

Improving Unit Testing Practices
With the Use of Gamification
Masters Thesis in Software Engineering

DAVÍÐ ARNARSSON
ÍVAR HÚNI JÓHANNESSON

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden 2015

The authors grant to Chalmers University of Technology the non-exclusive right to
publish the work electronically and in a non-commercial purpose make it accessible on
the internet. The authors warrant that they are the authors to the work, and warrant
that the work does not contain text, pictures or other material that violates copyright
law.

The authors shall, when transferring the rights of the work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
authors have signed a copyright agreement with a third party regarding the work, the
authors warrant hereby that they have obtained any necessary permission from this third
party to let Chalmers University of Technology store the work electronically and make
it accessible on the internet.

Improving Unit Testing Practices
With The Use Of Gamification
DAVÍÐ ARNARSSON
ÍVAR HÚNI JÓHANNESSON

c© DAVÍÐ ARNARSSON, June 2015.
c© ÍVAR HÚNI JÓHANNESSON, June 2015.

Supervisor: ERIC KNAUSS
Examiner: RICHARD BERNTSSON SVENSSON

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2015

Abstract

Background Testing in software development is important. Unit testing is one tech-
nique developers use to catch potential bugs and combat regressions. However, unit
testing is often considered to be an arduous task, and as such, developers might avoid
unit testing their code. Gamification is a concept that has been defined as the use of
game elements in a non-game context. The concept has been demonstrated to have a
positive effect on unit testing in an experimental context but hasn’t been observed in
industry until recently.

Aim This study employs gamification as a means for motivating developers to write
more and better unit tests. By analyzing both static and dynamic qualities of unit tests
and feeding the results into our gamification tool, G-Unit, we aim to score developers
based on their unit testing efforts.

Method This study applies design science research, based on work by Wieringa. The
study consisted of 3 iterations and each iteration consists of 5 phases of the regulative
cycle. The data was collected by using surveys, interviews and by mining the artifact’s
SQL database.

Results No ethical issues arose during the study, the developers felt that the G-Unit
tool motivated them to write more and better tests and were able to learn about im-
portant software testing metrics and concepts. The largest design problem was the
continuous balancing of the gamification system while the largest technical challenge
was the implementation of test smell detection.

Contributions The study was a successful in its task of motivating the developers
at the participating company to write more and better unit tests. Gamification had a
positive effect on the developers work.

Keywords: Gamification, Unit-testing, motivation, testing, ethics, design science re-
search.

Acknowledgements

We would like to thank Eric Knauss, our supervisor, for giving us invaluable feedback
and guidance, and Emil Alégroth for introducing us to test smells. We would like to
thank Advania, for their participation and continued interest in our work. We would
also like to thank our classmates, Þorvaldur Gautsson and Jacob Larsson for their proof-
reading. Finally, our thanks go to Arna Sif Ásgeirsdóttir, for her support, and the many
delicious meals she cooked for us.

The authors, Gothenburg, 24. May 2015

Contents

1 Introduction 1
1.1 Case company . 3
1.2 Purpose of the Study . 3
1.3 Statement of the Problem . 4
1.4 Research Questions . 5
1.5 Scope and Limitations . 5
1.6 Contributions . 6

2 Background 7
2.1 Gamification . 7

2.1.1 Benefits of Gamification . 8
2.1.2 Gamification of Software Development 9
2.1.3 Gamification & Ethics . 10

2.2 Maven . 12
2.3 Software Testing . 12

2.3.1 Automated Testing . 13
2.3.2 Unit Testing . 13
2.3.3 White-Box Testing . 13
2.3.4 Code Coverage Analysis . 14
2.3.5 Test Smells . 14

3 Methodology 17
3.1 Design Science Research . 17

i

CONTENTS

3.1.1 Context . 18
3.1.2 Design Science Research vs. Action Research 18

3.2 Reg. Cycle Framework . 19
3.2.1 Problem Investigation . 20
3.2.2 Solution Design . 21
3.2.3 Design Validation . 22
3.2.4 Implementation . 23
3.2.5 Evaluation . 23

3.3 Developers, Interviews & Surveys . 24

4 G-Unit 26
4.1 Overview . 26

4.1.1 Flow . 27
4.2 Implementation . 28

4.2.1 Design . 29
4.2.2 User Interface . 30

5 Iterations 32
5.1 Iteration 1: Code Coverage . 32

5.1.1 Problem Investigation . 33
5.1.2 Solution Design . 34
5.1.3 Design Validation . 35
5.1.4 Implementation and Calculations 36
5.1.5 Changes from Design . 37
5.1.6 Evaluation . 37

5.2 Iteration 2: Test Smells . 37
5.2.1 Problem Investigation . 38
5.2.2 Solution Design . 38
5.2.3 Design Validation . 38
5.2.4 Implementation . 39
5.2.5 Evaluation . 40

5.3 Iteration 3: Instant Feedback . 40
5.3.1 Problem Investigation . 40
5.3.2 Solution Design . 41

ii

CONTENTS

5.3.3 Design Validation . 41
5.3.4 Implementation . 42
5.3.5 Evaluation . 42

6 Results 43
6.1 Evaluation of Iteration 1 . 43
6.2 Evaluation of Iteration 2 . 45
6.3 Evaluation of Iteration 3 . 46
6.4 Quantitative Data . 47

6.4.1 Number of Unit Tests Created and Test sessions 48
6.4.2 Badges . 49

6.5 Revisiting the RQs . 49
6.5.1 RQ1 . 49
6.5.2 RQ1.1 . 49
6.5.3 RQ1.2 . 50
6.5.4 RQ2 . 50

7 Discussion 51
7.1 Research Questions . 51
7.2 Contribution to Knowledge . 55
7.3 Validity Threats . 55

8 Conclusion and future work 58
8.1 Future work . 59

Appendices 61

A Appendix 62
A.1 Interview guide: Code coverage in Iceland 62
A.2 Interview Guide: Iteration 3 post-interview 62
A.3 Gamification rules . 63

A.3.1 Iteration 1 . 63
A.3.2 Iteration 2 . 64

A.4 Pictures of G-Unit . 66

B Questionnaires 69

iii

CONTENTS

B.1 Before introduction . 69
B.1.1 Data . 70

B.2 Developer daily: Iteration 1 . 71
B.2.1 Data . 73

B.3 Post-Iteration 1 . 74
B.3.1 Data . 74

B.4 Developer daily: Iteration 2 . 74
B.4.1 Data . 77

B.5 Post-iteration 2 . 78
B.5.1 Data . 79

Bibliography 83

iv

1
Introduction

Software testing is an important practice in software development. Testing can be used
to increase a tester’s confidence in his code, uncover faults and verify up to a degree
that the system meets its requirements. Although testing is a vital part of software
development, testing cannot guarantee the absence of faults no matter how creative or
well designed the tests are [1]. There are various types of testing, which can be done
either manually or automatically through the use of tools. Unit testing, the testing
method studied in this thesis, is a commonly used type of automated testing. It focuses
on testing individual units of source code, and is an important component of a number
of Agile development methodologies and practices, such as Test-Driven Development,
and eXtreme Programming.

Testing software has both quality and cost benefits. Envisioning the benefits is eas-
ier from a quality perspective than the cost perspective since one of the primary goals
of software testing is to uncover faults. Maximilien [2] demonstrated that not using a
methodology which includes testing as a first-class citizen can severely affect project
quality in the form of defects. For instance, he demonstrated a 40% decrease in de-
fects between a software project which employed test-driven development compared to
a baseline project which employed ad-hoc testing.

The idea that testing can cut development costs might sound somewhat strange. However
the scientific literature on the subjects seems to adhere to that statement. Maximilien

1

CHAPTER 1. INTRODUCTION

[2] argues that one of the most effective ways to keep development costs down is to
minimize the number of defects. K. Briski et al. [3] argue that since the cost of catching
a defect grows exponentially as the software progresses through the development cycle it
is vital to catch defects early on. Maximilien [2] suggests that finding a defect after the
release of the actual product is up to 30 times more expensive than finding the defect
in the design or architectural phase of the product. McConnell, based on a number of
studies, suggests that finding a defect post-release might actually cost up to 100 times
more than during the requirements phase [4]. The literature mentioned above seems
to indicate that writing automated tests results in higher quality software with fewer
defects which in turn could lead to lower overall development costs.

Test code can contain flaws just like source code. A. van Deursen et al.[5] defined
potential trouble within test code as “test smells”, building on top of Martin Fowler’s
work on code smells [6] and defined a list of test smells and how their effects could be
mitigated through refactoring. Absence of test smells does however not guarantee a well
written test. A test has to be carefully written and designed in order to uncover faults
within the source code [1].

Keeping developers motivated is important. In the 21st century a new concept, gam-
ification, has been gaining more attention from the software community [7]. For in-
stance, researchers have attributed the success of the mobile application FourSquare to
its gamification elements [8]. The definition of the gamification concept varies between
researchers, as many similar definitions exist. In this thesis, the definition of gamification
given by Deterding et al. will be used.

“The use of game design elements in a non-game context.”[8]

Gamification has mostly been studied in the context of education and learning where it
has shown good results in regards to motivation, learning and increased enjoyment of
the gamified tasks [9]. Johansson and Ivarsson’s experiment [10] on the gamification of
unit testing also produced positive results where the subjects felt that the testing phase
was more fun and interesting compared to a control group. Because of these promising
results, this study incorporates gamification into the unit testing practices in order to
motivate and increase enjoyment of unit testing at Advania, the industry partner of the
study.

2

1.1. CASE COMPANY CHAPTER 1. INTRODUCTION

1.1 Case company

Advania is a nordic IT company which services a wide array of different types of cus-
tomers, be it government contracts or businesses. The participating department within
Advania manages an educational software called Inna. Inna is used to manage commu-
nication and day to day school operations. It is used by students, teachers and support
staff at over 30 schools in Iceland, totalling an end-user base of over 40.000 people. The
department has just recently released a new version of Inna, which was a total rewrite
of their front end, and they are working towards reaching feature parity with the older
version. The department also used the release as an opportunity to switch to weekly
releases. Their current testing practices are ad-hoc, there are very few if any automated
tests, and their testing is performed manually.

1.2 Purpose of the Study

The purpose of the study is to improve software testing at Advania in the context of
unit testing by creating a gamification tool which can:

• Analyze code coverage of the unit test

• Detect test smells in the unit test

• Rank the test based on test smells and code coverage

• Increase motivation among the developers to write more unit tests.

• Increase the enjoyment of unit testing among the developers.

• Motivate the developers to write high quality unit tests in terms of code coverage
and test smells

By detecting test smells and analyzing code coverage the tool shall be able to rate the
tests on a numeric scale. Malayia et al. argues that "[...] modules covered more thor-
oughly during unit testing are much less likely to contain errors" [11] and therefore the
ranking system of the tests will be based partly on code coverage. The test analyzing tool
built during this study, named G-Unit, uses JaCoCo which is a code coverage analysis
tool that provides detailed statistical info regarding (but not limited to) line coverage,

3

1.3. STATEMENT OF THE PROBLEM CHAPTER 1. INTRODUCTION

branch coverage and instruction coverage. Those statistics could be interesting to the
developers and could indicate the quality of the tests, although some of the statistics will
not be used in the gamification system. A brief informal interview with representatives
of two different software companies in Iceland [12] [13], other than Advania, revealed
that a certain level of code coverage is expected, although actual coverage percentage
and which code coverage metric is inspected seems to vary. Including code coverage
metrics in the gamification system therefore seems logical [12][13]. By rating the tests
based on test smells and code coverage data it is possible to create a gamification system
that uses the data from the tool as input. As previously stated, gamification has been
shown to positively influence the motivation, engagement and enjoyment of the gamified
task at hand. With that in mind, the purpose of the gamification system should be to
increase the motivation and engagement of unit testing. Hopefully this work will lead
to better testing practices at Advania, resulting in higher quality software products and
cost reductions through more adequate testing infrastructure.

1.3 Statement of the Problem

After the initial meetings with management at Advania it became apparent that they
were facing problems with their testing infrastructure. They had written few unit tests
and therefore lacked experience in writing them in the participating department. Their
interest and motivation to write tests was also rather low. It became clear after the initial
literature review that these problems were not limited to Advania as an organization,
but were also applicable to other software companies within the industry. Kanij et al.
[14] for instance suggests that testing is often considered to be a boring task within
organizations. By incorporating gamification into the testing practices at Advania the
study aims to increase the motivation to test, hopefully resulting in more tests. The
goal of the study was also to encourage developers to write better tests by constructing
a gamification system which encourages the writing of high quality tests by encouraging
high code coverage and low amount of test smells. Although many researchers claim
that it is important to change the perception of testing within software organizations,
the literature review didn’t reveal any innovative methods to change the developers’ view
of testing. Therefore this study does not focus solely on the technical aspects of testing
but also tries to improve the social aspect as well.

4

1.4. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

A potential problem could also be that the developers simply aren’t knowledgeable
enough about test smells or testing in general. Therefore the developers must be edu-
cated alongside the deployment of the tool on what constitutes as a test smell and how
to avoid them in order to benefit from this study in the long run.

1.4 Research Questions

RQ1: How does gamification influence unit testing practices?

RQ1.1: How does gamification affect the developers’ motivation to write more
unit tests?

RQ1.2: How do test smells and code coverage as input to a gamification system
influence unit test quality?

RQ2: What gamification element in this study proves to be the most effective at influ-
encing unit testing practices?

1.5 Scope and Limitations

After the meetings with Advania it became apparent that they were interested in im-
proving their all around test infrastructure. However the scope of improving all aspects
of testing was deemed too broad for a master thesis and the focus was set on unit testing.
This is also the field of testing the authors were most interested in and also had some
experience in that particular field. After further discussions about unit testing with
management it became clear that their problem with testing was not strictly bound to
the technical aspect but also in terms of motivation, general knowledge of testing and
interest in testing among the developers. As discussed in Section 1.3 companies around
the world have acknowledged that their issues with testing are not strictly bound to the
technical aspect and therefore including the social aspect of testing within the scope was
deemed acceptable.

