
jective function f(x). It starts from an initial design xi, where i = 1. Then, the
gradient of f(x) at x = xi is evaluated and corresponds to the direction in which
f(x) increases fastest. Given a position xi in solution space, we find the next position
at

xi+1 = xi − γ∇f(xi),

where the step size γ is either set to an appropriate value or calculated using a line
search.

For gradient-based optimization to be reliable, the errors in the gradient computa-
tions must be sufficiently small. The error in the FEM computations is less than
0.1% after one adaptive mesh refinement, as described in Section 3.2.2. In the fol-
lowing FEM computations, we use one adaptive mesh refinement to ensure that the
error in the gradient computations are sufficiently low.

The gradient of the objective function in (3.3) is

∇f(x) = − α

ktyp
∇k(x) + (1− α)∇pB(x).
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In this thesis, we use central finite-differences to estimate the gradient, e.g. the
derivative of function g(x) with respect to parameter xj is estimated by

∂g

∂xj
≈
g
(
x + ej ∆xj

2

)
− g

(
x− ej ∆xj

2

)
∆xj

, (3.5)

where ej is a unit vector with zero entries except for element k that is set to zero.
The gradient of pB(x) is calculated using Eq. (3.5) directly. The gradient of the
coupling coefficient is found using the product rule

∂k

∂xj
=
{
k = M√

L1L2

}
= ∂k

∂M

∂M

∂xj
+ ∂k

∂L1

∂L1

∂xj
+ ∂k

∂L2

∂L2

∂xj
,

where
∂k

∂M
= 1√

L1L2
,

∂k

∂L1
= −1

2
L2M

(L1L2)3/2 ,

∂k

∂L2
= −1

2
L1M

(L1L2)3/2 .

The derivative of the coupling coefficient may then be written as
∂k

∂xj
= k

(
1
M

∂M

∂xj
− 1

2L1

∂L1

∂xj
− 1

2L2

∂L2

∂xj

)
.

The derivatives of M , L1 and L2 with respect to xj are given by Eq. (3.5).

3.3.2 Geometrical constraints

The coil geometry is restricted is several ways. The length of the coil wire is lim-
ited by the estimated maximum length so that each individual coil (primary or sec-
ondary) does not become self-resonant, as discussed in Section 2.1.2.3. This restricts
the number of turns for the coil and their individual radii. The ferrite geometries are
restricted such that the thickness of the ferrite is sufficiently large for manufacturing
purposes. In Fig. 3.4, a possible ferrite geometry on the primary side is shown with
a name label for each corner. The positions of the corners Ac, Bc, Cc and Dc are
derived from the geometry of the coil, e.g. outer coil radius, number of windings,
wire radius, etc., and are not explicitly optimized. The r- and z-coordinates of the
corners Af, Bf, Cf and Df are free to move as long as the following constraints are
satisfied

rAc − rAf ≥ 15 mm,
zAf = zAc,

rBc − rBf ≥ 15 mm,
rCf − rCc ≥ 15 mm,
rDf − rDc ≥ 15 mm,
zDf = zDc.

(3.6)
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(a)

(b)

Figure 3.4: Schematic of a possible geometry of (a) the secondary side and (b) the
primary side, with name labels for each corner.

The constraints in Eq. (3.6) apply to both the primary and secondary side. Further,
we restrict the primary and secondary side individually as

Primary side: Secondary side:
zBc − zBf ≥ 15 mm zBf − zBc ≥ 15 mm,
zCc − zCf ≥ 15 mm, zCf − zCc ≥ 15 mm,
zBf − zAg ≥ 15 mm, zCf − zCc ≥ 15 mm,
zCf − zAg ≥ 15 mm, zAs − zBf ≥ 15 mm,
zBf − zBg ≥ 15 mm, zAs − zCf ≥ 15 mm,
zCf − zBg ≥ 15 mm, zBs − zBf ≥ 15 mm,
rBg − rCf ≥ 15 mm, rBs − rCf ≥ 15 mm,
rCg − rDf ≥ 15 mm, rCs − rDf ≥ 15 mm,
zCg = zDf , zCs = zDf .

(3.7)
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3.4 Circuit optimization

The impedance matrix of a an optimized wireless energy transfer coil geometry is
inserted into the circuit in Fig. 3.1 and the circuit components are optimized. The
two most important performance parameters of the circuit is its efficiency η and
the power PL dissipated in the load resistance. The objective function is therefore
defined as

f(x) = β
1

η(x) + (1− β) Ptyp

PL(x) , (3.8)

where Ptyp = 1000 W is a typical (constant) value of the transferred power. The
components subject to optimization is C1, C2, RL and uG and the objective function
is evaluated at 85 kHz. The weight β, similar to α in Eq. (3.3), determines the
relative importance of the efficiency as compared to the power dissipated in the
load. The generator resistance is kept constant at 400mΩ, in accordance with
Section 2.1.2.5.

The gradient of the objective function in Eq. (3.8) is a complicated function of the
values of all circuit components. However, the circuit equation in Eq. (3.1) relatively
cheap to compute and the gradient can be found using finite-differences.

3.4.1 Circuit component constraints and initialization

The generator voltage is limited to the range of 0V to 250V and the load resistance
is limited values between 0Ω and 500Ω. The two capacitors C1 and C2 are not
explicitly limited. Instead, the resonance frequencies of the two resonating circuits
that compose the wireless energy transfer system are limited to the range 65 kHz to
105 kHz. As the resonance frequency depends on both the capacitance and induc-
tance of the resonator, see Eq. (2.3), the upper and lower limits for the capacitors
depend on the self-inductance of the chosen coil design.

Ten separate optimizations are carried out for every value of β in the objective
function in Eq. (3.8). Each optimization is initialized with randomly assigned circuit
optimization parameters and the optimized circuit design with the lowest objective
function is then selected as the best candidate for the particular value chosen for β.
This procedure increases the chance of avoiding local minima and it is feasible for
this optimization problem since the circuit problem is computationally cheap.
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Results

This chapter presents the results produced by the parametric studies, the effects of
different materials in proximity to the coils, and finally the optimization results.

4.1 Coil design

In this section, we present the results of computations based on coil models in free
space and with adjacent objects, such as ground and metal shields. First, we present
how the coupling coefficient depends on the coil geometry in free space. Next, we
investigate the effects of adjacent objects on the coupling coefficient, resistance and
magnetic field.

4.1.1 Free-space coil models

We compute k between two identical coils with fixed wire radius and coil distance
h in free space. First, the outer coil radius r0 is varied, while all other geometry
parameters are kept constant. The results are presented in Fig. 4.1. We find, from
Fig. 4.1, that the coupling coefficient is approximately proportional to the ratio r0/h
around r0/h = 1. In the context of a wireless power transfer system, it is desirable
to maximize the coupling coefficient and, consequently, it is useful to make the radii
of the two coils as large as possible in relation to their distance of separation for the
free-space situation.

