Finding Architectural Debt in Historical
Data

Master of Science Thesis in Software Engineering

JOHAN GRUNDEN
BJORN LEXELL

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2014

The Authors grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Authors warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Authors has signed a copyright agreement with a third party regarding the Work,
the Authors warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Finding Architectural Debt in Historical Data

Johan Grundén
Bjorn Lexell

(© Johan Grundén June 2014.
(© Bjorn Lexell June 2014.

Examiner: Mattias Tichy
Supervisor: Antonio Martini

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2014

Abstract

The metaphor Technical Debt (TD) is the description of a sacrifice made in the software
development in order to reach a short term goal. For example, implementing a sub-
optimal solution in a software product in order to meet a deadline. TD can be created
both intentionally and unintentionally and are often hard to identify. This is especially
the case when the debts exist in the architecture since they are not as visible as for
example badly written code. When left unidentified, the debts are accumulating in
unexpected costs such as higher maintenance but more importantly increased lead time in
new development. And after a time, expensive and comprehensive refactoring activities
are needed. It is often the case that budget constraints prohibit complete refactoring
activities. Therefore, it is necessary to focus on fixing the problems that are the worst, i.e.
prioritizing the debts. This master thesis has conducted a case study at Ericsson with the
goal to find methods that can both identify and prioritize Architectural Technical Debts
(ATD). The results from this work includes a Measurement System (MS) developed by
the ISO standard 15939 which successfully identifies ATD:s in the form of non-allowed
dependencies. Additionally, the MS prioritizes the dependencies based on how high risk
they have of being difficult-to-maintain.

Acknowledgements

We want to above all thank our supervisor Antonio Martini for all ideas and the dedi-
cation showed throughout all the steps of our research but also for keeping us on track
and picking us up in times of trouble. Furthermore we also want to thank Peter, Jesper,
Mattias and Patrik at Ericsson for teaching us everything we needed to know about the
company and for the time they put aside of work to help us out. Additional thanks to
Patrik for letting us conduct this thesis at Ericsson. Special gratitude goes out to the
Architects, Anders, Jonas and Suxia who willingly and gladly participated and provided
invaluable input for this thesis. Lastly we want to thank Vard Antinyan for your re-
search and for all the time spent with us, completely without needing to, to understand
a cornerstone of this work.

Bjorn Lexell and Johan Grundén, Géteborg 21/5/14

Vocabulary

ATD: Architectural Technical Debt

Build file: Refers to the build.spec file used in the case company that contains all the
dependencies to other components needed to build the specific component. Similar to a
make file.

DSL: Domain Specific Language

ICT: Information and Communications Technology

Impact estimation: The parts (for example components or source code files) of the
software that are estimated to change in a feature development.

Interest: The amount of extra time or resources that have to spend on future devel-
opment because of the Technical Debt.

LLC: Low Level Component, represents the lowest level of component in the archi-
tecture (called Software Unit (SwU) at the case company).

LS: Literature Search, the customized lightweight approach based on SLR used in the
thesis.

MLC: Medium Level Component, represents a medium level component in the archi-
tecture. It consists of one to many LLC:s (MLC is called Software Block at the case

company).

MS: The Measurement System developed in this thesis which identifies and prioritizes
non-allowed dependencies.

Non-allowed dependencies: Refers to dependencies between components in the architec-
ture that are forbidden. These dependencies exist in low- and medium level components.

Principal: The cost of fixing a Technical Debt, i.e. removing it from the system.

RCS: Revision Control System RMS: Risk Measurement System, refers to the system
developed by Antinyan et. al. [1].

SLR: Systematic literature review

Contents

1 Introduction

1.1 Purpose e e
1.2 Scope and limitations L o
1.3 Research questions
1.4 Main contributions
1.5 Thesisoutline

2 Background

2.1 Technical Debt
2.1.1 Historyof TD.o
2.1.2 Intentional and unintentional TD
2.1.3 Different typesof TD Lo
2.1.4 Identificationof TD

2.2 Architectural Technical Debt
2.2.1 Similar terms for ATD
2.2.2 Definition of ATD
2.2.3 Identification of ATD
2.2.4 Addressing and resolvning ATD
2.2.5 Different typesof ATD

2.3 Non-allowed dependencies between components

2.4 Prioritization of Technical Debt

2.5 Risk Measurement System Lo

3 Method

3.1 Research design

3.2 Prestudy e
3.2.1 Literature Search

3.3 Casecontext

3.4 Method 1 - Comparing feature impact estimations against changes
3.4.1 Planningo

12
12
13
14
15
16

CONTENTS

3.4.2 Performing and evaluating
3.5 Method 2 - Measuring and prioritizing non-allowed dependencies
3.5.1 Step 1 - Establish and sustain measurement commitment
3.5.2 Step 2 - Plan the measurement process.
3.5.3 Step 3 - Perform the measurement process
3.5.4 Step 4 - Evaluate measurement
3.6 Technical Solution of the Measurement System - an example
3.7 Validity threats
3.7.1 Construct validity L L
3.7.2 Imternal validity oL
3.7.3 External validity L
3.74 Reliability

Results
4.1 Method 1 - Comparing feature impact estimations against changes
4.1.1 Prerequisites
4.1.2 Steps to conduct the method
4.1.3 Status of the method oo
4.2 Method 2 - Measuring and prioritizing non-allowed dependencies
4.2.1 Components and process of identifying violations
4.2.2 Components and process of prioritizing
4.3 New approach of prioritizing
4.4 Results from the developed tool for identifying non-allow dependencies . .
4.5 Evaluation of the Measurement System
4.6 Results from validation interview of the Measurement System
4.6.1 The logic behind one-way and circular dependencies
4.6.2 Conclusions of the validation interview

Discussion
5.1 Method 1 - Comparing feature impact estimations against changes
5.1.1 Rough estimations could hinder the method
5.1.2 A lightweight method
5.1.3 Properties due to the scope of the method
5.1.4 Identifies the same type of ATD as method 2
5.2 Method 2 - Measuring and prioritizing non-allowed dependencies
5.2.1 Process for identifying violations
5.2.2 Process for prioritizing violationso L.
5.3 New approach of prioritizing oo
5.3.1 Removing human estimations produces less effort when prioritizing
5.3.2 Connecting the risk to the architecture visualizes the severity of
an ATD
5.3.3 Awareness of the severity obviates the negative effects of hidden
ATD . . . o e
5.4 Validation of identified violations00

ii

34
34
34
35
37
37
37
39
41
42
42
45
46
46

CONTENTS

5.4.1 Threats to the process of identifying violations 53
5.4.2 Validation revealed the existence of unknown ATD 54
5.5 Validation of the prioritization 54
5.5.1 Suggestion to gain knowledge about the increase and decrease of
the ATD:s o o o e 55
5.5.2 An extension of the prioritization metric 55
5.6 Automation and information quality of the Measurement System 56
5.6.1 How to trust the measurement indicators 56
5.7 Proposed Measurement System for change in the number of non-allowed
dependencies 57
5.8 Main contributions to the company0 59
5.9 Releated work L 61
6 Conclusions 63

Bibliography 67

iii

Introduction

ECHNICAL DEBT (TD) addresses the debt that software developers gain by

not doing the quite right solution or producing incomplete development arti-

facts [2]. In 2010, the TD was estimated to cost the global software industry

500 billion US Dollars. Today, it is still considered to be a severe problem
in software development around the world [3]. As the debt increases in software sys-
tems, even more resources have to be spent on paying off the interest, i.e. the cost for
having the debt. TD is often used for trying to reach short-term goals in sacrifice of
long-term [4]. For example, time constraints before a deadline could affect solutions to
be "not optimal”in order to deliver on time. There also exist different types of TD that
are associated with different artifacts of software development. A very problematic type
of TD is Architectural Technical Debt (ATD) which includes debts that can be found
in the architecture. Studies have been made showing that ATD can be very hard to
identify [5] [6]. For example, ATD requires a higher level of abstraction for identification
compared to debts that can be found directly in the source code [5]. This means, since
the abstraction level for ATDs is not as clear as for source code TD, they are harder to
visualize. Moreover, the effects of ATD are not as visible to end-users as for example
software defects as they can’t be traced to visual components. This causes problems for
example when architects are creating arguments for justifying the need of refactoring in
the software [7]. Martini, Bosch and Chaudron [6] concludes that non-allowed depen-
dencies between components in the architecture are a severe type of ATD due to the fact
that these dependencies might cause ripple effects when changes in the source code are
made. This makes the effects of this type of ATD hard to predict. However, identifying
and visualizing the ATD is just the first step of solving the problem. When faced with
a large amount of ATD:s to solve, a management strategy is needed since budget and
time constraints often does not allow to resolve everything at once [8]. Therefore, a
prioritization strategy is needed in order to know which ATD:s that are best to resolve
first. By both being able to identify and prioritize ATD, the field of software engineering

1.1. PURPOSE CHAPTER 1. INTRODUCTION

becomes closer to solving a crucial problem for today’s software industry. This thesis
address the problems of identifying and prioritizing ATD:s by conducting a case study
at one of the largest ICT companies in the world, Ericsson.

1.1 Purpose

The purpose of the thesis is to find a way to identify ATD items in a real life context by
designing a method that could be useful for the case company but also with the potential
to generalize it to similar or potentially completely different companies. The purpose of
the study is also to be able to prioritize ATD in order to get a decision basis for where
to start the refactoring work.

1.2 Scope and limitations

ATD can exist in many different ways and in different artifacts of software development.
However, this thesis only focuses on non-allowed dependencies as the potential source
of an ATD item based on it being the most severe types [6] (theory about non-allowed
dependencies and why they are important to address can also be found in Section 2.3).
Therefore, the scope of the thesis is to measure non-allowed dependencies in order to
identify possible ATD and to measure the risk of the dependencies to be able to prioritize
them. The scope is to focus on the dependencies between components in the middle and
lower level of the architecture. Therefore, whenever the term "non-allowed dependencies”
is stated in this thesis, it reflects dependencies between these components.

This thesis is limited to a specific part of the software systems at Ericsson and will
not be carried out on any other parts or companies. It is also only concerned with
product code and therefore excludes test code.

In order to identify ATD in the form of non-allowed dependencies, the thesis have
set up rules that the architecture must follow. However, the thesis is not aiming to
extract all architectural rules for a given system, the identified ones could be a subset of
the rules. The thesis does not aim to address all rules but rather to focus on the ones
that have been proven to be important by the stakeholders. As a result the identified
non-allowed dependencies in a system could be a subset of all non-allowed dependencies.

1.3 Research questions

In order to achieve the purpose the thesis will try to answer the following research
questions:

RQ1 - How can Architectural Technical Debt in the form of non-allowed dependencies
be identified?

RQ2 - How can Architectural Technical Debt in the form of non-allowed dependencies
be prioritized?

1.4. MAIN CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.4 Main contributions
The main contributions of this study is:

e A proposed method that analyses features within a product to identify non allowed
dependencies. This method answers RQ 1.

e A Measurement System (MS) developed according the ISO standard 15939:2007
which identifies and prioritizes non-allowed dependencies within a system. This
contribution answers both RQ 1 and 2.

e A technique for prioritization implemented in the MS which prioritizes non-allowed
dependencies based on the risk of adding extra effort for the software development.
This concept answers RQ 2.

1.5 Thesis outline

The introduction section is followed by a more elaborated chapter about the background
for the terms Technical Debt and Architectural Technical Debt. A section describing
the focused type of ATD namely non-allowed dependencies and related work is also
presented in more detail. After the background the method chapter will explain how the
identification and prioritization methods, including the Measurement System following
the ISO standard 15939:2007 [9], were developed and carried out. The result section
will present the contributions of the thesis followed by a discussion about the results
and what the contributions adds to research. It will also discuss the applicability of the
results as well as suggestions for future work. The final chapter will conclude the thesis
and present the major findings.

Background

HIS chapter presents the background about Technical Debt as well as Architec-
tural Technical Debt. It also presents theory about non allowed dependencies
and more details about the research on prioritization of TD. The Risk Mea-
surement System (RMS) used in the thesis is described as well.

2.1 Technical Debt

Change and evolution is an inevitable fact in today’s software industry. Higher and
higher demands on more complex systems makes it challenging to manage software
projects in a successful manner. Along with the increasing popularity of agile develop-
ment comes increasing demands on short release cycles and a rapid respond to change to
provide value to the customers. As a consequence shortcuts are often taken in develop-
ment to meet these demands [4]. These shortcuts might meet short term goals but could
inflict negatively on future development and maintenance if not addressed properly. This
phenomenon is called Technical Debt (TD).

2.1.1 History of TD

The metaphor Technical Debt is a situation where increasing software development costs
arises from inadequate development [3]. It refers to the financial world where going into
debt means paying interest on a taken loan. In software development it can be seen
as that the higher development cost is similar to obtain interest due to the fact that a
shortcut has been made at some point [2]. The metaphor was first mentioned by Ward
Cunningham [10] where he drew the conclusion of making shortcuts in the source code
were similar to going into a financial debt. The main reason for the metaphor was to
spell out the need for refactoring to stakeholders that lacked the technical expertise.
After this, TD gained increased popularity by both practitioners and researchers, but

2.1. TECHNICAL DEBT CHAPTER 2. BACKGROUND

there was still a lack of a clear definition [11]. Several studies has been made since then
in order to unify the metaphor into definitions and terms [3] [12] [13].

2.1.2 Intentional and unintentional TD

The studies made on TD shows that it can be obtained both intentionally and uninten-
tionally [4]. Intentional TD is based on strategic decisions that are aimed at reaching a
certain objective. For example, it could be an intentional shortcut taken in the devel-
opment to deliver a feature to a customer on time and deal with the consequences of
refactoring later. Unintentional TD is often incurred when there is a lack of knowledge
or experience. A developer might not be aware of the best solution for a certain task
and in that case a TD is incurred that has to be paid back when a more optimal solution
is needed. Furthermore, the incurred debt can be seen as reckless or prudent depending
on how it is managed [14]. Figure 2.1 describes this taxonomy.

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“Now we know how we

“What's Layering?” should have done it”

Figure 2.1: Fowler’s Technical Debt quadrant [14].

2.1.3 Different types of TD

It is important to distinguish between different dimensions of technical debt due to the
fact that it can exist in different ways [3]. For example, a source code debt is gained
when the code is of low quality, i.e. it is subject to code decay [15]. This decay leads to
more and more complex code and the understandability decreases. Other types of debt
include architectural and design debts. The most common definition of this dimension
is architectural solutions that are non-optimal [3]. That is, a shortcut has been made in
the architecture or it has been left unmanaged over time which for example results in
architectural erosion. Additionally, testing, documentation and work processes can also
be a subject to debts. All these dimensions of technical debts are incurred in different

2.2. ARCHITECTURAL TECHNICAL DEBT CHAPTER 2. BACKGROUND

ways and it is crucial to separate them since the consequences varies as well as the
strategies for repaying.

2.1.4 Identification of TD

A common and crucial condition for managing different types of TD is to properly
identify and visualize the items. [4]. There exists many automatic tools for identifying
technical debts [16]. For example, one approach is to look for code smells to discover
breaches in object-oriented design practices which lowers quality of the software. To
more accurately identify TD it is important to take the occurrence of changes into
consideration. If a class is identified as a TD, but never changed it does not produce
any extra effort, i.e. interest. If no interest is incurred then it is not a TD [13].

As stated in the previous paragraph identification and visualization of TD are crucial
for providing information to management decisions. However, tools that focus on source
code runs the risk of not being able to identifying different types of debt [11]. Studies
has shown that there is a small overlap in what tools and humans detect [17]. This
is especially true for Architectural technical debt (ATD). Many practitioners [7] report
that since these types of debts are less visible for the customer, they gain less attention
and are not prioritized since they are considered to have very little or none customer
value. The ATD:s can have more severe effects than source code TD such as higher
interests over time on software quality and maintainability [5].

2.2 Architectural Technical Debt

The background study conducted for this thesis shows a gap in understanding and defini-
tion of Architectural Technical Debt which is proven by the limited amount of work and
published papers. The architecture is recognized to play a major role for the evolution
of large software systems [11] and the development of user features should be done with
close consideration of the architecture [4]. However, there is a lack of well-established
approaches to identify and manage ATD and the problem domain is not as well-known
as for example code debt [5]. Previous work on TD, identifying and managing, is mostly
focused on source code and based on reckless development or inexperienced develop-
ers [4].

2.2.1 Similar terms for ATD

Apart from the term Architectural Technical Debt (also known as architectural debt) the
literature review came across some related terms. Design debt for example is according
to Zazworka et. al. [18] another definition, one other paper mentions the same term
without the explicit connection to ATD but describing the same phenomenon [17]. Mo
et. al. [5] talks about architectural decay instances which origin from the architecture
beginning to drift or erode. These instances will most likely, if not properly addressed,
develop into ATD.