5

1.6. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.6 Contributions

As an exploratory study, the authors contribute to academia by exploring the possibilities
relating to gamification of testing and how Ivarsson and Johansson’s [10] findings on
gamification of testing work in the real world. Advania is the biggest beneficiary here as
it stands to gain something in terms of software quality and cost reductions if the study
is successful. Even though the gamification part of the study fails, the company will
still benefit from the study. Their developers gain experience in terms of unit testing
and will know how to avoid test smells and how to mitigate their effects. Since G-Unit
provides an automatic evaluation of their tests they could potentially use the tool without
the gamification engine in order to evaluate their tests. The potential audience will
likely be practitioners interested in improving their testing infrastructure and academic
researchers interested in application of gamification in the real world.

6

2
Background

The following section provides a background for the important concepts in this thesis. It
discusses gamification in terms of benefits, prior work linked with software engineering
and ethical issues surrounding gamification. It also provides background for software
testing in general, unit testing and test smells within unit tests.

2.1 Gamification

In the last decades of the 20th century the popularity of video games rose substantially
and today video games are one of the most powerful entertainment platforms [15] [16].
After the rise in popularity of video games, researchers have become more interested in
video games and what makes them appealing. Video games expose the player to certain
game mechanics which the player is forced to learn in order to master the game itself.
Video games can often spark an interest in non-gaming related topics and therefore
researchers have been interested in how to apply video games in an educational context.
In recent years, researchers have conducted several studies on this subject and have had
interesting results. However, researchers have at times run into problems that outweigh
the benefits of applying video games in educational context, for instance related to
technical infrastructure. Due to these issues, some researchers have instead focused on
applying the positive elements from video games to a non-gaming context [15], also

7

2.1. GAMIFICATION CHAPTER 2. BACKGROUND

known as gamification.

The term itself, gamification, is relatively new as a research topic within the field of
software engineering and in industry. According to Deterding et al [8] the term itself
originated within the digital media industry in 2008 but the use of the actual term itself
didn’t become popular until around 2010. Other sources claim that the term was coined
by Nick Peilling in 2002 [17]. Although the age of the term itself is not of high importance,
it is safe to say that it originated in the 2000s and became widespread around the year
2010. Although some research has been done on gamification by scholars, there is more
to explore with regards to, for example, unit testing, which has on its own been studied
quite thoroughly by researchers.

Deterding et al. [8] describe the most common elements of gamification as points, also
known as experience points or XP, badges and levels. Most systems give users points/XP
for every task that they finish, how insignificant it might be although bigger tasks yield
more points/XP. Users earn badges by completing various milestones or quests within
the gamified system, for example by completing a task within a certain time interval. A
level up system is also quite common. Level up systems revolve around the idea that a
person will level up when he or she has gathered enough experience points to advance
to the next level. Level up systems are often based on an exponential scale instead of
a linear progression meaning that reaching Level 3 is harder (requires more points/XP)
than reaching level 2. Another element is a leaderboard, which visualizes the status of
the people involved in the gamified task. A leaderboard can include some or all of the
following elements: points/XP, badges, milestones/quests and any other statistical info
that is gathered throughout the gamified task. Instant feedback is yet another common
element in gamification. In a digital environment instant feedback may be easier to
implement relative to a non-digital environment, for example by displaying messages
when a user acts within the system or with status updates notifying the user of a change
in the state of the system.

2.1.1 Benefits of Gamification

Various benefits can potentially be acquired from gamification if applied correctly. Some
researchers have reported positive results in regards to motivation, learning and increased
enjoyment of the gamified task at hand [9]. Another interesting topic is to influence user

8

2.1. GAMIFICATION CHAPTER 2. BACKGROUND

behaviour through gamification, e.g. steering the user’s behaviour in a certain direction
through various gamification elements, for instance through badges.

A good example of badges influencing user behaviour is a study conducted by Grant &
Betts. Grant & Betts [18] researched public data from the Q&A website StackOverflow1

which uses points and badges in order to try to influence users. An example of the
manipulation of users behavior is demonstrated with the Copy Editor badge which is
awarded to users for editing over 500 posts on the site. The policy of the website is that
the content on the website belongs to the community itself and not the user and therefore
the website encourages community editing in order to increase the quality of posts on the
website. The study illustrates how users that are close to 500 edits actively edit posts
until they reach the 500 edit mark and after that significant behavioural changes occur.
The users stop editing posts after the Copy Editor badge is acquired as the users feel no
need to edit other peoples’ work any longer. This demonstrates how the site is able to
manipulate users to contribute in form of edits as an increase in edits is observed before
the acquisition of the badge compared to the time period after the badge is awarded to
the user.

2.1.2 Gamification of Software Development

Researchers have conducted studies on the gamification of software development both in
an educational context and in industry and achieved positive results. Singer and Schnei-
der [19] were able to motivate students to commit their changes to a project repository
more frequently by using a leaderboard (along with other tools). After the study ended
they noted that some students felt slightly uncomfortable with the competitive elements
that the leaderboard introduces. However, they noted that although some students felt
uncomfortable because of the leaderboard, it seemed to be motivating for students to
increase their commit count.

Passos et al. [20] conducted a case study with a real world agile software team. In the
study, developers and teams were awarded medals for their completion of tasks, number
of iterations completed within a time interval, and medals were awarded for levels of test
code coverage. The results indicated that the use of achievements not only motivated the

1http://stackoverflow.com

9

2.1. GAMIFICATION CHAPTER 2. BACKGROUND

developers to become more engaged in their work but also helped the company monitor
and control the development process.

2.1.3 Gamification & Ethics

Implementing a gamification system for use by a real world software development team
can be quite a challenge from the ethical perspective. Shahri et al. [21] discuss this in
their study on the ethics of gamification. Although Shari’s study was not based on soft-
ware development teams but rather general teamwork, the ethical guidelines the study
lays out are still applicable to a software development team since software development
is based on team work.

The collaborative nature of a software development team could possibly be an issue,
as unnecessary tension could be created between developers with the introduction of
a gamification system. This is largely related to the personalities of the developers
that make up the team. Employees could potentially become more arrogant when they
are awarded achievements, while other may become more helpful and might begin to
help their teammates unlock the very same achievements that they earned themselves
[21].

Employees that are listed in a leaderboard could feel more reassured about their perfor-
mance, while others could become depressed about never appearing on the leaderboard
at all. This is related to the management style of the team, as managers who use the
leaderboard to compare employees could create tension between the employees by rank-
ing them based on their performance on the leaderboard. Employees sometimes prefer
a gamification system which would be used to help them improve, without comparing
themselves to other employees [21].

Employees tend to be more accepting towards a non-comparing gamification system,
since they do not feel as pressured as when the manager uses it to compare performances.
Another aspect is that although a gamification system can often easily measure how much
work has been done by an employee, the system has difficulties evaluating the quality
of the work [21]. To counter that, this thesis’ gamification system tries to measure the
quality of tests written based on the metrics discussed in section 1.2. However, that is
one of the largest challenges of the gamification system and will be discussed further in

10

2.1. GAMIFICATION CHAPTER 2. BACKGROUND

the validity threat section.

Another scenario is when employees within the same team start to team up within the
team. This could either be useful or harmful for the group. Members who are dragging
the ‘team score’ down by their bad performance could feel pressured to leave the team
since they aren’t contributing enough to the team’s gamification profile. The positive
side is when team members with a similar skill set start teaming up [21]. This could
perhaps result in more effective teamwork.

Since gamification systems are based on statistical info about its users there are large
quantities of personal information that could potentially be gathered. For instance,
logging of a person’s work hours, webcam analysis, effectiveness of a person’s work hours
and other kinds of personal data [21]. In this study only statistical information about
the unit tests written by the employee is recorded and no other information. Employees
are often not happy if personal data is widely available and visible to everybody within
the company and would rather have the data only visible to their supervisor, since it
is often the supervisor’s job to monitor his employees. Employees also deem it more
suitable that their statistics are available to their team members and managers rather
than other workers outside the team. Again, this is a problem which heavily relies on the
employee’s personality since hard working, competitive employees would like to use the
logs from their personal statistics as an advantage when they would apply for bonuses or
promotions. Low scoring employees that are perhaps not as competitive might have lower
scores in the system since they do not care as much about it. Therefore their lower score
could be related to their lack of competitiveness instead of the quality and/or quantity
of their work [21].

In order to make the goals, the rules of the leaderboard and the gamification system
in general more clear, management should clearly state the objective of the gamified
tasks [21]. In other words, transparency is key. If the objective is to rank employees
and base salary bonuses on the leaderboard, management has to make sure that this is
clear to every employee. The objectives of the gamification system in this study is not to
create a system for management to rank or evaluate the performance of their developers
programming capabilities but only to motivate the developers to write more and better
unit tests.

11

2.2. MAVEN CHAPTER 2. BACKGROUND

2.2 Maven

Maven is a software build and integration tool for the Java environment. Maven has
powerful software dependency management capabilities, as well as a plugin API for writ-
ing software which interacts with any aspect of the build phase that Maven is concerned
with. For instance, the Maven Surefire Plugin2 generates reports based on the Maven test
phase results. The dependency management functionality revolves around repositories
for available software built using Maven. Other software projects using Maven can then
depend on this available software down to the exact version in their Maven configuration,
and Maven automatically resolves and downloads said dependencies [22].

2.3 Software Testing

G.J. Myers and C. Sandler describe software testing as “[...] the process of executing
a program with the intent of finding errors” [1]. Although software testing is a proven
method to find bugs and errors within a software suite, many developers have a bad
attitude towards it. For instance, both Martin et al. [23] and Kanji [14] et al. note that
developers often find the task of testing their software dull, boring or the least fun task in
their work. Others describe testing as difficult, time consuming and inadequate. This is
quite interesting, especially considering that in 2002 the cost of inadequate infrastructure
for software testing is estimated from $22.2-59.5 billion dollars in the United States
[24]. Although these figures are quite old, they give insight into the problems that
the software industry faces in the context of testing. Although this bad attitude could
possibly be a cause for the less than optimal state of software testing in the industry
today, more studies are needed to link the attitude towards testing to the state of testing
procedures.

Although testing suffers from social problems, technical problems are also present. The
knowledge used in software testing suffers from low maturity compared to other engi-
neering practices. Test developers do not base their decisions on facts and undisputed
statements but rather on their own intuition, trends and market speak, resulting in
unpredictable results [25].

2http://maven.apache.org/surefire/maven-surefire-plugin/

12

2.3. SOFTWARE TESTING CHAPTER 2. BACKGROUND

2.3.1 Automated Testing

Testing software by hand, also known as manual testing, can be very time-consuming.
Automated testing is any form of testing which uses software to automatically execute
a set of test scripts, and report the result. Doing so only requires the developer to write
the test scripts.

2.3.2 Unit Testing

Whittaker defines unit testing as: “unit testing tests individual software components or
a collection of components. Testers define the input domain for the units in question and
ignore the rest of the system.” [26]. Unit tests are, like mentioned in chapter 1, a form of
automated testing. Unit tests are performed with the use of tools (or frameworks), for
instance JUnit3 which is a unit testing framework for Java. Like other testing methods,
the purpose of unit testing is to improve the quality of the software and increase the
correctness of the software [27].

Test Fixtures

A test fixture in a unit testing class is the set-up code needed to configure or place the
system under test into the correct state before or in between the execution of tests. Test
fixtures can manifest in the form of a single setup method, or be comprised of all the
initialised member fields of a unit testing class common to all test methods, a so called
implicit setup.

2.3.3 White-Box Testing

White box testing examines the structural qualities of a program [1]. Examples of white-
box testing include examining how much of the system under test is executed by test
suites. Such analysis is also known as code coverage analysis.

3http://junit.org

13

2.3. SOFTWARE TESTING CHAPTER 2. BACKGROUND

2.3.4 Code Coverage Analysis

Code coverage analysis is a white-box testing method which analyses the structural qual-
ities of code [28]. During the execution unit tests, a code coverage analyser keeps track
of various aspects of the code executed by the unit tests. The resulting instrumenta-
tion makes a number of metrics available to the developer. Examples of such metrics
include:

• Instruction coverage, tracks the number of machine instructions executed by tests
out of a total number of instructions

• Branch coverage, tracks the number of branches (boolean expressions such as if or
while statements) evaluated to both true and false. A missed branch constitutes
for instance a boolean expression only evaluated to true during test execution, but
not false.

• Line coverage, tracks the number of lines of code executed by tests out of a total
number of lines. This data is not always accessible due to the nature of individual
code coverage analysis tools.

JaCoCo

JaCoCo is a free, open-source code coverage analysis tool for Java. It gathers branch,
instruction and line coverage for each test class among other coverage metrics, and saves
it to disk in a convenient CSV4 format, which is easy to read.

2.3.5 Test Smells

Several researchers have contributed to both the definition of various test smells and
detection of test smells within test code. Van Deursen et al. [5] defined 11 different
test smells and how to mitigate them in 2001 by building on Martin Fowler’s previous
work on source code smells in 1999. Other scholars have contributed to the field with
tools that aim to detect test smells within test suites. In 2013 Greiler, van Deursen
and Storey [29] created an static test smell detection tool called TestHound. TestHound

4http://en.wikipedia.org/wiki/Comma-separated_values

14

2.3. SOFTWARE TESTING CHAPTER 2. BACKGROUND

extracts a number of facts from Java test source code at compile time, and categorises
these facts into test smell indicators. A set of metrics defined by Greiler et al. [29] then
makes use of these test smell indicators to detect various test fixture-related test smells.
TestHound comes in the form of an executable application, which needs user input in
order to perform the analysis. Greiler et al. [29] note that in future releases, they intend
to create a Maven plugin for TestHound, but as of March 2015, no such release has
occurred. TestHound and by detects the following test smells:

General Fixture

Many unit testing frameworks have the option of running a test fixture before the test
is run. For instance, the JUnit framework has an annotation called @Before that can be
used to mark a method that will be executed before a unit test is run. The smell occurs
when the test fixture becomes too general. This makes the test harder to understand and
can cause the test to run slowly as too much work is performed in the test fixture. This
can be mitigated by stripping down the test fixture and have it only contain code used
by all the tests and inlining the remaining code in the test method that uses it.