Next, we fix the outer radius of the coils to 0.3m and vary the number of coil
windings. The distance between two coil windings is 10mm. The results from the
sweep of Nr and Nz are presented in Fig. 4.2. The coupling coefficient shows a
non-trivial behavior when Nr and Nz are varied. Noticeably, the maximum coupling
coefficient is not found for the highest number of coil windings, and it is concluded
that flat coils Nz = 1 with about Nr = 15 turns yield the largest coupling coefficient,
where the air gap between the coils is h = 0.3 m.
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Figure 4.1: Coupling coefficient as a function of coil radius r0 divided by the coil
distance h. The two coils are kept identical throughout the parameter sweep.

Figure 4.2: Coupling coefficient between two identical coils as a function of number
of coil windings in radial and axial direction. Wire radius, distance between coil
loops and the coil distance are fixed during the parameter sweep.

4.1.2 Coil models with adjacent objects

In the following sections, we study the effects on the inductance, losses and magnetic
fields due to shielding plates, ferrites and ground. The two coils are identical and
fixed with an outer radius equal to 0.3m. Here, we use a wire radius of 3mm for
a litz wire with a strand density of 0.9. The coils are wound with Nr = 4 times
Nz = 2 turns in a grid, where the distance between the wires is 7mm. The vertical
distance between the coils is 0.3m. As a reference case, we use these coils located
in free space. The FEM model in free space yields the inductances, resistances and
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magnetic fields given in Tab. 4.1. The magnetic field lines and magnitude for a
current excitation of 1A through both coils is shown in Fig. 4.3.
Table 4.1: Inductances, resistances and coupling coefficient for two coils in free
space.

Free space
R1, R2 10.8mΩ
R12 0
L1, L2 81.5µH
M 7.93µH
k 0.0973

Figure 4.3: Magnetic field lines and log10 | ~B| for two coils in free space and an
excitation current of 1A in both coils.

4.1.2.1 Metal shielding

Metallic plates are placed in the vicinity of the two coils to confine the magnetic
field between the coils, as shown in Fig. 4.4(a). Iron is the most common car
chassis material but we also investigate shields made of steel and aluminum. These
materials are chosen as they are common, cheap and have different permeabilities.
Aluminum is essentially non-magnetic whereas stainless steel (µr = 100) and pure
iron (µr = 4000) are ferromagnetic. Given the results in Section 2.2.1, we expect
the resistive losses to increase and the coupling coefficient to decrease as the eddy
currents in the metals dissipate energy and reduces the magnetic flux through the
coils. Table 4.2 presents the effects of adding metal plates in both the ground and
in the car. The table shows that by adding the metal plates, we have increased
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Table 4.2: Inductances, resistances and coupling coefficient with metal shields of
iron, steel and aluminum in both the car and ground and only in the car.

Shield in both car and ground Shield only in car
Iron Steel Aluminum Aluminum

µr 4000 100 1 1
R1 1.09Ω 0.55Ω 27.2mΩ 11.9mΩ
R2 2.44Ω 1.15Ω 38.7mΩ 38.7mΩ
R12 0.267Ω 0.114Ω 2.98mΩ 3.13mΩ
L1 68.0µH 66.4µH 65.2µH 79.6µH
L2 59.2µH 55.8µH 53.5µH 53.6µH
M 1.99µH 1.66µH 1.44µH 2.42µH
k 0.0314 0.0273 0.0243 0.0371

the resistive losses and decreased the inductances and coupling coefficient when
compared to the situation with the same coils located in free space, which we use as
a reference case. The difference in the coupling coefficient is small as we compare
the three metals. However, the aluminum plate affects the resistance significantly
less than the ferromagnetic metals. Figure 4.4(a) shows the magnetic field strength
and field lines when the aluminum plates are included. It is clearly visible from
Fig. 4.4(a) that the aluminum efficiently confines the magnetic fields between the
coils. The current density in the top plate is shown in Fig. 4.4(b) and the induced
surface current density is clearly visible. We conclude that adding metal shielding
severely decreases the coupling coefficient and increases the resistances. Aluminum
reduces the coupling coefficient slightly more than steel and iron, but the resistive
losses in the aluminum is significantly lower than the losses in the ferromagnetic
metals. If we leave out the metal shielding in the ground and only shield the car
chassis, the reduction in the coupling coefficient and the increase in resistance is less
severe, which is shown in the last column in Tab. 4.2.

4.1.2.2 Ferrite plates

To guide the magnetic fields and reduce the reluctance of the magnetic circuit,
we add a ferrite plate below the primary coil and another ferrite plate above the
secondary coil. The ferrite material has a relative permeability of µr = 3000 and a
conductivity of σ = 10−12 S/m. The ferrite is similar to the ferrite “F Material” from
Magnetics inc. [11]. However, the ferrite used in this thesis has constant permeability
and conductivity while these material properties depends on the frequency, magnetic
flux density and temperature for the “F Material”. The expression in Eq. (2.18)
limits the length of the wire used for the coil and the maximum length of the wire
is

lmax = c0

2f0

√
ξµeff

r

= c0

2f0

√
ξ (µr + 1) /2

≈ 14.4 m, (4.1)

for the relative permeability µr = 3000, f0 = 85 kHz and ξ = 10. It is reasonable to
limit the outer radius of the coils to 0.3m in order to make it fit a normal car. A
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(a)

(b)

Figure 4.4: (a) Magnetic field lines and log10 | ~B| and (b) induced current density
~J in the aluminum shield above the secondary coil. Both coils are excited with a
current of 1A.

coil with Nr = 4 and Nz = 2 and an outer radius 0.3m has a total wire length of
14.4m and may be a suitable choice in the energy transfer system.

Figure Fig. 4.5 shows two cases in order to study how the performance varies with
the addition of highly magnetic and nonconductive materials: (a) small amount of
ferrite material; and (b) large and thick ferrite plates. The material parameters and
the geometry of the ferrites are identical for the primary and secondary coil. Thus,
the self-resistance and self-inductance is equal for the two coils and these results are
shown in Tab. 4.3. The ferrite adds an insignificant amount of resistive losses to the
system. The large ferrite plates increases the coupling by almost 50% as compared
to the free-space case, while the small core geometry decreases the coupling. The
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Table 4.3: Inductances, resistances and coupling coefficient with ferrite material
added in the vicinity of the primary and secondary coil.

Small ferrite Large ferrite
R1, R2 10.8mΩ 10.8mΩ
R12 6.7 nΩ 120 nΩ
L1, L2 161µH 193µH
M 1.23µH 26.5µH
k 0.0765 0.137

(a)

(b)

Figure 4.5: Magnetic field lines and log10 | ~B| for (a) relatively small ferrites of
annular shape and (b) large and thick ferrite plates. Both coils are excited with a
current of 1A.
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magnetic field for the two cases are plotted in Fig. 4.5. The magnetic field strength
is significantly increased in the region between the coils for the large ferrite plates.
We can clearly see that the magnetic fields are guided by the large ferrite plates
and that the field strength on the “backside” of the ferrite plate is several orders
of magnitude lower than between the coils. Thus, the large ferrite plates efficiently
guides the magnetic fields and they provide some shielding, which can be used to
reduce the induced currents in e.g. the metal in the car chassis.