2.2. ARCHITECTURAL TECHNICAL DEBT CHAPTER 2. BACKGROUND

2.2.2 Definition of ATD

The definition for ATD is a sub-optimal solution [3], when a software design cannot
satisfy the intended purpose [18], an imperfection in the architecture that have a negative
impact on maintenance [17] or when design decisions affects the life cycle properties of
a system [5]. Architecture decay is additionally associated with implementation not
matching the original architecture, increased resistance to change or the growing effect
of negative changes on the quality of a software product [19] [20].

ATD or architectural decay originates from the rapid evolution of software where
the architecture cannot follow [13]. In contradiction to user features, which are easy to
visualize, architectural changes are mostly invisible but based on intentional decisions.
Management and re-work estimations of these debt items are dependent on proper iden-
tification [4]. In especially iterative development such as SCRUM, architectural changes
are hard to quantify and often assigned zero-value for the customer. This falsifies the
view of providing value to the customer as it is only seen as an increased development
cost when it in fact could speed up the implementation of new features [5].

2.2.3 Identification of ATD

The identification of ATD has been done with static code tools such as code smells and
Automatic Static Analysis issues on the source code [16] with or without a combination
of adding interviews [17]. However, some papers propose metrics or approaches that are
considering the architecture directly without the use of source code [4] [5]. Mo et. al. [5]
suggest transferring architectural models into extended augmented constraint network
(EACN) which can be used to determine pairwise dependency relations for automatic
detection of decay instances. ATD could also be identified by looking at Modularity
violations or Design patterns and grime buildup [16]. Modularity violations happens
when change in one module is dependent on change in another, this breaks the principle
of modular design. Design patterns are commonly used and recognized to improve
maintainability and architectural design. However, changes could lead to code ending up
outside the pattern which is known as grime. Furthermore, when changes are introduced,
the risk increases for that a design pattern is not suitable to the change, also known as rot.
There are more symptoms connected to a higher level of architectural abstraction than
source code implementation mentioned as architectural bad smells [21]. They concern
architectural elements such as components, connectors, and concerns. Some papers
stresses the importance of connecting source level elements with these components and
the dependencies between them to properly identify ATD [4] [5]. To answer the first
research question, the aim of this thesis is to connect source level elements to components
and by looking at modularity violations between them through static analysis to reveal
ATD.

2.3. NON-ALLOWED DEPENDENCIES BETWEEN COMPONENTS
CHAPTER 2. BACKGROUND

2.2.4 Addressing and resolvning ATD

During the literature review a common solution for addressing ATD was found to be
refactoring or re-architecting [4] [18] [22] [23]. This solution is often done when developers
recognize that an improvement to the architecture is necessary for the maintenance and
continued evolution of a system or when it cannot fulfil its purpose anymore. However,
decisions about paying of an ATD and the solution to the problem should be done by
the architect [21] [22]. One paper states the importance of involving people from the
project to decide rework efforts associated with a debt item [4]. Another paper points out
business involvement when handling technical debt [22] as it is common for developers or
architects “gold plate” the solution [11]. This means making the architecture to adaptive
or making a solution more “technically elegant” than it needs to be. More time is spent
then necessary and business consideration should decide when a solution is good enough
to maximize the value gained from it.

2.2.5 Different types of ATD

A critical point for when it comes to understanding ATD is to understand the different
types that can exist. For example, a common one is code duplication. This type of
ATD is also referred to as “Scattered functionality” and exists when multiple parts of the
software have responsibility over the same matter [21] [5]. Garcia et. al. [21] concludes
that this ATD is in direct violation of the design principle of separation of concerns
and also states that it can have impacts on the modifiability, testability, reusability and
understandability of the system. Many researchers has put a lot of effort into automating
tools that can both identify and remove this type of ATD [24]. Non-allowed dependencies
are another type of ATD which is recognized as very problematic [6] and will be explained
in detail in the next section.

2.3 Non-allowed dependencies between components

A non-allowed dependency is a dependency that lies in conflict with the intended archi-
tecture and design of the system [6]. By introducing such dependencies, the architecture
of the system will be subject to decay and degradation, i.e. an ATD is introduced in
the system [25]. Also, these dependencies might cause ripple effects to other parts of
the system that are not known [6]. These effects can be extra changes needed in other
components due to the existence of the dependency. If non-allowed dependencies exists
that are unknown for the designers, then the effects can be that additional unexpected
time has to be put into the unforeseen extra changes. This might cause time estimations
to be inaccurate and delay releases of features or make the maintainability of the system
worse. There can be many reasons for introducing this type of ATD. For example, the
developers might not be aware of that a new dependency is not allowed. As explained
in the previous sections of this chapter, time constraints for deadlines can also be a
reason for introducing a debt. Hence, decisions might be made to introduce non-allowed
dependencies as a part of a shortcut to meet a deadline for a feature.

2.4. PRIORITIZATION OF TECHNICAL DEBT CHAPTER 2. BACKGROUND

A common type of dependency is Structural Dependencies where a component is
dependent of another component through a method call, class extension or a class ag-
gregation for example [26]. This means that the component which is the dependent
one relies on the other component to function properly. Any changes introduced in the
other component might produce changes in the dependent component due to the fact
that it uses functionality from the other one [27]. So, if the dependency is not allowed,
then the dependency could produce extra effort in the form of possible extra updates in
the dependent component due to changes in the other component. This can be seen as
paying interest on the ATD. The effect becomes even worse if the dependency is circular,
i.e. both components are dependent on each other [25]. Per definition, changes in any
component would increase the possibility of introducing extra changes in the other one
due to the fact that both components are dependent on each other. It could even be
the case that additional changes are triggered because of the first one and so on. For a
graphic visualization of these ATD types, see Figure 2.2

Component A Component B One way

Circular
Component A Component B

Figure 2.2: A visualization with examples of the effect of the dependencies described.

The extra efforts of these dependencies can be traced to more than just changes in
the source code. For instance, more efforts needs to be taken into account when creating
tests [25]. Consider that Component A from Figure 2.2 does not have a dependency to
Component B initially. When testing A, there is only need for building a test suite for
component A. If the dependency to B is introduced, then the test suite for A has to
include the test suite for B as well. Due to the fact that this type of ATD is recognized
to be very problematic and produce side effects that can be hard to foresee, this thesis
will focus on identifying and prioritizing non-allowed dependencies. Methods need to be
established in order to systematically achieve this.

2.4 Prioritization of Technical Debt

As with a financial debt, TD has the benefit of supporting short-term goals. But, the
drawback is the cost of an accumulating interest over time and the debt also has to be
paid back in the form of a principal cost at some point [22]. When an increasing amount

2.5. RISK MEASUREMENT SYSTEM CHAPTER 2. BACKGROUND

of debts are accumulated in the system, decisions has to be made on how to address
the problem. Resource constraints on software projects often have the consequence of
making these decisions very difficult since the budget does not allow for fixing every
issue [8]. In order to make these decisions as good as possible, a prioritization technique
is needed that can identify which debt has the worst effect on the software. Seaman
et. al. [8] states that several approaches can be taken when managing the TD. For
example, a cost-benefit analysis can be taken to prioritize debts according to how much
interest they produce along with how much value that is gained if the principal is paid
off (i.e. the cost of extinguish the debt completely). By managing the TD in this way
the one with the highest interest and the least principal will be addressed first which
is a very efficient managing technique, especially when resource constraints poses as
a problem. However, the same study also concludes that there is always the risk of
“overdoing” the decision making process meaning that the amount of effort is not worth
the amount of value that the result provides. Often, it can be hard to estimate the
amount of interest and principal that a certain TD generates. This has been shown
by Zazworka et. al. [17] where practitioners report that the estimations are indeed a
tricky and time-consuming task to perform which spells out the need for automated
tool support. Another prioritization approach would be to use the Analytic Hierarchy
Process [8]. The process is a simple and effective way that uses pairwise comparisons
on different alternatives in order to give each alternative a relative priority among the
rest. When applying this process to TD decision making, the various alternatives would
be the actual identified TD items. Moreover, when it comes to prioritizing amongst
interest and or/principal of TD items, metrics has to be chosen to represent these terms
as well. For example, for severe ATD items such as non-allowed dependencies, which
is a type of modularity violation, studies has been made that shows that the change
proneness is closely related to this ATD [16], which could be seen as a possibly metric
Another example of a metric that can be used in the prioritization of interest is a Risk
Measurement System (RMS) developed by Antinyan et. al. [1] that can identify source
code files that runs the risk of for example being difficult-to-maintain. So, if a file is
identified as high-risk it is also identified to generate risk of generating a greater amount
of effort to maintain in relation to other files. If the file would be included in a non-
allowed dependency for example, then the effort to maintain it would be a part of the
interest that the ATD generates. Therefore, in order to address the second research
question, the focus in this thesis will be to prioritize the ATD:s after this definition. The
RMS is explained in more detail in the following section.

2.5 Risk Measurement System

As the complexity in software products increases, it becomes harder to manage the
associated risks. Often the risks are not feasible to manage manually since the size of
the products can be very large. For example, assessing millions of lines of code in a
product is impossible for a manager for obvious reasons. Therefore, automated tools can
be of a great help when trying to identify parts of the source code that are not optimal.

10

2.5. RISK MEASUREMENT SYSTEM CHAPTER 2. BACKGROUND

Antinyan et. al. [1] have developed an automated Risk Measurement System (RMS) to
identify parts of the source code that are considered as risky. The actual risk is defined
as:

"The likelihood that a source code file becomes fault prone, difficult-to-manage or difficult-
to-maintain”

The system have been developed with collaboration from both Ericsson AB and Volvo
Group Technology and focuses on risky files in lean projects. To be able to measure the
files, metrics are needed. The research behind this measurement system showed that
two metrics are needed to calculate the relative risk of a file. Firstly, the complexity
of the file is measured by McCabe’s cyclomatic complexity for functions and files. The
definition for McCabe’s cyclomatic measurement of functions is the following:

"The number of linearly independent paths in the control flow graph of a function,
measured by calculating the number of ’if’, ’else’, "while’, for’, |7, €&’ switch’,
break’, ‘goto’, 'return’ and ’continue’ tokens.”

The output of the measurement of the function is a value, M. When M > 15 the
function is defined as complex. When measuring the complexity on files instead of
functions, McCabe’s cyclomatic complexity (M) is summed for all functions in that file.
With these two measurements, a ratio is calculated between the nr of complex functions
and the total number of M in a file. The result is a metric; Effective_M% which represents
the complexity of the file. However, a file that is complex does not necessary represent
a risk if it is not modified. To take this into account the number of revisions of a file
are measured by looking at the Revision Control System(RCS) ClearCase and count the
amount of check-ins for a file in a given time period. This metric is called NR. To sum
up, the relative risk is calculated by the following formula shown below:

RELATIVE RISK = EFFECTIVE_M% * NR

Moreover, to be able to identify the files that are considered with the most risk,
a threshold needs to be defined. This threshold needs to be calibrated to meet the
properties of the product that is measured. For instance, the size and number of people
working on the product are two properties that needs to be taken into account.

The measurement system has been evaluated by designers from both Ericsson AB
and Volvo Group Trucks Technology and it proved that the system could identify all
major risks. The system is currently deployed at a department at Ericsson AB were the
designers get continuously updated information about the risky files.

11

Method

HIS chapter presents how the methodologies used in the thesis was developed

and carried out. It also includes the research design which describes the reason-

ing behind doing an exploratory case study. Furthermore, the pre-study done

at the company and the case context is presented along with the Literature
Search (LS) conducted for Chapter 2, Background. This thesis consists of two different
developed methods for identifying and prioritizing Architectural Technical Debt which
are presented in different sections.

3.1 Research design

As explained in Chapter 2, ATD is a problem for many software projects today. This
thesis aims to find methods for how to handle that problem. In order to find these,
knowledge about how the problem behaves will be explored in a real life context. Runeson
and Host [28] explains that in situations like this, a case study is the most appropriate
research method to use. For example, it is very flexible in the aspect of how the steps of
the research method can to be conducted. Each step can be customizable and adapted
to the specific conditions of the case. This benefits the thesis study since the authors
started the research with very limited knowledge about the topic and the context. The
design of the research could easily be adapted and changed as knowledge grew and the
context became clearer. Due to the fact that the thesis workers had no knowledge of
how to answer the research questions before hand, the case study was designed to be
exploratory. The exploratory case study is aimed to "seek new insights” about the specific
research problem. This design helps to systematically find out how ATD is a problem
and to explore new ideas of how to solve it.

The research process of this case study is based on the principles of the 5 steps
defined by Runeson and Host [28]. The purpose of the steps in this thesis are that they
should be stating a systematic approach on how to fulfill the goals of the study. It is

12

3.2. PRE STUDY CHAPTER 3. METHOD

also important to notice that for this study, step 2-5 will be repeated iteratively which
will be explained below.

1. Case study design: This involves setting up the objectives of the study. To be
short and concise the objective is: to find methods that can identify and prioritize
ATD in the form of non-allowed dependencies.

2. Preparation for data collection: Since the approach of this case study is to explore
methods that can identify and prioritize ATD, this step and the following ones
will be repeated for each method. For each method, a plan of how the method
will work and what information needs to be measured will be established. The
concept of the specific methods will be derived from knowledge generated from
the pre study mentioned in Section 3.2 along with knowledge and input from the
case company and Chalmers. The concepts may also rely on existing standards
that defines processes for how to generate methods. This is the case for method 2
explained in Section 3.5. If any interviews would be needed to be conducted, they
would be set up and planned in this stage. Also, other components such as source
code or revision history needs to be identified if they are necessary to be measured
by the specific method.

3. Collecting data: The purpose of this step is to realize the plan that has been
created in step two. This involves conducting the necessary interviews, measure
the components needed.

4. Analysis of data: As a part of the analysis step, validations and confirmations
has to be done. The methods needs to be validated in a systematic way and be
confirmed to be useful in order to draw valid conclusions about them. This will
involve setting up an empirical validation method and conducting it by preferably
interviewing stakeholders related to the specific method.

5. Reporting: As a final step, the methods will be reported through this thesis. This
involves all steps from method generation to the analysis.

3.2 Pre study

The pre study for the thesis consisted of a few steps to start of the work, the first one
was a Literature Search (LS) process which was followed by a study of the case context.
Along with the LS an initial method of identifying ATD:s was formed based on ideas
from literature and input and ideas from the department of Software Engineering at
Chalmers. Furthermore, the thesis started out with limited knowledge about the case
context at Ericsson. Therefore, there was a risk that the initial method, which has not
been tested before, would not be applicable in the company. If that risk would occur,
the thesis would not be able to produce any results in the form of ATD. In order to
mitigate the risk, a second method was also developed when knowledge about the thesis
subject and the company context had increased.

13

3.2. PRE STUDY CHAPTER 3. METHOD

3.2.1 Literature Search

To gain knowledge and the necessary understanding required to carry out this thesis a
literature search was conducted on academic literature available on TD and ATD, both
on identifying and prioritizing. The LS was based on the principles of Systematic Lit-
erature Review, SLR [29], but due to time constraints a more lightweight and adapted
process was used. Before the start of the thesis some papers had been acquired for the
understanding about the problem domain. From these papers an initial set of search
terms were derived; Technical debt and Architectural technical debt. The adapted ver-
sion of SLR, the LS was developed to be as effective as possible and to fit within the
planned time frame of two weeks. The process contained the following steps and were
done in iterations:

1. Identify search terms. (For the first iteration this was done from the literature
gained before the LS)

2. Search lib.chalmers.se and scholar.google.se for the identified terms.
3. Pick the first 10 results from the search.

4. Read the title and abstract, if relevant for the thesis include the paper and add it
to a list of possible relevant literature.

5. Read intro and conclusion/discussion. This was done by both thesis authors to
determine if the paper would be useful. If not accepted by both a discussion was
held until an agreement could be made. If the paper was excluded at this stage a
short comment about the paper was noted.

6. Each identified paper was read through more rigorously with the goal to identify
new terms, key findings and relevant references. A summary of each paper was
written down.

7. “Snowballing”, i.e. a common method for continuously pursuing references of ref-
erences, was made on the relevant sources of the obtained papers.

8. If new search terms were derived from the papers the process was started over from
step 2.

The literature search ended up with a total of 30 papers and from the first iteration 5
new terms were found; Architectural Decay, Software Architectural Design, Identifying
Technical Debt, Identifying Architectural Technical Debt and Design Debt. The second
iteration generated 3 terms; architectural deterioration, design metaphor and architec-
tural bad smells. During the thesis the literature search continued and additional papers
were found to support new theory, for example research on non allowed dependencies,
the definition and form of expression needed to be considered which resulted in several
papers: [6] [26] [27]. As a part of the thesis focused on deliver a measurement system
as well as the validation of it, papers about that kind of research were also added, for
example [30] and [9].

14

3.3. CASE CONTEXT CHAPTER 3. METHOD

3.3 Case context

The conducted case study took place at Ericsson which is a world leading ICT-company.
They are focused on supplying equipment, software and services for mobile communica-
tion. Currently the company has more than 110 000 employees that are situated all over
the world.