Test Maverick

The Test Maverick smell is related to the General Fixture smell described above. Test
methods in test classes which contain implicit setups should utilise said implicit setups.
If these test methods do not utilise any of the implicit setup fields they are considered
test mavericks. The existence of test mavericks in test classes implies that there is
setup code being executed without it being needed. Test mavericks also reduce the
understandability of the test class. Since test mavericks do not depend on the implicit
setup, they can be safely extracted into another class.

Dead Field

Dead fields in a test class are fields that are not used by any method or field in the class.
Dead fields can reduce code legibility as well as adding clutter and possible side effects if
initialized. Refactoring dead fields is simple; one simply removes the dead fields.

15

2.3. SOFTWARE TESTING CHAPTER 2. BACKGROUND

Obscure Inline Setup

Unit tests can serve as documentation for the system under test. Inline setup code that
not only contains the steps required to run and understand a test, but also code irrelevant
to the steps themselves runs counter to the documentation benefit of unit tests. Such
unit tests are referred to as having obscure inline setups. In order to fix obscure inline
setups, one can move irrelevant setup code into a separate method, or move setup code
common to more than one test into an implicit setup belonging to the test class.

For more detailed overview of test smells the reader is instructed look up van Deursen’s
work on the topic [5]. Bavota et al. published a study in 2012 which empirically shows
that test smells are widely spread and that most of the test smells affect the the main-
tainability of test suites and production code negatively [30].

16

3
Research Methodology

This thesis uses design science as a research method and is based upon the regulative
cycle framework created by Wieringa [31]. The regulative cycle provides detailed in-
structions on how to execute the design science research methodology.

3.1 Design Science Research

Design science research is an iterative problem solving method. Its core concept is
the creation of an artifact (a model, prototype or an implementation) where deeper
understanding and knowledge of the practical problem is gathered while building the
actual artifact itself and during the application of the artifact. G-Unit, the tool created
in this study, is a test analyzing tool with a gamification layer on top. The artifact is
created to address a certain practical problem, and in order to acquire knowledge from
the artifact, it must be analyzed and evaluated. It is quite important that the artifact is
innovative since it has to solve a previously unsolved problem or solve a previously solved
problem in a better way. The process and the artifact construct a problem space where
researchers can apply their methods and mechanisms in order to search for a solution.
Researchers conducting design research must be able to present their results to both a
technical (programmers, other researchers) and non-technical audience (management)
[32].

17

3.1. DESIGN SCIENCE RESEARCH CHAPTER 3. METHODOLOGY

3.1.1 Context

The artifact in this thesis is G-Unit, the test analyzing tool. Advania is currently facing
problems with motivating unit test writing and faces uncertainty of test quality. The
artifact is intended to address these problems by combining gamification elements with
test evaluation methods, and the tool will be evaluated in conjunction with the developers
working at Advania. After evaluation and analysis of the artifact the results will be
presented in the form of this study.

Practical problems and knowledge problems respectively are defined by Wieringa [31] as:
“I define a practical problem as a difference between the way the world is experienced by
stakeholders and the way they would like it to be, and a knowledge problem as a difference
between current knowledge of stakeholders about the world and what they would like
to know“. The problems Advania is currently facing in terms of testing are practical
since Advania wants to change the way testing is conducted within the organization.
Although a knowledge problem might be nested within the practical problem, in the
form of lacking testing knowledge by the developers, it does not change the nature of
the main task. Since the purpose of design science research is to solve practical problems
[31] and Advania’s testing problems are indeed practical on the top level, this research
methodology is a good fit for this thesis. The solution presented in this thesis could
also be considered quite innovative as substantial work hasn’t been conducted on the
gamification of unit testing.

3.1.2 Design Science Research vs. Action Research

During the first decades of the 20th century, researchers have been looking into the
similarities of design science research and action research [33]. Some conclude that their
similarities are substantial [34] while others even come to the conclusion that one can
not differentiate between them [34].

The differences between the methodologies lie in their background. Design science re-
search originates from engineering and computer science research while action research
originates from social studies [35] and focuses on the researcher as an active participant
in solving practical problems [34]. Design and usefulness of the created artifact is the
core concept of design science research but in action research the core concept is "[...]

18

3.2. REG. CYCLE FRAMEWORK CHAPTER 3. METHODOLOGY

the focus of interest is the organizational context and the active search for problem so-
lutions therein" [34]. Design design science research was chosen as the methodology for
this study because of the emphasis put on developing an innovative artifact designed to
combat the motivational problems discussed in Section 1.3. Also, as this study focuses
more on the created software artifact and its viability to solve the practical problems
rather than focusing on the researchers themselves, design science research is a better
fit.

3.2 The Regulative Cycle Framework

Figure 3.1: The Regulative Cycle

The applied framework in this thesis is the regulative cycle, provided by Wierenga[31].
By Wierenga’s definition of design science research and the regulative cycle, each design
science research project should be structured as a set of problems where the top level
problem is always a practical problem and the regulative cycle framework provides a
logical structure to solve these problems. The regulative cycle consists of four phases
(or steps), the first one being investigation of a practical problem. The second phase is
solution design, followed by a design validation and finally implementation of the solu-
tion. An optional phase is the evaluation phase, where the implementation is evaluated
and can serve as a base for the first step in a new regulative cycle. This thesis will
incorporate the evaluation phase for three iterations. The evaluation phase of iteration
one will be used as a base for the regulative cycle in iteration two, the evaluation phase

19

3.2. REG. CYCLE FRAMEWORK CHAPTER 3. METHODOLOGY

of iteration two will be used as a base for the regulative cycle in iteration three. The
evaluation phase in iteration three will be used to evaluate the iteration, but will not
serve as a base for a new cycle because there are only 3 iterations in this study. The
last evaluation will serve as the strongest evaluation of G-Unit as the tool will have all
of its test analyzing and gamification elements implemented in iteration two, allowing
the polishing of features in iteration three.

3.2.1 Problem Investigation

In a problem investigation, researchers seek to gather knowledge about a problem with-
out actually acting on the problem. The goals of the investigation are to diagnose the
problem by describing and explaining it and possibly to predict the outcome if nothing is
done to address the problem identified. There are four different kinds of problem inves-
tigations which differ in terms of what drives the investigations. First, an investigation
can be “problem-driven” when stakeholders aren’t certain about what constitutes the
problem and an analysis of the problem is required in order to solve it. Second, an inves-
tigation can be “goal-driven”. This is when no real problems are experienced per se, but
for some reasons a change is needed. Third, an investigation can be “solution-driven”.
This is the case when investigators are in search of problems that a new technology
could potentially solve. Finally, an investigation can be “impact-driven”. This is when
researchers focus on evaluating the outcome of previous methods or actions instead of
focusing on a new design or a solution [31].

The problem investigation conducted in this study was split up in to four different
parts.

• Exploratory work in the form of a literature review was conducted in order to
identify common problems that organizations are facing in terms of testing, es-
pecially unit-testing. This part of the problem investigation could be categorized
as “impact-driven”, since an attempt was made to identify and evaluate problems
that the software industry has been facing in the past years in terms of testing and
the countermeasures taken by the industry in order to fight these problems.

• Identifying how these problems could actually be addressed through a software
artifact. The second part could be classified as “solution-driven” since the authors

20

3.2. REG. CYCLE FRAMEWORK CHAPTER 3. METHODOLOGY

were researching which kinds of problems could be solved with a software artifact,
although it had not been created at the time.

• Identifying the unit testing problems Advania was facing in collaboration with a
project manager at Advania, both from the social perspective and technical per-
spective. Identification of Advania’s testing problems was “problem-driven” since
interviews were needed to pinpoint exactly which kinds of problems Advania was
facing in terms of testing. After a series of meetings and discussions through email,
the following problem areas were identified within Advania’s testing infrastructure:

– Very few tests are being written

– Advania is unsure of the quality of the tests which are actually written

– Motivation to write tests is lacking

These problems are common within the industry as discussed in chapters 1 and 2.

• Identification of problems within the G-Unit tool itself and is the only investiga-
tion that is continuous throughout the project, serving as the last step in the first
problem investigation phase and the first step in the following iterations. Devel-
opers were sent questionnaires about the usability and the effectiveness of the tool
in order to identify problems lying within it. The improvement of the tool itself,
was classified as “problem-driven”, since the developers help was needed in order
to reveal the actual problems with the tool.

3.2.2 Solution Design

In the context of Wierenga’s framework, a design is a plan where “[...] means to an end
is laid down.” [31, pg. 4]. At the end of each solution design path, stakeholder goals
should be met and how to reach these goals is the proposed solution. The proposed
solution has to be communicated to all stakeholders and therefore has to be specified
in some way, be it natural language, diagrams or by other means. The solution design
is classified as a practical problem, rather than a knowledge one, since it describes the
stakeholder’s approach on how they intend to change the world.

In this study, the solution design is based upon the earlier problem investigations that
had been conducted and the authors’ ideas on how to address these problems through

21

3.2. REG. CYCLE FRAMEWORK CHAPTER 3. METHODOLOGY

a software artifact. Feedback from Advania’s employees was important in this step,
although their feedback on the actual artifact is only available during an iteration and
after it has taken place, since the artifact was not presented to them until the start of
iteration 1.

Although some requirements were laid down in the problem investigation phase, some
further work was conducted on those specifications during the solution design phase. In
this phase further documentation was added in the form of diagrams. These diagrams
were created in order for the authors to understand each others’ implementation ideas
regarding the artifact and to gain a more coherent picture of the system flow. Before a
solution could be designed for an iteration, the requirements had to prioritized into each
of the iterations since pressure to meet deadlines would not allow for all requirements
to be implemented in the first iteration.

Advania was not interested in heavy documentation regarding the artifact (excluding
usage-documentation) and therefore the requirements specification of the artifact was not
sent to Advania. Instead, the artifact and its features were presented to the developers
before it was put to use.

Wierenga concludes that solutions are often not fully specified before they are actually
validated and implemented. Hence the product of this phase is not necessarily a fully
specified solution, but rather a design that will eventually be completely specified and
implemented at the end of the regulative cycle.

3.2.3 Design Validation

The design validation phase is needed in order to validate that the prior phase has indeed
resulted in a design that will bring stakeholder closer to their goals. Three knowledge
questions should be considered in this phase [31]:

• Internal validity: “Would this design, implemented in this problem context, satisfy
the criteria identified in the problem investigation?”

• Trade-offs: “How would slightly different designs, implemented in this context,
satisfy the criteria?“

• External validity (a.k.a. sensitivity analysis): “Would this design, implemented in

22

3.2. REG. CYCLE FRAMEWORK CHAPTER 3. METHODOLOGY

slightly different contexts, also satisfy the criteria?“

These questions are knowledge questions and their answers are propositions that the
validators (in this case, the authors) claim to be true. These are predictions set forth by
the validators in their attempts to predict the results of their solutions in a certain con-
text [31]. Along with these three questions, each iteration has its own specific additional
questions.

After the design of the software artifact these questions were kept in mind in order
to visualize the results based on the artifact design. The actual artifact itself never
underwent validation by Advania’s employees and the validation was only performed by
the authors. The answers for each of the iterations can be found in Sections 5.1.3, 5.2.3
and 5.3.3, for iterations 1, 2 and 3 respectively.

3.2.4 Implementation

In the implementation phase, designed and validated solutions are implemented. How-
ever, the implementation may vary both in terms of details and complexity. A software
problem can for example have many solutions which may be expressed in different ways.
For instance, two different designers designing a solution for the same problem can come
up with different implementations, one designing a paper prototype while the other
implements a working software solution.

The implementation consists of a software solution for all the iterations. However, their
complexity level varies, as more features are added in each iteration. Some components
are also removed while others are added, based on the earlier steps in the regulative
cycle described in this chapter.

3.2.5 Evaluation

Although the evaluation phase is not a formal phase in Wierenga’s framework, it was
decided to incorporate the phase in the study for reasons discussed in section 3.2. The
phase provides an opportunity to evaluate previous work and, as Wierenga suggests, the
phase can serve as a base for a new regulative cycle performed in a new iteration.

23

3.3. DEVELOPERS, INTERVIEWS & SURVEYS CHAPTER 3. METHODOLOGY

The artifact was evaluated through questionnaires for the first (Appendices B.1, B.2
and B.3) and second iteration (Appendices B.4 and B.5). The questionnaires focused
on gathering feedback from the developers that used G-Unit in their work environment.
The third iteration was evaluated by interviewing the developers.

The results from the evaluation phase of each of the iterations can be found in Chapter
6.

3.3 Developers, Interviews & Surveys

This study used both interviews and surveys to collect qualitative data. The surveys
are of two different kinds, both in form of a daily questionnaire that the developers
completed each day during an iteration and then a post-iteration survey. The surveys
were designed based on the guidelines provided by Leung [36]. The survey data can be
found in Appendix B.

The purpose of interviews is to collect qualitative data that can not be acquired by quan-
titative means [37]. This study is largely of qualitative nature and therefore an interview
was conducted in order to provide insight in to the developers opinions, thoughts and
feelings [37]. Interviews can both be of individual nature, where a single subject is inter-
viewed about a certain topic, or group interviews where several subjects discuss topics
introduced by the interviewers [37]. The interview used in this study was a group in-
terview with two subjects and two interviewers. The interview was a video call through
Skype, in which the interviewers recorded the audio. The interview was 20 minutes
long. Interviews can have different structures, such as fully structured, semi-structured
or unstructured [38]. In a fully structured interview the questions are all predetermined
and their order is preordered as well. During an unstructured interview the interview
questions are in form of a general concern and/or interest from the researcher [38]. Semi
structured interviews have some pre-planned questions but they are not necessarily asked
in the predetermined order and the development of the interview can dictate the order
of the questions. Semi structured interview also allow for improvisation and allow the
interviewers to examine the studied objectives further on the fly [38]. The group inter-
view conducted in this study was semi-structured. The interview questions can be found
in Appendix B. The participants in both the interview as well as the surveys were all

24

3.3. DEVELOPERS, INTERVIEWS & SURVEYS CHAPTER 3. METHODOLOGY

software programmers who have between 1-3 years of work experience.

