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Abstract: Accurate and timely maps of tree cover attributes are important tools for 

environmental research and natural resource management. We evaluate the utility of  

Landsat 8 for mapping tree canopy cover (TCC) and aboveground biomass (AGB) in a woodland 

landscape in Burkina Faso. Field data and WorldView-2 imagery were used to assemble the 

reference dataset. Spectral, texture, and phenology predictor variables were extracted from 

Landsat 8 imagery and used as input to Random Forest (RF) models. RF models based on 

multi-temporal and single date imagery were compared to determine the influence of 

phenology predictor variables. The effect of reducing the number of predictor variables on 

the RF predictions was also investigated. The model error was assessed using 10-fold cross 
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validation. The most accurate models were created using multi-temporal imagery and 

variable selection, for both TCC (five predictor variables) and AGB (four predictor 

variables). The coefficient of determination of predicted versus observed values was 0.77 for 

TCC (RMSE = 8.9%) and 0.57 for AGB (RMSE = 17.6 tons∙ha−1). This mapping approach is 

based on freely available Landsat 8 data and relatively simple analytical methods, and is 

therefore applicable in woodland areas where sufficient reference data are available. 

Keywords: Landsat 8; woodland; Sudano-Sahel; tree canopy cover; aboveground biomass; 

multi-temporal imagery; Random Forest; variable selection; phenology 

 

1. Introduction 

The Sudano-Sahelian woodlands occupy vast areas between the Saharan desert and the moist forests of 

the Guinean zone [1,2]. Woodland tree cover is an essential element of the local livelihoods,  

in particular through agro-forestry practices [3], fuelwood, and timber extraction, and the provision of  

non-wood products (such as food, fodder, and medicine). The wide area extent also makes this landscape 

type an important component in the global climate system by sequestering and storing substantial amounts 

of carbon in woody biomass and soils [4–6]. At present, these woodlands are subject to increasing pressure 

from intensified land use [7] and climate change [8]. Local case studies based on field assessments and 

high resolution remote sensing data have shown that these factors have resulted in decreased tree density, 

carbon stocks, and floristic diversity [9–11]. Yet other local case studies show that tree cover conditions 

have improved substantially since the severe droughts that hit the area in the 1970s and 1980s [12]. Such 

improvements are generally attributed to increased rainfall or farmer managed natural regeneration, with 

notable cases found in northern Burkina Faso [13] and southern Niger [14,15]. Given these divergent 

research findings and the importance of trees for local livelihoods, timely information on the extent and 

conditions of woodlands, including agroforestry landscapes, is therefore of great interest to a number of 

local actors, such as researchers, natural resource managers and forestry industries [2]. 

In this paper, we evaluate the potential of Landsat 8 imagery to map two attributes commonly used 

to characterize tree cover structure and conditions, namely tree canopy cover (TCC) and aboveground 

biomass (AGB). Quantifying TCC and AGB at spatial scales relevant for natural resource monitoring 

(e.g., landscape scale) through field surveys is time-demanding and costly. Furthermore, the application 

of robust sampling strategies in woodlands is complicated by the heterogeneous landscape composition 

and the variable tree cover structure [1]. A large body of research has explored the potential of using 

various satellite systems as tools for providing remote sensing based observations of TCC and AGB at 

a range of spatial scales [16–19]. Optical satellite data of medium spatial resolution, such as Landsat 

imagery, are favorable when the objective is to map and monitor large areas over decadal time scales 

while retaining a relatively high degree of spatial detail and minimizing data acquisition costs. 

Pixel size is of particular importance when remote sensing data are used in fragmented landscapes 

where tree cover may alternate from open to closed canopy within short distances [20]. Several factors 

contribute to the reflected radiance recorded by the sensor which poses challenges to the mapping of tree 

cover in landscapes with an open canopy, such as the Sudano-Sahelian woodlands [21]. Important factors 
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include the heterogeneous spectral characteristics of soil and bedrock [22], the spectral similarity 

between different vegetation types [23,24] and the high seasonal and annual variability in vegetation 

development, which is species dependent and related to water availability [25]. Assessments have 

repeatedly shown that global tree cover products, such as the Vegetation Continuous Fields [26] derived 

from the Moderate Resolution Imaging Spectroradiometer (MODIS), have significant limitations in 

characterizing areas with an open tree canopy [21,27–29]. 