More specifically, the studied case went on at a site at Lindholmen, Gothenburg,
which has around 2000 employees. The specific department for the study works with
software for Radio base stations and their product has been in development for half a
decade. A couple of years ago they changed their working process to be according to the
lean and agile methodology. The developers are about one hundred and are comprised
into 15 cross-functional teams. These teams develop features and are responsible for
analyzing, designing, implementing and testing the feature. The main release time for
the specific product is around 6 months and consists of many features developed by the
teams. To support the cross-functional teams there are some other roles as well. For
example, there exists 3 Architects which has the main responsibility to ensure that the
architecture of the software is kept according to their intended one and to prevent it
from erosion and decay. Each Architect has responsibility for its own part of the system
and they are the ones who have the best knowledge about the architecture. However,
they still have a collective responsibility for the whole system. Furthermore, there exists
Technology Specialists that have expert knowledge in the area who are planning future
work concerning product care and are often used for consulting when technical problems
emerge. The thesis workers supervisors at Ericsson consisted of two software designers
which are both scrum masters of cross-functional teams along with one Technology
Specialist.

The software architecture of the product developed by the department where the
study took place at is both layered and component-based. The product is mainly based
of C/C++ source code files. These source files are divided into so called Software Units.
They represents the lowest level of architectural components and are therefore called low
level components or LLC:s throughout this thesis. The LLC:s are grouped together into
Software Blocks which represents a medium level architectural component named MLC
in the thesis. Figure 3.1 gives a visualization of this component-based architecture.

Moreover, the product employs a layered architecture as well. The architecture
consists of 3 layers and one common platform layer which hold all the commonalities
between the layers. Each LLC can be a part of one of the different layers and a MLC
can have LLC:s from various layers. In Figure 3.2 the layered architecture is described.

Furthermore, the department has specific naming conventions for the source code.
This helps keeping a clear structure of the code base. The following example shows the
path for a specific source code file:

../product_name/exampleMLC /exampleLLC/examplefile.cc

As seen, the structure of the component-based architecture can be viewed in the path
of the file. ExampleMLC refers to the specific medium level component and exampleLLLC

15

3.4. METHOD 1 - COMPARING FEATURE IMPACT ESTIMATIONS AGAINST

CHANGES

CHAPTER 3. METHOD

refers to the specific low level component. In order to build the product, each LLC has
its own build specification called a build.spec(build file in the thesis. This specification
describes all the necessary dependencies to other components that are needed for build-
ing. The company uses a Revision Control System (RCS) to keep track of the different
versions of the code along with each change made to it.

S

/ Folder A |-" ™

b.cc
Mﬂhhﬁygggzﬂ)

MLCA
L—1
LLCA LCB LLccC
|
LLCD LLCE
MLC B
LLCF LLCG LLCH

Figure 3.1: The component-based architecture of the product.

Interface Layer

Lc

Lnc

Figure 3.2: The layered architecture of the product.

3.4 Method 1 - Comparing feature impact estimations against

changes

This method involves finding non-allowed dependencies by comparing estimations of
which parts that should change in development, called impact estimations, with the
actual results of the implementation. This would indicate possible ATD items since

16

3.4. METHOD 1 - COMPARING FEATURE IMPACT ESTIMATIONS AGAINST
CHANGES CHAPTER 3. METHOD

an unknown dependency could cause the change in the extra component. The idea for
this method originated from the department of Software Engineering at Chalmers which
conducted a qualitative study involving the case company. The company develops several
features which have documentation about impact estimations called design specifications.
This method would look at the documentation for each future individually to identify
ATD. This would provide a multiple set of data points to try the method on, which
could be used to determine the effectiveness.

3.4.1 Planning

The planned approach for the method consisted in a series of steps. Firstly, documenta-
tion needed to be reviewed in order to determine the estimated parts in need of change
for a specific feature. When impact estimations were identified, interviews with respon-
sible developers would be held to determine how these estimations were done and by
which criteria. The purpose of this was to gain an understanding about the quality of
estimations to see if they could be used in the method but also the set up criteria for
what was needed for the method overall.

The next planned step in the method was to get the actual changes made for the
specific feature from the revision system. These estimations should be traced to the
same component level as provided by the documentation so that they could be compared.
Furthermore, the next step, comparison between estimations and implementation should
be carried out. Potential mismatches, where a change affected a component that was
not in the estimations, would be flagged as potential ATD. The unexpected change in
that component could be the result of a non-allowed dependency in the system.

To validate the findings from this method a two-step interview process would be
conducted. Firstly, an interview would be held with developers where they would be
asked to describe ATD items they believed were introduced in the feature. The second
interview would include showing the results from the thesis method along with the ATD
proposed by the developer to discuss potential mismatches. True positives in the ATD
items would be identified by comparing the results and false positives from the method
would be able to be discarded by the developers. Items not discarded by the developers
would prove an increment in knowledge as they were unknown. A comparison between
all items identified, by both parties would work as a way to determine the effectiveness
of this method. By doing the same procedure on multiple features even more data points
could be collected to strengthen the result of the effectiveness.

The last step of the plan consists of calculating the risk of effort from the Risk
Measurement System and connect it to the ATD item identified in the previous step.
This would be done to get the risk for each violation in order to prioritize them against
each other.

3.4.2 Performing and evaluating

According to the plan the method involved going through a lot of documentation about
features. As knowledge grew about the way this was done within the company the

17

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

criteria required for a suitable feature was created. This lead to excluding features not
providing the required initial estimations and resulted in a subset of suitable features. In
order to determine the validity of the estimations two semi-constructed interviews were
held with people at the same site. The ones not available for interviews, due to not being
at the same location were contacted by mail. A couple of initial questions about the
estimations for the feature were asked to determine if a telephone interview was needed.
The result for each feature was summarized to determine if they were suitable for the
method.

As the thesis played out it revealed that few features matched the criteria for the
method and it was therefore concluded to be inefficient and unable to produce any valid
results in this specific case context. This is explained in detail in Section 4.1. As the
thesis was working with the different methods in parallel all efforts were directed towards
the second method explained below.

3.5 Method 2 - Measuring and prioritizing non-allowed de-
pendencies

During the pre-study a possible second method for identifying ATD was elicited from
the increased knowledge about the system and the context. This method focused on
analyzing the existing dependencies and to check them against rules about architecture
in order to identify rule breakers/violations. When the non-allowed dependencies were
found they were prioritized according to the risk of extra effort showing up when main-
taining the components that were dependent on each other. The derived indicator from
this method follows the steps of the ISO standard 15939:2007 which defines a process on
how to create Measurement Systems (MS) to addresses a specific information need [9].
By following this standard it was ensured that the MS would provide the stakeholders
with correct and valid information. The process is divided into a number of steps that
define what is needed to be done in order to meet the requirements of the standard.

3.5.1 Step 1 - Establish and sustain measurement commitment

As a first step the scope of the measurement was defined to be; Measure non-allowed
dependencies in order to identify possible ATD and to measure the risk of dependencies
to be able to prioritize them. The stakeholders for the measurement were considered
to be the architects because they would use the results as ground for refactoring as
well as developers who could get indicators about introducing violations in the system.
The measurement process involved the thesis writers, responsible for all the steps in the
process as well as architects which provided rules and validation of the results. The
supervisors at the company provided all access, computers and knowledge on where to
find the necessary data needed for the thesis.

18

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

3.5.2 Step 2 - Plan the measurement process

This section presents all the steps, according to the ISO standard, carried out to de-
termine the plan of the measurement process such as determine the organization unit,
identifying information needs, data collection along with evaluation and validation of
the results. A final section describes already existing tools for identifying violations.

3.5.2.1 Determine the organization unit

According to the ISO standard used in the thesis a plan was constructed for the necessary
steps involved in the measurement process. Firstly the organization unit was determined
to be the department on which the thesis was carried out on. It includes the people
working on the product such as architects and development teams but also the actual
product and the source code associated with it. The architects are responsible for the
architecture of the product and were therefore selected to be the most appropriate ones
to identify architectural rules and also the ones most suitable to validate the results of
the thesis. The product consist of source code files that belongs to different LLC:s, each
one of these units belongs to a MLC. The high level components of this system are not
considered in this thesis as they represents an abstraction level not suitable for analyzing
dependencies in the way proposed in this method. This is due to unclear connections
between high level components and LLC.

3.5.2.2 Identify information needs

Secondly the information needs of the stakeholders for the measurements were identified.
This resulted in 2 different information needs;

1. Need to see all the violations and to discover the unknown ones.

2. Need to have a prioritization of violations to know which ones to fix first.

This explains what the stakeholders want out of the indicators, namely a system
that can identify and prioritize the non-allowed dependencies. Information need 1 is
prioritized over number 2 since the latter relies on having the violations in order to
prioritize. Based on the information needs and by following the standard the selected
measurements for the thesis were documented as follows:

Name of measurement: Violation.
Unit of measurement: Build file, Rule document.
Formal definition: A dependency between two LLC:s violating an established rule.

I 1 ith hi i les.
Method for data collection: nterviews with architects to determine rules

Automatic extraction of dependencies from the source code file.

Related information need: 1

19

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED

DEPENDENCIES CHAPTER 3. METHOD
Name of measurement: Severity of violation
Unit of measurement: Source code and revision history.

Formal definition: For circular dependencies:

The aggregated risk of each involved LLC

For one way dependencies:

The risk of the source LLC in the dependency

Measure the risk for files in each involved LLC.

Aggregate the risk for each file in a LLC

Method for data collection:

Related information need: 2

3.5.2.3 Data collection

The procedures for the data collection were planned to involve the following steps: iden-
tify rules by interviewing the Architects, create or find a tool which identifies depen-
dencies in the system. Rules should if needed be implemented in the tool so it could
check for violations. The RMS described in Section 2.5 would be used to calculate the
risk of each source code file which would be manually aggregated for each LLC. The
last planned step involved combining the measurements and to validate them with the
architects.

3.5.2.4 Evaluation and validation

The criteria for evaluating the results of the measurement process were also established
for the plan. Through constant communication with the architects, the thesis super-
visor at Chalmers and the company each step should be discussed to identify possible
improvements to the process. Data and information products should be confirmed to
provide value to the company. The plan for validating the results involved which steps
that should be taken at the end to validate the outcome of the measurement process.
These steps would determine if results provided new information and/or the correct in-
formation about non-allowed dependencies. The purpose was also to verify that the risk
prioritization represented the reality.

3.5.2.5 Study of available tools for identifying violations

Before the plan was carried out a study of available tools for measuring dependencies
were conducted. This was done for two major reasons; to find out if our intended
product existed on the market and to find out the possibility of extending an already
existing product with the rules. The study showed similar tools capable of identifying
dependencies. By the thesis workers best knowledge the following tools are the most
similar:

20

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

e Dependometer [31]: An open-source tool that is used for analyzing if the archi-
tecture of a project is complying with the intended architectural rules. It uses a
logical architecture description, defined through an xml file, which is used for veri-
fying the dependency architecture in for example layers or sub components. At the
moment the tool can analyze Java, C# and C++ projects. However, a downside
with this tool is that it is very time consuming to set up the logical architecture
and that it only visualizes dependencies between classes. This means that a lot of
time has to be invested in the set-up phase.

e SonarQube [32]: Is another open-source tool that monitors many different types
of technical debt. This tool is including a feature that is very similar to the one
developed by this thesis. It is called an Architectural Rule Engine and it allows
the user to set up architectural constraints about which dependencies that are not
allowed. This can be done for dependencies between single classes as well as for
whole packages. But, this feature is limited to projects that are written in .Net
and Java and since the case project is written in C++ this tool was not applicable.

The thesis workers were not familiar with any of the tools found and therefore it
would require a lot of time to understand them along with setting up and integrate
them into the existing case. Also, possible additional time to develop plugins for these
programs in order to implement the architectural rules was considered to be more time
consuming than developing a tool from the scratch in a known programing language.
Therefore, the decision was taken to develop a new tool that was specific for the case.

3.5.3 Step 3 - Perform the measurement process

This chapter presents the execution of the steps from the planning phase such as the
different interviews with the architects about the rules but also the creation of the own-
developed tool and the usage of the Risk Measurement System (RMS).

3.5.3.1 Individual rule interviews with architects

According to the established plan the first phase for the measurement process started out
with interviews about architectural rules. A combination of the knowledge gained in the
pre study along with known good architectural practices were used to create potential
ideas for rules. An example of these practices can be circular dependencies which is
explained in Section 2.3. The rules were a starting point for constructing interviews
with the architects where the goal was to find out which specific ones that existed in
their system. All three architects were contacted by email where they were asked for
an interview about architectural rules within the system. Thereafter, semi-constructed
interviews were held with each one of them at the company. The interviews started out
with a short description of the thesis and the planned method. They were then asked
to state rules about non-allowed dependencies between LLC:s. If they couldn’t answer
the question or when they had provided all the answers the potential rules from the pre
study were presented followed by a discussion about them. The two later interviewees

21

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

were also presented with the rules from the previous one(s) to gain more insight about
them. At the end they were asked once again if they could state any other rule that
was missed. The reason for that was because they could have gotten more insight about
what a rule could be from the examples provided by the thesis workers but also to ensure
that no rule would be missed. The interviews were 45-60 minutes long and the results
were summarized in an individual rule document with comments and general thoughts.

3.5.3.2 Common interview with architects and final rules

After the individual interviews the architects were contacted once again to decide on
a final interview including all architects. The goal of the interview was to present the
result and to reach a consensus about which rule(s) that would be used in the thesis.
The rules would regard which dependencies that were not allowed between components.
A summary of all the findings was presented for the architects and a discussion was held.
When a consensus was reached a formal definition was made together with the interview
subjects to remove the possibility of misunderstandings. The architects were asked to
determine which rules they wanted the thesis to focus on and state the priority among
them. The interview was one hour long and took place at the company. The rules that
were derived during the interview were the following:

1. A low level component (LLC) should not have a dependency to a LLC in another
medium level component (MLC). However, dependencies to LLC:s in the Platform
MLC are OK. Any dependency between two LLC:s in different MLC:s should
go through their corresponding Interface Unit (a type of low level component).
The Platform MLC contains LLC:s which has common functionalities and these
dependencies are therefore excluded from this rule.

2. Two LLC:s should not have circular dependencies between them. An important
note is that only direct circular dependencies will be checked here. It could be the
case that a circular dependency could exist between three or more LLC:s, but due
to time constraints of the thesis, the focus was to check between two LLC:s firstly.

3. LLC:s in Control Layer should not have dependencies between each other. A LLC
belongs to a specific layer inside the architecture and it shouldn’t have a depen-
dency to another LLC in the same layer (even if they are in the same MLC).

4. A LLC in the platform should not have a dependency to a LLC outside the platform.
The platform consists of library units which should only provide services to others,
they should not have a dependency to other components outside the platform.

5. LLC':s in the Interface Layer should not have dependencies to the Control Layer.
Dependencies should be towards the coordination layer and not between these two.

6. A LLC should not have a dependency that is directed towards another LLC':s /src
folder. The /src folder is a folder that exists in each LLC. It contains the internal
code of the component and other LLC:s should not have dependencies directed

22

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

there. Dependencies should rather be directed to interface folders for that LLC
(which are located in another folder than /src).

Out of the six rules the architects decided that the first four would be selected for
the thesis as they provided the most value for the company.

3.5.3.3 The tool - RuleValidator

In order to measure the non-allowed dependencies a tool was created that could au-
tomatically identify rule violations. As a pre step before the creation of the tool the
architectural mapping between L- and MLC:s was made to achieve the right level of
abstraction needed for the rules. This was done by looking at the actual folder structure
of the source code. The results were summarized in an external Microsoft Excel file
with the name of the LLC and the MLC to which it belongs. The tool was designed in
Java and uses an external Excel library called JXL to create and read Excel files. The
main purpose of this tool was to implement the architectural rules and to automatically
extract the necessary dependency information from the build file. The implementation
time for the tool was approximately one week for one developer with basic knowledge
in Java. It uses input in the form of Excel files containing the architectural mapping
and special attributes belonging to a rule (rule number 3 and 4 in Section 3.5.3.2). For
example, a special attribute could be a layer in the architecture to which an LLC belongs
to. The source code is used to extract the dependency files in order to retrieve all the
dependencies in the system. Each rule was implemented as an algorithm in the tool for
which the dependencies could be checked against. The output of the tool is an Excel file
containing information about the source and destination component of each dependency
as well as the type of rule that the dependency breaks. To ensure the correctness of the
tool, testing was carried out during the development. A test system was created where
all dependencies and violations were known. This was used to check if the tool found the
correct results. Manual verification was also done several times to check different steps
of the application such as reading Excel files and dependency files. Random samples
were taken from the results to manually confirm the violations by double-checking the
dependency files from the source code.

