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Abstract 

Assembly fixtures are one of the cost driving factors in automotive industry. Previous research have shown that the 

utilization of affordable reconfigurable tooling (ART) can be a key-enabling technology to reduce the cost and lead 

times. Inspired by the research results, Volvo Cars Corporation initiated an automated process control project, the 

aim of which is the automatic inspection and correction of the defects in Body in White (BIW). The project 

comprises of three stages – the first of which is the in-line measurement of BIW. Then, the results of measurements 

are transferred to a common database where process evaluation through case-based reasoning suggests corrective 

actions on the fixture. The last stage involves the development of flexible tooling to meet these changes in a cost and 

time effective way. Hence, the aim of this paper is to present preliminary results on the development and 

implementation of ART as flexible tooling. 
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1. Introduction 

Flexibility in manufacturing systems has been widely investigated by various researchers; and the outcome was 

indicating that a manufacturing system is only qualified as flexible when all of its components can react to the 

constantly altering market requirements in a cost- and time effective way [1,2,3]. Particularly, the reason that the 

flexible manufacturing was complemented with cost and time was stemming from the experimentation of the 

automotive industry. The trials of car manufacturers to implement flexible production equipment revealed that the 

attempts to reuse these equipment were costly and often very time consuming in comparison to dedicated tools. 

Therefore, the conclusion was drawn that flexible manufacturing systems must be elaborated towards agility with 

cost and time elements – which eventually converted flexibility to agility in manufacturing [3]. 

 These circumstances drove automotive industry to strive towards creating more agile production systems with a 

holistic approach. This collaboration between the components of a production system has been analyzed from 

different perspectives such as process, product, volume, and machinery [4]. However, one important point is the 

definition of what flexibility is in these perspectives and how they should be characterized. Koren et al. [5] explains 

these characteristics by stressing the importance that a manufacturing system must also be flexible enough to handle 

quality losses so that the overall quality of a production system can be satisfactory for the customers. Hence, a 

crucial feature of agile car manufacturing can be identified as providing high quality products through the means of 

agile technology where the application can span from sheet metal forming to other assembly operations. As a result, 

each operation requires attention to identify capabilities along with hindrances. 

In a typical assembly line of automotive body in white (BiW), it is estimated to spot-weld 300 different sheet 

metal components to each other [6]. Throughout this assembly operation, Wärmefjord et al. [7] explains that 

variation in the part, fixture design and the process order in terms of spot welding can greatly affect the after-process 

quality. Therefore, in-line control of the car body is still a necessity even though variation simulation is widely 
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evaluated by researchers to proactively increase the quality of the assembly [8].As an example, at Olofström plant of 

Volvo Cars Corporation the variation handling is done in two ways. The first method is to extract specific amount of 

subassemblies of BiW from a batch and measure them in a verification room. If any out-of-tolerance product is 

discovered during the verification process, the batch is traced backwards in production line and sent to rework. 

Meanwhile, operators shim the fixtures of the source process to correct the possible variation errors in upcoming 

products. The second method relies on the continuous measurement of the complete BiW per one batch. If the 

measurement process indicate defects, the respective batch is sent out to a rework station. When the batch is 

corrected within a specified tolerance zone, the products join back to production flow (figure 1.a). 

AProC (Automated Process Control BiW) is a joint project developed to address the problem of efficient and fast 

correction of these defects in BiW. The project addresses the issue from four different perspectives where each 

perspective is formulated as a different work package (figure 1.b). These work packages focus on the solution of 

providing automated solution for in-line measurement of BiW, automatic corrective action decision through case 

based reasoning; and finally, flexible tooling development to facilitate the outcome of the first two work packages. 

Therefore, the development need for this project stems from the demand of efficient processes. Thus, it is important 

to acquire the ability to measure all features on all bodies and also possibility to correct faults accordingly. New 

robot based measurement systems [9,10,11] have the potential to measure many more of the required features in-line 

and within required cycle time. This also requires new ways of off line programming (OLP) in order to find the 

optimal path to minimize the cycle time. However, the question of making the correct decision regarding required 

rework is not addressed. If the necessary rework could be divided between manual and automated rework, the 

process would be more efficient; and unnecessary rework can be minimized. From tooling’s perspective, today’s 

fixtures being used in production are dedicated and welded. This causes changes in the system difficult to implement. 