The study had a varying amount of participating developers. During the first iteration,
there were three developers who answered a survey before the start of the iteration.
They also answered a daily questionnaire during the iteration. The iteration was 4 days
long and thus resulted in 12 answers to the daily survey. The data is in Appendix B.
They also answered a post-iteration survey conducted after the iteration was finished.
The data from that survey is not in the appendix, but is displayed in Table 6.1. During
the second iteration, there was only one participating developer which answered a daily
survey. The iteration was four days, resulting in four answers to the daily survey. The
last iteration had two participating developers. There were no surveys in this iteration,
but instead, a semi structured interview was conducted like discussed in the paragraph
above.

25

4
G-Unit

This chapter presents the G-Unit gamification tool and its underlying concepts.

4.1 Overview

G-Unit is a gamification tool for unit testing in software development. It consists of
two main components. Firstly, the G-Unit Maven Plugin collects data from a single
test session, which consists of results from JUnit test executions, code coverage data
from the JaCoCo coverage tool, and test smell analysis data from TestHound. Secondly,
the G-Unit Service receives the results from the Maven plugin. These results are fed
into a gamification rule engine. The rule engine then calculates statistics from each
individual test session, and awards points to the respective developer in accordance to
a set of gamification rules listed in Section A.3. The G-Unit Service also serves a web
site which provides gamification feedback to the developers. A number of gamification
elements were utilized. A leaderboard is provided to the developers, where they are
ranked according to the total amount of points accumulated. A graphical overview of
their achieved code coverage and test smells enables the developers to see how their
progress has been over time. The developers are able to view each of their past test
sessions, and compare them to their current standings. Each developer is provided a
personalised news feed, where a summary of the the points awarded is presented by the

26

4.1. OVERVIEW CHAPTER 4. G-UNIT

gamification engine. When certain conditions are met by a developer, the gamification
engine awards that developer a badge according to a few rules described in section A.3.
Some badges can be earned many times. A developer’s accumulated badges can be
viewed on their individual user profiles.

Figure 4.1: G-Unit front page - News feed

Advania uses IntelliJ IDEA1 as their primary IDE. An IntelliJ plugin is provided whose
main goal is providing instant feedback of the gamification results to the developer.

4.1.1 Flow

In general, the use of the system could be described with the following general work-
flow:

1. The developer writes a unit test, which can be executed with JUnit

2. The developer executes the Maven goal “mvn verify”, which runs the JUnit test
runner, JaCoCo code coverage analyzer, and lastly, the GUnit maven plugin.

3. The GUnit maven plugin posts the accumulated test data to the backend

4. The data is analyzed by the backend, rules executed and badges awarded accord-
ingly.

1https://www.jetbrains.com/idea/

27

4.2. IMPLEMENTATION CHAPTER 4. G-UNIT

5. The user refreshes the updated score page in order to view their position on the
leaderboard, and to see any new badges.

4.2 Implementation

G-Unit is mainly implemented in Java 1.8 and uses a MySQL database. The G-Unit Ser-
vice is using a REST2 focused web-application framework called Dropwizard3 as a basis.
Parts of G-Unit require earlier versions of Java, both 1.7 and 1.6. The IntelliJ plugin is
written against Java 1.6 because of the plugin API requirements. All Maven-related code
is written using Java 1.7 for compatibility reasons related to Advania. The client-side
web application itself is built with the AngularJS4 web application framework and uses
the Twitter Bootstrap UI56 frameworks for various user interface components.

As the TestHound application has no integration with Maven, a Maven plugin was
written which invokes TestHound with the required information, and serializes the result
to an XML file, which the G-Unit Maven Plugin then reads.

Maven is used to build and package G-Unit. All the maven projects are published to a
Maven repository created specially for this thesis, where the developers at Advania can
easily access and update their versions of them. This greatly simplifies the deployment
of new plugin versions in relation to each iteration, as the developers can change the
version they are using to the newest version, and Maven fetches it automatically.

2http://en.wikipedia.org/wiki/Representational_state_transfer
3http://dropwizard.io/
4http://angularjs.org
5http://getbootstrap.com,
6http://angular-ui.github.io/bootstrap/

28

4.2. IMPLEMENTATION CHAPTER 4. G-UNIT

4.2.1 Design

Figure 4.2: System architec-
ture

G-Unit is comprised of 9 modules:

1. gunit-maven-plugin: The G-Unit Maven Plugin
component, which accumulates and sends data to
G-Unit Service.

2. gunit-parent: Parent project which decides the
order of compilation.

3. gunit-core: The core gamification code and
database interaction code.

4. gunit-service: The G-Unit Service component,
whose main functionality is to receive test session
data from G-Unit Maven Plugin.

5. gunit-site: A client-side web application which
provides feedback to the developers, bundled wih
G-Unit Service.

6. gunit-service-client: A client utility for interact-
ing with G-Unit Service.

7. gunit-commons: A library which contains code
common to several other modules.

8. testhound-maven-plugin: A maven plugin which
executes Michaela Greiler’s TestHound test smell
detecting tool.

9. intelli-gunit: An IntelliJ IDEA plugin which no-
tifies a user of any newly processed data by the
gamification server.

G-Unit uses a client-server software architecture, with the G-Unit Maven Plugin repre-
senting the client in that context. The G-Unit Service uses a layered design illustrated
in Figure 4.2.

29

4.2. IMPLEMENTATION CHAPTER 4. G-UNIT

4.2.2 User Interface

The user interface of the application consists of six main parts:

• Front page (Figure A.1) containing a leaderboard, test session listings, test smells
overview and code coverage visualization displayed with a graph.

• User profile overview (Figure A.4)

• Test session overview (Figure A.5)

• Badges overview (Figure A.6)

• Test smells overview (Figure A.7)

• IntelliJ notification plugin

Since the tool was deployed on site at an Icelandic department within Advania, the user
interface was in Icelandic during the iterations. For clarification purposes the user inter-
face in the screen shots has been translated from Icelandic to English using a combination
of Google Translate7 and manual translations.

On the front page (Figure A.1) a user can view a leaderboard which contains his name,
position within the leaderboard, total points along with last sessions’ branch and in-
struction coverage. The front page also contains a list of the users test sessions and
information regarding that test session (Figure A.2). The user can also get a per-test
class view of her test smells, and a description of each test smell (Figure A.3), by clicking
any of the detected test smells. The graph presented on the front page visualizes the
user’s code coverage in terms of branch, line and instruction coverage.

The user can navigate to a user profile overview (Figure A.4) by clicking on the user
name. The user profile pages can be viewed by any user. Each profile page displays a
user’s earned points, badges, number of tests written, as well as statistics regarding their
last branch and instruction coverage.

A user can navigate to the test session page (Figure A.5) by clicking on a test session
on the front page. The test session page displays information regarding the selected test
session in terms of code coverage and points acquired from that session.

7http://translate.google.com

30

4.2. IMPLEMENTATION CHAPTER 4. G-UNIT

The badge page (Figure A.6) displays a number of badges available for the user to claim.
Each badge has an associated task that the user has to solve in order to claim the badge.
The badge page does not display all the available badges in the system, as there is a
possibility for a badge to be hidden, meaning that the only way for a user to know about
a hidden badge is to solve its associated task and thereby claiming it.

The test smells overview (Figure A.7) lists the four different test smells detected by
TestHound and used by G-Unit to score the users. It was added in the third iteration
as a means of better clarifying what test smells are, even though that information was
previously available in the second iteration, as a part of the test smells listing on the
front page. A user could click on each detected test smell to get a description of the
test smell and how to refactor it. This information is available regardless of whether the
users have introduced the test smell in their test suite or not.

The IntelliJ IDEA plugin displays a notification inside the IDE whenever anyone submits
a test session to the server. The notification is in the form of a message bubble displayed
on the bottom of the IDE, and shows who submitted the test session, how many points
they had gotten, and a link to the G-Unit page. From a gamification perspective, the
plugin serves as a provider of instant feedback to the developers, congratulating them
when they themselves receive points for their test sessions, and letting them know when
their competitors receive points.

31

5
Iterations

The following subsections present the work done during the iterations in the context of
the regulative cycle.

5.1 Iteration 1: Code Coverage

The purpose of iteration 1 was to create a working software artifact (the G-Unit tool) that
would cover most of the requirements gathered in the first problem investigation phase.
This version of the artifact would serve as a basis for future versions of the artifact. The
architecture of the artifact was designed to be easily upgradeable since more features
would need to be added to the artifact in future iterations. The GUI was designed so it
would not change much in terms of structure between iterations, for example the location
of buttons, graphs and tables. The artifact produced in the first iteration included a
gamification engine which based its calculations on code coverage metrics and JUnit
test result data. As such, the focus was on the external qualities of unit tests, namely
their coverage of the system under test. It was also quite important to create a working
software solution, even though it only had a part of the requirements implemented, in
order to demonstrate the implementation ideas to Advania. An agreement with the
company had been made to carry out three iterations and therefore having a working
software artifact in iteration 1 would be optimal. Getting feedback on the features along

32

5.1. ITERATION 1: CODE COVERAGE CHAPTER 5. ITERATIONS

with the GUI in iterations one and two was important. The third iteration could then
be primarily dedicated to polishing and bug fixing.

5.1.1 Problem Investigation

This phase was the first step in the study. When the authors were formulating the topic
for the study they were interested in testing, but were unsure which testing problems
would be the most interesting to them. Since unit testing was the only field of testing the
authors both had some prior experience, aside from manual testing, they decided to focus
on organisational problems in the context of unit testing which the authors both found
interesting. A literature review was conducted on unit testing, both in organisational
context and from a technical aspect. After the initial literature review, the following
problems were identified in the context of unit testing within organizations:

• Testing is considered a boring task within organisations [14] [23],

• Test source code is just as susceptible to design flaws as system source code [30]

• Test smells are widely spread and that most of the test smells affect the the main-
tainability of test suites and production code negatively [30]

The software industry is without a doubt facing other challenges in terms of testing but
these problems are the most interesting.

In parallel to the literature review the authors were in contact with management at
Advania. A brief informal interview, along with email communication with a project
manager at Advania revealed that Advania was facing the above problems like many
other software organizations. In the case of the educational software development de-
partment within Advania, where the tool would eventually be deployed, the developers
had written almost no unit tests for their product, their experience in unit testing was
little and their motivation to write tests was low.

Since the authors brought this problem to Advania’s attention in the first place, Advania
did not have a solution to their problems in mind. From a certain viewpoint that was
beneficial to the authors’ thesis work as Advania gave them complete creative freedom
to design a solution to Advania’s problems. This also aligned with the authors’ ideas of
working within design research, as the software artifact created in information system

33

5.1. ITERATION 1: CODE COVERAGE CHAPTER 5. ITERATIONS

design research has to be innovative [32].

5.1.2 Solution Design

Because of the creative freedom provided by Advania it was decided to design a gami-
fication based solution to address Advania’s testing problems. As discussed in Chapter
2.1.3, some ethical considerations must be considered and as discussed in that section,
a gamified working environment could possibly create friction between coworkers.

The solution was to create a gamification rule system that would attempt to encour-
age developers to write more tests with a higher quality. The originial intent was to
incorporate both code coverage and test smell detection in Iteration 1 but due to time
constraints the incorporation of test smell detection was not an option. Code coverage
on its own is not the ideal indicator for quality of a unit test, but keeping in mind that
Malayia et al. argue that thoroughly covered modules are less likely to contain errors
[11], it was a good enough indicator for Iteration 1. The gamification system designed
in this phase rewarded developers for:

1. Writing at least one unit test per day by rewarding the developers in the form of
a large point boost and a badge

2. Writing a certain amount of tests during an iteration by rewarding badges

3. Reaching a certain level of branch and instruction coverage

4. Running unit tests

5. Point deduction for lowering code coverage and abuse of concept nr. 1

The full set of rules and how they are precisely defined can be found in Appendix
A.3.1.

Designing a balanced gamification system proved to be quite a challenge. The issues
revolved around balancing the points for each gamification element and problems related
to code coverage rewards are discussed in the evaluation section.

34

5.1. ITERATION 1: CODE COVERAGE CHAPTER 5. ITERATIONS

5.1.3 Design Validation

The time spent on this phase was minimal compared to the other phases. The validation
was conducted by the authors as Advania was more interested in observing the actual
tool in action instead of involving Advania in the development process. During this
phase Wieringa’s validation questions were considered among others.

Question 1 (Internal Validity): Would this design, implemented in this problem context,
satisfy the criteria identified in the problem investigation?

The features implemented in Iteration 1 would only partially satisfy the criteria iden-
tified in the problem investigation phase as the system did not include any test smell
detection. However, the features that were implemented were enough to create a gamifi-
cation system that would have the potential to influence the behaviour of the developers
to write more tests with high code coverage.

The phrasing of this question is broad. During the design and validation phase other
more specific questions were considered. Those questions can be classified as sub-
question of this question. The main two sub-questions that were considered were

Sub-Question 1.1: Would this design address Advania’s testing problems?

Yes, by increasing the developers’ engagement in testing through gamification.

Sub-Question 1.2: Would this design encourage developers to write more and/or better
tests?

Yes, by rewarding the developers handsomely for submitting at least one test a day while
also providing them with statistical information regarding their unit tests.

Question 2 (Trade-offs): How would slightly different designs, implemented in this con-
text, satisfy the criteria?

Incorporation of test smell detection would have satisfied the criteria by enabling the
detection of test smells and thus satisfying the requirements gathered in the problem
investigation phase. However, due to time constraints test smell detection was not an
option in iteration 1. The main focus of this iteration was to have a working software
artifact and the creation of gamification rules on top of code coverage statistics was both
technically easier and less time consuming than test smell detection. Therefore it was

35

5.1. ITERATION 1: CODE COVERAGE CHAPTER 5. ITERATIONS

decided to cut test smell detection from iteration 1 in order to be able to deliver the
artifact on the predetermined release date.

Question 3 (External Validity): Would this design, implemented in slightly different
contexts, also satisfy the criteria?

The gamification system is highly coupled with unit testing so switching from unit testing
to another type of software testing would probably not work. However this system could
for example be incorporated in a different environment, for example in an educational
context and achieve similar results.