3.5.3.4 Usage of the Risk Measurement System

The Risk Measurement System (RMS) described in Section 2.5 was used on the same
revision of the source code as RuleValidator in order to find out the complexity of each
file in the system. Because of a change in revision systems at the company the revision
history could not be gained automatically by the RMS and needed to be manually
extracted. The time period for the revisions was set to a release period to reflect all
stages of development. By selecting that time period the risk would show up as general
and stable for each file rather than vast and short variations which could appear with
a smaller time span. This is confirmed by the tool creator to be a proper way to
address this threat. The result from the RMS was a relative risk for each file showing an

23

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

indication of the likelihood that a file becomes hard to maintain or manage i.e. the risk of
effort [1]. However, to gain the same abstraction level as the dependencies the result was
aggregated for each file in a LLC. This value is a relative value between LLC:s dependent
on all files rather than individual risk of files. According to the definition made by
Antinyan et. al. [1] more risky code is more error-prone and difficult-to-maintain. Since
error-proneness and maintenance time are additive properties, and since the LLC:s are
composed by files it was found logical to regard the risk of a LLC as a sum of all files’
risks in that component.

The data about violations were combined with the risk to create a priority ranking
of the dependencies to determine which one was the most severe. In the case of one-way
dependencies, the risk of the violation was considered to be the risk of the source LLC.
Circular dependencies were not treated in the same way, the risk was an aggregation
of both LLC:s involved to reflect a higher risk for that type of violation. Section 2.3
explains how risk of effort can be introduced in dependencies, this was the reasoning
behind the prioritization. The highest risk number would be considered to be the most
severe dependency and would be an indication to the stakeholders on where to start
refactoring.

3.5.4 Step 4 - Evaluate measurement

This chapter presents the evaluation and validation of the measurement. The ISO stan-
dard states the necessity to evaluate the information products which was done according
the plan. The evaluation was also extended with a validation of the indicators as it was
needed for the research point of view, this is presented in a separate section.

3.5.4.1 Evaluation of measurement

In order to successfully evaluate the Measurement System (MS) several steps were taken.
This was done by continuously presenting the progress and process of the MS through-
out 4 discussions and the 4 semi-constructed interviews with the architects. 12 weekly
meetings during a 3 month period were also held with one Technology Expert and two
scrum masters. This was done to in order to confirm that the MS provided them with
useful information and to discuss improvements to the process. The result of this was
that the evaluation criteria for approval were fulfilled as the indicators were correct, an-
swered what they were looking for and increased their knowledge about the non-allowed
dependencies.

3.5.4.2 Validation of measurement

Since the MS is composed of two indicators, both were subject to validation. However,
the indicator of the actual violations was considered by the stakeholders to capture
all non-allowed dependencies which was discussed continuously through all evaluation
sessions described in the previous section. This was due to the fact that in order to create
a dependency between two LLC:s, the path to the other LLC needs to be included in the

24

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

build file. Only two possibilities existed that would make the indicator of the violations
to provide incorrect information. Firstly, it could be possible that the path to the
other file in the dependency would be inserted directly in the source code. This is in
direct violation of the coding standards within the company and would be identified
during their continuous code review sessions. Secondly, it could be possible that a
dependency stated in the build file was not actually manifested in the source code, i.e.
the dependency was unused. This would require detailed code investigation to see how
the actual dependency was manifested. However, this was not seen as a major problem
since if the dependency was not manifested in the code, it would only be removed from
the build file without any effort when refactoring. The stakeholders were given the
chance to exclude such dependencies at the one-time validation interview which focused
on validating the prioritization indicator. Additionally, to validate if the indicator of the
violations would reveal any unknown non-allowed dependencies, a form was sent out to
the stakeholders which is explained in Section 3.5.4.3.

To validate the second indicator, regarding the prioritization of the violations, the
thesis had the aim to comply with the method of evaluating measurements proposed by
Staron et. al. [33]. The method states an appropriate process for empirical validation of
the MS at software organizations and is presented below:

1. "Develop and deploy a measurement system.

2. For a period of time, validate the indicators and measures with the stakeholder:
this validation is done by observing the values of the indicators together with the
stakeholder and ask the stakeholder to assess the same phenomena without using
the measurement system (stakeholder’s view).

3. After a period of time, if the stakeholder’s view is consistent with the indicators
values, then we can assume that the measures are empirically valid.”

By conducting this final interview along with a discussion, an empirical validation of
the prioritization indicator would make sure that the developed MS was measuring what
it was meant to measure. It would in other words validate if the information that the
indicator provide would match the stakeholders’ information need. The interview was
performed in the following way:

1. The interview subjects, i.e. the architects, were presented with the theory behind
the concept of risk of adding extra effort to non-allowed dependencies. It was also
explained that the risk is calculated based on the number of revisions and the
complexity of a component. This was done in order to provide the architects with
an understanding about the concept.

2. The architects were given samples of violations for each rule. The samples were
taken from the output of the MS and included 3 top prioritized, 3 medium priori-
tized and 3 randomly selected in between for each rule. The MS’ prioritization of
each violation was not displayed for the subjects.

25

3.5. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 3. METHOD

3. The architects were asked to prioritize the violations according to how much extra
effort that they believed them to generate. They were not asked to prioritize by
estimating the exact risk for each component by looking at complexity and number
of revisions as this would be infeasible. Instead their decision should be based on
their tacit knowledge of how the components in the non-allowed dependencies were
considered to generate extra effort.

4. The prioritization from the MS was revealed followed by a discussion about po-
tential differences between the two prioritizations and the reasoning behind the
architects’ decisions. The purpose was also to determine if the indicator provided
them with correct and realistic information even though potential differences would
occur.

However, the discussion held in step four revealed that the architects did not prioritize
based on the concept of adding extra effort. Instead they prioritized according to if the
violation was expected or unexpected for them. For example, a dependency often got
a low priority when it was known beforehand, while it received a high priority when it
was unknown or they couldn’t see any logical explanation for that specific dependency.
Sometimes they prioritized based on their "gut feeling” or by simply guessing. For some
specific dependencies they included their experience about specific components behavior
and interactions to determine the severity in order to prioritize. Some of the dependencies
were questioned by the architects if they existed or not but they were not so certain about
it that they could exclude them. In order to exclude these dependencies, detailed code
investigation would have to be done. They also stated that an unknown dependency
could be seen as more severe than a known one since it is not considered in development
planning and could therefore generate unexpected side effects. Furthermore, they stated
that it was hard connect the risk to a LLC during their prioritization since the concept
was not well known for them which caused them to rely on other factors for estimating
the prioritization. Also, it was hard to manually prioritize a dependency according
to the amount of risk of effort since they did not have knowledge of how the actual
dependency looked like, only that it existed. Therefore, the process of validating the
prioritization indicator through the steps described by Staron et. al. [33] could not be
followed completely. This was due to the fact that the architects’ criteria for prioritizing
manually were not the same that the MS used.

Additionally, the results from the architects’ prioritization were used as a compar-
ison with the results from the MS to validate if the prioritization indicator would add
any extra knowledge to them. If the comparison would reveal a big difference in the
prioritizations, but the architects still would confirm that the indicator provides use-
ful information for them, it would prove that they were provided with new and helpful
knowledge about the severity of the existing ATD:s in the system. On the contrary,
if the comparison would mostly match, it would reveal that the information about the
severity was already known beforehand.

26

3.6. TECHNICAL SOLUTION OF THE MEASUREMENT SYSTEM - AN
EXAMPLE CHAPTER 3. METHOD

3.5.4.3 Estimation form for architects

The final interview was followed up by sending a form containing all LLC:s and the
formal definition of each rule. They were asked to fill in the rule violations that they
believed to be in the system for each LLC they had knowledge about. The purpose of
this step was to collect information on the awareness of violations in order to compare
it against the results of the thesis. This could prove an increment in knowledge and/or
a confirmation of correctly identified non-allowed dependencies.

3.6 Technical Solution of the Measurement System - an
example

This section will describe how the MS was implemented technically at the case company.
The purpose is to provide this information to those who desire to replicate the same
method again. The description will be explained in the form of an example. The example
will explain how the MS works, all the way from identifying the violations to prioritizing
them. Moreover, this specific example will be focused on 3 Low Level Components (LLC)
that belongs to the same Medium Level Component (MLC). These three LLC:s has two
circular dependencies that are violations that will be identified and then prioritized which
can be seen in Figure 3.3.

MLCA

LCA ——» Hcc

LHce

Figure 3.3: An example of dependencies between three different LLC:s in the same MLC.

First of all, the example starts with the build files of the LLC:s. This is where all
the dependencies are found. The build files for these three LLC:s are the following:

27

3.6. TECHNICAL SOLUTION OF THE MEASUREMENT SYSTEM - AN
EXAMPLE CHAPTER 3. METHOD

LLC A
inc /product_name/mlcA /llcB
inc /product_name/mlcA /1lcC
LLC B
inc /product_name/mlcA /llcA
inc /product_name/mlcA /1lcC
LLC C
inc /product_name/mlcA /llcB

As seen, all dependencies correspond to the dependencies shown in Figure 3.3. The
next step is to generate the architectural mapping for the specific system which is needed
in order to know which LLC that belongs to which MLC. This is done in an Excel-file and
is used as input for the tool that identifies the violations, RuleValidator. The Excel-file
is composed of a table with two rows and includes all LLC:s and MLC:s that exists in
the system. Table 3.1 shows how it would look for this example.

Table 3.1: an example of the Excel-file that holds the architectural mapping of the system.

A B

llcA | mlcA
llcB | mlcB
llcC | mlcC

Now, the input that is needed for RuleValidator has been established. As explained
in Section 3.5.3.3, RuleValidator reads all the LLC:s build files from a folder which is
located in the top folder of the source code for the system to measure all dependencies.
In this case the path to that folder would be ”.. /product_name/”. The dependencies are
stored in a HashMap, called “dependencies”in this example, with a String as a key and an
ArrayList of Strings as a value. The key represents the name of the specific LLC and the
ArrayList contains all the names of the LLC:s that the specific LLC has dependencies to.
Furthermore, the architectural mapping is read via an external library called JXL and
stored as a HashMap with String as both key and value. The key represents a LLC and
the value represents the specific MLC that it belongs to. For each rule, the tool uses an
algorithm with the HashMap “dependencies”as input. These algorithms are stored in the
class Rules.java. The output for each algorithm is an ArrayList of Pairs which is a tuple
and contains two Strings. Each violation is modelled as an element in this ArrayList,
with the type Pair<String,String> where the first String represents the source of the
dependency and the second String represent the destination. For circular dependencies,
both Strings are seen as source and destination. In this example, the algorithm for
checking direct circular dependencies is explained by the following java/pseudo code:

28

3.6. TECHNICAL SOLUTION OF THE MEASUREMENT SYSTEM - AN
EXAMPLE CHAPTER 3. METHOD

function checkCircularDependencies(HashMap<String,ArrayList<String>
dependencies) {
ArrayList<Pair<String,String>> result

for each dep in dependencies {
ArraylList<String> destinations = dep.get()
for each d in destinations {
ArrayList<String> sources = dependencies.get(d)
for each s in sources {
if (s equals d)
result.add(new Pair(s,d))
}
}

result = removeDuplicates(result)
return result

To explain in text, what the algorithm does is that it retrieves all the destinations of
the dependencies that come from a specific LLC. For each of those LLC:s it is checked if
it has any destinations to the first LLC. If that is the case, a direct circular dependency
exists and it is stored in the results ArrayList. Also, since the algorithm will find
duplicates for each circular dependency, a function removeDuplicates removes them. As
a side note, RuleValidator is not implemented with the most optimal data structure,
a better way would be to model the components as objects with the dependencies as
attributes to these objects. Additionally, the algorithms for checking the rules are not
the most optimal either, but they suit the purpose of the specific case company.

For this example, the output of the checkCircularDependencies algorithm would be
an ArrayList with the two following pairs:

o <llcB,llcC>
o <llcA,llcB>

After RuleValidator has executed all rule checking algorithms, the result is four
ArrayLists of the abovementioned kind. One for each rule. The next step is to present
the output in an Excel-file that holds all the information about the violations. The
Excel-file holds four different sheets, one for each rule, and presents all non-allowed
dependencies that have been identified. It also presents empty rows that will be used
later for the prioritization process. Table 3.2 shows the sheet of circular dependencies
for the example.

As seen, the priority and risk fields are empty at the moment. The following step
would be to start the prioritization process. This is done with the Risk Measurement

29

3.6. TECHNICAL SOLUTION OF THE MEASUREMENT SYSTEM - AN
EXAMPLE CHAPTER 3. METHOD

Table 3.2: Example of the sheet Circular Dependencies output from the RuleValidator.

Priority | LLC 1 | LLC 2 | Risk
llcB llcC
llcA llcB

System (RMS). The risk calculated is based on the complexity of the source code and
the number of changes done to the code. The RMS needs access to the source code and
a file containing all the changes of the code. The file that is containing all the changes
is retrieved via the RCS for the source code and has the following structure:

/product_name/mlcA/llcA 2014-01-05
/product_name/mlcA /llcB 2014-03-02
/product_name/mlcA /llcA 2014-03-04

One line corresponds to one change made in the source code and they stretch back 6
months in time. The RMS is implemented as an Excel-macro and uses the revision file
along with the source code in order to calculate the relative risk for each file and displays
it in an Excel sheet. The MS implemented by this thesis then manually aggregates the
risk of each source code file to the LLC that it belongs to. For example, if LLC A consists
of two files with the risks 12.3 and 5.4, then the risk of LLC A would be 17.7. This is
done for all the LLC:s within the system and put as a separate sheet in the Excel file
which holds all the violations. Table 3.3 shows the result for this example.

Table 3.3: The relative risk of each LLC within the system for this example

LLC | Relative Risk
llcA | 17,7

llcB 19,1

llcC | 2,3

Now, the risk has been mapped to the right abstraction level (LLC:s) and will now
be mapped to the non-allowed dependencies in order to create a prioritization. For
this example, regarding circular dependencies, the risk for the violation is calculated by
aggregating the risk of both LLC:s. Since this information should be displayed along
with the information from Table 3.2, Excel formulas are introduced in the risk column
for automatic calculation of the violations. The violations are then sorted based on the
risk and are given the right prioritization. Table 3.4 shows the end result of the MS.

30

3.7. VALIDITY THREATS CHAPTER 3. METHOD

Table 3.4: The two circular dependencies has been prioritized.

Priority | LLC 1 | LLC 2 | Risk
1 llcA llcB 36,8
2 llcB llcC 214

3.7 Validity threats

As with all empirical studies there always exists threats to the validity of the study.
These should be handled and taken into consideration to increase to trustworthiness
[28]. In this section the threats to this thesis are presented as four different categories
along with measures taken to mitigate the impact of them.

3.7.1 Construct validity

This concerns that the results are representing what the study is actually trying to inves-
tigate and which are needed to answer the research questions. For this study a threat lies
in the architectural rules not being understood in the same way by the thesis writers and
the architects. This was addressed by presenting the same definition about architectural
technical debt and the meaning of a dependency at the start of each interview. More-
over, rules could also be formulated in an ambiguous way or a misinterpretation of the
result could lead to faulty rules. Therefore, during the common interview, the rules were
agreed on by all architects and a written definition of each one was created together.
As revealing Architecture Technical Debt (ATD) could be seen as showing defects or
mistakes in architecture a threat lied in the architects intentionally formulating rules to
exclude some violations. Except from having a shared common responsibility for the
whole system each architect is responsible for one or more MLC:s and they could there-
fore have a tendency to protect their own territory. As the interview subjects were quite
few the threat was mitigated to the best possible extent by holding interviews separately
with all architects and to let them talk freely about other areas. The common meeting
held with all of them revealed the results for each of the interviews. This proved to
work well, for example one rule was formulated even stricter than during the individual
interviews. The reasoning for this was stated to be able to get the most violations as
possible, this proves the commitment of the architects and eliminates the threat of with-
holding information. However, this does not eliminate all threats of interview bias as
it would be possible for the architects wanting to “gold plate” the architecture solution
rather than achieving a good enough one. By showing worse results for management
more resources could be spent on refactoring then necessary. Due to different level of
architectural expertise within the case company this threat could only be handled by
clearly stating the rules and presenting the measurement details in a way understandable
for everyone involved in the system. The result from all interviews have been validated
with all subjects to eliminate the threat of misinterpreting any information, quotes or
conclusions drawn from it.

31

3.7. VALIDITY THREATS CHAPTER 3. METHOD

3.7.2 Internal validity

This concerns the risk that an investigated factor is affected by something not considered
in the study. During the work of the thesis a couple of factors that could affect the results
were identified. One factor was considered to be the ability of introducing dependencies
directly in the source code without using the dependency file. This is however stated by
the architects to be very unusual and would most likely be found during code reviews.
Therefore, the risk of missing dependencies was considered to be very low and the threat
was mitigated. Another factor that could influence the result was unused dependencies.
As the tool only checks in a specific file and not in the source code there could be cases
where a dependency between components is just an include statement without using any
parts of the source code. The risk of the dependency could therefore be misleading as
the LLC:s risk does not include any extra effort from the violation. However, through
discussion with architects, a decision was made to show these fake or unused dependency
as they opened up for a rule violation and should be removed. During the final validation
it was clearly stated that the results presented could include false dependencies. This
was done to give the architects a possibility to question the results.