Hence, AProC aims to describe the capabilities of new flexible tooling that facilitates the adoption of the product 

changes in a fast and effective way. 

Fig. 1. (a) Current rework process for BiW at VCC; (b) AProC (Automated Process Control BiW) 

AProC and agile production systems demand the fixturing techniques to satisfy their requirements; thus, the 

selection of the correct fixturing technique becomes vital. Therefore, aimed capabilities of respective fixturing 

technique must be flexible enough to handle in-process changes (shimming). In addition, the technique must also 

satisfy the demands of agile manufacturing such as cost effectiveness and low time consumption [12]. As a result, it 

is important to relate the current fixturing methods to the formulated requirements.  

Today’s fixturing technologies can be classified as modular, reconfigurable and affordable reconfigurable tooling. 

The final term, affordable reconfigurable tooling (ART), is the latest milestone developed and tested for aerospace 

applications in order to satisfy the requirements of agility [13]. Specifically, ART concept simply divides fixturing 

equipment into three levels where the first level corresponds to modular fixture frame. The second level describes a 

product interface that is comprised of a reconfigurable unit and pickups. The third level describes the workpiece. By 

manipulating the only the second-level units with an outer automation tool such as an industrial robot, ART aims to 

reach a maximum level of accuracy in a cost effective and fast way [14]. Previous applications of ART in aerospace 

industry indicate that ART concept is capable of reaching +/- 0.05 mm accuracy [15] – which can be used as an 

indicator of capacity for accuracy in automotive industry. 

From tooling perspective, the primary objective of this project is to create and demonstrate flexibility that can 

facilitate the corrective actions. Thus, this paper aims to present the preliminary results on the development and 



building of flexible tooling concept where assembly and corrective actions of BiW subassembly can be implemented 

manually. The organization of the paper is as follows. In section 2, the paper focuses on the design of flexible tooling 

whereas in the third section building and reconfiguration strategies are explained. In the final section, the paper 

presents and discusses the results.  

2. Design 

There have been various methodologies created by various researchers to define the fixture development 

procedures. One commonly identified methodology suggests the procedure as steps of planning, design and 

verification [16,17,18]. As methodology’s first stage states, the setup planning is done according to workpiece 

locating analysis and machining process. Therefore, the input from AProC related to the product plays a vital role in 

the first step of fixture design.  

The product, GOR, is a subassembly of BiW that sets the framework for headlights and related components 

(figure 2.a). The GOR is comprised of nine sheet metal components –eight of which are symmetrical parts. The last 

component unifies these eight sheet metal units and complete the subassembly. The locating datums of these 

independent parts are created by Volvo Cars Corporation by using 3-2-1 principle [19]. The datum allocation for 

each part follows the same procedure where all the parts are first indexed to a certain point through two locating 

points in car coordinate frame. Then, they are clamped and fixated. Additionally, due to the elastic state of sheet 

metal certain amount of points are allocated to secure these parts in space. These datums are declaring the fixation 

axis in one positive or negative direction – which can be regarded as a locator rather than a clamping point (figure 

2.b). 

Fig. 2.  (a) The GOR product in BiW; (b) datum points on a sheet metal component 

The classification of the in-process shimming operations plays another important role in reaching a robust and 

capable flexible fixture. As stated earlier, the part variation causes the system to rework on the assemblies – which is 

later reflected to fixtures through a set of shimming operations. The span of these shimming operations collected at a 

database at VCC indicate that each datum point must be capable enough to move in all axes of car coordinate frame 

about +/- 0.5 mm. In practice, this shimming procedure is conducted as a set of translations. The current dedicated 

fixture is designed by using three different 5 mm thick plates fixated to a framework (figure 3). Then, an operator 

simply replaces the respective plate with a new one that has a different thickness to execute the corrective action. 

Hence, the shimming is implemented by steps through a mass produced tailor-made plates. As a result, the flexible 

fixture design can be aligned to the same capabilities of the current solution. 