Some environmental characteristics of woodlands may represent opportunities for using optical 

satellite data for mapping TCC and AGB. For example, saturation of spectral vegetation indices, such 

as the Normalized Difference Vegetation Index (NDVI), is less of a problem when relating spectral data 

to TCC and AGB in open tree cover conditions compared to closed forests [16]. The relatively open 

canopy of woodlands does not obscure low growing trees to the same extent as in dense forests, where 

these can represent 30%–50% of the AGB [30]. Previous research also suggests that the correlation 

between tree cover attributes, in particular AGB, and image texture is higher in open as compared to closed 

canopies [31–34]. Eckert [33] hypothesized that texture is highly correlated to AGB in open canopy 

conditions due to its ability to capture shadow structures caused by large trees, which may contain up to 80% 

of the AGB in woodland landscapes [35]. Lastly, trees in the seasonal tropics have contrasting phenological 

traits compared to other vegetation that may be identified using multi-temporal satellite data [36,37]. 

The Operational Land Imager (OLI) onboard Landsat 8 has several improvements over its predecessors 

the Thematic Mapper (TM; Landsat 4 and 5) and the Enhanced Thematic Mapper (ETM+; Landsat 7). 

The main changes include an increased number of spectral bands, a higher radiometric resolution  

(12 bits) and an improved signal-to-noise ratio resulting from the use of a push-broom sensor [38].  

These improvements may enable higher accuracy in the mapping of tree cover attributes, including  

AGB [39]. The continuity and open data policy of the Landsat program also enables the use of image 

time series, which have shown great promise for large area mapping of tree cover attributes in boreal 

forests [40,41]. Thus, Landsat 8 represents an interesting data source for remote sensing based tree cover 

mapping, but its use has not yet been evaluated in the Sudano-Sahelian woodlands. 

The estimation of tree cover attributes from remote sensing data involves modeling the relation 

between the response variable Y (e.g., local reference measurements of TCC or AGB) [42] and the 

predictor variables Xn (e.g., remotely sensed reflectance). The parametric Ordinary Least Squares (OLS) 

regression has been the most common choice for fitting the equation between X and Y [43], which enables 

the prediction of the tree cover attribute over the extent of the satellite imagery. An alternative to 

statistical regression is provided by non-parametric machine learning techniques, or algorithmic 

modeling [44]. During the last decade machine-learning techniques, such as support vector machines [45], 

decision trees [46], and Random Forest [47] have been increasingly used for both classification and 

relationship modeling with remote sensing data. These techniques tend to outperform the commonly 

used statistical regression models (e.g., OLS regression) in terms of prediction accuracy of TCC and 

AGB from remote sensing data [19,48,49] 

The aim of this study was to assess the utility of Landsat 8 imagery for mapping TCC and AGB in a 

Sudano-Sahelian woodland landscape. The Random Forest (RF) algorithm [47] was used for identifying 

important predictor variables and for predictive modeling. Our methodology comprised three main steps: 

(a) assemblage of a reference dataset from field data and WorldView-2 imagery; (b) identification of 

important predictor variables from Landsat 8 data; (c) RF modeling of TCC and AGB as a function of 
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the predictor variables. Three types of predictor variables were assessed for their effectiveness to capture 

woodland tree cover characteristics: spectral, texture, and phenology variables. The spectral variables 

included top of atmosphere (TOA) reflectance values of the Landsat 8 bands (bands 2 to 8), tasseled cap 

components [50–52] and a set of vegetation indices. Texture variables were calculated using the gray 

level co-occurrence matrix (GLCM) approach [53]. Phenology variables were derived from a dry season 

NDVI time series [28]. The potential benefit of including phenology variables was assessed by 

comparing RF models based on multi-temporal and single date imagery, respectively. 