5.1.4 Implementation and Calculations

The analysis of unit tests is split into two parts in this iteration: code coverage calcula-
tions and gamification calculations. The code coverage part analyses unit tests with the
JaCoCo code coverage analysis tool. The tool collects, among other things, line cover-
age, branch coverage and instruction coverage, which is collected by the G-Unit Maven
Plugin and sent to the gamification service. Although the tool reports line, branch and
instruction coverage, the gamification service only uses branch and instruction coverage
for gamification calculations. A listing of the rules used to calculate a user’s score per
test session can be found in appendix A.3.1.

Further technical implementation details are discussed in section 4.2. All modules dis-
cussed in that section were completed in the first iteration with the exception of the
TestHound module which was introduced in iteration 2.

In this iteration one of the thesis authors was on location in order to set up G-Unit
on the developers computers. Technical support was provided during the iteration and
the developers were taught how to use the system. The authors were not able to be
present on location during iteration 2 and 3 due to high cost of travel between Iceland
and Sweden. However, the user experience did not change much from iteration 1 to the
subsequent iterations and therefore a new technical walkthrough between iterations was
not needed. The tool can also be updated through the internet which eliminated the
need for on-location set up for iteration 2 and 3.

36

5.2. ITERATION 2: TEST SMELLS CHAPTER 5. ITERATIONS

5.1.5 Changes from Design

During this phase it became apparent that the gamification system that had been de-
signed in the design phase was unbalanced and needed adjustments. The gamification
rules were adjusted on the fly during this phase since it was discovered that the rules
did not make as much sense as they did during the design phase. However, as discussed
in the evaluation section below, the system still suffered from balancing flaws after these
adjustments.

5.1.6 Evaluation

The evaluation of this iteration was conducted by on-location observation and question-
naires. The iteration lasted for four workdays. Each developer (three in total) answered
a daily questionnaire after each workday in the iteration, resulting in 12 answers to ev-
ery question in the questionnaire. Another survey was also conducted after the iteration
had finished to gather additional feedback. The questionnaires were designed with the
guidelines provided by Leung [36].

The results from the evaluation of iteration 1 can be found in Section 6.1.

5.2 Iteration 2: Test Smells

This iteration focused on the addition of test smell detection through the use of TestHound
and general improvements on the G-Unit tool based on the feedback gathered in itera-
tion 1. After the addition of test smells all the desired features were present in the tool.
The length of this iteration was 4 workdays just like iteration 1.

Unfortunately this iteration was plagued with issues regarding developer participation.
One out of the three developers was able to participate. One developer was on vacation
during the iteration and another developer was unable to participate in the iteration
for organizational reasons. The evaluation of the iteration would therefore be based
solely on one developer. Since the developer had no one to compare to during this
iteration the evaluation gamification part of the application was not as strong as it
could have been if there had been more participants. This also applies to evaluation

37

5.2. ITERATION 2: TEST SMELLS CHAPTER 5. ITERATIONS

of other parts of the system. The developer was asked to evaluate the changes made
to the gamification system although he was the only one participating. The feedback
regarding the leaderboard particularly suffered since comparing one’s points to inactive
participants has little meaning. Therefore the evaluation of the gamification part was
focused on the improved point and badge system.

5.2.1 Problem Investigation

During this phase the feedback from iteration 1 was analyzed. Like discussed in 6.1
the developers wanted more instant feedback and a clearer point system. Problems
related to the integration of TestHound were the other significant part of this problem
investigation. The main problems with TestHound’s integration was that the source
code wasn’t available which sparked implementation issues.

5.2.2 Solution Design

The rules of the gamification part of the tool were redesigned based on the feedback
gathered from iteration 1 and can be found in the appendix. In addition to the old rules,
new rules based on test smell detection were created. This would allow the gamification
system to take both code coverage and test smell analytics as input. The badge system
was also redesigned in order to provide better information in regards to how developers
could achieve badges within the system.

5.2.3 Design Validation

Again, Wieringa’s questions were consider along with other questions designed by the
authors.

Question 1 (Internal Validity): Would this design, implemented in this problem context,
satisfy the criteria identified in the problem investigation?

Yes, because all of the planned requirements were present this iteration’s design.

Sub-question 1.1: Does the new score system reflect the developers feedback?

38

5.2. ITERATION 2: TEST SMELLS CHAPTER 5. ITERATIONS

Yes, more instant feedback was implemented along with modifications on the score sys-
tem based on the developers feedback.

Sub-question 1.2: Does the introduction of TestHound’s smell detection help the devel-
opers maintain high test quality?

Yes, by pointing out faults within the test code and rewarding developers for removing
test smells from a test class.

Question 2 (Trade-offs): How would slightly different designs, implemented in this con-
text, satisfy the criteria?

More gamification elements related to the test smells could potentially influence the
developers behaviour in a positive way. However, certain trade offs had to be made in
this study due to time constraints, so more test smell related gamification rules were
not created. It was estimated that the test smell rule introduced in iteration 2 would be
enough motivation for the developers to get rid of their test smells.

Question 3 (External Validity): Would this design, implemented in slightly different
contexts, also satisfy the criteria?

As before, the system is highly coupled to unit testing. If the context was still unit
testing but in a different environment, this design could satisfy the criteria.

5.2.4 Implementation

During this phase the evaluation of the unit tests is split into three parts: Code cov-
erage analysis, test smell detection and finally gamification calculations based on the
gamification rules defined in the design phase (which now included test smell based
rules). As before, the code coverage part is handled by JaCoCo and the gamifcation
rule engine calculates the points awarded for each test. The result from TestHound’s
analysis is presented in the UI where each developer has an overview of his test classes
and whether the test classes contain any test smells. If a class contains smells, the tool
lists the smell and details related to that smell. A badge page was also introduced in
this iteration, where developers can view available badges and how to achieve them. As
before, more implementation details and a typical workflow description can be found in
Chapter 4.

39

5.3. ITERATION 3: INSTANT FEEDBACK CHAPTER 5. ITERATIONS

5.2.5 Evaluation

As discussed in Section 5.2 this iteration was only evaluated by one developer. The eval-
uation was done through both daily questionnaires and a post-iteration questionnaire.
The results from the evaluation can be found in Section 6.2.

5.3 Iteration 3: Instant Feedback

Iteration 3 added instant feedback in the form of an IntelliJ plugin, which notified
the developers whenever any of the developers got points for their test respective test
sessions. Alongside the addition of instant feedback, iteration 3 added various small
bug fixes and polishing. As with the previous iterations, the length of iteration 3 was 4
days.

5.3.1 Problem Investigation

Problems with the instant feedback were identified along with general bug fixing within
the tool’s source code. Some work had been done in the first implementation phase
regarding feedback within the IntelliJ editor, but had remained unfinished until iteration
3. The feedback is displayed within the IntelliJ editor through the Intelli-Gunit module,
discussed in sections 4.2 and 4.2.1. Some work had been performed on this module
in the first iteration. The idea in the first iteration was to display the leaderboard
within the IntelliJ editor as well as on the website, but that idea was abandoned for
various reasons. One reason being that IntelliJ’s plugin architecture is both old and
documentation was scarce. Another reason was that although the authors were able
to construct a leaderboard table within IntelliJ, it was extremely unstable and was
estimated that it could possibly interfere with the developers work in terms of crashes
and other unstable behaviour. However, the code needed to create notifications within
IntelliJ was found on GitHub after an extensive search through open source IntelliJ
plugin projects that are available on the site. That code was more reliable than the
old code and therefore was deemed fit for the tool. These notifications would enable
the system to notify developers within the IntelliJ editor when new relevant information

40

5.3. ITERATION 3: INSTANT FEEDBACK CHAPTER 5. ITERATIONS

was available regarding the test code base. Information regarding test smells within the
G-Unit tool was also deemed insufficient.

5.3.2 Solution Design

The new notification system was designed to notify developers when new information
was available within G-Unit. The system notifies developers when they send new test
data to the server or when other developers submit new test data. A new section on
the tool’s website was designed in order to ease access to test smell information. A
new section within G-Unit’s website was also designed so developers could look up both
descriptions and mitigation tactics regarding the test smells.

5.3.3 Design Validation

As in the previous iterations, Wierenga’s validation questions were considered along with
other questions created by the authors. Wierenga’s third questions, regarding external
validity, was discarded this time since the answer is the same as in iteration 2.

Question 1 (Internal Validity): Would this design, implemented in this problem context,
satisfy the criteria identified in the problem investigation?

Yes, as the new notification system addresses the feedback issues discussed in sections
5.3.1 and 6.2.

Sub-Question 1.1: Does this design provide the developers with enough information to
eliminate test smells?

The new test smell section of the tool’s website provides both information regarding
description of test smells as well as how to eliminate them. This should provide the
developers with enough information to elminate the test smells.

Questions 2 (Trade-Offs): How would slightly different designs, implemented in this
context, satisfy the criteria?

Having a leaderboard along with the notifications within the IntelliJ editor would have
satisfied the criteria, if and only if the leaderboard would be reliable enough. However,

41

5.3. ITERATION 3: INSTANT FEEDBACK CHAPTER 5. ITERATIONS

since reliability and consistency were valued more than the addition of this single feature,
the leaderboard was scrapped.

5.3.4 Implementation

The architecture of the system did not change much between iteration 2 and 3 and
the main functionality of the system was not changed at all. The code needed for the
notification functionality was partly taken from GitHub like mentioned in section 5.3.
As discussed in the design section, the notifications pop up when a developer submits
new test data to the server. The notifications include the name of the developer along
with the total number of points awarded for the new test data. The new test smell
information section on the tool’s website contains an Icelandic translation of section 2.3.5.
This iteration also focused on various bug fixes and some polishing of the implemented
features.

5.3.5 Evaluation

Unlike the first two iterations, this iteration was evaluated through interviews instead of
questionnaires. The interview guide can be found in appendix A.2. One of the developers
was on vacation during this iteration and therefore this iteration was evaluated by two
developers. The results from the evaluation can be found in section 6.3.

42

6
Results

6.1 Evaluation of Iteration 1

According to the daily survey data the tool was easy to use. In 11 instances out of 12
the developers felt that the tool was either easy or very easy to use. There was only one
instance, during the first day of the iteration, that one developer noted that the tool
was neither hard nor easy to use. The usability of the tool is of high importance and
the fact that the developers consider the tool easy to use is positive. The tool would not
be able to serve its purpose if the developers were unsure how to use the tool or were
unable to use the tool at all.

The surveys indicate that the point system used in the tool motivated the developers
to write more unit tests. In 10 out of 12 answers the developers noted that the tool
motivated them to write more tests. This is interesting because the metrics used in the
code coverage point system in Iteration 1 were a little flawed. Instead of calculating per
class code coverage the implementation calculated the whole code coverage of the system,
resulting in the code coverage being significantly lower than anticipated. For instance,
most tests had around 0-1 percent code coverage while the rules of the system anticipated
coverage to be around 10-60 percent. The result of this was that the developers got very
few points for the code coverage aspect. However the system allocated points for more
than code coverage and it seems that those rules were enough to motivate the developers

43

6.1. EVALUATION OF ITERATION 1 CHAPTER 6. RESULTS

to write more tests.

Although the developers felt more motivated to write more tests during the iteration,
the results are not as positive regarding the quality aspect of the tests. Only on 6 out of
12 occasions the developers felt that the system motivated them to write better quality
tests. This is most likely the result of no test smell detection being present in this
iteration and the flaws contained in the code coverage metrics.

The leaderboard did not seem to cause much friction or ethical problems during this
iteration. On 11 out of 12 occasions the developers did not feel uncomfortable having
their points up on the leaderboard and compared to the score of other developers. A
possible reason for this is that the developers were scoring roughly the same amount of
points during the iteration (within 10-15 percent of each other). On one occasion did
one developer feel uncomfortable about the leaderboard.

The results from the feedback survey conducted after the iteration finished are presented
in the following table.

Index Findings

5.1
Would be fun to be able to see each developers branch/instruction/line
coverage in the leaderboard

5.2
Developers prefer exact points instead of grouping in order to see exact
position within the leaderboard

5.3 The score system was unclear

5.4 Instructions on how to write better tests in order to score more points
Table 6.1: Findings from iteration 1

Purpose of the first two questions was to get feedback on the leaderboard as there
were anticipated ethical issues with that element. Some video games 1 use grouping
(groups players together based on experience point interval) instead of displaying the
exact points in the leaderboard and the authors were interested if the developers would
feel more comfortable using a grouping based leaderboard instead of a leaderboard that
displayed the points explicitly. Based on the feedback data the developers did not feel

1http://blog.counter-strike.net/index.php/2012/10/5565/

44

6.2. EVALUATION OF ITERATION 2 CHAPTER 6. RESULTS

that a grouping based system would be better as they would like to see their exact
position. The developers also wanted to see more information in the leaderboard in
terms of code coverage. They also noted that the point system felt weird and were not
sure how the points were exactly allocated. Lastly, they were interested in more instant
feedback and instructions on how to write tests that would yield the highest number of
points. Their suggestions are discussed further in the problem investigation section for
iteration 2(5.2.1).

On location observation during the iteration observed that the developers would imme-
diately start find ways to game/cheat the system. Within the first hour of deploying
the system, a developer noticed a way exploit the score system. By exploiting the Test-
A-Day rule (appendix A.3.1) by writing a test without any asserts or code in it, this
developer was able to score 20 points every day without doing any work. This is some-
thing that had been anticipated before the iteration started and is a continuous challenge
in gamification systems.

6.2 Evaluation of Iteration 2

Although this iteration’s evaluation was weaker in terms of participating evaluators, the
feedback was overwhelmingly positive.

On three out of four occasions the developer felt that the tool was easy to use. On
one occasion the developer felt that the tool was neither hard nor easy to use. This is
positive since a tool that is easy to use will not interfere much with the regular workday
of the developer and thus minimising problems related to usage of the tool.

On every occasion the developer felt that the improved score system motivated him to
write both more and better tests. Although the developer had no one to compete against
during this iteration, the developer had used the score system in the earlier iteration.
Having that frame of reference, it was estimated that the developer was able to evaluate
the new score system without other participants.

The developer was also asked to evaluate if the tool (and not just the point system)
helped him write better quality tests. On every occasion the developer felt the tool helped
him write better quality tests. This indicated that the quality metrics (code coverage,

45

6.3. EVALUATION OF ITERATION 3 CHAPTER 6. RESULTS

test smells) aided the developer in his work independent from the gamification.