As the shimming requirements and allocation of datum points are analyzed, the next step is to define a design 

methodology. ART’s main approach to the classification of a complete fixture unit is as framework, configurator and 

pickups [20]. Thus, this taxonomy can be used as the first stage to decide on the overall fixture components. The 

design procedure, on the other hand, can vary with respect to the product and procedure.  For this project, the most 

appropriate procedure can start with pick-up design due to the fact that AProC relies on the in-process correction of 

independent locators. Later, the design of framework and configurators can be created to facilitate the locators and 

process in general. 



Fig. 3. (a) 3D model of a shimming plates and fixture part; (b) Fixture application at Olofström plant of VCC  

2.1. Pickups (Locators) and Clamps 

In order to provide affordability, it is important to identify the cost drivers in a fixture application. Even though 

the use of tailor-made components is inevitable, ART suggests the idea of minimizing these components to minimum 

level; and instead, it recommends the use of standardized products to reduce the total cost [13].Thus, in this project 

tailor-made parts can be reduced to those that are going to interact with the GOR components. 

From the analysis of product, the locator points are identified with two holes on each sheet metal. The span of 

these holes is comprising of three different sizes that are 8.1, 12.1, and 16.1 mm in diameter where the surface that 

the BiW components will lie on is also vital to be precision-machined. The important point here is to optimize the 

size of the surface so that the sheet metal can be located safely; and pickups remain affordable. Moreover, the 

locators should also provide a method to unload the GOR easily from the fixture without losing the current 

coordinate values. 

As a result of these requirements, a design that consists of four different components was formulated to provide 

flexibility without comprising on the capabilities. The first component is a cylindrical tailor-made part that the GOR 

components will lie on. The second manufactured part is a sleeve alike unit that locates a GOR component through 

its holes. The remaining components of the pickup are standardized units namely a bushing and dowel pin. These 

components’ main function is to enable a transition fit so that the GOR can be easily unloaded after spot welding 

without losing the current coordinates on the pins. These standardized parts also reduce the cost on the first 

cylindrical unit by eliminating the tolerance demands on tailor-made components. The assembly and constituting 

parts of the locators can be seen in figure 4. 

Fig. 4. Locator assembly of a cylindrical guiding unit, bushing, sleeve and a dowel pin 

Another important point is to associate the design to the shimming capabilities. As stated earlier, the shimming 

operations are conducted for locators and clamps in positive and negative directions of X, Y, and Z-axes within the 

range of +/- 0.5 mm. The corrective actions on X and Y-axes require the complete assembly of the pickup to float on 

a separate unit since the design does not allow the shimming of bushing within the cylinder-shaped part. Therefore, 



they can be transferred to configurators where the pickup assembly can freely float on a surface. Similarly, shimming 

in Z-axis can be achieved through a set of shims that is commercially available for affordable prizes. These washers 

can be simply installed between the configuration unit and the locator. Hence, the shimming can be done by adding 

or removing shims to provide different lengths. 

Clamping is also considered to be one of the challenging tasks in a fixturing application as providing a sufficient 

clamping force plays a major role in robust fixation of the workpiece. Furthermore, the clamping units must also be 

compatible with corrective actions similar to the locators. It is also expected from these units to be affordable and 

comply with the framework of ART where easy and fast configuration is essential. Therefore, it is possible to 

conclude over the notion that a standardized product with reconfiguration capabilities would be affordable enough 

and a sufficient choice for AProC. One particular standardized product that fits these requirements – clamping force 

of which is approximated to be around 1700 N – is GN820-M-230. Additionally, the respective clamp’s shimming 

capabilities are provided by a flat knurled screw (i.e. DIN653 or WN61) as the holding base. As a result, shimming 

in Z-axis can be done by adjusting the height of the screw where shimming in X- and Y-axes are compensated by the 

surface area. 

2.2. Framework 

Traditionally, assembly fixtures comprise of a welded steel beam framework where the beams are in the 

circumference of the product(s) to be assembled. In order to access the product(s), its components are attached on 

pickups. Then, the pickups are extended to reach the steel beam framework via flags. In some cases, pickups can also 

be attached directly on the steel beam framework or use flags to reach the framework. Thus, a flag can sometimes be 

up to a meter in length. Since the location of the pickup will define the accuracy of the assembled product, they have 

to be calibrated very accurately. In a conventional fixture, the accuracy of a pickup is given by the accuracy of the 

flags and steel beam framework; hence, the framework itself is required to be accurately built. Welding a steel beam 

framework is indeed difficult to get to high accuracy.  