2. Materials and Methods 

2.1. Study Area 

The study area (100 km2) is located within the rural commune of Saponé (12°04′48′′N, 1°34′00′′W),  

35 km south of Ouagadougou, in central Burkina Faso (Figure 1). The local topography is generally flat 

with minor variations in elevation (293–363 m above sea level). Soils are characterized by sandy clay 

textures and low nutrient content [54]. The climate of Saponé is semi-arid and bimodal [55,56], with 

800 mm of mean annual precipitation (1952–2010) and 1900 mm of mean annual potential 

evapotranspiration (1974–2003). The rainy season takes place from April to October, with approximately 

70% of the annual rain falling between July and September and is followed by a long dry spell. The 

vegetation of the landscape includes open woodlands, agro-forestry parklands, small scale tree plantations 

(Eucalyptus camadulensis, Tectona grandis and Mangifera indica) and dense forest patches (e.g., riparian 

and sacred groves). The tree layer is fragmented and shaped by land use and topography (e.g., temporary 

watercourses). The tree cover is dominated by the species Vitellaria paradoxa, Parkia biglobosa, Lannea 

microcarpa and Mangifera indica. A total of 37 tree species have been identified in the study area [57]. 

Most of these species are considered deciduous, but Vitellaria paradoxa and Parkia biglobosa are rarely 

leafless because of a progressive replacement of the leaves [3,58]. The understory vegetation consists of 

annual grasses, shrubs (e.g., Guierra senegalensis), coppice regrowth and crops (e.g., millet and sorghum). 

  

Figure 1. Map showing the location of the study area in central Burkina Faso (left). False 

color composite (red: Band 5; green: Band 4; blue: Band 3) of wet season Landsat 

data (right). 
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2.2. Reference Data 

Two data sources were used to assemble the reference datasets for TCC and AGB, including field 

data collected during October and November 2012 and a pan-sharpened WorldView-2 image from 

October 2012 [57]. TCC refers to the proportion of land area covered by tree crowns, when viewed from 

above, and is a widely used variable in land-cover definitions (e.g., woodlands 10%–30% TCC) [2].  

The AGB of woody vegetation (i.e., trees and shrubs) is a measure of dry matter weight per unit area 

(e.g., tons∙ha−1) and represents a key indicator for ecosystem structure and functioning [2,59].  

The reference datasets were used to calibrate and validate the RF regression models. There is a temporal 

difference of two years between the reference dataset and the Landsat imagery. However, the cutting of 

trees is prohibited in the area and potential changes in tree cover were assumed to be minor with limited 

influence on the predictive modeling. 

2.2.1. Field Data 

The field data included 75 inventory plots (50 m × 50 m) located within the study area. The allocation 

of plots followed a stratified random sampling approach where NDVI [60] from the WorldView-2 image 

was used to partition the study area into three classes of vegetation density to ensure that landscape 

heterogeneity was reflected in the field dataset (Table 1). Within the 75 plots, 1143 trees with diameter 

at breast height (DBH) ≥ 5 cm were measured for height, DBH, crown area and species [57]. The trees 

were geo-referenced individually using a global positioning system receiver (GPS; Garmin Oregon 550, 

Garmin, Olathe, KS, USA). To account for the positional uncertainties in the GPS recordings, each point 

was manually related to the correct tree in the pan-sharpened WorldView-2 image using information on 

crown dimension, height, and species as guidance. Karlson et al. [57] provide further details regarding 

the collection of field data. 

Table 1. Details of the field data showing plot level information for tree canopy cover (TCC) 

and aboveground biomass (AGB). 

Variable 
Strata  

(Vegetation Density) 

Plots 

(No.) 
Min Max Mean 

Standard 

Deviation 

TCC (%) 

Low 25 0.2 23.2 10.1 7.5 

Medium 27 0.4 58.7 18.9 11.3 

High 23 3.7 67.8 27.7 16.9 

Total 75 0.2 67.8 18.5 14.1 

AGB (tons∙ha−1) 

Low 25 0.1 60 18.2 14.6 

Medium 27 0.2 90.3 23.8 21.4 

High 23 1.1 140 27.4 29.9 

Total 75 0.1 140 23.2 22.7 

Tree level AGB was derived using species specific allometric equations developed within climate 

zones similar to the study area [61–67]; in cases where species specific equations were not available, 

generalized allometric equations were used (Table 2). Species specific wood densities, which are used 

in the generalized equation [68], were derived from the Global Wood Density Database [69,70]. 
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Table 2. Description of allometric equations used for deriving tree level aboveground 

biomass. DBH—diameter at breast height; D20—diameter at 20 cm; H—height;  

WD—wood density. 