4.1.2.3 Ground

The study in Ref. [16] shows that the conductivity in the ground can reach several
mS/m at 100 kHz, when the water content of the soil varies from dry to 40 weight-%.
For the same interval of moisture content, the relative permeability varies from 2 to
around 100. Even though the conductivity of the soil is rather low, the ground can
still contribute to resistive and dielectric losses. At 100 kHz and a water content of
15 weight-%, the ground conductivity is 5.6mS/m and the relative permittivity is
50, which gives a loss tangent of

tan δ = σ

ωε
≈ 20.

This indicates that the displacement current in the ground is negligible as compared
to the conduction current.

Ground with a water content of 15% is introduced as shown in Fig. 4.6. The conduc-

Figure 4.6: Magnetic field lines and log10 | ~B| for two coils with ground as shown
in Fig. 3.2. Both coils are excited with a current of 1A.

tivity and permittivity is interpolated from Ref. [16], while the relative permeability
is assumed to unity. The results are shown in Tab. 4.4 and we notice that the resis-
tances are slightly increased by the proximity of lossy ground, but no other effect is
clearly visible.
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Table 4.4: Inductances, resistances and coupling coefficient with ferrite core sur-
rounding the coils.

Ground
R1 11.8mΩ
R2 11.2mΩ
R12 0.537mΩ
L1 81.5µH
L2 81.5µH
M 79.3µH
k 0.0973

4.1.3 Optimized coil geometry

From Section 4.1.2, it is clear that placing metal shields in-between the primary coil
and the ground is detrimental to the performance of the energy transfer system. In
addition, such shielding is rarely needed in order to protect humans or electrical
equipment from the magnetic field and it implies additional costs for the wireless
power transfer system. We also know that ferrite plates is useful for guiding the
magnetic flux and the magnetic field in the air is. Section 2.2.2 shows us that the
reluctance is dominated by the air gap between the coils and, thus, the ferrites can be
made thin and they do not necessarily need to have very large relative permeabilities.
Next, we use the objective function in Eq. (3.3) and run the optimization with the
constraints in Eq. (3.6) and Eq. (3.7), where µr = 100 for the ferrite material.
In Fig. 4.7, the coupling coefficient is plotted against the magnetic field penalty
function for varying α. Note that the first optimization is started with α = 1 and
consecutive optimizations with lower α are initialized with the optimized design
based on the previous value of α. The optimized geometries of the four points in
Fig. 4.7 indicated by α = 1, 0.98, 0.94 and 0.9 are shown in Fig. 4.8. In Fig. 4.8(a),
the initial ferrite design is outlined with dashed lines. Figure 4.8(a) shows us that
maximum coupling coefficient is achieved with the largest ferrite surface area. This
is in agreement with the investigations of the reluctance in Sec. 2.2.2. When α is
reduced, the width of the ferrites is decreased and the magnetic field in the nearby
region where humans may be present is reduced. It is interesting to note that the
ferrite plate on the primary side is affected less than the ferrite plate on the secondary
side by the reduction of α. Thus, the shape of the ferrite on the secondary side is
more important in order to reduce the magnetic field than the primary side ferrite.
Note that the horizontal part of the metal shield plate on the secondary side follows
the ferrites closely. This behavior is unexpected, because nearby metal plates are
expected to reduce the coupling coefficient. However, the metal plate also reduce
the magnetic field strength in the region where humans may be present. The electric
and magnetic properties of the geometries in Fig. 4.8 are presented in Tab. 4.5.
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Figure 4.7: Coupling coefficient as a function of the magnetic field penalty function
PB for α ∈ [0.9, 1].
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Figure 4.8: Geometries optimized with (a) α = 1, (b) α = 0.98, (c) α = 0.94
and (d) α = 0.9. In Fig. 4.8(a) the initial ferrite design is shown with dashed lines.
The remaining optimized geometries was initialized from the optimized design of a
previous optimization with a slightly higher α.
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Table 4.5: Inductance, resistance, coupling coefficient and pB for the geometries
shown in Fig. 4.8.

α 1 0.98 0.94 0.9
R1 [mΩ] 127 105 89.1 80.9
R2 [mΩ] 129 109 95.3 88.1
R12 [mΩ] 6.77 5.23 4.28 3.69
L1 [µH] 331 266 219 196
L2 [µH] 330 271 228 207
M [µH] 51.7 34.5 23.7 18.9
k [-] 0.156 0.129 0.106 0.0939
pB [-] 41.6 9.98 3.32 1.88

4.2 Optimized wireless energy transfer system

The impedance matrices of the four designs shown in Fig. 4.8 are exploited in the
context of the circuit optimization with the objective function given in Eq. (3.8).
We optimize the circuits for different values of β in Eq. (3.8) and plot the efficiency
as a function of power dissipated in the load in Fig. 4.9. Figure 4.9 shows that we
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Figure 4.9: Efficiency and power dissipated in the load for circuits optimized with
α varying from zero to one for the four geometries shown in Fig. 4.8.

can achieve efficiencies around 90% with all geometries. Similarly, the maximum
achievable amount of transferred power is 30 kW, but the efficiency is then reduced
to 50%. Note that the highest transferred power is achieved with the design with
the lowest coupling coefficient.

In Fig. 4.10, the current in the primary coil is plotted as a function of the transferred
power and we find that high power requires large currents. We also find that the
current-power characteristic only differs between the different designs at low and
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Figure 4.10: Current in the primary coil as a function of transferred in the load
for circuits optimized with β varying from zero to one for the four geometries shown
in Fig. 4.8.

high levels of transmitted power. In the intermediate zone, the optimized circuits
behave similarly. To prevent overheating of the energy transfer system, we limit the
magnitude of the currents. As described in Sec. 3.2.2.4, we restrict the the largest
current in the two coils to 20A and use the circuit design with the highest effi-
ciency and transferred power given this current constraint to find the performance
of the system. The resulting circuits and coil currents are presented in Tab. 4.6.
Disregarding the magnitudes of the magnetic fields, it is clear that the design with

Table 4.6: Optimized performance, component values and coil currents for the
four geometries in Fig. 4.8. The optimized circuit with the highest efficiency and
transferred power with the current closest to 20A is chosen and rescaled such that
the largest current is at the limit.