Accuracy in the framework beam structure is achieved by dividing the framework into substructures where the 

pads are machined in a large NC machine. These machined surfaces are providing accurate positions of beams as the 

sub structures are assembled in the fixture build-up. The insertion surfaces of the flags are also machined to make 

sure they are not losing accuracy in the build-up.  This traditional way of building fixture is very costly and time 

consuming.  

One way to solve these time- and cost drivers is to use shim boxes. A shim box is a method to avoid machining 

pads in the steel beam framework, and instead adjust the pads simply by screws. This is a common approach to set 

accurate locations of flags in the fixture build-up. The purpose of a shim box is, in most cases, to get accurate 

surfaces to place the pick-ups on. The final X, Y and Z location of the pick-up is in many cases set by using shim 

elements. Such element typically constitute a plate or a washer. In the end we have a system with accurate surfaces 

via the Shim boxes and accurate positions via shim elements. 

The approach in the project is to use a solution that completely eliminates the welding of steel beam frameworks. 

This solution is a patented steel beam joining system called BoxJoint. On the market today there exists many 

modular beam joining systems, but for assembly fixtures they are aluminum in most of the cases. BoxJoint gives the 

same capability as an aluminum based beam joining system, but allow steel beams instead of aluminum beams. One 

of the project requirements was to use a steel based framework, but it was required to be non-welded in order to 

enable changing the framework design when needed. Another key advantage using BoxJoint was the fact that it has 

very few requirements on the beams to be used in the system. These are that the material thickness was enough to 

allow its clamping pressure and that the beams were warm rolled as to have a lower radius on the corner with respect 

to cold rolled beams. 

The concept of BoxJoint is to clamp the beams instead of welding them together. One beam-joint has two plates 

that are clamped together with four screws and four nuts. One such box are then connected to another box that 

clamps another beam; hence, we reach a box joint. The BoxJoint system uses screws in the range of M16, M10 and 

M5. Every range has only a few number of box plates (figure 5). The way boxes are combined create a very large 

number of joint applications. The box plates are fabricated from a high strength steel (750 MPa). Since BoxJoint uses 

a classic “mechano” build-up approach with no welding needed, it enables an easy and quick setup methodology 

which requires a very minimum amount of training. 



Fig. 5(a) BoxJoint components; (b) Box of size 25 mm; (c) Box of size 50 mm; (d)Two beams assembled with BoxJoint 

2.3. Flexapod Units (Configurators) 

One very important property in BoxJoint is to understand the reason that it is not an accurate system. Low 

accuracy in the framework is key to enable simple and quick fixture build-up as there is no sole reason to have 

accurate beams in a fixture. It is the pickups that are required to be accurately located. Therefore a unit called 

flexapod is used as either flags and/or pickups for flexapods have the same purpose as shim-boxes. However, the 

difference between shim boxes and flexapods is that a flexapod handles all degrees-of-freedom inside one unit. 

Specifically, theses flexapods control not only x, y, and Z, but also the roll, pitch and yaw in the configuration of a 

flag or pickup. The BoxJoint system has standard flexapod units inside its range of components. These standard units 

are however more purposed to be used to configure a 6 degree-of-freedom flag location in space. Due to the lack of 

space in the application of this research, these BoxJoint Flexapod units could not be used. Therefore, a new and more 

compact flexapod pickup unit was developed. 

Basically, the new flexapod unit consists of a plate with fairly good surface quality – installed to BoxJoint by four 

bolts with spherical washers, and grub screws. In order to analyze how the flexapod unit is operating, it is essential to 

break the plate into sub-areas where each section fulfils a different role (figure 6.a). The first area’s purpose, then, is 

to provide the function of configuration and connection to the BoxJoint plates. The area is consisting of four 

oversized holes for plate-specific bolts with spherical washers and three threaded holes for grub screws. Explicitly, 

these oversized holes provide the connection with the BoxJoint plates whereas the grub screws negate the error built 

up from BoxJoint structure. Thus, in order to arrange the correct orientation of the flexapod the unit is first connected 

freely to the BoxJoint plate through the bolts. Then, by changing the distance between the respective lengths of the 

grub screws the flexapod unit can be configured to the desired orientation and position (figure 6.b). 