Tree Species 
Input 

Variables 
Location References 

Balanites aegyptiaca DBH Senegal [61] 

Eucalyptus camadulensis DBH Kenya [62] 

Guierra senegalensis DBH Burkina Faso [63] 

Acacia dudgeon, Anogeiosus leiocarpus, 

Combretom fragrance, Combretum collinum, Detarium 

microcarpum, Entada Africana, Piliostigma thonninghii 

D20, DBH, H Burkina Faso [64] 

Sclerocarya birrea DBH, H, WD South Africa [65] 

Tectona grandis DBH Indonesia [66] 

Vitellaria paradoxa DBH, H Burkina Faso [67] 

Other 1 DBH, H, WD Pan-tropical [61] 

1: Acacia gourmaensis, Acacia nilotica, Acacia macrotadia, Acacia seyal, Adansonia digitata, Azadirachta 

indica, Bombax costatum, Cania siamea, Citrus sp., Combretom fragrance, Combretum collinum, Daniella 

oliveri, Diosphyros mespiliformis, Faidherbia albida, Ficus sp., Gmelina arborea, Khaya senegalensis, 

Lannea acida, Lannea microcarpa, Mangifera indica, Mitragyna inermis, Parkia biglobosa, Prosopis 

Africana, Pterocarpus eninaceus, Tamarindus indica, Terminalia laxiflora, Vitex doniana. 

2.2.2. WorldView-2 Data 

A cloud-free, pan-sharpened WorldView-2 image acquired on 21 October 2012, and geo-referenced 

using ground control points, was used to extend the spatial coverage of the reference data. Individual 

tree crown polygons were delineated in the WorldView-2 image using a semi-automated method,  

as described in Karlson et al. [57]. Some manual editing of the delineated tree crowns was done with 

assistance of the field data to correct for false detections and to separate crown clusters. The tree crown 

area obtained from this polygon layer was further used as input in the allometric equation developed by 

Koala [67] for AGB estimation of Vitellaria paradoxa trees. This equation is based on a sample consisting 

of 60 trees from central Burkina Faso that were cut, dried, and weighed, and shows a strong relationship 

between tree crown area and AGB (R2 = 0.86, p < 0.001). Considering that Vitellaria paradoxa is the 

dominant species in the study area and that allometric equations that relate crown area and AGB are 

practically absent in the literature, we opted to use Koala et al.’s equation for all delineated tree crowns. 

2.3. Landsat 8 Data Acquisition and Pre-Processing 

Cloud free Landsat 8 OLI data (path 195, row 52; Table 3) processed to level L1T were acquired 

from the United States Geological Survey (USGS; http://earthexplorer.usgs.gov/). The spectral bands 

used in this study included blue (0.45–0.51 μm), green (0.53–0.59 μm), red (0.64–0.67 μm), near infrared 

(NIR; 0.85–0.88 μm), shortwave infrared 1 (SWIR 1; 1.57–1.65 μm), SWIR 2 (2.11–2.29 μm) and 

panchromatic (0.5–0.68 μm). A visual assessment of the geographic co-registration between the 

panchromatic Landsat band and the WorldView-2 imagery showed close correspondence between the 

two datasets. Specifically, large trees, which are clearly visible in Landsat’s 15 m panchromatic band, 
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served as ground control points and their accuracy was checked against the geo-referenced WorldView-2 

image. Digital numbers of the Landsat imagery were converted to top-of-atmosphere reflectance according 

to the instructions provided by USGS [71]. Atmospheric correction was not conducted since the dry 

season time series used to derive the phenology were treated as multi-date composite imagery [37,72]. 

The atmospheric influence on the Landsat data was assumed to be minimal because of the limited study 

area extent and the cloud free conditions under which the imagery was acquired. 

Table 3. Remote sensing data used in this study. MS—multispectral, Pan—panchromatic. 