The post iteration questionnaire mostly focused on the test smells and the test smell
features within the tool. Before the iteration started the developer was introduced
to the test smell concepts through email. The developer was asked if he understood
what test smells are and how they affect the code base. The developer responded that
he both understood what test smells are and how they affected the code base. The
developer also had the opportunity to provide feedback on how the test smell feedback
was displayed within the UI, but had no comment. The developer was also asked about
the improvements made on the badge system, as it had been slightly redesigned. Now
the developer could look up which badges he could achieve and how to achieve them.
The developer felt that the new badge page was a positive step.

As developer participation was lacking in this iteration, the authors decided to re-
evaluate the tool themselves based on the same set of questions as the developers were
given. They agreed with the developer’s evaluation, although more instant feedback
could be helpful. They was also no way for the developers to look up information re-
garding test smells within G-Unit, which was not optimal.

6.3 Evaluation of Iteration 3

When asked whether the tool itself helped the developers write better tests, they both
agreed that the tool helped in that regard. When asked to specify which element of
the tool aided them the most, they both agreed that the code coverage part of the tool
was the element that influenced their tests quality the most. However, the developers
would have preferred more information regarding branch and instruction coverage, as
they weren’t completely sure of their meaning (the tool displayed instruction, branch
and line coverage). When asked whether the tool helped them write more tests, both
of the developers strongly agreed that it did. When they were asked to specify why it
made them write more tests, they both attributed that fact to the gamification part
of the tool. When asked to clarify how the gamification part motivated them to write
more tests they both attributed that fact to the leaderboard and point system or in their
words, "Nobody wants to be last in the leaderboard". Although the developers felt the
gamification motivated them to write higher quality tests, they didn’t feel as strong in

46

6.4. QUANTITATIVE DATA CHAPTER 6. RESULTS

that regard as with the quantity of the tests. They attributed this to the metrics, as
they sometime felt that they were unclear and needed more fine tuning.

The developers were asked if they would like to continue the use of the tool in which
they responded positively. However, they pointed out that during the study the tool
was not integrated until in the last stages of the current project. The developers both
agreed that the tool could have served its purpose better if the study had been launched
concurrently with a project, since the architecture could have been designed with unit
tests in mind from the beginning. The developers felt that gamification in general was
well suited for unit testing and especially noted that a gamification tool like G-Unit
exposed what other developers were up to and gave them a better overview of their
project. They also noted that a gamification system encouraged them to monitor what
other developers were up to since they didn’t want to be in the last position within
the leaderboard. The subjects also felt that if management would be committed to the
gamification system, for example by monitoring the leaderboard, the engagement of the
developers would be higher. Although they both felt that this could raise ethical issues
and potentially raise stress levels within the development group. Other ethical issues
that the developers were afraid of was that people would start to cheat the system more
aggressively if management would be monitoring the leaderboard, which could prove
counter productive for the project as a whole.

The authors were interested to see whether the developers felt pressured by the company
to write more tests as the company had agreed to participate in the study. When this
subject was brought up, both developers responded that they felt no pressure at all from
management to write tests. They also mentioned that no automated testing had been
in place before the introduction of the tool and attributed the increased testing activity
directly to the tool.

6.4 Quantitative Data

This section presents the quantitative data gathered during the study.

47

6.4. QUANTITATIVE DATA CHAPTER 6. RESULTS

6.4.1 Number of Unit Tests Created and Test sessions

Over the course of the study there were 20 unit tests created by 3 developers. Figure
6.1b illustrates the amount of unit tests over time. Like discussed in section 7.3 and
6.3, no steps had been taken by the company to increase automated testing prior to
the study and therefore no unit tests were present within the system before the study.
Therefore the study seems to have succeeded in its attempt to increase the number of
unit tests within the system. What is also interesting about this data, aside from the
bump from 0 to 20 tests present in the system, is perhaps the fact that some unit tests
were created outside the time frame of the planned iterations. G-Unit was available to
the developers outside the planned iterations simply because the authors felt the tool
should be available to the developers if they felt they benefited from its use in their daily
work.

Figure 6.1a shows test sessions posted by the 3 developers from the beginning of the first
iteration to the end of the last iteration. The 3 developers posted 154 test sessions to
the gamification server in total.

03-09 03-19 03-29 04-08 04-18 04-28 05-080

20

40

60

80

100

120

140

160

Date

N
o.

of
te
st

se
ss
io
ns

Cumulative test sessions over time

Iteration start
Iteration end
Test sessions

(a) Test sessions over time

03-09 03-19 03-29 04-08 04-18 04-28 05-080

5

10

15

20

Date

N
o.

of
un

it
te
st
s

Cumulative unit tests written over time

Iteration start
Iteration end
Unit tests

(b) Unit tests over time

Figure 6.1: Quantitative data

48

6.5. REVISITING THE RQS CHAPTER 6. RESULTS

6.4.2 Badges

The developers had the possibility of earning 4 different badges in the system. Out
of those badges, two different badges were earned by the developers, the Test-A-Day
badge, and the Bronze Badge. The Test-A-Day badge was earned 11 times among the
developers, and the Bronze Badge was earned once by a single developer. It is likely
that the other two badges, The Silver and Gold Badge, were too hard to acquire by the
developers, as they required them to write 25 and 50 tests, respectively.

6.5 Revisiting the Research Questions

6.5.1 RQ1: How does gamification influence unit testing practices?

The data indicates that gamification has a positive effect on unit testing. The gamifi-
cation elements that were used in this study add a competitive element to unit testing
which motivated the subjects to become more engaged in the gamified tasks. This
resulted in increased testing activity in the form of more unit tests written and test
sessions. The participating developers were able to learn about various unit testing met-
rics and concepts through G-Unit and that testing knowledge will aid them in further
projects.

6.5.2 RQ1.1: How does gamification affect the developers’ motivation
to write more unit tests?

Both qualitative and quantitative data implies that gamification increases the motivation
to write more tests. The gamification system that was created in this study seems to,
in retrospect, have favoured quantity rather than quality and thus the results could
be influenced by that fact. The reasons for that are several, namely that introducing
quantitative metrics is easier than quality metrics and gamification systems have a harder
time in general measuring quality than quantity. This is further discussed in Chapter
7.

49

6.5. REVISITING THE RQS CHAPTER 6. RESULTS

6.5.3 RQ1.2: How do test smells and code coverage as input to a
gamification system influence unit test quality?

The code coverage statistics had a positive impact on unit tests quality. The display of
the code coverage statistics enabled the subjects to visualize which parts of the system
had been tested and which parts of the system needed further test work. The subjects
focused on writing more tests instead of raising their code coverage percentages, which is
similar to the findings of RQ 1.1. Again, this is the result of the design of the gamification
system which enabled the subjects to gather points more easily through writing more
tests instead of raising the code coverage of old tests. Test smell results were not as
positive as the code coverage results. Due to unfortunate circumstances the developers
were unable to utilize the test smell detection system to its full potential, both due
to developer participation issues and a possible bug within the test smell detection.
However, the subjects felt that the test smell detection was useful, but not as useful as
the code coverage statistics. This is further discussed in Chapter 7.

6.5.4 RQ2: What gamification element in this study proves to be the
most effective at influencing unit testing practices?

The badges were the least effective element in this study. The reasons might be that
badges in general are not as motivating as the other elements (leaderboard, point system)
or that the design of the badge system was unbalanced. Further work is needed to answer
that. The leaderboard was the most effective element in this study. The reason is that
it adds a competitive element to unit testing, which motivated the subjects to become
more engaged and increase their testing activity. Although the subjects reported that
the leaderboard was the most effective there is a possibility that the point system is
just as effective, because the leaderboard is a visualization of the point system. The
leaderboard caused no or minimal ethical issues in the study and the ethical impact of
the leaderboard was lesser than expected. This is heavily related to the fact that the
leaderboard was not monitored by management at the case company.

50

7
Discussion

7.1 Research Questions

RQ1: How does gamification influence unit testing practices? The method
of applying gamification to unit testing practices depends heavily on the context it is
applied in, but as discussed further in this section, gamification seems to influence unit
testing practices positively. This aligns with Ivarsson and Johansson’s positive findings
on the gamification of unit testing [10]. These findings are also similar to the findings of
Hamari et al. [9], which reported increased engagement of gamified tasks. In Advania’s
case, there were three participating developers. Unit testing practices and gamification
were introduced into their then already-established software development process, where
their product has already shipped and their focus was shifting from new feature devel-
opment to maintenance and support. Even though the developers had not put much
emphasis on unit testing previously, they were open to this change and felt motivation
from the gamification elements to write unit tests. The gamification system added an
element of competition to their unit testing practices. The developers also learned about
the various unit testing-related such as test smells through the tool, although they re-
ported that they wanted more information regarding code coverage. Even though the
developers adapted to having the gamification system added to their development pro-
cess, the authors saw that it was important to also adapt the gamification tool to the

51

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

context it was placed in. For instance, the rules in the first iteration concerning total
code coverage awarded points for every 10% increment of coverage achieved by the tests.
This turned out to be completely unreachable for the developers due to the size of their
system and the number of tests needed to reach such a high coverage percentage.

RQ1.1: How does gamification affect the developers’ motivation to write
more unit tests? According to the developer feedback collected over the course of the
3 iterations performed, the developers were positive towards gamification of unit testing.
During the interviews the developers felt that gamification was both an innovative and
effective way to deal with motivational problems in the context of software testing,
especially in regards to test quantity. This is also backed up by the daily survey data that
was collected during all iterations. On almost all occasions in the surveys did they feel
that the gamification system motivated them to write more tests, but were more sceptical
towards the idea that the gamification resulted in higher quality tests. This adheres to
previous research on gamification, as Shahri’s research implies that gamification systems
in general have a harder time measuring quality than quantity [21]. They were not
opposed to the idea that gamification could result in higher quality tests but rather
they found the technical challenge of finding appropriate metrics to evaluate the tests
complex. They agreed that the G-Unit tool as a whole motivated them to write more
tests, especially the leaderboard. Therefore the authors conclude that gamification can
positively influence testing activity in the context of the participating company and the
influence on quantity is bigger than on quality. This is also supported by the fact that
the developers would like to continue the use of G-Unit or parts of G-Unit.

RQ1.2: How do test smells and code coverage as input to a gamification
system influence unit test quality? The feedback from the developers suggest that
the code coverage information provided by the tool had a positive influence on unit test
quality. During the interviews the developers felt that the gamification system provided
them with a good overview of the work of other developers, which is similar to the findings
of Passos et al.[20] research on gamification systems. The developers agreed that the
gamification system somewhat inspired them to raise their code coverage percentages,
but did not feel as motivated to raise their code coverage compared to motivation to
write more tests. The authors attribute this to the fact that the gamification system

52

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

allocated a large amount of points for the first test created each day. The fact that
the code coverage reward system was a bit unbalanced in the first iteration, which was
the most active iteration, could also have influenced these findings. The test smell
detection did not yield as positive results, for a variety of reasons. First off, the test
smell detection was not implemented until iteration 2. After the test smell detection
had been implemented it became apparent that the developer that was on vacation for
iteration 2 and 3 had the highest amount of test smells and therefore was never able
to act upon the test smells. Also, the developer that was the most active during the
iterations never received warnings that his test code contained any test smells. Due
to these circumstances the test smell detection was one of the least successful part of
the study. These problems might have been circumvented if the G-Unit tool had been
introduced during the start-up phase of the Inna project, i.e. the project the developers
were working on at Advania, instead of in the maintenance phase of the project. There is
also a possibility that the test smell detection was somewhat flawed because the authors
expected much higher frequency of test smells within the system. These findings on the
impact of test smell detection are disappointing, but are the result of the unmanageable
circumstances mentioned above. Researchers should not let these findings hinder them
on further research of test smells, their use in gamification systems, and their effect on
unit test quality.

RQ2: What gamification element in this study proves to be the most effective
at influencing unit testing practices? This study had three gamification elements,
a point system, a leaderboard which displays the score of the developers and five different
badges. Although the developers reported both through surveys and interviews that all
three elements affected their work, both the qualitative and the quantitative data seems
to support that the badges were the least effective element. All the developers acquired
the test-a-day badge, which was awarded when they submitted a new unit test that day.
However, only one developer acquired the bronze badge which was awarded for writing
a total amount of 10 unit tests. The developer that acquired that badge was able to
do so on the very last day of the last iteration. The authors feel that this indicates
that the badges provide some positive effects on the developers work, but not to a great
extent. This adheres to Johansson’s and Ivarsson’s [10] findings on the effectiveness of
badges. This is also supported by the fact that during the interviews the developers

53

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

noted that the leaderboard was the largest motivator to write more tests. However, the
authors must recognize the fact that the badge system might have been unbalanced.
In order to acquire the bronze badge a developer had to write 10 tests, to acquire the
silver badge a developer had to write 25 tests and a gold badge was awarded after 50
tests. If the scale would have been significantly lower the developers might have been
more interested in acquiring the badges as they could have felt overwhelmed by the
amount of tests that they needed to write in order to reach the silver and bronze badge.
The interviews revealed that the leaderboard was notably the biggest impact factor of
the gamification system. Both of the interviewed developers noted that the competitive
nature of the leaderboard was the strongest motivational factor during the study. This is
in line with Singer & Schneider’s experimental results, where they used a leaderboard to
encourage source control commits among their students. In their work, they noted that
the competitive nature of the leaderboard encouraged the students to act more in-line
with Singer & Schneider’s target behaviour [19].

Although the developers did not want to end up in the last place within the leaderboard
they did not feel the stress to be overwhelming, but rather just the right amount to
keep them on their toes. However, they both noted that if management would have
monitored the leaderboard the stress levels could potentially become toxic to their work
environment. These findings are perfectly in line with Shahri’s findings on the ethics
of gamification and Shari’s instructions on how management should manage the leader-
board [21]. It is hard to evaluate if the leaderboard or the point system are more
important here, since the leaderboard is a visual representation of the point system. A
leaderboard built upon an unbalanced score system could therefore be ineffective or in
worst case toxic to the work environment, since players within an unbalanced system
could end up spending time on unimportant things and thus have a bad influence on the
project as a whole. During the interviews the subjects felt that the score system served
its purpose despite of its early flaws. They also felt the score system was an effective
way to increase testing activity.