The second areal function of the flexapod is to provide a surface for the locators to float on so that the locators can 

be configured and shimmed easily. The connection between the flexapod and the locator can be done through a 

screw and washer connection. Thus, the allowance for shimming operations is automatically limited to the diameter 

of the hole when the diameter of the screw is deducted. Lastly, the third section provides an extra space for auxiliary 

functions such as clamp attachment or measurement system integration. 

 

Fig. 6(a) Assembly of flexapod unit showing functional areas; (b) Configuration of a flexapod with a BoxJoint plate 
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3. Fixture assembly and reconfiguration 

Design and appointment of features are primarily significant for fixture design; yet, it is also essential to create a 

working method for ART applications when it comes to building and reconfiguration. This is particularly important 

since fast set-up and adaptability of a fixture is considered to be as vital as the holding capabilities. Therefore, this 

section will first describe the initial building strategy employed; and later, it will disclose the reconfiguration 

technique to minimize the tolerance chain of errors in beams, configurators and pickups. 

The framework as stated in section 1 is centered on the notion of having an inaccurate system so that the cost of 

machined surfaces can be negated. However, this does not mean that the accuracy in framework should be neglected 

completely. When building a fixture, it is known that errors keep building up in a chain as the system is integrated 

with parts assembled to each other [14]. Therefore, identifying major contributors to errors and aligning them as 

accurate as possible would make the configurators remain in a capability zone. Hence, locators can be ensured to the 

desired position and orientation. 

The identification of the critical points in the framework can be done by considering two aspects. These are the 

planar accuracy of beams and positional proximity of the plates. Thus, the beams setting the base for the configurator 

plates should be arranged without spending too much effort and time. Moreover, the plates to which flexapods will 

be attached should be only considered for positional accuracy as plates are directly aligned to a beam. In figure 7, a 

section of the AProC fixture is exemplified to demonstrate the arrangement of a base beam and a configurator plate. 

The beam is one of the longest in the fixture and sets the base for four flexapods. The surface of the beam 

highlighted with green represents the accuracy zone in XY-plane whereas the red surface shows in YZ-plane. The 

plate connecting the flexapod is swiftly aligned to a positional accuracy in the surfaces that are not in contact with 

the beam. The flexapod unit, as described in section 2, follows the same methodology where the locator surface 

requires to be very accurate through the grub screws. The positional accuracy of a flexapod is arranged by measuring 

the locator interaction holes. As a result, the locators can be easily attached and arranged to the datum points by 

using a measurement system. 

Fig. 7(a) Base beam in framework where green surface represents XY and the red YZ-plane; (b) Configurator plate 

4. Results and discussion 

The current fixturing equipment at Olofström relies on dedicated tooling where the components are either welded 

and/or tailor-made with respect to a group of products. Additionally, the shimming capabilities are provided by a set 

of custom-made plates working as modular interfaces to the locators. These circumstances, indeed, make the 

fixturing equipment to be quite robust and effective. Furthermore, the strength and other demands on a fixture are 

directly offered by these tailor-made components. Moreover, the modular parts of the fixture are entirely designed to 

be very time-saving in building and reconfiguration. On the other hand, nature of the tailor-made components cause 

products to be bounded to a certain group of features where the same nature also limits the quality of the assemblies 

as the understanding towards the shimming requirements deepens. Consequently, the current fixturing technique 



becomes a cost-driver and capability limiting factor even though it provides the necessary strength and requirements 

satisfactorily. 

The idea of shimming flexibility is, in the test rig, approximately limited to +/- 0.5 mm in X- and Y- axes with 

respect to the diameter of interface holes. However, this flexibility can be easily expanded to the process 

requirements by increasing the respective diameters. It is also important to emphasize the point that the framework of 

the flexapods might reduce the quality as the plates are not machined for a higher surface quality. Therefore, as the 

use of a non-machined surface raises, higher shimming capabilities can cause the locators deflect from the 

anticipated tolerance zone. This was particularly observed as the surface of the framework is measured to vary 

roughly +/- 0.1 mm on the axis perpendicular to the plane – which might affect tolerance variation greatly. One way 

to cope with this problem is to machine the framework surface to a certain tolerance – which creates a trade-off 

between the quality and cost especially when the flexapod is relatively big.  