3.7.3 External validity

This concerns how generalizable the results from the study are. It is fair to assume that
most software in the world includes non-allowed dependencies that could be the source
of ATD. Therefore, a successful method that is useful for practitioners would provide
great value to the community. The generalizability of the thesis method lies in how well
each step can be carried out at other cases. The following points describes parts of the
Measurement System (MS) that needs to be considered in order for it to be applicable
in other contexts:

e Rules or thoughts about the dependencies in the system needs to be defined: If there
is a lack of architectural thought, it could be tackled by investigating the existing
product and determine rules to be followed in the future.

e The dependencies between the components of the software needs to be extracted:
At the case company, the build files are used to extract the dependencies between
components. These are required for the MS to be efficiently implemented. If a
build file or any other similar dependency file is not available, a tool that examines
source code needs to be used instead. This could require a significant amount
of effort and understanding which would make the MS more time consuming to
implement.

o The extraction of the dependencies needs to be at the same abstraction level as the
architectural rules: At the case company, the rules were concerning L- and MLC:s.
As the build file reflects the dependencies at the same abstraction level this made
the process of verification feasible. This might not always be the case, and then
more effort would have to be put in to map the rules with the dependencies available
in the source code.

32

3.7. VALIDITY THREATS CHAPTER 3. METHOD

e A Revision Conrol System mneeds to be used: In order to prioritize non-allowed
dependencies according to the risk of being hard-to-maintain, historical revision
of the source code is needed. If this is not the case, the MS will only be able to
identify and not prioritize the ATD:s.

This threat was mitigated by trying to use components that are likely to exist in
most software developing industries and which are not to complex or time consuming
to use and understand. For example, to the best understanding of the thesis workers,
most companies have some architect(s) and a planned architecture. At least there exist
some rules or thoughts about good practices which can be used in that case. However to
extraction of dependencies is the major threat for repeating the method with the same
effectiveness. Without the formal build file a much more complex tool could be needed
which would increase the amount of effort for the process.

3.7.4 Reliability

This concerns how reliable the results from the study are. It addresses the question if
other researchers would produce the same output by conducting the same study. The
major threats are associated with the extraction of the rules as they are based on quali-
tative interviews. The interviews held with the architects increased the knowledge about
architectural rules, if the process was repeated the results could be more precise than
before. The process for creating a measurement followed a defined ISO standard to the
greatest extent eliminating the threat of having an unclear process during the study.
By following the standard it would be easier to understand the method and to use it
in future or similar research. To increase the reliability a technical example of how to
implement all the necessary steps to check one rule are included in this report. This
provide a clearer picture for how the study was done at the case company which would
help out if someone wanted to repeat it in the same context, or a simliar one.

33

Results

HIS chapter presents the contribution of the thesis in form of the two evalu-
ated methods for identifying Architectural Technical Debt (ATD) and a new
approach for prioritizing violations. Both methods include steps and compo-
nents that need to be taken into consideration to successfully carry out each

process. The new approach connects the risk of adding extra effort with the non allowed
dependencies. This chapter also includes the results from the process of validating the
idea of prioritization together with the architects and a comparison between violations
identified by the previously mentioned and the outcome of the measurement system.

4.1 Method 1 - Comparing feature impact estimations against
changes

As explained in section 3.4, one way of finding ATD in the form of non-allowed depen-
dencies would be to compare the estimations of the impact, i.e. the parts that will be
affected by change because of the feature, with the actual outcome of the development.
A result of this thesis is a lightweight method for identifying this type of ATD:s. The
scope of this method is to reveal specific ATD:s that are related to certain features.
When the method is applied in the appropriate setting, it could reveal debts without
any use of external tools or a heavy setup process. Firstly, the prerequisites needed
in order to start the method will be explained. After the prerequisites, the method is
divided into certain steps that explain what needs to be done in order to identify the
ATD:s. Lastly, Figure 4.1 visualizes the method.

4.1.1 Prerequisites

In order to follow the process, certain prerequisites need to be taken into consideration.
The prerequisites explained below are crucial when assessing if a feature is suitable or

34

4.1. METHOD 1 - COMPARING FEATURE IMPACT ESTIMATIONS AGAINST
CHANGES CHAPTER 4. RESULTS

not for being a subject for this method.

o The estimations of the impact have to be documented. In order to compare the
outcome with the estimations, the estimations have to be written down. For many
features, documentations were found but it lacked the estimations.

o The documented impact estimations should reflect intended estimations rather than
implementation results. Some features had documented impact estimations but
they were updated along with the progression of the development. As a result the
estimations instead described what was actually implemented.

o The estimations of the impact cannot be at too high abstraction level. The esti-
mations should preferably be low level components since it provides with a more
detailed dependencies. By using a higher level of components the dependencies are
not traceable to low level components which could leave out ATD.

o Knowledge about the estimations of the impact has to be available. In order to
assess the validity of the estimations, interviews with the responsible designers has
to be conducted. The reason for this is to determine if the estimations fulfills the
criteria described in this section. After investigating, several features proved to be
too old to use because the designers had forgotten the details of the estimation
process.

o The outcome of the development needs to be available for measurement. Since this
method relies on revision history for a specific feature it needs to be possible to
identify all the development done for that feature and to separate it from others.
This is done by looking at the branch(es) used during implementation as they
contain all the changes done related to a certain feature. For some features it were
not possible to trace back which branch(es) were used for development.

o The estimations have to be done with the intended architecture or architectural
rules in mind. The estimations need to be based on architectural thought in
order to use them for the method. If they are derived without knowing about the
architecture the estimations could include non-allowed dependencies which would
not be detected by this method.

4.1.2 Steps to conduct the method

Once the prerequisites are met the process of comparing the estimations with resulting
changes can be started. The following steps define the necessary actions that need to be
taken in each phase of the method:

1. Select suitable feature and identify impact estimations - The process begins with
the selection of a feature that will be examined and the review of that features
impact estimations. The documentation of the initial impact estimations needs to
be available. An example of impact estimations is shown in Figure 4.1 where 3
LLC:s are estimated to change

35

4.1. METHOD 1 - COMPARING FEATURE IMPACT ESTIMATIONS AGAINST
CHANGES CHAPTER 4. RESULTS

2. Identify implementation results - In order to compare the estimations, the impact
results of the implementation needs to be identified as well. This is done through
accessing the revision history of the feature from the RCS where the source code
for the feature is present. An example of implementation results is shown in Figure
4.1 where the revision history reveals changes in 4 LLC:s.

3. Compare differences - To detect any differences between the results and the esti-
mations, the next step is to compare them. This is done simply by subtracting the
results from the estimations. The difference is used as input for the next step. As
seen in Figure 4.1 the estimations difference would be the extra LLC (LLC4) as it
is not in the estimation impacts

4. Identify non-allowed dependencies - When the difference from the comparison is
available, assessment has to be done whether the origin is out of any non-allowed
dependencies. This is done through interviews with responsible designers for that
specific feature. The goal with the interview is to trace the difference to non-allowed
dependencies. In Figure 4.1 the non-allowed dependency shows up to LLC4 as it
changed during development but was not included in the impact estimations.

Impact estimations

—
-l

Possible nonallowed
dependency

The actual impact of
development

Figure 4.1: Model of method 1

36

4.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 4. RESULTS

4.1.3 Status of the method

When carrying out the method it was found out that only 3 features out of 33 of the
investigated features fulfilled all the prerequisites, therefore it was decided during eval-
uation to not go ahead with this method. The reason was that it would not be enough
data points to draw any valid conclusions. It would not be possible to provide evidence
that the method would be useful in identifying ATD. However, the thesis has successfully
extracted the necessary steps and prerequisites and if they are true for a certain indus-
trial environment the method could successfully be evaluated. The method has also been
subject for static validation by several personnel involved in the case company. Feedback
has been provided that shows that this method could be very useful if the prerequisites
should be met. For example, one Technology Expert within the company claimed that
"The method would be useful if we would have the required information that is needed to
identify our violating dependencies”. It was also confirmed that if the company would
meet these prerequisites, this process could be tested in order to detect debts in their
system. Technology Experts and scrum masters stated the need of introducing checklists
throughout the development phases that would ensure that the information needed for
the prerequisites would be documented.

4.2 Method 2 - Measuring and prioritizing non-allowed de-
pendencies

This section will describe the result of the Measurement System (MS) developed from
the ISO standard 15939:2007 [9]. The scope of this MS is to identify and prioritize all the
non-allowed dependencies of the system that is being measured. The result is divided up
in two subsections. This section is based on the process of identifying and the process
of prioritizing the non-allowed dependencies. Each subsection states the necessary steps
and components along with critical prerequisites that are needed to start the process. As
for method 1 explained in Section 4.1 these subsections have the same structure regarding
of how the processes are presented. The structure starts with the prerequisites for the
method followed by the necessary steps and ended with a visualization of the components
in the process.

4.2.1 Components and process of identifying violations

This thesis aimed to identify ATD in the form of non-allowed dependencies. In order
to answer the first research question a process and all the necessary components were
created and identified. This contributes to research as it presents everything that is
needed to find violations along with a feasible method for the case context. The process
and the components for finding violations are presented in this section and seen in Figure
4.2.

37

4.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 4. RESULTS

4.2.1.1 Prerequisites

The following prerequisites are required in order to start performing the process:

e Access to source code. This access is crucial since the dependencies of the system
are manifested in the source code.

e Access to architectural expert knowledge. In order to create rules about the ar-
chitecture, access must be obtained to the knowledge of how the architecture is
intended to look like. This can be obtained from interviewing architectural experts
or by viewing documentation about the architectural guidelines within the system.

4.2.1.2 Steps to conduct the method

As soon as the prerequisites have been confirmed to be ok for the system the identification
process can begin. The following steps explain the process:

1. Architectural rules - The process of finding violations starts by identifying the rules
for the architecture, this is done along with architectural experts. However, the
rules, if stated, could be derived from documentation about architecture. For the
thesis little documentation existed and only worked as a starting point, rules were
mainly formulated together with the architects during interviews. Rules should aim
to reflect the intended design of the architecture and therefore work as identifiers of
non-allowed dependencies. The architectural experts should be the ones responsible
for the architectural design and the future changes to it.

2. Architectural mapping - Source code files needs to be connected to architectural
components. These components should match the same abstraction level as the
rules. The mapping for the thesis was derived from the file structure of the source
code but could also, if available, be gained from other software artifacts such as
documentation.

3. Deriving dependencies - The existing dependencies within the software system
should be derived from the source code. For the thesis this was done with the
self-developed tool but could be done with similar solutions. The dependencies
should be on the same level as the architectural mapping to be able to determine
violations to the rules.

4. Find violations within dependencies - By checking dependencies against the rules
derived in the first step violations were identified. This was done automatically
by the self-developed tool, where each rule was implemented as an algorithm and
checked against each dependency. The result which is the actual indicator, is a
tuple ,<x1,x2>, with the source (x1) and destination component (x2) involved in
the non-allowed dependency.

There exist no strict order of the steps in the process and most of them can be
done in parallel. Only the last step is dependent on its predecessors. The first

38

4.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 4. RESULTS

and the second step is connected since the outcome in form of the architectural
abstraction level needs to be the same. This should be taken into consideration
when deciding on which step to do first or when working in parallel with them.

Place of violation Process

Indicator O L

F 3

Base metrics Violations

Architectural
mapping

Architectural experts

Figure 4.2: Components for the violation indicator.

4.2.2 Components and process of prioritizing

Along with identifying violations this thesis contributes with an additional process and
all necessary components to prioritize violations. This is used to answers the second
research question in the thesis. The steps in the process along with the components are
presented in this section and seen in Figure 4.3

4.2.2.1 Prerequisites

To start the process of prioritizing the violations, two important components need to be
available. They are the following:

e Violations - In order to start the prioritization process, the process of identifying
all violations needs to be finished. The end result from that process is a tuple

39

4.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 4. RESULTS

of LLC:s <x1,x2> including the source (x1) and the destination (x2) of the non-
allowed dependency that is used for prioritizing in this process.

o Architectural mapping - When conducting the process of identifying violations, the
component of architectural mapping is established. The same component needs to
be a part of this process as well. This is important since if a new architectural
mapping is derived, it might not be at the same abstraction level, and then it will
not be possible to map the risk of adding extra effort to a specific non-allowed
dependency.

4.2.2.2 Steps to conduct the method

When the pre required components from the process of identifying violations are in place
the following steps explains how the process is performed:

1. Calculate complezity and number of revisions - From the source code McCabe’s
complexity, which is explained in Section 2.5, should be calculated along with
the Number of Revisions (NR). The source code needs to be in a Revision Control
System (RCS) to get the NR. The time period for the NR should reflect the release
time for the product that is being measured. For the thesis the NR was derived
manually and the complexity was calculated by the RMS.

2. Calculate risk - The risk for each source code file is calculated by the RMS which
is more rigorously explained in Section 2.5.

3. Map risk to the right architectural abstraction level - The risk for each software
source code file should be aggregated for files belonging to the same component.
This is done with the architectural mapping so it is possible to connect the risk
with a violation.

4. Map risk to violation - The component risk should be mapped to the violation
depending on the type, one- or two-way. The outcome will be a prioritized list for
each rule with the most severe at the top and the least severe at the bottom.

All the steps for this process needs to be done in sequential order and steps 1-2 could
be done without the results from the violation process, however step 3 needs the archi-
tectural mapping but could be done before having the actual violations.

40

4.3. NEW APPROACH OF PRIORITIZING CHAPTER 4. RESULTS

Process
Rank of violations A

Indicator O

Rank
Derived metrics \

Risk
Base metrics | Violations Complexity Revisions
Architectural
mapping
Source code

Figure 4.3: Components for prioritization of violations

4.3 New approach of prioritizing

This thesis presents a way to prioritize dependencies by using the research from another
study focusing on identifying risky source code files [1]. By establishing an architectural
map and connecting the software elements to a higher abstraction level, namely compo-
nents or the case specific Software Unit (LLC), the risk can be transformed and used to
prioritize violations in the architecture. The study establishes a way to connect the risk
for each component to an actual non-allowed dependency by defining where the extra
effort of a dependency actual lies (explained in Section 2.3). By connecting the risk to
a violation it is possible to compare a dependency with others to determine which one
is the most severe. This aims to address the problem of not having enough material to
convince management on the severity of non-allowed dependencies and to work as an
indicator on what to start focus on for refactoring work.

When presenting the prioritized violations for the architects they confirmed it to be
valid and stated that it would be of much value for them to see the associated risk. When

41

4.4. RESULTS FROM THE DEVELOPED TOOL FOR IDENTIFYING
NON-ALLOW DEPENDENCIES CHAPTER 4. RESULTS

comparing their estimations with the ones produced by the thesis workers one could see
some mismatches. However, as the latter estimation was accepted this could be seen as
adding knowledge not already in the company. During the interview it was found out
that the results would be of value when presenting for technical experts which proves
that the aim of providing more material for managerial decisions about refactoring was
achieved.

4.4 Results from the developed tool for identifying non-
allow dependencies

Table 4.1 describes the number of violations that were identified for each rule using the
developed tool. The result is separated per rule due to the fact that they are different
violations and the weight, i.e. importance, has not been evaluated for each rule. For
example, a violation that breaks rule 2 might be more severe than a violation that breaks
rule 1 or vice versa.

Table 4.1: Number of violations found per rule. Rule 4 identified one false violation due
to a bug in the developed tool, RuleValidator.

Rule | Nr of violations
1 91

2 19

3 7

4 5 (1 false)

The existing violations that the architects are aware of in the system today are
considered to be a problem. Both known and unknown dependencies involve the risk of
extra effort but the latter ones are considered as more severe as the estimations won’t
take the extra time into consideration. It also makes testing harder since, due to the
extra dependency, more components need to be built for a test suite, which leads to even
more loss of time.

4.5 Evaluation of the Measurement System

When faced with a set of ATD:s in the architecture in the form of non-allowed depen-
dencies it is preferable to have them prioritized so it can be decided which one should
be refactored first. This would ease the work when developing and triggering refactoring
activities. The prioritization for this MS was based on the risk of adding extra effort the
specific non-allowed dependency could produce compared to the other ones. The result
was different lists of prioritizations, one list for each rule. The top one would correspond
to the most severe dependency and the bottom one to the least severe. Table 4.2 shows
an example of how the prioritization could look like for a rule.

42

4.5. EVALUATION OF THE MEASUREMENT SYSTEM CHAPTER 4. RESULTS

Table 4.2: An example of how a prioritized list of violations for a specific rule with a one
way violation.

Prioritization | Source LLC | Destination LLC | Relative risk value
1 LLC A LLC B 10,34
2 LLC A LLC C 10,34
3 LLC C LLC B 1,20
4 LLC D LLCE 0

In order to prove that the prioritization was providing the architects with useful and
new knowledge several steps were taken. By comparing the results from the MS with
manual estimations by the architects, conclusions could be drawn about the increment
of knowledge. The results from these comparisons are presented below in four different
tables. Each table shows the prioritization of dependencies according to the MS along
with the prioritizations made by the architects and the actual risk value. The same
number in the MS prioritization column means that the violations share the same risk.
In each table, the last row explains the number of correct matches (represented by a
zero) and the average of the difference in the prioritizations. The average of difference
shows the difference for the prioritization that a violation got between the architects and
the MS estimations. The closer to zero the average is, the less difference between the
two prioritizations.