Remote Sensing Data Date Season Pixel Size Usage 

Landsat 8 OLI 

27 October 2013 

Dry season MS: 30 m Phenology variables 

28 November 2013 

30 December 2013 

31 January 2014 

16 February 2014 

4 March 2014 

8 June 2014 Wet season MS: 30 m Pan: 15 m Spectral and texture variables 

WorldView-2 21 October 2012 Dry season MS: 0.5 m Reference data 

2.4. Remote Sensing Predictor Variables 

In this study we evaluate the ability of spectral, texture and phenology variables to predict TCC and 

AGB (Table 4 [28,50–53,60,71,73–80]). The spectral and texture variables were derived from a single 

date wet season image (June), whereas the phenology variables were derived from a dry season time 

series consisting of six images (October–March). The spectral variables include the Landsat 8 bands, 

vegetation indices and tasseled cap components adapted to the OLI configuration [52]. Most of the 

selected vegetation indices have shown promise for TCC and AGB mapping in other areas with 

comparable environmental conditions [33,73–75]. Three texture variables, chosen to represent spatial 

features in the imagery, such as tree size and shadow structure, were derived from the panchromatic 

band using the gray level co-occurrence matrix approach [53] implemented in the R statistical 

package [81,82]. Texture variables were calculated with window sizes of 3 × 3, 5 × 5, and 7 × 7 pixels, 

an offset distance of 1 (averaged over all directions), and a 64 grey level quantization. The phenology 

variables (maximum, mean, median, minimum, product and standard deviation) were calculated from 

the dry season time series consisting of monthly NDVI images from October 2013 to March 2014  

(Table 4). The phenology variables were included to separate trees from other vegetation types (e.g., 

grass and crops) based on differences in the timing of leaf senescence. The dry season time series 

included images that cover important periods of photosynthetic activity: it starts at the intersection 

between the wet and the dry season (October) when all the vegetation has green leaves and ends when 

the photosynthetic activity is lowest (March). The main reason for using only the dry season for 

calculation of phenology variables was due to the availability and future likelihood of acquiring multiple 

cloud-free images during the dry season as opposed to the wet season. 
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Table 4. Summary of the three types of predictor variables (spectral, texture, and phenology) 

included in predictive modeling of tree canopy cover and aboveground biomass. 

Predictor Variables Formula Reference 

Spectral  

Landsat 8 OLI bands 2–8 
[71] 

Enhanced vegetation index (EVI) EVI = 2.5 ×
NIR − R

NIR + (6 × R − 7.5 × B) + 1
 [76] 

Generalized Difference Vegetation Index (GDVI) (NIR2 − R2)/(NIR2 + R2) [77] 

Normalized Difference Vegetation Index (NDVI) (NIR − Red)/(NIR + Red) [60] 

Normalized Difference Water Index (NDWI) (NIR − SWIR 2)/(NIR + SWIR 2) [78] 

Specific Leaf Area Vegetation Index (SLAVI) NIR/(Red + SWIR 2) [79] 

Simple Ratio (SR) NIR/Red [80] 

Tasseled cap transformations  

Brightness (Br)  

Greenness (Gr)  

Wetness (We) 

[50–52] 

Texture (window sizes: 3 × 3, 5 × 5, 7 × 7 pixels)  

Homogeneity  

Mean  

Variance 

[53] 

Phenology (dry season NDVI)  

Maximum  

Mean  

Median  

Minimum  

Product  

Standard deviation  

[28] 

2.5. Spatial Aggregation and Sampling for Training and Validation 

TCC and AGB from the reference data were aggregated using a raster with 30 m × 30 m grid cells 

(matching the Landsat pixel size). In areas where TCC and AGB were inventoried in the field,  

the aggregation was based on the field data rather than the tree crown segments in the WorldView-2 

data. Two pixels per field plot were included in the reference dataset, resulting in 150 reference pixels 

for TCC and AGB (Table 5). 

Table 5. Descriptive statistics of the reference dataset. 

Tree Cover Attribute Number of Reference Pixels Mean Max Standard Deviation 

Tree canopy cover (%) 150 21.9 88.9 18.4 

Aboveground biomass (tons∙ha−1) 150 26.6 150 27.2 

2.6. Random Forest Modeling 

The RF algorithm [47], implemented in the “RandomForest” R environment software package [81,83], 

was used to (i) identify important predictor variables; (ii) to model the relationship between the 

predictors variables and the tree cover attributes (TCC and AGB); and (iii) to apply the models over the 
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study area for mapping TCC and AGB. RF was chosen because it has produced more accurate remote 

sensing based predictions of TCC and AGB compared to other modeling techniques [19,37,48,49,84,85]. 