Another important result about flexibility can be drawn with regards to time; particularly for building, 

reconfiguration and shimming. ART concept provides lesser design and lead times; and building the fixture happens 

directly at the plant site. The measured amount of time for the framework's initial assembly was around 16 hours 

whereas the reconfiguration time of the key components in the framework required 5 hours. The configuration and 

assembly of each flexapod takes a trained person to spend 1 hour – which can be seen as the change over time of 

each component in case a different product needs to be introduced. 

The time spent on the locator positioning requires a separate emphasis. Since the design capabilities do not 

provide a continuously-controlled motion due to floating on a surface, the positioning of each locator might consume 

relatively more amount of time with respect to tailor-made parts. What was measured throughout the locator 

positioning is that each locator takes almost 15 minutes to reconfigure. This might be a major concern as the number 

of locators increase, the time required for positioning will be more accordingly. In order to avoid this time 

consumption, it is important to design the locators with an interface to a measurement system that will ease the 

measurement procedure. This particular point can also be reflected on shimming capabilities where reaching a 

correct locator position will repeat the same procedure as in initial assembly. However, when compared to existing 

tooling at VCC the shimming and locator positioning takes approximately 1-2 minutes due to the use of standard 

plates in all directions. 

Even though the paper presents a set of results on flexibility, they are still immature in terms of integration to a 

highly-automated production line. Therefore, one possibility that can completely disclose the competence and 

weakness of flexible tooling concept is to devise a capability test on the developed fixture. These capability tests will 

evaluate the rig from process and operator perspectives by applying the same shimming operations currently used at 

VCC. These tests, from fixturing perspective, will be conducted with the aid of an in-process measurement system 

where the shimmed GOR will be installed to an already-built control fixture. Through the measurement of certain 

points on the GOR, the resulting data will be communicated to the case-based reasoning system for another set of 

shimming suggestions. This way, it will be verified that all the work packages are functioning as they are aimed to. 

Moreover, with each measurement the case-based reasoning system will enrich and start to produce better results. 

From operator’s perspective, the aim will be to evaluate what the division between manual and automated work 

should be. This division will be decided by measuring the time for each test scenario and comparing them to the 

appointed values at VCC. Preliminarily, if the time required for shimming any component of the GOR in any axes of 

car coordinate frame surpasses the production line requirements, then the corresponding flexapod will be considered 

for automation. 

Despite the lack of capability tests, the test rig clearly shows that the ART concept is capable of providing tools 

required not only for changeovers but also for in-process shimming operations. Since the focus of ART is on 

affordability, the fixture also provides cost-effective solutions compared to dedicated tooling technologies. However, 

the manual work requirement and ambiguity of whether the fixture can withstand the process forces robustly remain 

as the weakest points. Therefore, an important conclusion in the light of these learnings can be that flexible tooling 

must be further investigated for the integration of flexible automation tools and assisting technologies. Hence, ART 

concept with flexible automation is expected to provide flexibility, strength to handle process forces, affordability 

and less time consumption – which will eventually function better than the dedicated tooling solutions. 

 



5. Conclusion 

This paper presented the preliminary results on a development of flexible tooling concept for car manufacturing 

cells in collaboration with Volvo Cars Corporation. The fixture developed was aimed to show that affordable 

flexibility can facilitate not only the product changes but also in-line process adjustments. Because of the manual 

labor intensive nature, the fixture is not possible to integrate to a highly automated production line at its current state. 

However, the fixture clearly showed that the affordable reconfigurable tooling can set the basis for future fixturing 

where flexibility meets the automation. Thus, in order for flexible fixturing to compete with current dedicated tooling 

technologies flexibility concept must be implemented with affordable flexible automation tools along with key-

enabling mechanical solutions. These solutions must provide the features of dedicated tooling such as high stiffness 

and the ability to withstand process forces. In addition, the emerging automated flexible tooling should remain cost-

effective and time-saving. Consequently, the demands of today's agile manufacturing can be further satisfied with 

these features on flexible tooling.  
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