α 1 0.98 0.94 0.9
k 0.156 0.129 0.106 0.0939
max
i=1,...,5

| ~B| [µT] 47.15 22.16 13.37 10.15
η 0.96 0.94 0.91 0.89
PL [kW] 4.80 3.24 2.15 1.66
RL [Ω] 500 500 500 500
uG [V] 250 173 117 93
C1 [nF] 10.8 13.4 16.2 18.0
C2 [nF] 10.2 12.9 15.4 16.9
f1 [kHz] 84.3 84.3 84.5 84.6
f2 [kHz] 86.9 85.1 85.5 85.0
i1 [A] 20.0 0.00° 20.0 0.35° 20.0 0.11° 20.0 −0.15°
i2 [A] 8.98 −103.2° 9.16 −105.3° 8.76 −103.3° 8.44 −102.4°
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the highest coupling coefficient achieves the highest amount of transferred power.
The efficiency varies little in all designs presented in Tab. 4.6. Notably, the mag-
nitude of the current in the secondary coil is less than half the magnitude of the
current in the primary coil. Table 4.6 shows an increase in the coupling coefficient,
power delivered to the load and the transfer efficiency as we increase α. This is sim-
ilar to the expressions for the power and efficiency derived in Appendix A. Thus, if
we allow larger magnetic fields, i.e. α close to unity, we can achieve higher coupling
coefficient, transferred power and efficiency.

The magnetic flux density magnitude for the four geometries in Fig. 4.8 with the
currents given in Tab. 4.6 are shown in Fig. 4.11. The decrease in magnetic field

(a) (b)

(c) (d)

Figure 4.11: Magnetic field lines and log10 | ~B| of the four geometries in Fig. 4.8
optimized with (a) α = 1, (b) α = 0.98, (c) α = 0.94 and (d) α = 0.9. The currents
through the coils are given in Tab. 4.6.

strength toward the edge of the car is clearly visible as the four magnetic field plots
in Fig. 4.11 are compared. The maximum magnetic flux density probed at the five
points along the vertical line at r = 0.85 m for the studied geometries, are presented
in the second row of Tab. 4.6. All magnetic flux density values in Tab. 4.6 exceed
the 8.84µT limit given by ICNIRP. However, as the magnetic fields scale linearly
with the currents through the coils, we can reduce the magnetic fields by decreasing
the applied voltage uG. The amount of transferred power is given in Tab. 4.7 as
the the applied voltage uG is reduced such that the magnetic flux density at the
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edge of the car does not exceed 8.84µT, where we have used the circuit designs
given in Tab. 4.6. Table 4.7 shows that the amount of power delivered to the load
is considerably reduced compared to the transferred power in Tab. 4.6. Thus, we

Table 4.7: Power transferred with the optimized circuits in Tab. 4.6 with applied
voltage reduced such that the magnetic field where humans or animals can be present
does not exceed the peak-value limit of 8.84µT given by ICNIRP.

α 1 0.98 0.94 0.9
uG [V] 47 69 77 81
PL [kW] 0.17 0.52 0.94 1.3

could gain a significant amount of transferred power, should we be able to allow for
larger magnetic fields or an increase of the distance from the coils to places humans
or animals can be located. This is made clear in Fig. 4.12, where the magnitude of
the magnetic flux density is plotted along a horizontal line at z = 0.15 m, i.e. in the
middle between the two coils, for the design in Fig. 4.8(d). The rapid decay of the
magnetic flux density is clearly visible from approximately r = 0.4 m.

Figure 4.12: Magnetic field strength in logarithmic scale along a horizontal line at
z = 0.15 m during operation of the wireless energy transfer system with design as
in Fig. 4.8(d), with optimized circuit components and currents in the coils given in
Tab. 4.6.
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5
Conclusions and future work

In this thesis, we study wireless energy transfer systems based on resonant induc-
tive coupling with application to the charging of electric vehicles. The work also
investigates the implications of metal plates, ferrites and ground adjacent to the
energy transfer system. In this chapter, the main outcome of the thesis is presented
together with what should be focused on in future studies.

5.1 Conclusions

We investigate and design a wireless energy transfer system based on two induc-
tively coupled resonant circuits separated by an air gap. We show that the coupled
wireless energy transfer system has two resonance peaks and that the separation of
these peaks increase with increasing coupling coefficient. The coils are studied in
the frequency domain with axisymmetric geometry. To avoid the self-resonance of
the coils, we limit the length of the coil wire such that the self-resonance frequency
appears at much higher frequencies than the frequency of operation. We study the
potential higher frequency components generated by the power source and show that
basically only the fundamental frequency is present in wireless energy transfer sys-
tems based on resonant inductive coupling. Further, we discuss the effects of adding
materials in the vicinity of the coils. We show that metal plates above the secondary
coil can efficiently shield the surrounding from magnetic fields. However, the mag-
netic fields induce eddy currents in the metal plates, which drastically decrease the
coupling coefficient and increases the resistive losses. Ferrites, a material with very
low eddy currents and high permeability, is placed on both the primary and sec-
ondary side and it is shown to efficiently cancel the negative effects of the shielding
plates and improve the coupling coefficient. The geometry of the coils, metal plates
and the ferrites is optimized using gradient-based optimization in order to maximize
the coupling coefficient and keep the magnetic field low in regions where humans
may be present. The wireless energy transfer system circuit components are also
optimized using gradient-based optimization methods using the impedance matrices
that result from the optimization of the geometry based on field computations.

Given a parameter study of two identical and co-axial coils in free space, we find that
the coupling coefficient increases monotonically with r/d, where r is their common
radius and d is the distance between the coils. Adding conductive and ferromagnetic
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materials in the vicinity of the coil have varying effects on the coupling coefficient
and losses of the energy transfer system. Metal plates can drastically lower the
coupling coefficient and increase the resistive losses. However, the metal plates
can efficiently shield the interior of the car from magnetic fields and protect the
passengers from the potentially harmful magnetic fields. To limit the undesirable
effects of the metallic shield, we use ferrites to guide the magnetic fields in such a
manner that induced currents in the metal shields are low. Well-designed ferrites
can completely cancel the negative effects of the metal shields. From studying the
reluctance of a simplified model of the system, we find that the relative permeability
of the ferrites does not need to be very large and µr ≈ 100 can be sufficient for some
situations.

For the optimized coil geometries, we achieve coupling coefficients between 0.09 and
0.15. The width of the ferrite plates has a strong influence on the coupling coefficient.
The coupling coefficient increases as the width of the ferrite plates increases. When
we penalize the magnetic field strength, the widths of the ferrite plates decrease
since it makes the magnetic fields become more localized to the symmetry axis of
the transformer and, therefore, weaker in regions where humans may be present.
This width reduction is more prominent on the secondary side than the primary
side. The shape of the metal chassis under the car can also be used to affect the
magnitude of the magnetic fields by shielding the surroundings to some extent.

Given the optimized coil geometries and their corresponding impedance matrices,
we optimize the performance of the wireless energy transfer system circuit by tuning
the remaining circuit components. Without constraints on the currents in the coils,
we can transfer several tens of kW. Limiting the current to 20A in the coils, we can
achieve transferred power levels of a few kW. However, even with limited currents,
the magnitude of the magnetic field exceed the limits given by ICNIRP. Restricting
the currents in the coils further, we can transfer approximately 1.3 kW with 89%
efficiency without exceeding the 8.84µT peak-value limitation. This is achieved with
the optimized coil geometry, where we used a large penalization on the magnetic
field strength and this resulted in a coupling coefficient of 0.09.