54

7.2. CONTRIBUTION TO KNOWLEDGE CHAPTER 7. DISCUSSION

7.2 Contribution to Knowledge

This study contributes to knowledge within the field of software engineering in various
ways.

TestHound Maven Plugin
Although Greiler et al. had plans to release TestHound as a Maven plugin, no plugin
was available at the time this report is written. This study therefore extends Greiler’s
work on on automatic detection of test smells by making G-Units’ TestHound Maven
plugin available on GitHub. 1. This plugin could aid practitioners who are interested
in measuring their unit test quality while researchers could use the plugin in research
related to automatic quality analysis of test code.

Gamification & Software Development This thesis was largely inspired by Johans-
son & Ivarsson’s experiment [10] on the gamification of unit testing. In their future work
chapter they recommend moving gamification from a controlled environment and into
an organizational context which is precisely what this study does. The authors did not
find many studies that study gamification of the software development cycle, except for
Singer [19] and Passos [20]. This study therefore contributes to the body of knowledge
in terms of gamification of the software development cycle as previous research in that
field is relatively limited.

Creating a gamification system based on both internal (test smells) and external (code
coverage) quality metrics of unit tests is a challenging task. The G-Unit tool score
system could serve as a model for other researchers interested in gamifying unit testing.
However, the score system is by no means perfect and would need fine tuning when the
context is changed.

7.3 Validity Threats

This section covers validity threats based on the definition of validity threats provided
by Runeson and Höst [38].

Construct Validity: The evaluation of the iterations was performed by questionnaires
1https://github.com/davidarnarsson/GUnit/tree/master/gunit-maven-plugin

55

7.3. VALIDITY THREATS CHAPTER 7. DISCUSSION

and interviews. The developers answered daily questionnaires during each iteration and
a post-iteration questionnaire. There is a possibility that the daily questionnaires were
annoying to complete. Developers answering the question might have answered the
questionnaires without thinking about their answers simply to get the task of answering
daily questionnaires out the way. There is also a possibility that the developers might
be biased in their feedback since they might have answered the questions based on what
they feel is acceptable or desired by the author. To counter this threat the questionnaires
were designed with the guidelines provided by [38] Runeson and Höst in mind.

The participating developers in the study are Icelandic but have a solid background in
the English language as well. Therefore it was decided to provide the developers with
the questionnaires both in Icelandic and English since some technical terms don’t have
a direct translation in Icelandic.

Internal Validity: No steps had been taken prior to the study by the participating
department to increase unit testing or other kinds of automated testing. Although the
quantitative data shows more testing activity after the introduction of the tool and qual-
itative data suggests that the developers find the tool motivating to write more tests
it must be acknowledged that the developers might be writing more tests because the
company accepted to take part in the study and therefore the developers felt pressured
to write more tests. This still remains a possibility even though the developers reported
no pressure from the company to increase testing when asked about this validity threat
during the evaluation of iteration 3. The test smell detection system might have con-
tained hidden bugs that the authors were unable to locate, since the developer with
the highest amounts of tests written had no detectable smells. Theoretically, his tests
might have contained no test smells at all, but a more likely reason is that the test smell
detection system was somewhat flawed. However, the detection system seems to have
been at least partially working, since it detected test smells in the test code of the other
two developers.

External Validity: The study was conducted at only one company with varying num-
ber (1-3) of participating developers. The evaluation of the G-Unit tool and the gam-
ification system are specific to that one company and the results of this study are not
generalizeable. However, this study could serve as a basis for future work in the field.
Over time, researchers could either replicate this study, expand it or perform the study

56

7.3. VALIDITY THREATS CHAPTER 7. DISCUSSION

on a larger population to achieve statistical power. Researchers interested in unit test-
ing, test smells, gamification of the software development cycle or gamification in general
could borrow elements from this study and expand on these topics in their work.

Reliability: One of the authors is an employee of the company where the study was
conducted. The author worked in web development within the same company, although
in a different web development division than where the study was conducted. Therefore
the authors had a certain advantage over other researchers that would be interested in
replicating the study since the authors were familiar with the company. However this
advantage is not that big of an impact factor for the study, although it made the initial
problem investigation and communication with management easier. Other researchers
that have a solid technical background in Java development and some experience in
unit testing should be able to take this thesis along with the source code from GitHub
(the code is open source) and replicate the study easily, given a similar context. The
bigger issue here would be replicating the study in a different context. This study relied
heavily on the TestHound tool for smell detection, which works exclusively with Java. If
a researcher was interested in replicating the study he could run in to problems regarding
test smell detection, if the researcher isn’t working in Java,x as there aren’t many tools
available that detect flaws within unit test source code. A researcher would probably
have to create a smell detection tool himself, which is quite a technical challenge. The
other main concepts, gamification and code coverage, are easier to deal with in a different
context. There are many different code coverage tools available online and literature on
gamification is easily accessible in the form of books and scientific articles.

57

8
Conclusion and future work

This study examined the influence of gamification on unit testing practices in industry.
The gamification tool introduced to Advania had an effect on the company in the form
of increased testing activity by all the participating developers and the developers learnt
about testing concepts and metrics, such as code coverage and test smells. This acquired
testing knowledge will aid the developers in their future projects. The ethical issues
related to the application of gamification within organizations were not observed to a
high degree, which is probably due to the fact that there were only 3 subjects in the
study and management did not monitor the leaderboard. Although the results were
positive in most cases, if not all, measures could be taken to further enhance the effects.
Notably, more subjects participating in the study and launching the tool at project
start would have been ideal, but unfortunately that was not an option in this case. As
anticipated, the balancing of the gamification system and its metrics proved to be the
largest design problem, while integrating test smell detection was the biggest technical
challenge. Creating a motivating gamification system is a challenging task and metrics
have to be chosen wisely in order to achieve the predefined goals. Gamification in general
is a useful tool to solve motivational problems, but as with all tools, has to by applied
correctly.

58

8.1. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Future work

The authors would like to encourage other researchers to expand upon this study by
conducting an experiment or a case study within an organization that measures the
impact of gamification on either unit testing or another testing method. Unit testing
was chosen in this study as the authors are most experienced in that field of testing.
However, the authors feel that another testing method could easily be gamified given that
sensible metrics are available for that method. Although this study did not encounter the
negative ethical aspects of gamification to a high degree, possibly because the number
of developers participating in this study was relatively low, other researchers should pay
special attention to the ethical aspects and methods that mitigate the risks related to the
those aspects. Other tasks of the software development cycle could also be interesting
to gamify. For instance, the authors feel that continuous integration or continuous
deployment could easily be gamified, for example by rewarding developers for frequent
releases and/or frequent integration. Another idea would be to conduct an experiment
where researchers focus on which aspects of gamification are the most motivating, for
example by comparing the effects of a leaderboard with the effects of badges and/or
achievements. A word of advice to researchers that are interested in gamification, be it
in software development or not, is that balancing a score system within a gamification
system is a complex task and players within the system will often immediately try to
find ways to game and/or cheat the system. For example the authors encountered this
problem within the first hour after deploying G-Unit. With regards to unit testing, the
authors feel that good results and more developer participation could be achieved if a
tool such as G-Unit would be introduced to new software development right from the
start, in particular when paired with a methodology which features testing as a core
practice. It would also be interesting to see the a study done where there are more
participating developers. Losing a developer due to vacations or illness could possibly
affect the other developers’ motivation to participate. There were only 3 developers
participating in this study, which means that any such losses have a more pronounced
effect than not. Having more developers could alleviate such effects.

The TestHound Maven plugin could also be expanded upon by other researchers. For
example, researchers could add other test smell detection tools to the plugin and thereby
extend the plugin’s ability to detect faults within test code. Practitioners could integrate

59

8.1. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

the plugin to their code base as a first step to evaluate their companies unit test quality.
Researchers and practitioners interested in extending this plugin are advised to read up
on van Deursen’s work regarding test smells [5] and Greiler’s et al. article on TestHound
[29].

60

Appendices

61

A
Appendix

A.1 Interview guide: Code coverage in Iceland

• What is your opinion on code coverage, in the context of your software company?

• Do you currently employ code coverage as a metric of unit test suite quality?

• Any specific goals you strive for, with regards to code coverage?

A.2 Interview Guide: Iteration 3 post-interview

• The tool

– Do you think it helps with writing better tests? (If yes, then how?)

– Do you think it helps with writing more tests? (If yes, then how?)

– Do you think you want to continue using it, or some parts of it, after the
iterations?

• The process

– Do you feel that the gamification system motivated you to to write more
tests? (If yes, then how?)

62

A.3. GAMIFICATION RULES APPENDIX A. APPENDIX

– Do you feel that the gamification system motivated you to write higher quality
tests? (If yes, then how?)

– Do you think that gamification is applicable to unit testing in industry?

– Do you think you will continue to write

• Motivation

– Are you writing tests because of the tool or because we and/or the company
are forcing you to do so?

A.3 Gamification rules

A.3.1 Iteration 1

Bronze Badge Rule

Awarded when the total amount of tests written by a user reaches 10 tests. Given that
the test suite covered in Advania’s case is very small, the authors felt that 10 tests
warranted a bronze badge.

Silver Badge Rule

Similar to the gold and bronze rules above, the silver badge is awarded to a user for
writing 25 tests.

Gold Badge Rule

Similar to the bronze badge rule, the gold badge is awarded when the total amount of
tests written by a user reaches 50 tests.

Branch Coverage Rule

Awards points for increasing the project-wide branch coverage in 10% increments. The
rule also deducts points for decreasing the branch coverage, which commonly occurs

63

A.3. GAMIFICATION RULES APPENDIX A. APPENDIX

when there have been additions to the code base. Deducted points can then in turn be
re-earned by adding tests for the newly added code. Up to 15 points for 60% or higher
branch coverage can be awarded.

Instruction Coverage Rule

Similar to the branch coverage rule, the instruction coverage rule awards or deducts
points depending on the total instruction coverage reached by a given user. The points
awarded depends on the instruction coverage reached. For example, 5 points are awarded
for reaching 50% instruction coverage.

Test-A-Day Rule

The Test-A-Day rule awards a user 20 points and a badge for submitting a new test each
day. The badge and points are only awarded once each day.

A.3.2 Iteration 2

In addition to all of the rules specified in iteration 1, iteration 2 added the following
rules:

Branch Coverage Per Class Rule

The branch coverage per class rule awards or deducts points the branch coverage reach
per class with branch coverage >0%. The maximum amount of points per class given is
5 points for 100% branch coverage. The number of available points are scaled per class
depending on the total median number of branches per class. The minimum amount of
points given for a class with 100% coverage is 1 points.

So, for n classes the total amount of points if given by

n
ÿ

c“1
maxpminPoints, roundpminpmaxPoints, classCoveragec{medianCoverage˚maxPointsqqq

(A.1)

64

A.3. GAMIFICATION RULES APPENDIX A. APPENDIX

Surpassing User Rule

The surpassing user rule does not award any points to a user. It generates notifications
directed towards a user that just surpassed other users on the leaderboard.

Test Smells Rule

The test smells rule awards points for any test smells, previously detected, that were
refactored by the user. A point is awarded for each test smell refactored.

Execution Rule

Awards a single point every time the entire test suite is executed.

65

A.4. PICTURES OF G-UNIT APPENDIX A. APPENDIX

A.4 Pictures of G-Unit

Figure A.1: Front page - News feed

Figure A.2: Front page - Sessions

66

A.4. PICTURES OF G-UNIT APPENDIX A. APPENDIX

Figure A.3: Front page - test smells

Figure A.4: User profile page

Figure A.5: Test session page

67

A.4. PICTURES OF G-UNIT APPENDIX A. APPENDIX

Figure A.6: Badges page

Figure A.7: Test smells page

68

B
Questionnaires

In this section, the questionnaires performed in this study are presented, along with the
data collected from each questionnaire.

B.1 Before introduction

This questionnaire was sent to the developers before the introduction of G-Unit.

1. How interested were you in writing unit tests today?
Ü

Very little interest
Ü

Little interest
Ü

Neither disinterested nor interested
Ü

Interested
Ü

Very interested

2. How much motivation did you feel in regards to writing unit tests today?
Ü

Very weak motivation
Ü

Weak motivation
Ü

Neither strong nor weak motivation
Ü

Strong motivation
Ü

Very strong motivation

69

3. Which of the following describes your opinion on unit tests?
Ü

Very useless
Ü

Useless
Ü

Neither useless nor useful
Ü

Useful
Ü

Very useful

4. How fun is it to write unit tests?
Ü

Very boring
Ü

Boring
Ü

Neither fun nor boring
Ü

Fun
Ü

Very fun

5. “I think that unit tests take too much time from the development of the actual
product” How strongly do you agree with this statement?
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

B.1.1 Data

Timestamp Question 1 Question 2 Question 3 Question 4 Question 5

3/10/2015 14:40:10 Interested Weak motivation Useful Neither fun nor boring Neutral

3/10/2015 14:43:52 Interested Very weak motivation Very useful Neither fun nor boring Strongly disagree

3/11/2015 10:00:26 Very little interest Very weak motivation Useless Very boring Strongly agree

B.2. DEVELOPER DAILY: ITERATION 1 APPENDIX B. QUESTIONNAIRES

B.2 Developer daily: Iteration 1

This questionnaire was sent to the developers every day during iteration 1.