RF can also handle noisy and highly correlated predictor variables [47], which is the default situation in 

remote sensing [42]. 

RF is an ensemble modeling technique where the forest consists of a large number of regression trees 

(e.g., 500). Each tree is built from a random sample (approximately two-thirds) of the training data and 

is drawn with replacements [47]. At each node in the trees, a random subset of the predictor variables is 

used to identify the most efficient split. The most efficient split is defined by identifying the predictor 

variable and the split point that results in the largest reduction in the residual sum of squares between 

the sample observations and the node mean. All trees are grown to the maximum extent (i.e., no pruning) 

that is controlled by the node size set by the user. The result is an ensemble (i.e., forest) of low bias and 

high variance regression trees, where the final predictions are derived by averaging the predictions of 

the individual trees [47]. 

In this study, 1000 trees (ntree) were used in the RF modeling. For the parameter mtry (i.e., the number 

of variables to be tested at each node), the default value of the square root of the total number of predictor 

variables was used [47]. The parameter nodesize was set to the default value of 1. RF modelling was 

performed separately using predictor variables derived from single date and multi-temporal imagery 

(including phenology variables), respectively. The separate modeling was done to assess the potential 

benefit of using phenology variables, which are more problematic to acquire due to cloud contamination 

compared to variables derived from single date imagery (spectral and texture variables). 

2.6.1. Predictor Variable Selection 

In RF, one third of the training data is used for internal model performance evaluation and for deriving 

two different variable importance measures (VIM). The VIM used in this study is based on the percent 

increase in mean squared prediction error (MSE) that results when an individual predictor variable is 

permuted, while the others are unaltered. The resulting VIM provides means to assess the contribution 

of each predictor variable to the modeling performance. This VIM is also useful for variable selection, 

which may improve model performance [84,85] and facilitate the interpretability of the model by 

reducing its complexity [86]. We applied a backward variable elimination method to identify the most 

accurate and efficient models [85,87]. The method applied in this study starts by ranking all predictor 

variables based on the MSE VIM. The least important predictor variables are then successively removed 

from the model until the MSE of the prediction is minimized. The initial variable ranking (all predictor 

variables) is used throughout all the iterations [88], and the smallest subset of predictor variables with 

the lowest MSE is selected for constructing the final model. The models resulting from the variable 

selection process were compared to the models based on the full predictor variable dataset in terms of 

their abilities to predict TCC and AGB. 

2.6.2. Accuracy Assessment and Statistical Analyses 

RF modeling was done using the reduced and the full predictor variable datasets for (i) the single date 

Landsat 8 imagery (spectral and texture variables) and (ii) the multi-temporal Landsat 8 imagery 

(spectral, texture, and phenology variables). The predictive ability of all models was assessed using  
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10-fold cross validation (10% of reference data). The cross-validation approach is based on the entire 

reference dataset, rather than using separate training and validation data subsets, which is a useful 

approach when there is limited reference data [49]. Four measures of model performance were calculated 

from the 10-fold cross validation, including the coefficient of determination (R2), the root mean square 

error (RMSE), relative RMSE (relRMSE) and mean bias error (MBE). Wilcoxon signed rank test was 

used for assessing differences between the models’ abilities to predict TCC and AGB. 

3. Results 

3.1. Variable Importance 

The error rate estimated from the RF out of bag (OOB) data was used to rank all of the predictor 

variables by their capacity to predict TCC and AGB. Figures 2 and 3 show the rankings for both  

multi-temporal and single date imagery. 

 

Figure 2. Importance of predictor variables for estimating tree canopy cover (TCC) using 

multi-temporal and single date imagery. A higher out of bag (OOB) error rate indicates 

stronger importance of the predictor variables. See Table 4 for description of abbreviations 

for predictor variables. 