5.2 Future work

In this thesis, the magnetic field computations are performed on axisymmetrical and
two-dimensional model geometries. This simplifies the computations but decreases
the applicability of the model. Non-axisymmetric models in three dimensions are
necessary to model real-world applications.

One such three-dimensional aspect is the potential misalignment of the two coils. A
study of the effects of misalignment would yield information on how sensitive the
system performance is to the displacements of the coils e.g. due to incorrect parking
of the vehicle. If it is shown that the energy transfer is exceedingly sensitive, it
may be necessary to equip the system with the ability to move the coils. The sim-
ulations are also carried out in the frequency domain and they do not account for
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non-linearities that occur in a realistic implementations of a wireless power transfer
system for , e.g., charging applications. One such non-linear effect occurs in ferro-
magnetic materials as they are magnetized. In the context of charging by means of
a wireless power transfer system, more important non-linear effects are associated
with circuit components such as diodes and transistors, which are used in rectifiers
and power inverters. Other non-linearities that may be of importance are associated
with power dissipation in components of the system, where the electrical behavior
of the component depends on its temperature. However, temperature drift occurs
on rather slow time-scales in comparison with non-linearities associated with the
switching of transistors and diodes, which prompts for different treatment of the
two types of non-linearities.

The simulations are also carried out in the frequency domain, which does not model
the nonlinearity of the ferromagnetic materials. Further simulations in the time-
domain is needed to understand the nonlinearities.

The limits for the magnetic field strength used in this thesis are based on the guide-
lines given by ICNIRP. These guidelines are for whole-body exposure of magnetic
fields. As the fields are mainly confined to the region below the car, the human ex-
posure is limited to the feet and lower legs. This can potentially allow us to increase
the current passing through the coils and thereby increase the transferred power.
This would require investigations of the magnitudes of the induced currents in the
exposed parts of the human body.

Co-optimization of the coil geometry and the wireless energy transfer circuit is a
potential continuation of the work in this thesis. We simplified the optimization
by separating the optimization of the geometry and the circuits. This separation is
feasible because the coupling coefficient depends only on the geometrical properties
of the coils and the efficiency and power delivered to the load increases with the
coupling coefficient. However, a large coupling coefficient is not the only factor in
a well-performing wireless energy transfer system. Co-optimization of the geometry
and circuit components allows for synergy effects and potentially better performing
designs.
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A
Circuit model analysis

It is possible to analytically solve the system of equations that describes the wireless
energy transfer circuit. However, the results are non-trivial to interpret. In this
section, we simplify the problem in order to derive expressions of the efficiency and
power delivered to the load that are informative and simple to understand.

A.1 Power delivered to the load

This chapter contains analytical derivations of the power dissipated in the load on
the secondary side due to a current through the primary coil. We assume small
coupling coefficients and that the primary side induce voltage in the secondary coil,
but we neglect the voltage induced in the primary coil due to the current in the
secondary coil. The circuit diagram used in the derivations is shown in Fig. A.1.

uG

RG
C1

L1

R1

M,k

R2

L2

C2 RL

Figure A.1: Circuit diagram with capacitor in series on the primary side.

A circuit diagram of the series capacitor primary side circuit is shown in Fig. A.2.
The current through inductance L1 is found by

i1 = uG

Ztot
= uG

RG +R1 + jωL1 + 1
jωC1
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A. Circuit model analysis

uG

RG
C1

i1

L1

R1

Figure A.2: Circuit diagram of the primary side with capacitor in series.

where the induced voltage in the primary coil due to i2 is neglected. At resonance
the reactive parts of the impedance cancel and the circuit can be described by the
resistances RG and R1 connected in series with the voltage source. The current
through L1 is then

i1 = uG

R1 +RG
. (A.1)

The secondary side comprises the secondary coil L2, a capacitor C2 and the load
resistor RL. The circuit is excited by voltage induced by the primary coil. A circuit
diagram is shown in Fig. A.3. With a current i1 in the primary coil, the voltage

v1

R2

L2

RLC2

Figure A.3: Circuit diagram of the secondary side.

induced over the secondary coil is

v1 = jωMi1,

where ω is the frequency of the voltage source uG and M is the mutual inductance
between L1 and L2.

The impedance of the secondary side can be expressed as

Z = R2 + jωL2 + 1
1
RL

+ jωC2
,
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A. Circuit model analysis

which can be rewritten as

Z = R2 + RL

1 + (ωC2RL)2 + jωL2 + 1
jωC2

(ωC2RL)2

1 + (ωC2RL)2 . (A.2)

We see that we can rewrite Eq. (A.2) as a resistor, an inductor and a capacitor
connected in series, with the equivalent component values

RE = R2 + RL
1+(ωC2RL)

LE = L2

CE = C2
1+(ωC2RL)2

(ωC2RL)2

(A.3)

The diagram of the equivalent circuit is shown in Fig. A.4.

v1

RE LE
CE

Figure A.4: Series circuit equivalent to Fig. A.3 with component values given in
Eq. (A.3)

The quality factor of an electromagnetic resonator is defined as

Q = ω
WM +WE

Ploss
,

where WM and WE are the total magnetic and electric energies respectively. At
resonance the electric and magnetic energies are equal, WM = WE, which gives a
quality factor

Q = ω0
2WM

Ploss
.

The magnetic energy for the resonator is defined as

WM = 1
2Li

2,

and the resistive losses
Ploss = REi

2.

This gives us the quality factor of the equivalent circuit as

QE = ω0
21

2LEi
2

i2RE
= ω0

LE

RE
=
{
ω0 = 1√

LECE
at resonance

}
= 1
ω0CERE

.

If we assume the resistance of the secondary coil to be zero, i.e.

R2 = 0, (A.4)
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the quality factor becomes

QE = 1
ω0C2

1+(ω0C2RL)2

(ω0C2RL)2
RL

1+(ω0C2RL)2

= ω0C2RL,

and

RE = RL

1 +Q2
E

CE = C2
1 +Q2

E
Q2

E

We can now express the impedance in Eq. (A.2) in terms of the equivalent circuit
quality factor as

Z = RL

1 +Q2
E

+ jω0L2 + Q2
E

jω0C2 (1 +QE)2

Next, we assume the equivalent circuit quality factor to be large, i.e.

QE = ω0RLC2 � 1. (A.5)

Then, the expressions for the equivalent resistance, capacitance and impedance be-
comes

RE ≈
RL

Q2
E

CE ≈ C2

Z ≈ RL

Q2
E

+ jω0L2 + 1
jω0C2

=
{
ω0 = 1√

L2C2

}
= ω0L2

QE

(A.6)

We see from Eq. (A.6) that the impedance of the secondary side can be reduced by
increasing the quality factor of the equivalent circuit in Fig. A.4. With u = v1 =
jω0Mi1 the complex power in the secondary side becomes

S = |jω0Mi1|2
ω0L2
QE

= ω0M
2QE|i1|2

L2
= k2L1

L2
RL|i1|2. (A.7)

Note that the complex power is real-valued at resonance. If the secondary side is
not resonating, the quality factor QE can not be defined in the same way as we have
done here. We can see from Eq. (A.7) that we can influence the dissipated power on
the secondary side by controlling the quality factor and the current in the primary
side.