1. How interested were you in writing unit tests today?
Ü

Very little interest
Ü

Little interest
Ü

Neither disinterested nor interested
Ü

Interested
Ü

Very interested

2. How much motivation did you feel in regards to writing unit tests today?
Ü

Very weak motivation
Ü

Weak motivation
Ü

Neither strong nor weak motivation
Ü

Strong motivation
Ü

Very strong motivation

3. How fun was it to write unit tests today?
Ü

Very boring
Ü

Boring
Ü

Neither fun nor boring
Ü

Fun
Ü

Very fun

4. “I think that unit tests take too much time from the development of the actual
product” How strongly do you agree with this statement?
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

71

B.2. DEVELOPER DAILY: ITERATION 1 APPENDIX B. QUESTIONNAIRES

5. How hard was it to use the test analzying tool? Mark the choice that best describes
your opinion.
Ü

Very hard
Ü

Hard
Ü

Neither easy nor hard
Ü

Easy
Ü

Very easy

6. Did you feel that the point system motivated you to write more unit tests?
Ü

Yes
Ü

No

7. Did you feel that the point system motivated you to write better unit tests?
Ü

Yes
Ü

No

8. Did you feel uncomfortable that your points are compared to the points of other
programmers within the leaderboard?
Ü

Yes
Ü

No

72

B.2.1 Data

Timestamp Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8

3/12/2015 16:00:11 Very interested Neither strong nor weak motivation Neither fun nor boring Strongly disagree Neither easy nor hard Yes Yes No

3/12/2015 17:53:12 Interested Neither strong nor weak motivation Fun Disagree Very Easy Yes No No

3/13/2015 9:15:38 Neither disinterested nor interested Weak motivation Boring Agree Easy Yes No No

3/13/2015 15:39:24 Interested Strong motivation Neither fun nor boring Strongly disagree Easy Yes Yes No

3/13/2015 15:40:43 Neither disinterested nor interested Strong motivation Fun Disagree Easy Yes Yes No

3/17/2015 9:53:04 Little interest Neither strong nor weak motivation Neither fun nor boring Agree Easy Yes No No

3/17/2015 10:12:17 Neither disinterested nor interested Neither strong nor weak motivation Neither fun nor boring Strongly disagree Easy Yes Yes No

3/17/2015 16:33:44 Little interest Neither strong nor weak motivation Boring Agree Easy Yes No No

3/17/2015 18:33:44 Neither disinterested nor interested Strong motivation Neither fun nor boring Neutral Easy Yes Yes No

3/18/2015 16:14:06 Little interest Weak motivation Neither fun nor boring Strongly disagree Very Easy No No No

3/19/2015 17:19:53 Little interest Neither strong nor weak motivation Boring Agree Easy No No Yes

3/19/2015 17:20:13 Interested Neither strong nor weak motivation Fun Disagree Easy Yes Yes No

B.3. POST-ITERATION 1 APPENDIX B. QUESTIONNAIRES

B.3 Post-Iteration 1

An open-ended questionnaire was sent to the developer post-iteration 1.

1. What improvements to the leaderboard would you make, if any?

2. Would you rather that the leaderboard assigns you a discrete rank instead of
continuous points?
Ü

Yes
Ü

No

3. What improvements to the badge system would you make, if any?

4. Any comments regarding the tool?

B.3.1 Data

The data from the post-iteration 1 questionnaire can be found in Table 6.1.

B.4 Developer daily: Iteration 2

1. How interested were you in writing unit tests today?
Ü

Very little interest
Ü

Little interest
Ü

Neither disinterested nor interested
Ü

Interested
Ü

Very interested

2. How much motivation did you feel in regards to writing unit tests today?
Ü

Very weak motivation
Ü

Weak motivation
Ü

Neither strong nor weak motivation
Ü

Strong motivation
Ü

Very strong motivation

74

B.4. DEVELOPER DAILY: ITERATION 2 APPENDIX B. QUESTIONNAIRES

3. How fun was it to write unit tests today?
Ü

Very boring
Ü

Boring
Ü

Neither fun nor boring
Ü

Fun
Ü

Very fun

4. “I think that unit tests take too much time from the development of the actual
product” How strongly do you agree with this statement?
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

5. How hard was it to use the test analzying tool? Mark the choice that best describes
your opinion.
Ü

Very hard
Ü

Hard
Ü

Neither easy nor hard
Ü

Easy
Ü

Very easy

6. Did you feel that the point system motivated you to write more unit tests?
Ü

Yes
Ü

No

7. Did you feel that the point system motivated you to write better unit tests?
Ü

Yes
Ü

No

8. Did you feel that the test analyzing tool motivated you write better unit tests?
Ü

Yes
Ü

No

9. Did you feel uncomfortable that your points are compared to the points of other
programmers within the leaderboard?

75

B.4. DEVELOPER DAILY: ITERATION 2 APPENDIX B. QUESTIONNAIRES

Ü

Yes
Ü

No

76

B.4.1 Data

Timestamp Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

4/22/2015 17:25:21 Interested Neither strong nor weak motivation Fun Disagree Easy Yes Yes Yes No

4/25/2015 13:56:32 Neither disinterested nor interested Neither strong nor weak motivation Neither fun nor boring Disagree Neither easy nor hard Yes Yes Yes No

4/27/2015 16:18:49 Neither disinterested nor interested Neither strong nor weak motivation Neither fun nor boring Disagree Easy Yes Yes Yes No

4/28/2015 15:03:52 Little interest Weak motivation Neither fun nor boring Disagree Easy Yes Yes Yes No

B.5. POST-ITERATION 2 APPENDIX B. QUESTIONNAIRES

B.5 Post-iteration 2

1. I understand what test smells are.
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

2. I understand in what ways test smells can affect my test suite.
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

3. In what ways could the test smells display be improved, if any?

4. I think the "Newsfeed" gives me enough information regarding the scoring system.
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

5. In what ways could the "Newsfeed" display be improved, if any?

6. I think that seeing what badges are available motivates me to write more tests.
Ü

Strongly disagree
Ü

Disagree
Ü

Neutral
Ü

Agree
Ü

Strongly agree

7. Any general comments?

78

B.5. POST-ITERATION 2 APPENDIX B. QUESTIONNAIRES

B.5.1 Data

Timestamp Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7

4/30/2015 12:00:22 Agree Agree Agree Agree

79

Bibliography

[1] G. J. Myers, C. Sandler, T. Badgett, The art of software testing, John Wiley &
Sons, 2011.

[2] E. M. Maximilien, L. Williams, Assessing test-driven development at ibm, in: Soft-
ware Engineering, 2003. Proceedings. 25th International Conference on, IEEE, 2003,
pp. 564–569.

[3] K. A. Briski, C. Poonam, V. Hamilton, A. Pratt, B. Starr, J. Veroulis, B. Villard,
Minimizing code defects to improve software quality and lower development costs,
IBM Rational Software Analyzer and IBM Rational PurifyPlus software.IBM, 2003.

[4] S. McConnell, Code complete, Microsoft press, 2004.

[5] A. van Deursen, L. Moonen, A. van den Bergh, G. Kok, Refactoring test code, CWI,
2001.

[6] M. Fowler, Refactoring: improving the design of existing code, Pearson Education
India, 2002.

[7] K. Huotari, J. Hamari, Defining gamification: a service marketing perspective, in:
Proceeding of the 16th International Academic MindTrek Conference, ACM, 2012,
pp. 17–22.

[8] S. Deterding, D. Dixon, R. Khaled, L. Nacke, From game design elements to game-
fulness: defining gamification, in: Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environments, ACM, 2011, pp.
9–15.

80

BIBLIOGRAPHY BIBLIOGRAPHY

[9] J. Hamari, J. Koivisto, H. Sarsa, Does gamification work?–a literature review of
empirical studies on gamification, in: System Sciences (HICSS), 2014 47th Hawaii
International Conference on, IEEE, 2014, pp. 3025–3034.

[10] M. Johansson, E. Ivarsson, An experiment on the effectiveness of unit testing when
introducing gamification, Master’s thesis, Chalmers University of Technology (June
2014).

[11] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, B. Skibbe, The relationship between
test coverage and reliability, in: Software Reliability Engineering, 1994. Proceed-
ings., 5th International Symposium on, IEEE, 1994, pp. 186–195.

[12] H. Þrastar Björnsson, Skype interview, Reon Tech, conducted: 15 Mar. 2015.

[13] H. B. Olafsson, Skype interview, Plain Vanilla Games, conducted: 15 Mar. 2015.

[14] T. Kanij, R. Merkel, J. Grundy, An empirical study of the effects of personality
on software testing, in: Software Engineering Education and Training (CSEE&T),
2013 IEEE 26th Conference on, IEEE, 2013, pp. 239–248.

[15] L. De-Marcos, A. Domínguez, J. Saenz-de Navarrete, C. Pagés, An empirical study
comparing gamification and social networking on e-learning, Computers & Educa-
tion 75 (2014) 82–91.

[16] Video games revenue worldwide from 2012 to 2015, http://www.statista.com/

statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-

by-source/, accessed: 2015-03-03.

[17] A. Marczewski, Gamification: a simple introduction, Andrzej Marczewski, 2012.

[18] S. Grant, B. Betts, Encouraging user behaviour with achievements: an empirical
study, in: Mining Software Repositories (MSR), 2013 10th IEEE Working Confer-
ence on, IEEE, 2013, pp. 65–68.

[19] L. Singer, K. Schneider, It was a bit of a race: Gamification of version control,
in: Games and Software Engineering (GAS), 2012 2nd International Workshop on,
IEEE, 2012, pp. 5–8.

81

http://www.statista.com/statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-by-source/
http://www.statista.com/statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-by-source/
http://www.statista.com/statistics/278181/video-games-revenue-worldwide-from-2012-to-2015-by-source/

BIBLIOGRAPHY BIBLIOGRAPHY

[20] E. B. Passos, D. B. Medeiros, P. A. Neto, E. W. G. Clua, Turning real-world software
development into a game, in: Games and Digital Entertainment (SBGAMES), 2011
Brazilian Symposium on, IEEE, 2011, pp. 260–269.

[21] A. Shahri, M. Hosseini, K. Phalp, J. Taylor, R. Ali, Towards a code of ethics for
gamification at enterprise, in: The Practice of Enterprise Modeling, Springer, 2014,
pp. 235–245.

[22] Apache Foundation, "maven – welcome to apache maven." maven – welcome to
apache maven, http://maven.apache.org/, accessed: 17 Apr. 2015.

[23] D. Martin, J. Rooksby, M. Rouncefield, I. Sommerville, ’good’organisational rea-
sons for’bad’software testing: An ethnographic study of testing in a small software
company, in: Software Engineering, 2007. ICSE 2007. 29th International Conference
on, IEEE, 2007, pp. 602–611.

[24] G. Tassey, The economic impacts of inadequate infrastructure for software testing,
National Institute of Standards and Technology, RTI Project 7007 (011).

[25] N. Juristo, A. M. Moreno, S. Vegas, Reviewing 25 years of testing technique exper-
iments, Empirical Software Engineering 9 (1-2) (2004) 7–44.

[26] J. A. Whittaker, What is software testing? and why is it so hard?, Software, IEEE
17 (1) (2000) 70–79.

[27] Y. Cheon, G. T. Leavens, A simple and practical approach to unit testing: The jml
and junit way, in: ECOOP 2002—Object-Oriented Programming, Springer, 2002,
pp. 231–255.

[28] S. Cornett, Code coverage analysis, Bullseye Testing Technology.

[29] M. Greiler, A. van Deursen, M.-A. Storey, Automated detection of test fixture
strategies and smells, in: Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on, IEEE, 2013, pp. 322–331.

[30] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, D. Binkley, An empirical analysis
of the distribution of unit test smells and their impact on software maintenance,
in: Software Maintenance (ICSM), 2012 28th IEEE International Conference on,
IEEE, 2012, pp. 56–65.

82

http://maven.apache.org/

BIBLIOGRAPHY

[31] R. Wieringa, Design science as nested problem solving, in: Proceedings of the
4th international conference on design science research in information systems and
technology, ACM, 2009, p. 8.

[32] A. R. Hevner, A three cycle view of design science research, Scandinavian journal
of information systems 19 (2) (2007) 4.

[33] S. Chatterjee, B. Tulu, T. Abhichandani, H. Li, Sip-based enterprise converged
networks for voice/video-over-ip: implementation and evaluation of components,
Selected Areas in Communications, IEEE Journal on 23 (10) (2005) 1921–1933.

[34] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, Journal of management
information systems 24 (3) (2007) 45–77.

[35] J. Masters, The history of action research, Action research.

[36] W.-C. Leung, How to design a questionnaire, student BMJ 9 (11) (2001) 187–189.

[37] S. E. Hove, B. Anda, Experiences from conducting semi-structured interviews in
empirical software engineering research, in: Software Metrics, 2005. 11th IEEE
International Symposium, IEEE, 2005, pp. 10–pp.

[38] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empirical software engineering 14 (2) (2009) 131–164.

83

	Introduction
	Case company
	Purpose of the Study
	Statement of the Problem
	Research Questions
	Scope and Limitations
	Contributions

	Background
	Gamification
	Benefits of Gamification
	Gamification of Software Development
	Gamification & Ethics

	Maven
	Software Testing
	Automated Testing
	Unit Testing
	White-Box Testing
	Code Coverage Analysis
	Test Smells

	Methodology
	Design Science Research
	Context
	Design Science Research vs. Action Research

	Reg. Cycle Framework
	Problem Investigation
	Solution Design
	Design Validation
	Implementation
	Evaluation

	Developers, Interviews & Surveys

	G-Unit
	Overview
	Flow

	Implementation
	Design
	User Interface

	Iterations
	Iteration 1: Code Coverage
	Problem Investigation
	Solution Design
	Design Validation
	Implementation and Calculations
	Changes from Design
	Evaluation

	Iteration 2: Test Smells
	Problem Investigation
	Solution Design
	Design Validation
	Implementation
	Evaluation

	Iteration 3: Instant Feedback
	Problem Investigation
	Solution Design
	Design Validation
	Implementation
	Evaluation

	Results
	Evaluation of Iteration 1
	Evaluation of Iteration 2
	Evaluation of Iteration 3
	Quantitative Data
	Number of Unit Tests Created and Test sessions
	Badges

	Revisiting the RQs
	RQ1
	RQ1.1
	RQ1.2
	RQ2

	Discussion
	Research Questions
	Contribution to Knowledge
	Validity Threats

	Conclusion and future work
	Future work

	Appendices
	Appendix
	Interview guide: Code coverage in Iceland
	Interview Guide: Iteration 3 post-interview
	Gamification rules
	Iteration 1
	Iteration 2

	Pictures of G-Unit

	Questionnaires
	Before introduction
	Data

	Developer daily: Iteration 1
	Data

	Post-Iteration 1
	Data

	Developer daily: Iteration 2
	Data

	Post-iteration 2
	Data

	 Bibliography