Table 4.3 shows the result from the rule A Low Level Component (LLC) should not
have a dependency to a LLC in another MLC. However, dependencies to LLC:s in the
Platform MLC is OK”. The nine sample points consists of the 3 top most risky, the
3 least risky and 3 randomly selected in between. For this rule, two estimations were
exactly according to the measurement system. The dependency which was identified as
most risky by the measurement system got a low priority by the architects, conversely
the one of the least risky got the highest priority. The results in between are however
closer to the MS prioritization.

Table 4.4 shows the result from the rule "Two LLC:s should not have circular de-
pendencies between each other”. The nine samples points were selected in the same way
as for the previous rule. Again, two estimations are according to the MS and the most
risky one according to the MS is the least risky one according to the architects. The top
violation is in the lower bottom half which again shows a mismatch. By comparing the
difference from the previous rules the results are quite similar just slightly less accurate
for this rule.

Table 4.5 shows the result from the rule "LLC:s in Control Layer should not have
dependencies between each other”. The results show all the violations for the rule. One
result is exactly according to the estimations and the top one from MS gets a low priority
by the architects. Otherwise the results are not deviating as much as for the previous
rules.

43

4.5. EVALUATION OF THE MEASUREMENT SYSTEM CHAPTER 4. RESULTS

Table 4.6 shows the result from the rule A LLC in the platform should not have a
dependency to a LLC outside the platform”. The results show all the violations for the
rule. During the interview one violation showed to be faulty as it was a dependency be-
tween two platform dependencies. However, only the top one involved a greater amount
of risk and the rest shared the same position, since they all originated from the same
LLC, which makes the results a bit harder to interpret.

Table 4.3: Results from rule 1: Dependencies between MLC:s

Risk | MS prioritization | Architects prioritization Difference
36,64 1 6 5
15,54 2 4
15,54 2 2 0
10,62 4 3 1
4,09) 9 4
1,49 6 8 2

0 7 7 0

0 7 1 6

0 7) 2

Number of matches: 2 | Average of difference: 2,4
Table 4.4: Results from rule 2: circular dependencies

Risk | MS prioritization | Architects prioritization Difference
51,89 1 9 8
48,26 2 2 0
36,64 3 4 1
31,91 4 8 4
24,05 5 3 2
10,88 6 1 5

0 7 7 0

0 7 6 1

0 7 5 2

Number of matches: 2

Average of difference: 2,6

44

4.6. RESULTS FROM VALIDATION INTERVIEW OF THE MEASUREMENT
SYSTEM CHAPTER 4. RESULTS

Table 4.5: Results from rule 3: LLC:s in Control Layer

Risk | MS prioritization | Architects prioritization Difference
15,54 1 5 4
11,63 2 2 0
6,40 3 1 2
3,59 4 2 2
3,59 4 5 1
3,22 6 2 4
3,22 6 5 1
Number of matches: 1 | Average of difference: 2

Table 4.6: Results from rule 4: platform dependencies

Risk | MS prioritization | Architects prioritization Difference
3,55 1 3 2

3,55 1 — faulty

2,37 3 1 2

2,37 3 2 1

2,37 3 3 0

2,37 3 5 2

Number of matches: 1 | Average of difference: 2

4.6 Results from validation interview of the Measurement
System

After presenting the results from the MS, discussions were held with the goal to find
out if the MS was useful for the architects. For the first rule it was recognized that the
high priority dependencies from the MS were LLC:s that were hard-to-maintain. One
architect said that "SwU [LLC] A that has gotten high priority in rule 1 is very "messy”
to work with” confirming that the dependency actually generated extra effort for them.
For one specific case, a highly prioritized dependency already had scheduled refactoring
activities planned. They explained their low prioritization on a high risk LLC to be
that it was a known dependency but also to be because of the source component of the
dependency containing functionality that actually should exist somewhere else.

For rule number two, regarding circular dependencies, the top prioritized violations
were recognized as tightly coupled and that the included LLC:s often changed together.
Some dependencies were already known to be the causes of a “not natural” separation

45

4.6. RESULTS FROM VALIDATION DISCUSSION OF THE MEASUREMENT
SYSTEM CHAPTER 4. RESULTS

where the components in essence could be the same. This violation was not seen as so
severe and would therefore achieve a lower prioritization by the architects’ estimations.
Some violations were also considered to be more ok than others because of the behavior
of the components and risk would not be a good indicator in that case. One of the
estimations also broke another rule which affected the prioritization for the current rule,
the knowledge of the other rules could therefore affect the results. For rule number three
they explained their low prioritization to be an expected one which would be easy to fix.
The highly prioritized one was not previously known.

4.6.1 The logic behind one-way and circular dependencies

For violations that included one way dependencies, the architects thought that the logic
behind the risk in the source LLC was a good factor for deciding the amount of extra
effort that the specific violation added. For circular dependencies, they also agreed that
the risk of both LLC:s also needs to be considered due to the fact that changes in any
of the components could trigger an extra change in the other one.

4.6.2 Conclusions of the validation interview

To sum up, the architects are aware that there exist non-allowed dependencies in the
system and they confirm that it generates extra effort for them both in maintenance
and testing. However, the results still shows an increment in knowledge since some
violations were not known beforehand. This is proved since the architects confirmed
that they were not aware of all non-allowed dependencies that the MS identified. The
prioritization made by the architects compared to the one made by the MS showed two
different outcomes. The main reasons were that they prioritized by different criteria than
the MS and that they had troubles with manually assessing if a LLC was considered
as risky or not. Nonetheless, they still agreed that the MS prioritization was a good
indicator to show the most effort generating violations regarding to the amount of extra
effort generated by them and a useful for knowing where to start refactoring work.
They said that the inclusion of theory about the risk of adding extra effort along with
the dependencies gave trustworthiness to the results. The general comments about the
actual violations were that some were expected but some were completely new. Some
of the known were the result of refactoring investigations already done at the company
but also because of testing. Much of the extra effort that the non-allowed dependencies
generate shows up when they need to include a large amount of LLC:s when testing
small parts of the system, this is considered to be a major problem.

46

Discussion

HIS chapter will discuss the contributions of the thesis and how each of them

answers to the research questions stated in Section 1.3. Firstly, the observed

qualities of method 1 will be discussed. Secondly, the next two sections will

discuss the two indicators of the Measurement System (MS) developed from
the ISO standard. After that, the validations for identifying and prioritizing with the MS
will be addressed. This is followed by sections that discusses automation and information
quality along with a new approach for further research. Lastly, the related work of this
thesis is presented.

5.1 Method 1 - Comparing feature impact estimations against
changes

The case study conducted at Ericsson aimed to find ways that could identify Architec-
tural Technical Debt (ATD) in the form of non-allowed dependencies. One approach of
doing this was to compare initial impact estimations of features with the actual results of
the development which resulted in this method. This would identify actual violations or
ATD in order to answer the first research question. The extension of data from the Risk
Measurement System (RMS) would add the ability to prioritize the identified violations
which would address the second research question of the thesis. Furthermore, the results
revealed that the method was not applicable in Ericsson’s context. The problem was
that critical prerequisites that was needed for the method to be successfully conducted
was not met. These prerequisites are seen in Section 4.1.1. This section aims to discuss
the importance of good estimations in order to identify ATD:s along with the potential
benefit of that the method could be very easy to perform. Additionally, when the focus
is to examine new features, the method automatically focuses on the debts which are
causing problems now. This filters out debts that are not relevant at the moment. The
section ends with a discussion about how this method can be combined with the priori-

47

5.1. METHOD 1 - COMPARING FEATURE IMPACT ESTIMATIONS AGAINST
CHANGES CHAPTER 5. DISCUSSION

tization process that this thesis proposes in order to introduce a more customizable way
of managing ATD:s.

5.1.1 Rough estimations could hinder the method

An important property of finding non-allowed dependencies by this method is its reliance
on estimations of which components are estimated to change for a certain feature. As
explained in Section 3.3, the case company works according to agile practices. An agile
approach, compared to other practices such as the traditional Waterfall approach, lacks
a clear and rigid estimation process in the beginning of the project [34]. Instead agile
estimations are often rough and fluent at the initial phases of the feature development in
order to become more precise with the increased amount of knowledge that comes over
time. Due to the fact that this method relies on comparison between estimations and
results a negative effect could be showing more than just non allowed dependencies as
not enough effort was put into estimations. For example, such differences could be extra
allowed dependencies that just were missed in the estimations because too little effort
was put into the research of the impact. This is an important point that needs to be
considered and evaluated by further studies.

5.1.2 A lightweight method

Should the prerequisites prove to be valid for a specific case, this method could very
well be an efficient way of finding non-allowed dependencies as it would be an easy and
time efficient method. This is due to the fact that the method does not rely on any
external tool, or an implementation of a tool which can be time-consuming to develop
and maintain. In the long run, should the method be fully automatized, it would even be
more time saving. An automatized method removes all the time that is put on manually
comparing and assessing the potential violations for each feature. This would add to the
current pool of research on methods for finding ATD. It is well known fact that different
methods for addressing problems works differently well due to the context of where
the method is applied. This could very well be the case for this situation and further
research has to be made in order to validate if this method could work as an approach
to identifying ATD, preferably at a case where the context fulfills the prerequisites.

5.1.3 Properties due to the scope of the method

Since the proposed method is examining features in order to detect ATD:s in the form
of non-allowed dependencies it only detects the violations that are related to the inves-
tigated features. This means that it does not find every violating dependency in the
architecture. If the goal is to find all violations in the system, the complete range of fea-
tures would have to be examined. And even then, some non-allowed dependencies might
still remain undetected since it is not always the case that a dependency is introduced
by or related to a feature. Nevertheless, if a certain debt is a problem for the software
it means that it is generating a greater amount of extra effort. That debt would most

48

5.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 5. DISCUSSION

likely be detected through examining several features and this means that this method
could still be argued to identify effort generating ATD:s. Those violations that are left
undetected would be less likely to be a problem for the current development since they
are not a part of many features and therefore not causing any extra effort to the present
progress of the software. If the focus is on examining features related to the current
development, a type of prioritization of the debts that exists in the system is included.
This prioritization leaves out debts that are not generating any extra effort in the present
progress of the software and focuses on those which could be the cause of problems now.

5.1.4 Identifies the same type of ATD as method 2

A positive aspect is that the process for prioritizing violations, which is included in the
MS, can be used for prioritizing in this method as well. This is due to the fact that
this method identifies the same type of ATD items as the MS developed by the ISO
standard [9], namely non-allowed dependencies. Should this method be proven to be
more efficient and better suited for another context it would have the benefit of making
the process of managing ATD:s more flexible. It would make the process of prioritizing
not being reliant on the specific process for identifying violations, explained in Section
4.2.1, and a company in another context could tailor the process from identification to
prioritization more after its own needs.

5.2 Method 2 - Measuring and prioritizing non-allowed de-
pendencies

This section is divided into two subsections presenting discussions about each one of
the two processes included in the MS; identification of violations and prioritization of
violations.

5.2.1 Process for identifying violations

The following section discusses important considerations regarding the steps and compo-
nents necessary to identify ATD which answers the first research question of this thesis.
The discussion starts with the benefits of creating a context specific tool for identifying
violations within the case company. Additionally, the discussion focuses on the fact that
the components within the process have different strengths in generalizability. The sec-
tion ends with an elaboration on how creating rules about the architecture can lead to a
higher quality of the software product. The developed identification process contributes
to the field as it adds another validated way on identifying ATD in the specific form of
non-allowed dependencies.

5.2.1.1 Checking violations by implementing a context specific tool

The identification process itself is general but based on common components existing
within a software company, this in turn makes it more applicable for a specific company as

49

5.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 5. DISCUSSION

components can be adapted to the specific context but the process is kept generalizable.
However, the component of checking dependencies against rules probably won’t exist
within most companies. For this thesis an own tool was developed to get violations
based on rules. The reasoning for this was that existing tools for checking dependencies
did not include the specific rules. Adding those would take time in understanding the
tool, the programing language and possibly in developing a needed extension. An own
tool would, based on the knowledge and experience of the thesis workers, not take too
much time to developed and could also be done in a familiar programing language. It is
the belief that the creation of a such a simple tool is best done within the company in
an known programing language as it would be less time-consuming than understanding
and extending an existing solution.

5.2.1.2 Customizable components in the process

The components within the process have the advantage of being adjustable for the specific
company which the process is applied to. This makes it more generalizable which both
architectural mapping and rules are proofs of. For example, rules can be formulated to
match the maturity of the company and can be both trivial and complex. Architectural
mapping can be on a low level such as simple components or at a much higher abstraction
level than used for this thesis. However, the result of this study is somewhat limited
to the formal build file as it contains information about dependencies, a more informal
system without this file would need a more complex tool for extracting dependencies.
This influences the usability of this method which could make the process more difficult
to conduct in another case context. Nevertheless, the usage of the formal build file
comes with a major advantage as the results are not missing out on ATD:s in form of
non-allowed dependencies.

5.2.1.3 Creates awareness of rules

The process of identifying violations contributed with an increased awareness of archi-
tectural rules which was a result of one of the components. When creating the rules
the architects stated that their knowledge was increased as the rules were formulated
and discussed. Since the documentation at the case company did not clearly state ar-
chitectural rules at the investigated abstraction level the outcome could be a result for
the case company. By documenting unspoken as well as spoken rules the awareness and
common understanding for them increases but also eliminates the chance of them be-
ing misinterpreted due to the previous uncertainty. As an improvement more conscious
decisions could be taken during future development to avoid non-allowed dependencies
which would lead to a product of higher quality with less debt.

5.2.2 Process for prioritizing violations

To answer the second research question a process for connecting identified violations
with risk in order to prioritize was developed. The following section presents a discus-

20

5.2. METHOD 2 - MEASURING AND PRIORITIZING NON-ALLOWED
DEPENDENCIES CHAPTER 5. DISCUSSION

sion about how creating a unified way of understanding the severity and removing human
estimations makes the process easily understood. It also introduces relatively little over-
head to the stakeholders. Many researchers states problems associated with gathering
the information needed for ATD items and the separation of severity among them [8] [17].
The process addresses crucial problems that needs to be taken into consideration when
prioritizing:

o What should be measured?

o Where should the measurements be conducted?

e How should the results be interpreted?

Following the process gives the advantage of breaking down data into small compo-
nents to easily visualize what is needed and in which order to create the indicator. It
clearly defines each component and keeps them at a relatively non-complex level in order
to produce a rank for each dependency in the prioritization. This, along with the ap-
proach of prioritizing violations discussed in Section 5.3, solves the previously mentioned
questions.

5.2.2.1 Time efficient and easily understood

In order to decide which ATD to fix first Seaman et. al. [8] states some problems that
needs to be addressed. First of all, in order for the process to be useful it needs to provide
a value greater than the time spent constructing and running it. The method should
not introduce too much overhead or be too complex which reduces the cost effectiveness.
The presented process takes this into consideration since it is not associated with any
time-consuming steps. The process does not have any need of human estimations which
removes any time-consuming threat that this would add. However, a downside to leaving
out human estimations is that they might more accurately describe the severity of the
ATD:s [17]. Also, human stakeholders might provide additional information that involves
the context of the debts. For example, rationales about certain decisions might be
added that would be impossible for an automatic process to take into consideration.
However, even though the positive effects, human elicitations could also lead to the need
to interpret the results as the output can vary dependent on the stakeholder. This is not
something that needs to be taken into consideration within this process as the indicator
has a clear definition of debt.

Another problem regarding prioritization processes is that they need to be easy to
understand [8] [17]. This is addressed by following the ISO standard to make the process
and all needed components well defined [9]. Each step is explained concretely and the
thought is that components should be artifacts known to the case company but also
easily understood and/or existing within similar contexts. By including a unified way
of interpreting the severity of an ATD, the concept of risk [1], it lowers the chance of
misunderstandings.

o1

5.3. NEW APPROACH OF PRIORITIZING CHAPTER 5. DISCUSSION

5.3 New approach of prioritizing

The approach of prioritizing is meant to address the problem of being able to distin-
guish the amount of extra effort generated from different ATD items. By creating this
approach, the thesis provides an answer to research question two. As the prioritization
is relative, it is not exact numbers meant for monetary calculations but rather indica-
tors on where to start investigations about refactoring. It is more associated with the
established term interest, as it represents the extra effort caused by a dependency. The
factor principal is not visualized with this indicator as no concerns are taken about the
cost of resolving a violation. This require extra efforts in form of human elicitation or
historical data on previously fixed ATD:s [17]. However, the relative prioritization pro-
vides enough information since it allows the ATD:s to be sorted in an order of most to
least severe and keeps the required efforts in measuring to a reasonable level. It is crucial
to keep efforts down since software projects often are suffering from budget and time
constraints which has the effect that not all debts can be afford to solve [6] [8]. In those
situations the important thing is to fix the most severe debts first which requires difficult
decisions to be made [8]. This approach of prioritizing provides more information to the
management who is responsible for making those decisions so that they can stand on a
more solid ground when facing this kind of problems. Gradually, this idea is a first step
to making refactoring activities as efficient as possible by fixing the dependencies that
are generating the most amount of extra effort first. The following sections will discuss
three different benefits that come from this approach. Firstly, the approach becomes less
prone to produce much overhead when human estimations are removed. Secondly, the
approach visualizes severity of the debts in a simple way. Lastly, this visualization can
in turn lead to that the downside effects of the debts are lowered.