A.2 Transfer efficiency

One of the figures of merit of the energy transfer system is the efficiency. This is
studied in Kiani et al. in Ref. [9]. The following derivation of the transmission
efficiency is a reproduction of their results.
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The circuit diagram of the wireless energy transfer system used in this thesis is
showed in Fig. A.5. Note that there is no explicit generator resistance. We assume
that the resistance R1 includes both the coil resistance and the generator resistance.
First, the system is assumed to be at resonance. The quality factors of the two

uG

C1 R1

L1

k

L2

R2

C2 RL

Figure A.5: Circuit diagram of two-coil transfer system.

resonant circuits are then defined as

Q1 = ω0L1

R1
= 1
ω0C1R1

Q2 = ω0L2

R2
= 1
ω0C2R2

The mutual induction between L1 and L2 is M = k
√
L1L2. The derivation is

now split up into three parts: (i) constructing an equivalent parallel circuit to the
secondary side; (ii) constructing an equivalent circuit containing only L2, (iii) and
lastly finding an analytic expression for the total efficiency of the system.

A.2.1 Equivalent parallel circuit

We can describe the secondary side circuit with the equivalent parallel circuit shown
in Fig. A.6. We can find the values of Lp2 and Rp2 by matching the admittance of

Lp2 Rp2 C2 RL

Figure A.6: Equivalent circuit diagram to the secondary side in Fig. A.5.

these two components, i.e.
Y1 = 1

Rp2
+ 1
jω0Lp2

,
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with the admittance of the inductor and resistor in the original circuit,

Y2 = 1
R2 + jω0L2

= R2 − jω0L2

R2
2 + (ωL2)2 = 1

R2

1
1 +

(
ωL2
R2

)2 + 1
jω0L2

1(
R2
ωL2

)2
+ 1

with Q2 = ωL2/R2, we can write Y2 as

Y2 = 1
R2

1
1 +Q2

2
+ 1
jω0L2

1
1 +Q−2

2

For large Q2, i.e. Q2 � 1, the admittance simplifies to

Y2 = 1
Q2

2R2
+ 1
jω0L2

and the equivalent circuit components becomes

Rp2 = Q2
2R2

Lp2 = L2

Next, we combine the equivalent circuit resistance with the load resistance and define
the parallel resistance Rp as

Rp = Rp2RL

Rp2 +RL
= Q2

2R2RL

Q2
2R2 +RL

. (A.8)

Thus, with the assumptions that the secondary side is resonating and that the
quality factor Q2 is large, we can construct the simplified version of the secondary
side shown in Fig. A.6, with Rp given in Eq. (A.8).

L2 C2 Rp

Figure A.7: Simplified circuit diagram of Fig. A.6.

A.2.2 Combining the primary and secondary sides

A non-ideal transformer can, without approximations, be rewritten as a single circuit
by reflecting the secondary side onto the primary. The two circuits are shown in
Fig. A.8, where the potentials u1 and u2 are defined as

u1 = jω0L1i1 + jω0Mi2,

u2 = jω0L2i2 + jω0Mi1.
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uG

RG

i1

L1

+

−

u1

M,k

Zin

L2

−

+

u2

i2

ZL

v1

⇐⇒

uG

RG

(1− k2)L1

k2L1 k2L1
L2
ZL

v1

Zin

(a) (b)

Figure A.8: (a) A non-ideal transformer and (b) its equivalent circuit.

With Kirchhoff’s voltage law
u2 + i2ZL = 0,

we can find the current in the secondary side as

i2 = − jω0M

jω0L2 + ZL
i1.

This allows us express the voltage over the primary coil in terms of i1 and the circuit
components,

u1 = jω0L1i1 + jω0M

(
− jω0M

jω0L2 + ZL
i1

)
=
(
jω0L1 + (ωM)2

jω0L2 + ZL

)
i1.

We define the fraction u1/i1 as the input impedance Zin. With M2 = k2L1L2 we
can express the input impedance as

Zin = (k2 − 1)ω2L1L2 + jω0L1ZL

jω0L2 + ZL
.

The equivalence between the two circuits is proven by expressing the input impedance
of the equivalent circuit in Fig. A.8(b) as

Zin,eq = jω0(1− k2)L1 + 1
1

jω0k2L1
+ 1

k2 L1
L2
ZL

= (k2 − 1)ω2L1L2 + jω0L1ZL

ZL + jω0L2
.

A.2.3 Efficiency

With the results in Section A.2.1 and A.2.2, we can construct a circuit equivalent
to the circuit in Fig. A.5. This equivalent circuit is shown in Fig. A.9. The values
of the reflected components Cref and Rref are found from the equality

1
1

Rref
+ jω0Cref

= k2L1

L2
ZL = k2L1

L2

1
1
Rp

+ jω0C2
.
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uG

C1 R1

(1− k2)L1

k2L1 Cref Rref

Figure A.9: Equivalent circuit seen from the voltage source.

We match the real and imaginary parts to find

Rref = k2L1

L2
Rp,

Cref = C2

k2L1
L2

,

where Rp is defined in Eq. (A.8).

We define the loaded quality factor of the reflected secondary side as

Q2L = Rp

ω0L2
, (A.9)

and use that C2 = 1/(ω2
0L2) at resonance, to express the reflected components Rref

and Cref as

Rref = k2ω0L1Q2L,

Cref = L2C2

k2L1
= 1
ω2

0L1k2 .
(A.10)

Assuming the coupling coefficient k is small, i.e. k2 � 1, the inductance (1− k2)L1
can be approximated as L1. At resonance, the capacitance C1 cancels L1 and k2L1
cancels Cref . Thus, at resonance, the circuit in Fig. A.9 simplifies to the circuit
shown in Fig. A.10. The efficiency of transferring power from the power generator
to the reflected secondary side is

ηref = Pref

Ptot
= Rrefi

2
1

(R1 +Rref)i21
= Rref

R1 +Rref
. (A.11)

Similarly, the efficiency of dissipating power in the load can be expressed as

ηL = RL
1
Rp2

+ 1
RL

= Rp2

Rp2 +RL
. (A.12)
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Figure A.10: Equivalent circuit at resonance.

Thus, the total efficiency of the two-coil transmission system is

η = Rref

R1 +Rref

Rp2

Rp2 +RL
.

We define the load quality factor as QL = RL
ω0L2

and use Q2L from Eq. (A.9) to
express the efficiency as

η = Rref

R1 +Rref

Rp2

Rp2 +RL
= k2ω0L1Q2L

k2ω0L1Q2L +R1

Q2
2R2

Q2
2R2 +RL

=

=
k2 ω0L1

R1
Q3L

1 + k2 ω0L1
R1

Q3L

Q2
2R2

Q2
2R2 +RL

=
{
Q1 = ω0L1

R1

}
=

= k2Q1Q2L

1 + k2Q1Q2L

Q2

Q2 + RL
Q2R2

= {Q2R2 = ω0L2} =

= k2Q1Q2L

1 + k2Q1Q2L

Q2

Q2 + RL
ω0L2

=
{
QL = RL

ω0L2

}
=

= k2Q1Q2L

1 + k2Q1Q2L

Q2

Q2 +QL

(A.13)

Note that the load quality factor QL and the loaded quality factor Q2L are quality
factors of parallel resonators, while Q1 and Q2 are the quality factors of series
resonator.

The derivation of the efficiency relies on two approximations: (i) both the primary
and the secondary circuit resonates at the same frequency, i.e. ω0 = 1/

√
L1C1 =

1/
√
L2C2; and (ii) the coupling coefficient is small, i.e. k2 � 1.

An optimal load quality factor can be found by differenting (A.13) with respect to
(wrt.) QL. First, we write η as

η(QL) = k2Q1Q2L

1 + k2Q1Q2L

Q2

Q2 +QL
= k2Q1

1
Q2L

+ k2Q1

Q2

Q2 +QL
=
{
Q2L = Q2QL

Q2 +QL

}
=

= k2Q1

k2Q1 + 1
Q2

+ 1
QL

Q2

Q2 +QL
= k2Q1Q2

k2Q1Q2 + k2Q1QL + 2 + Q2
QL

+ QL
Q2

.
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Differentiation of η wrt. QL yields

dη

dQL
= −

k2Q1Q2

(
k2Q1 − Q2

Q2
L

+ 1
Q2

)
(
k2Q1Q2 + k2Q1QL + 2 + Q2

QL
+ QL

Q2

)2 .

This maximizes when k2Q1 − Q2
Q2

L
+ 1

Q2
= 0, which gives the optimal load quality

factor Qopt
L as

Qopt
L = ±

√√√√ Q2
2

1 + k2Q1Q2
. (A.14)

The quality factor is a positive number and, thus, we can discard one solution in
Eq. (A.14). Thus, the optimal load quality factor is

Qopt
L = Q2√

1 + k2Q1Q2
. (A.15)

This gives us the optimal load resistance as

Ropt
L = ω0L2Q2√

1 + k2Q1Q2
= R2

Q2
2√

1 + k2Q1Q2
(A.16)

From Eq. (A.13), it follows that the transfer efficiency maximizes for large Q1, Q2
and k and optimal efficiency is achieved for the load resistance given in Eq. (A.16).

If we insert Eq. (A.15) into Eq. (A.13), we find the optimal efficiency as

ηopt = 1
1 + 2

k2Q1Q2

(
1 +
√

1 + k2Q1Q2
) . (A.17)

The optimal efficiency expressed in Eq. (A.17) increases monotonically with k. If
we assume that the quality factors are equal, i.e. Q1 = Q2 = Q, we can express
Eq. (A.17) in terms of the dimensionless quantity kQ, i.e.

ηopt = 1

1 + 2
(kQ)2

(
1 +

√
1 + (kQ)2

) . (A.18)

In Fig. A.11, we plot the optimal efficiency as a function of kQ. It is clearly visible in
Fig. A.11 that the transfer efficiency rapidly increases with kQ. Given that k ≈ 0.1
and Q ≈ 1000 for a typical wireless energy transfer system in this thesis, we can
conclude that the optimal efficiency is close to unity.
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Figure A.11: The optimal transfer efficiency as a function of the quantity kQ.
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B
Numerical modelling for the field

problem

In this appendix, we compare the results of the COMSOL models with analytical
calculations to verify the correctness of the FEM models. Further, we extrapolate
the FEM models to zero cell-size and study the error of the solutions for finite
cell-size.

B.1 Validation of the COMSOL model

This section compares the quantities calculated in the FEM model with the analytic
formulas.

First, a single wire loop of radius 0.3m is excited by 1A and the magnetic field is
calculated along the symmetry axis. Fig. B.1 presents from the analytical result
and the corresponding graph based on FEM computations. The magnetic field is

z [m]
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

B
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#10-6
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(a) (b)

Figure B.1: Analytic (a) and FEM (b) calculations of the magnetic field along the
symmetry axis for a single wire loop of radius 0.3m excited by 1A.

essentially identical in the two graphs. To verify the “multi-turn coil domain” in
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COMSOL, we consider a similar situation with a coil with Nr = 4 and Nz = 2 turns.
The outer radius is still 0.3m and the distance between the windings is 7mm. The
magnetic field along the symmetry axis is shown in Fig. B.2. Once again, the COMSOL
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1.8

(a) (b)

Figure B.2: Analytic (a) and FEM (b) calculations of the magnetic field along the
symmetry axis for a coil with Nr = 4 and Nz = 2 and outer radius 0.3m excited by
1A. The distance between wire loops is 7mm.

model yields the same magnetic field as the analytic expression. Thus, the multi-
turn coil domain can correctly compute the magnetic field along the symmetry axis
for coils with multiple windings.

The analytical expression for the magnetic flux linkage between two conducting
loops, based on elliptic integrals, assumes that the cross section of the wires is small
compared to the other dimensions of the system. As the wires in COMSOL cannot be
infinitely small, we perform a convergence study where the radius of the wires in
the two coils are gradually decreased. Figure B.3 shows the error

ε = |MCOMSOL −MAnalytic|
MAnalytic

as a function of the wire radius. The FEM calculations converge toward the analytic
solution with an order of convergence of one.

The self- and mutual inductance of the multi-turn coil is calculated analytically using
Eq. (2.15) and compared to the FEM calculations in Tab. B.1. To test the circuit
model with the FEM solver, the inductances and resistances found in Tab. B.1 is
inserted into the circuit in Fig. 2.1. The capacitances is chosen such that L1C1 =
L2C2 and the generator voltage and resistance is set to 220V and 1Ω, respectively.
The load resistance is chosen according to Eq. (2.19). The circuit problem is solved
and the coil currents computed by the circuit solver are used in the FEM solver.
This gives the total field solution as the coils are driven by the external circuitry.
The voltage over the coil calculated using the circuit model and the FEM solver is
shown in Tab. B.2.
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Figure B.3: Convergence of the FEM computations toward the analytical mutual
inductance for two coaxial, single loop coils, one of radius 0.3m and one of radius
0.01m, located 0.1m apart. The quantity on the x-axis is the wire radius of both
coils.

Table B.1: Self- and mutual inductance and resistance calculated analytically and
in COMSOL of two identical, coaxial coils of Nr = 4, Nz = 2, wire radius 3mm and
loop distance 7mm. The coils are displaced 0.3m from each other. A litz wire
density of 0.9 is assumed.

Analytic COMSOL
Self-inductance 81.490µH 81.491µH

Mutual inductance 7.9324µH 7.9327µH
Resistance 10.68mΩ 10.84mΩ

Table B.2: Voltage over coils calculated using the circuit model and the FEM
solver.