5.3.1 Removing human estimations produces less effort when priori-
tizing

Several studies have concluded that gathering the information needed to prioritize Tech-
nical Debts (TD) is hard and time-consuming [8] [17]. This information is often based
on manual estimations that requires time and tacit knowledge about the effects that
the debt generates. This thesis presents a way to prioritize specific ATD:s without any
need for human estimations. As the approach is based on an empirically validated and
well defined research within the same context it enables for less confusion about the
prioritization [1]. It is not affected by any human bias or tacit knowledge that can be
hard to interpret. Another benefit is that since the need for human estimations is elim-
inated, the effort for those estimations is eliminated as well. And since the effort for
prioritizing is lowered, the risk for that the estimations could produce too little value
contra its effort becomes less likely to occur. That is recognized to be a threat to all
TD management processes [8]. At the moment, the idea is semi-automatic, and should
it be made fully automatic, these benefits would increase even more. However, that is a
subject for further research and what should be automated is discussed in Section 5.6.

92

5.4. VALIDATION OF IDENTIFIED VIOLATIONS CHAPTER 5. DISCUSSION

5.3.2 Connecting the risk to the architecture visualizes the severity of
an ATD

The approach combines an empirically validated measurement from another study which
includes an automatic tool to determine difficult to maintain parts in a system which
is a sign of that those parts are generating extra effort [1]. The study focuses on the
calculations for source code files, however this thesis takes the concept one step further
by connecting the risk of the files to their respective architectural components. The
connection between source code elements and components is a key point for visualizing
the effect of an ATD as it handles the problem of defining the abstraction level for where
the debt exists [5] [4].

5.3.3 Awareness of the severity obviates the negative effects of hidden
ATD

Many studies show that when TD:s are hidden in the software and are left unmanaged,
they will become more severe after time [4] [3] [16]. Through prioritizing ATD:s, the
severity of how much extra effort the debts are generating will become visible. This
would help managers, designers and developers to pay more attention to the debts.
By being aware of the severity of the debts in the software it will be easier to plan
refactoring activities in order to pay of the debts in time. And, being able to spot these
problems before they generate too many negative effects will help to keep costs related
to maintenance or developing of new features down so they won’t run over budget and
help to deliver software on time since time delays also would be lowered [6].

5.4 Validation of identified violations

The results from the second method shows the existence of ATD within the case system.
By establishing architectural rules and implementing these rules in a self-developed tool
the thesis managed to identify 123 violations. The risk for each Low Level Component
(LLC) was successfully calculated by running the Risk Measurement System developed
by [1] and aggregating the risk to the required abstraction level. Each violation could
thereby be connected to a risk to indicate its priority against others. The next sections
will discuss potential threats for that the identified violations could be false. This is
important to take into consideration since it could provide false information about the
severity to the stakeholders. Additionally, the discussion addresses how the validation
interview revealed that unknown non-allowed dependencies existed in the system.

5.4.1 Threats to the process of identifying violations

As dependencies between components cannot exist without the specific build file there
is little threat of missing results of the specific type. However, a threat lied in flawed al-
gorithms in the program which was prevented to the greatest possible extent by testing.

93

5.5. VALIDATION OF THE PRIORITIZATION
CHAPTER 5. DISCUSSION

During the validation interview one item from rule 4 was discarded for including a de-
pendency that was not necessarily faulty. This was because the platform rule considered
dependencies within itself to be incorrect while in reality it is allowed. The remaining
122 violations could not without code inspection be excluded as false positives and were
therefore validated as identified possible ATD . However a small threat still lies in de-
pendencies being unused, this can only be addressed by looking at the actual code. In
that case the violation would not be ATD as it does not generate any additional effort
but still introduces an option for using a non-allowed dependency. During the interview,
the architects raised suspicions about some violations but they were not sure enough to
exclude them without further investigation. A possibility for not excluding violations
could be the simple explanation that they were not aware of the existence rather than
them being faulty. The results could however be somewhat skewed due to the fact of
that it wasn’t possible to easily exclude unused dependencies and no conclusions could
be drawn about the existence of them.

5.4.2 Validation revealed the existence of unknown ATD

The presented results were overall considered as good by the architects as it were a
mix of known and unknown violations. The unknowns proves that RuleValidator elicits
ATD that wouldn’t have been found qualitative approaches such as interviews. The
fact that violations came as a surprise even to experts shows that ATD is in fact not
that visible [13]. However, one can argue that the size of the system affects how much
knowledge one can have about the violations within. One architect actually managed
to point out all the violations for a small subset of the system before the interview.
Unfortunately the same kind of data for the whole system could not be achieved due to
time constraints of the architects.

5.5 Validation of the prioritization

This section discusses how the prioritization was validated. The discussion explains
how the study has provided extra knowledge about debts for the case company along
with suggestions for modifications and extensions of the Measurement System (MS). The
results from the comparison showed some mismatches in the prioritization between the
architects and the MS. A common recurring pattern for the the architects was to reverse
the order for the top and bottom items. For each rule only a few dependencies was
exactly right. However, the results in between the top and bottom showed to be more
accurate. The approach of using exact numbers for each violation most likely made
it even harder, a more fair way of doing it would have been to use high, medium or
low. After showing and discussing the architects estimations against the prioritization
from the MS, the stakeholders reached the conclusion that the indicated risk showed
a good representation of violations. As stated by Staron et. al. [33] one can assume
that the results are empirically valid as they were accepted by the stakeholders. This
proves that the results gives new insight and contributes to the company. During the

54

5.5. VALIDATION OF THE PRIORITIZATION
CHAPTER 5. DISCUSSION

interview the architects stated a threat in unknown dependencies as they could introduce
errors in estimations as well as unknown side-effects. This shows a twofold value for the
results and gives strength to both indicators for this process. The resulting violations are
without taking the risk into account providing value as they could reveal the unknown,
which are the most severe ones [6]. This confirms that both research questions in this
thesis are answered as the prioritization and the identification provided useful results.

5.5.1 Suggestion to gain knowledge about the increase and decrease of
the ATD:s

Something not stated during the interview but addressed by company personnel and
supervisors during ad-hoc conversations is the ability to gain the delta for change in
number of violations. This would give simple indicators about if the situation is getting
worse or better which is recognized as a good metric at the case company. A new
proposed MS to meet this information need that could be validated by further research
is presented in Section 5.7.

5.5.2 An extension of the prioritization metric

A further outcome from the interview was a suggested addition to the prioritization
indicator. As the risk in the source LLC of a dependency is triggered by a change in the
destination component the frequency of change could be included in the prioritization.
As stated by one architect: “You want to have a dependency in the direction towards
things that are stable, namely things that doesn’t change that often”. The extension
to the metric would add more precision to the prioritization and thereby provide even
greater value for the company. Sommerville [27] states that a change in the destination
component (destination LLC for a dependency) may produce extra effort in the source
component due to the usage of functionality in the changing unit. Change proneness is
also known to be strongly related to modularity violations [16]. These two statements
strengthen the beliefs for this new proposed metric.

The calculation of the new indicator was discussed during the interview to be a
multiplication of the risk of the source LLC in a violation with the number of revisions
for the destination. By including the number of revisions for the destination LLC in the
indicator, the architects considered that the likelihood of triggering additional changes in
the source LLC due to the dependency would be included. This new metric would lead
to violations receiving a more precise value which for example would make it possible to
separate violations sharing the same risk. Dependent on the number of changes in the
target the prioritizations could be more accurate and more easy to distinguish between.

However, risk is the likelihood of the component to be difficult-to-maintain which is
confirmed empirically, while the number of revisions is purely based on historical data [1].
It is therefore not possible to conclude that the target unit is likely to change in the future
without carefully validating other aspects that impact the number of changes that will
occur. As the time span for the historical data is large, a release period reflecting all
stages of development as well as many different feature implementations, it could be the

95

5.6. AUTOMATION AND INFORMATION QUALITY OF THE MEASUREMENT
SYSTEM CHAPTER 5. DISCUSSION

case that the number of revisions matches the “reality” for a component. Therefore, a
similar number of revisions should also affect the component in the future. However,
this is not proven and further validation and empirical evidence is left for future research
before introducing this extension the indicator.

5.6 Automation and information quality of the Measure-
ment System

As the amount of effort put into managing ATD is an important factor, effectiveness
of the Measurement System (MS) needs to be considered. And in order for the MS
to be effectively used, the process of gathering all the required measurements for the
indicators should be automatized. This would enable the tool to run on a repeated
basis to collect information which could be used as a snapshot of the system but also
to compare historical data with the most recent. This could be a useful indicator the
determine if the situation gets better or worse. The scope for this thesis does not include
constructing a fully automated tool and due to time constraints the existing solution is
only semi-automatic. However, only a few steps involves manual work at the moment,
which are:

e Running the MS for calculating non-allowed dependencies and the risk calculation
separately.

e Extracting the revision history from the Revision Control System (RCS) that is
needed for the risk calculation.

e Calculate the risk for the right abstraction level of LLC:s.

e Mapping the risks to the non-allowed dependencies.

All of the above mentioned points would most likely suit well to be implemented as
scripts by an appropriate language. Which specific language that has the most benefits
needs to be further investigated. It is the understanding of the thesis workers that a
fully automatic system would be achievable and could be done in a reasonable amount
of time. It would provide great value to the company to be able to use the MS as a
“one-click” or a totally automated solution running on a scheduled basis.

5.6.1 How to trust the measurement indicators

An important point to take into consideration to be able to use an automated version of
the thesis method is how to establish trust in the indicators i.e. decide on information
quality for the base and derived measures. During the thesis all the data were verified
manually which would be somewhat time consuming to do for a frequently scheduled
task. This should instead be done by automatic checks in all steps of the information
gathering process to determine if the indicator is valid. The measures that needs to be
validated are presented below:

o6

5.7. PROPOSED MEASUREMENT SYSTEM FOR CHANGE IN THE NUMBER
OF NON-ALLOWED DEPENDENCIES CHAPTER 5. DISCUSSION

e Architectural rules: Are they up to date or has changes been introduced since last
measurement?

o Source code: Is the latest version of the source code available?

e Architectural mapping: Does the mapping of LLC:s to MLC:s match the architec-
ture of the system or is it outdated?

e Build files: Is this file still used for the same purpose/does it contain “include”
statements?

e Naming convention: Does the folder path follow the same name convention? Are
the terms MLC, LLC and build file still used in the same way?

e Revision history: Is the revision history available for the right time-span?

o Architectural abstraction for risk: Are all risk items available and summarized for
each LLC?

e Violations: Does violations contain a proper destination and source LLC?

e Rank: Does the rank contain a proper violation and the associated risk?

By checking these criteria the stakeholders can be sure that the indicators reflects
the reality and it would be possible to identify which part of the measurements that
needs to be corrected or replaced. The most critical part that could fail is concerning
the rules. If a rule needs to be added or changed the source code in RuleValidator needs
to be changed. As it is designed each new rule algorithm could just be added with an
extra function providing the same output form as the others. However, a proposed way
of changning the tool would be to design according to the Strategy design pattern to
make it easy to extend with new rules without needing to know or breaking anything
in else in the code [35]. Furthermore, it would be preferred to have a Domain Specific
Language (DSL) to implement rules without having to change the source code. This is
way beyond the scope of the thesis and would probably fit into a master thesis just by
itself. To make up for the time spent producing a DSL one would make it generalizable for
different contexts, this would however make it more time consuming to set up compared
to a quite short implementation time of extending the RuleValidator tool with another
algorithm.

5.7 Proposed Measurement System for change in the num-
ber of non-allowed dependencies

As explained, an interest in getting an overview of how the amount of non-allowed
dependencies changes from week to week was also shown by the company. By following
the same ISO standard [9] as the developed Measurement System (MS) by this thesis,
a new MS could effectively indicate the change of violations on a weekly basis. The

o7

5.7. PROPOSED MEASUREMENT SYSTEM FOR CHANGE IN THE NUMBER
OF NON-ALLOWED DEPENDENCIES CHAPTER 5. DISCUSSION

MS presented in this section has been developed by a researcher at Chalmers from
the contributions of this study. The new MS would provide the stakeholders with an
indicator that displays the status of the weekly change as shown in Figure 5.1. The
stakeholders would in the case company be the architects who are responsible for the
architecture along with the developers who would get feedback if they are improving or
decreasing the quality of the system. In Figure 5.1, the violations have decreased by 3
since last week, indicating a green arrow pointing downwards. The green OK button
indicates that the information quality of the indicator is validated, this will be explained
later down in this section.

Architecture Technical Debt

Change in the]
number of
violation this week

Figure 5.1: An example of how an application of the MS could be display the indicators
for the stakeholders

In order to realize the indicator, a model has been proposed which is a modification
of the MS used in this thesis. An example output of the model can be seen in Figure
5.1. The base measures which calculates the amount of non-allowed dependencies is
still derived the same way as the old MS. That is, by retrieving all dependencies of the
system that are located in the build files (explained in Section 3.3) and validate them
against the derived architectural rules. The base measures will then be the number
of violations of the current week along with the number of violations that existed the
previous week. After the base measures are extracted, the derived measure will be
the change of number of violations from the last week. This could be implemented
with a script that runs these measurements continuously. The change is calculated by
subtracting the amount of violations from the previous week from the violations in the
current week. The indicator for the stakeholder will use the derived measure in order to
display the status of the Change of Violations (CV) which would be stored in a database.
As a display for the indicator, the arrow from Figure 5.1 could be used. If the value of
CV is smaller than 0, then the ATD has decreased and the arrow will be green. If CV is
greater than 0, then the arrow will be red, indicating an increment of the ATD. Should
CV be equal to 0, the ATD would be stable and a yellow symbol would be shown. As
an action plan for the responsible for the MS which in this case would be the architects

o8

5.8. MAIN CONTRIBUTIONS TO THE COMPANY CHAPTER 5. DISCUSSION

the following interpretation would be made from the indicator; red would mean it would
be necessary to check with developers and follow up the necessity of the newly added
dependencies, yellow would mean that no action is required since the ATD is stable and
a suitable action for the green status would be to commend developers that removed
dependencies during the week.

As displayed in Figure 5.2, the green OK label shows the status of the information
quality. The purpose of this is to give information about whether the indicator that
indicates the change of non-allowed dependencies can be trusted. In order for that
indicator to be trusted, certain information quality criteria has to be fulfilled which are
listed here:

e The architectural rules used to verify dependencies have to be up to date. If the
rules has changed over the last week and nothing has been updated in the MS, this
criterion is not fulfilled.

e The architectural mapping has to be consistent. If new elements or structures
has been included, the architectural mapping is not valid anymore and has to be
updated. If not, this criterion is not fulfilled.

e All functions that are used for calculating the amount of non-allowed dependen-
cies for the previous and current week, along with the change function has to be
continually tested. If any of these tests would fail, this criterion would not be
fulfilled.

e The application that displays the indicator for the stakeholders has to verify that
the correct data has been received from the measures.

If the verification of any of the above mentioned criteria would fail, the symbol
displaying the information quality would report "NOT OK” in red color. Else the status
would be "OK” in green color. This new MS would help the responsible stakeholders
to keep track of the status of this specific ATD. The definition of having technical debt
in the system is that it generates interest in the form of extra effort that has to be put
in to for example maintenance. This MS could help the architects to get an overview
of when the amount of ATD has increased so much that refactoring activities has to
be scheduled in order to increase the development velocity. Since the MS also could be
fully automated, only a small amount effort has to be put in for which the MS provides
an efficient way of tracking and managing the ATD. However, further studies has to be
made in order to validate and investigate this MS. The validation has to make sure that
the MS provides the stakeholders with useful information and preferably, in-depth case
studies has to be made to see what benefits can come out of using the MS.

5.8 Main contributions to the company

The main contributions towards the case company consist of increasing their knowledge
about ATD both by presenting the theory behind it but more importantly by identi-

29

5.8. MAIN CONTRIBUTIONS TO THE COMPANY CHAPTER 5. DISCUSSION

Process
ATD change from last week A

Indicator O

Derived metrics | Change of number of violations each week
F 3

Base metrics Number of violations each week

Architectural
mapping

Architectural experts

Source code

Figure 5.2: The model of the proposed MS

fying concrete debts in their system. The results of this study show an increment in
knowledge as all violations were not known beforehand. By prioritizing the non-allowed
dependencies the architects have gained more insight about the severity and where to
start refactoring work. The thesis provided the case department with a result from the
MS, a prioritized list of violations for each rule, which gives them the status of the
products health as well as the previously mentioned insights. The list has already been
contributed to all people working with the product by the architects in their weekly
newsletter.

The thesis also provides the company with a semi-automated process for identifying
and prioritizing violations in the future. It includes a manual for the MS along with
guidelines on how to completely automate the process and to ensure information relia-
bility in the indicators. The created tool is also a contribution to the case company as it
is developed specifically for them with architectural mapping already included. People
involved in the thesis have stated that the process and the tool is interesting and useful
and that there is a chance that someone will take over the work to develop it further. It

60

5.9. RELEATED WORK CHAPTER 5. DISCUSSION

has also been stated that it could be integrated in the company’s Continuous Integration
process.

The thesis also provides with an external idea from the department of Software
Engineering on how to create a new MS (based on the MS from this thesis) for the
number of changes of non-allowed dependencies, see Section 5.7. The company has
stated the importance to visualize the delta of existing versus historical violations. This
could be shown to all involved personnel to get an understanding of the product health
and the progress of removing ATD. It also works as a way to create an awareness about
introducing new ATD to the system.

Furthermore, another contribution is the first method of the thesis. Even though it
did not produce any results the company still showed an interest and proposed that the
prerequisites could help to create checklists or templates on how to do estimations in or-
der for the method to work. As a consequence of creating and documenting architectural
rules awareness have been gained within the company both for architects but also for all
the people that have been in contact with the thesis work or any held presentation.

5.9 Releated work

A few studies have been made which focus on identifying ATD in different ways. Mo et.
al. [5] argue that the ATD:s are not as clear and well-defined as code debts and can have
more severe consequences. They propose a generic model called Extended Augmented
Constraint Network (EACN) that models the architecture. This model is mapped to
specific Architectural Decay Instances (ADI) and the purpose is to find an uniformed
way to identify ATD:s which then could be automated. The proposed model is still in
the work for being tested in real-life context and it does not focus on how to measure
the effect of ATD:s as this thesis is doing.

Another similar study tries to identify Architectural Bad Smells that can be a symp-
tom of ATD:s [21]. The study states that in order to identify the bad smells, there needs
to be a definition of what is to be identified. This led to a separation of four different
bad smells namely; connector envy, scattered functionality, ambiguous interfaces and
extraneous connector which could help practitioners in order to identify their ATD:s.
However, the purpose is to find generic definitions for all types of ATD:s and not to
measure and prioritize a certain type, which this thesis focuses on.

Moreover, a large scale case study has been conducted that included strategies to
identify design flaws by using historical data about the design [36]. The source of these
design flaws is non-optimal design decisions that contributes to maintainability problems.
They conclude that the flaws can be more accurately defined if the historical versions of
the software is included in the process. However, the study focuses only on finding high-
risk god classes (i.e. classes that performs too much work) and data classes (i.e. classes
that only have setters and getters and nothing more) and does not focus on any form of
relationships, such as dependencies, between the classes in order to identify debts.

Zazworka et. al. [18] also tries to identify ATD by looking at the impact that the
debt items can have on the quality of the system. Here, the focus is also on god classes

61

5.9. RELEATED WORK CHAPTER 5. DISCUSSION

which are not the similar type of ATD as this study focuses on.

Nord et. al. [4] conducts a small case study where they try to find a metric for
managing Technical Debt (TD) by analyzing two different development paths on an
existing system. They focus on an architectural level rather than code by measuring
dependencies between elements and change propagation to calculate the rework cost.
Since change propagation also is an effect of non-allowed dependencies that can generate
extra effort that is used in this thesis, it can be seen as similar. However, as mentioned,
the change propagation in that study is used to compare two different development paths
and not to compare different ATD items.

Another study compares TD identification techniques and the study includes a tool
named CLIO [16]. It identifies modularity violations which means violations in the
software that deviates from the intended one. Non-allowed dependencies can by this
definition be seen as a modularity violation. However, CLIO identifies the debt items
by identifying classes that change a lot together and from there creates and categorizes
different types of dependencies [30]. This approach differs from the thesis since the
abstraction level is lower, source code files instead of components. The major difference
is however that the angle of contact is not the same, the thesis states the rules beforehand
and only finds actual violations, CLIO on the other hand does not automatically filter
dependencies that are permitted.

Zazworka et. al. [17] has compared many different identification and prioritization
techniques for TD. For prioritizing TD, one of these techniques measures the complexity
of the source code which is a part of the prioritization process in this thesis as well.
Nonetheless, the complexity is as stated only a part of the prioritization and more
metrics are included here. Furthermore, this thesis focus on prioritizing non-allowed
dependencies rather than actual source code files.

Seaman et. al. [8] has done a study which compares different prioritization strate-
gies for TD. The study includes evaluations on cost-value, Analytic Hierarchy Process,
Portfolio- and Option approaches. The purpose is to find a process that can be both
efficient and effective. Yet, they conclude that all methods has to be evaluated in more
in-depth case studies to gain knowledge about which strategy works best in which situ-
ation.

62

Conclusions

RCHITECTURAL TECHNICAL DEBT (ATD) in the form of non-allowed depen-

dencies is recognized to be a major problem in software projects today. Often,

these types of dependencies are unknown which can cause a lot of unwanted

extra maintenance. As the debt increases, more time will be spent on main-
taining the system which means that the software project will become less effective and
delaying processes such as releasing new features. In order to avoid these effects, projects
need to monitor their debt situations. This thesis aimed at finding methods that could
help when identifying and prioritizing non-allowed dependencies. The study was con-
ducted in a real life context and, by validation with stakeholders, it successfully identifies
and proposes a technique to prioritize non-allowed dependencies. The key findings of
this work are:

o A proposed method that analyses features within a product to identify non-allowed
dependencies. The method does not involve any complex tools and involves straight-
forward steps that could identify ATD. It clearly describes the necessary prerequi-
sites needed in order to perform the method that is aimed to answer RQ 1. The case
company has confirmed that the method could very well be useful if they would
meet the prerequisites in the future. Further research should, preferably through
in depth case studies, investigate what benefits this method could contribute with
in other contexts.

o A Measurement System (MS) developed according to the ISO standard 15939:2007
that identifies non-allowed dependencies within a system. The method has defined
distinct prerequisites, components and steps to follow which clearly describes all
parts needed to identify ATD which answers the first RQ of this thesis. The result
of the MS is dependencies that violate architectural rules. The validation shows
an increment in knowledge for the case company as it consists of both known and
unknown non-allowed dependencies. Further research could use the description of

63

CHAPTER 6. CONCLUSIONS

this method to explore how it works in other contexts. Preferably in case studies
with different environmental settings than this case company. Those studies could
lead to that more general conclusions about this MS could be drawn.

o A MS developed according to the ISO standard 15939:2007 that prioritizes non-
allowed dependencies within a system. This is the second indicator of the MS which
is calculated after ATD identification in order to prioritize the debts to answer the
second RQ. This is based on a new approach of prioritizing ATD:s based on the risk
of adding extra effort in the form of increased maintenance and development time
as a consequence of the dependency. By connecting the risk of source code files
to an architectural component, the study has enabled prioritization of this type
of ATD as a part of answering RQ 2. The definition of risk has been established
and empirically validated by a previous study. Moreover, this MS also proves
to add additional knowledge to architects about the severity of their non-allowed
dependencies within their system. The architects suggested that the metric used
for prioritizing could be extended. Suggestions for further research involves, among
others, to analyze this prioritization approach in cases that holds other conditions
and to validate a proposed extension of the metric.

To sum up, the findings made by this work will help the field of Software Engineer-
ing in identifying and prioritizing ATD:s. By being able to identify and monitor the
debts in the architecture, one will become closer to understand the current debt situa-
tion by making them visible. And once the problems are visible, suitable actions such
as refactoring activities can be performed if needed. By prioritizing the non-allowed
dependencies, these actions will be based on more well-grounded decisions. This will
lead to a better way of managing the threats that the ATD:s brings along.

64

1]

Bibliography

Antinyan V, Staron M, Meding W, et al. Identifying risky areas of software code
in Agile/Lean software development: An industrial experience report. In: Soft-
ware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week-IEEE Conference on. IEEE. Antwerp; 2014. pp. 154-163.

Guo Y, Seaman C. A portfolio approach to technical debt management. In: Pro-
ceedings of the 2nd Workshop on Managing Technical Debt. ACM. Honolulu; 2011.
pp. 31-34.

Tom E, Aurum A, Vidgen R. An exploration of technical debt. Journal of Systems
and Software. 2013;86(6):1498-1516.

Nord RL, Ozkaya I, Kruchten P, Gonzalez-Rojas M. In search of a metric for manag-
ing architectural technical debt. In: Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Con-
ference on. IEEE. Helsinki; 2012. pp. 91-100.

Mo R, Garcia J, Cai Y, Medvidovic N. Mapping architectural decay instances to
dependency models. In: Managing Technical Debt (MTD), 2013 4th International
Workshop on. IEEE. San Fransisco; 2013. pp. 39-46.

Martini A, Bosch J, Chaudron M. Architecture Technical Debt: Understanding
Causes and a Qualitative Model. In: 40th EUROMICRO Conference on IEEE
Software Engineering and Advanced Applications. Verona; 2014. pp. 1-8.

Lim E, Taksande N, Seaman C. A balancing act: what software practitioners have
to say about technical debt. Software, IEEE. 2012;29(6):22-27.

Seaman C, Guo Y, Izurieta C, et al. Using technical debt data in decision making:
Potential decision approaches. In: Managing Technical Debt (MTD), 2012 Third
International Workshop on. IEEE. Zurich; 2012. pp. 45-48.

Comission ISOE. 15939:2007 - Systems and Software Engineering - Measurement
Process. 2007;.

65

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Cunningham W; ACM. The WyCash portfolio management system. 1992;4(2):29—
30.

Kruchten P, Nord RL, Ozkaya I. Technical Debt: From Metaphor to Theory and
Practice. IEEE Software. 2012;29(6):18-21.

Izurieta C, Vetro A, Zazworka N, Cai Y, Seaman C, Shull F. Organizing the technical
debt landscape. In: Third International Workshop on Managing Technical Debt
(MTD). IEEE. Zurich; 2012. pp. 23-26.

Kruchten P, Nord RL, Ozkaya I, Falessi D. Technical debt: towards a crisper
definition report on the 4th international workshop on managing technical debt.
ACM SIGSOFT Software Engineering Notes. 2013;38(5):51-54.

Fowler R. Technical Debt Quadrant; 2009 (accessed 2014-02-03). Available from:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html.

Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. Does code decay? assessing
the evidence from change management data. Software Engineering, IEEE Transac-
tions on. 2001;27(1):1-12.

Zazworka N, Izurieta C, Wong S, et al. Comparing four approaches for technical
debt identification. Software Quality Journal. 2013;pp. 1-24.

Zazworka N, Spinola RO, Vetro A, Shull F, Seaman C. A case study on effectively
identifying technical debt. In: Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering. ACM. Porto de Galinhas;
2013. pp. 42-47.

Zazworka N, Shaw MA, Shull F, Seaman C. Investigating the impact of design debt
on software quality. In: Proceedings of the 2nd Workshop on Managing Technical
Debt. ACM. Honolulu; 2011. pp. 17-23.

Riaz M, Sulayman M, Naqvi H. Architectural decay during continuous software
evolution and impact of ‘design for change’on software architecture. In: Advances
in Software Engineering. Springer; 2009. pp. 119-126.

Farid H, Azam F, Iqgbal MA. Minimizing the Risk of Architectural Decay by using
Architecture-Centric Evolution Process. International Journal of Computer Science,
Engineering and Applications. 2011;1(5):1-12.

Garcia J, Popescu D, Edwards G, Medvidovic N. Identifying architectural bad
smells. In: Software Maintenance and Reengineering, 2009. CSMR’09. 13th Euro-
pean Conference on. IEEE. Kaiserslautern; 2009. pp. 255-258.

Buschmann F. To pay or not to pay technical debt. Software, IEEE. 2011;28(6):29—
31.

66

http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

BIBLIOGRAPHY

23]

Guo Y, Seaman C, Gomes R, et al. Tracking technical debt—An exploratory case
study. In: Software Maintenance (ICSM), 2011 27th IEEE International Conference
on. IEEE. Williamsburg; 2011. pp. 528-531.

Rieger M, Ducasse S, Lanza M. Insights into system-wide code duplication. In:
Reverse Engineering, 2004. Proceedings. 11th Working Conference on. IEEE. Delft;
2004. pp. 100-109.

Martin RC. Design principles and design patterns. Object Mentor. 2000;pp. 1-34.

Beck F, Diehl S. On the congruence of modularity and code coupling. In: Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM. Szeged; 2011. pp. 354-364.

Sommerville I. Software engineering. Harlow: Addison-Wesley; 2011.

Runeson P, Host M. Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering. 2009;14(2):131-164.

Kitchenham B, Pretorius R, Budgen D, et al. Systematic literature reviews
in software engineering—a tertiary study. Information and Software Technology.
2010;52(8):792-805.

Wong S, Cai Y, Kim M, Dalton M. Detecting software modularity violations. In:
Proceedings of the 33rd International Conference on Software Engineering. ACM.
Honolulu; 2011. pp. 411-420.

Dependometer; 2013 (accessed 2014-05-12). Available from: http://source.
valtech.com/display/dpm/Dependometer.

SonarQube; 2014 (accessed 2014-05-12). Available from: http://www.sonarqube.
org/.

Staron M, Meding W, Karlsson G, Nilsson C. Developing measurement systems:
an industrial case study. Journal of Software Maintenance and Evolution: Research
and Practice. 2011;23(2):89-107.

Stober T, Hansmann U. Agile software development: Best practices for large soft-
ware development projects. Berlin, Springer; 2009.

Christopoulou A, Giakoumakis EA, Zafeiris VE, Soukara V. Automated refac-
toring to the Strategy design pattern. Information and Software Technology.
2012;54(11):1202-1214.

Rapu D, Ducasse S, Girba T, Marinescu R. Using history information to improve
design flaws detection. In: Software Maintenance and Reengineering, 2004. CSMR
2004. Proceedings. Eighth European Conference on. IEEE. Tampere; 2004. pp. 223-
232.

67

http://source.valtech.com/display/dpm/Dependometer
http://source.valtech.com/display/dpm/Dependometer
http://www.sonarqube.org/
http://www.sonarqube.org/

	Introduction
	Purpose
	Scope and limitations
	Research questions
	Main contributions
	Thesis outline

	Background
	Technical Debt
	History of TD
	Intentional and unintentional TD
	Different types of TD
	Identification of TD

	Architectural Technical Debt
	Similar terms for ATD
	Definition of ATD
	Identification of ATD
	Addressing and resolvning ATD
	Different types of ATD

	Non-allowed dependencies between components
	Prioritization of Technical Debt
	Risk Measurement System

	Method
	Research design
	Pre study
	Literature Search

	Case context
	Method 1 - Comparing feature impact estimations against changes
	Planning
	Performing and evaluating

	Method 2 - Measuring and prioritizing non-allowed dependencies
	Step 1 - Establish and sustain measurement commitment
	Step 2 - Plan the measurement process
	Step 3 - Perform the measurement process
	Step 4 - Evaluate measurement

	Technical Solution of the Measurement System - an example
	Validity threats
	Construct validity
	Internal validity
	External validity
	Reliability

	Results
	Method 1 - Comparing feature impact estimations against changes
	Prerequisites
	Steps to conduct the method
	Status of the method

	Method 2 - Measuring and prioritizing non-allowed dependencies
	Components and process of identifying violations
	Components and process of prioritizing

	New approach of prioritizing
	Results from the developed tool for identifying non-allow dependencies
	Evaluation of the Measurement System
	Results from validation interview of the Measurement System
	The logic behind one-way and circular dependencies
	Conclusions of the validation interview

	Discussion
	Method 1 - Comparing feature impact estimations against changes
	Rough estimations could hinder the method
	A lightweight method
	Properties due to the scope of the method
	Identifies the same type of ATD as method 2

	Method 2 - Measuring and prioritizing non-allowed dependencies
	Process for identifying violations
	Process for prioritizing violations

	New approach of prioritizing
	Removing human estimations produces less effort when prioritizing
	Connecting the risk to the architecture visualizes the severity of an ATD
	Awareness of the severity obviates the negative effects of hidden ATD

	Validation of identified violations
	Threats to the process of identifying violations
	Validation revealed the existence of unknown ATD

	Validation of the prioritization
	Suggestion to gain knowledge about the increase and decrease of the ATD:s
	An extension of the prioritization metric

	Automation and information quality of the Measurement System
	How to trust the measurement indicators

	Proposed Measurement System for change in the number of non-allowed dependencies
	Main contributions to the company
	Releated work

	Conclusions
	 Bibliography