Circuit COMSOL
Vcoil1 35.91 + i1813V 35.89 + i1812V
Vcoil2 1814 + i122.8V 1813 + i122.7V

To conclude, the magnetic field, magnetic flux, induced voltage, inductance and
resistance calculated using COMSOL are all in accordance with the analytical expres-
sions.
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B.2 Extrapolation, accuracy and convergence of
the numerical model

In computational electromagnetics, the problems that have analytical solutions is
limited. Often, the problems are instead solved using numerical techniques such
as the FEM. In this project, the basis functions are second-order polynomials on
triangular finite elements. The accuracy of the models are studied by means of
convergence tests, where the field problem is solved for a set of adaptively refined
meshes. From these consecutive computations, an estimate of the exact solution can
be found by extrapolation.

The aim of this chapter is to get a feeling for how many adaptive mesh refinements
are needed to achieve a certain degree of accuracy. The convergence is studied for one
single problem geometry and the results can, therefore, only be used as an estimate
of the accuracy for other geometries. However, it can be assumed that the same
number of adaptive mesh refinements yields similar accuracy for other geometries.

B.2.1 Adaptive mesh refinement

The straightforward method of refining a triangular mesh is simply dividing each
element into two, or more, elements. However, the number of elements grows expo-
nentially with this procedure. A different approach is to use adaptive mesh refine-
ment [15]. Then, the problem is solved once with an unrefined mesh, which gives
information about what parts of the mesh that contribute most to the error. These
regions typically feature rapid field variations. By studying the solution from the
unrefined mesh and refining only the regions with large error estimates, the number
of additional elements can be decreased while the accuracy is increased.

The geometry of the two-coil system studied in this project contains both sharp
corners, where singularities are highly probable, and objects of drastically different
physical size, e.g. the ferrite core size and coil wire radius. Therefore, the adaptive
refinement scheme is useful to achieve high accuracy, while the number of elements
is kept low.

B.2.2 Extrapolation

From a circuit theory point of view, the interesting results are the resistance, self-
inductance, mutual inductance and quality factor of the two coils in the system. To
understand the convergence of these properties the simulated results are compared
to a simple, first-order expansion model. In the following, we use the resistance as
an example, but the other quantities can be treated similarly. In the case of coil
resistance, the model is

Rmodel(NDOF) = R0 +RαN
α
DOF, (B.1)
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where NDOF is the number of degrees of freedom for the particular mesh, α the
estimated order of convergence, R0 the extrapolated solution and RαN

α
DOF is the

leading error.. Note that similar first-order models can be constructed for the self-
and mutual inductance and any other property of interest. By performing Nrefine
refinements one can construct the matrix

A =


1 Nα

DOF,1
1 Nα

DOF,2
...
1 Nα

DOF,Nrefine

 ,
and the matrix equation

Ax = Rsim,

where x = [R0 Rα]T and Rsim is the simulated resistances. This is typically an
overdetermined equation system where Nrefine > 2 and it can either be solved by
linear least-square methods or by constructing the square matrix ATA and solve
the system by inversion

Ax = Rsim,

ATAx = ATRsim,

x =
(
ATAx

)−1
ATRsim.

The residual is computed as

r(α) = ||Ax−Rsim|| =
∣∣∣∣∣∣∣∣(A

(
ATAx

)−1
AT − I

)
Rsim

∣∣∣∣∣∣∣∣ .
where ||A|| is the 2-norm of A. The found R0 is assumed to be an accurate estimate
of the exact solution. The problem is then to find the value of α which minimizes
the residual r. The optimal α is found by sweeping the parameter, calculating r(α)
for each value and selecting the α which yields the smallest r.

A common problem is that the matrix A becomes ill-conditioned, i.e. there are
several orders of magnitude between the largest and smallest element in the matrix.
For NDOF = 106 and α = −3, a not unreasonable situation, the matrix A contain
values between 1 and 10−18, which results in an ill-conditioned problem.

One solution is to scale the columns by the median value of NDOF. The typical num-
ber of degrees of freedom is defined asNtyp = median {NDOF,1, NDOF,2, . . . , NDOF,Nrefine}
and we formulate the new matrix

A′ =



1
(
NDOF,1
Ntyp

)α
1

(
NDOF,2
Ntyp

)α
...
1 1
...
1

(
NDOF,Nrefine

Ntyp

)α


.
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Note that the row where NDOF = Ntyp contains only ones. The second column of the
matrix is now centered around and closer to one than before. The matrix equation
then becomes

A′x′ = Rsim,

where x = [R0 R
′
α]T and Rα = R′α/N

α
typ.

Observe that Ntyp can be chosen by other methods depending on the values of NDOF.
Other choices are the arithmetic or geometric mean value of NDOF.

B.2.3 Accuracy of the model

The error between the modelR(NDOF) and the extrapolated resistanceR0 in Eq. (B.1)
can be estimated as

e = R(NDOF)−R0. (B.2)

In reality, the resistance of a manufactured coil differs from the extrapolated R0.
In the following, we denote the resistance of a manufactured coil R̃0. The error
between the model R(NDOF) and R̃0 is

ẽ = R(NDOF)− R̃0 = R(NDOF)−R0 +R0 − R̃0 = e+R0 − R̃0.

The error e → R0 as NDOF → ∞. However, the error ẽ does not tend to zero
due to the constant factor R0 − R̃0. This factor constitutes all errors that are not
included in the extrapolated result R0. Such error sources are the real coil being
constructed from one continuous wire instead of several coaxial loops, uncertainties
in the manufacturing of the coils, ferrite plates, metal plates, the real problem is
not rotationally symmetric, etc. In a typical engineering setting, it is acceptable if
these errors are on the order of percent.

The gradient calculations uses the difference between two slightly different problems
to calculate the derivatives. If the error in the individual simulations is too large,
the gradient is prone to be uncertain. Thus, the error in the simulations must
have higher accuracy than the wanted accuracy in the gradient computations. A
simulation accuracy of 0.1% is deemed high enough.

B.2.4 Convergence study

To identify the number of adaptive mesh refinements necessary to achieve 0.1%
accuracy, a representative geometry is selected for testing and several consecutive
adaptive mesh refinements are carried out. In Fig. B.4 the resistance and inductance
of one of the two coils is shown as a function of the number of degrees of freedom. In
all cases, the computed quantity is well within the sought-after 0.1% accuracy after
one adaptive mesh refinement. The order of convergence is presented in Tab. B.3.
The achieved convergence is slow but the initial accuracy is high enough to ensure
that the first adaptive refinement is well within the 0.1% accuracy.
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Figure B.4: Convergence in (a) self-resistance, (b) mutual resistance, (c) self-
inductance and (d) mutual inductance. The dashed lines indicate levels of ±0.1%
error and they are calculated from the extrapolated value.

Table B.3: Order of convergence for the coil resistance and inductance.

Order of convergence
Self-resistance -2.5
Mutual resistance -1.0
Self-inductance -3.2
Mutual inductance -1.9
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