3.1.1. Tree Canopy Cover 

The variable importance ranking identified the panchromatic band, homogeneity texture features  

(3 × 3 and 7 × 7) and greenness (Gr) as particularly important for predicting TCC (Figure 2). Several of 

the phenology variables are ranked as relatively important for predicting TCC. The product of dry season 

NDVI stands out as the most important phenology variable. Individual Landsat 8 multi-spectral bands are 

generally ranked low compared to vegetation indices and tasseled cap components (Br, Gr, We). 
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Figure 3. Importance of predictor variables for estimating aboveground biomass (AGB) 

using multi-temporal and single date imagery. Higher out of bag (OOB) error rate indicates 

stronger importance of the predictor variables. See Table 4 for description of abbreviations 

for predictor variables. 

3.1.2. Aboveground Biomass 

The variables which stand out in the ranking as important for the prediction of AGB include the 

panchromatic band, homogeneity texture features (3 × 3 and 5 × 5) and wetness (We; Figure 3).  

This was generally true for both the single date and the multi-temporal imagery. The median of dry 

season NDVI was ranked as the third most important variable for predicting AGB (median). 

3.2. Variable Selection 

We used a backwards feature elimination procedure to identify the smallest set of predictor variables 

that resulted in the best predictive abilities of the RF models [88]. The progressive removal of the least 

important predictor variables generally resulted in reduced RMSE for the OOB data (Figures 4 and 5). 

The models with the lowest RMSE and smallest number of predictor variables were selected for mapping 

TCC and AGB. These reduced models were compared to models based on the full predictor variable dataset. 

 

Figure 4. Identification of the optimal number of predictor variables for tree canopy cover 

(TCC) prediction using backward elimination. The root mean square error (RMSE) is 

calculated from the out of bag (OOB) data. 
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Figure 5. Identification of the optimal number of predictor variables for predicting 

aboveground biomass (AGB) using backward elimination. The root mean square error 

(RMSE) is calculated from the out of bag (OOB) data. 

3.2.1. Tree Canopy Cover 

For TCC, the RF model with the highest predictive power (RMSE 11%; Figure 4) included five 

predictor variables: the panchromatic band, the product of dry season NDVI, greenness (tasseled cap), 

and the homogeneity textures calculated using window sizes of 3 × 3 and 7 × 7 pixels. Thus, all three 

types of predictor variables (i.e., spectral, texture, and phenology) were included in the most accurate 

model. Three predictor variables produced the lowest RMSE (11.5%) when single date imagery was 

used, including the panchromatic band, greenness, and the homogeneity texture calculated using a 

window size of 3 × 3 pixels. 

3.2.2. Aboveground Biomass  

For AGB, the RF model with the most predictive power (RMSE 21.5 tons∙ha−1; Figure 5) included 

four predictor variables; the homogeneity texture calculated using window size of 3 × 3 pixels,  

the panchromatic band, the median of dry season NDVI and wetness. Thus, all three types of predictor 

variables were also included in the model that most accurately predicted AGB. The model based on 

single date imagery included the panchromatic band, the homogeneity textures calculated using window 

sizes of 3 × 3 and 7 × 7 pixels and wetness (tasseled cap). 

3.3. Predictive Performance of the RF Regression Models 

The results from the 10-fold cross validation are presented in Table 6. The results show that TCC can 

be more accurately mapped using Landsat 8 data than AGB due to lower error values. Furthermore,  

the use of variable selection and multi-temporal imagery results in more accurate predictions of both 

TCC and AGB. Bias was generally small for both TCC and AGB predictions. 
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Table 6. Results of model performance evaluation. relRMSE—relative root mean square 

error; MBE—mean bias error. 

Variable Variable Selection Predictor Dataset R2 relRMSE (%) RMSE MBE 

Tree canopy 

cover (%) 

Full 
Single date 0.49 60.0 13.1 0.04 

Multi-temporal 0.54 57.0 12.5 0.08 

Reduced 
Single date 0.65 49.7 10.9 0.02 

Multi-temporal 0.77 40.6 8.9 0.08 

Aboveground 

biomass (tons ha−1) 

Full 
Single date 0.34 83.0 22.2 0.06 

Multi-temporal 0.46 75.0 20 −0.66 

Reduced 
Single date 0.44 75.0 20 0.44 

Multi-temporal 0.57 66.0 17.6 0.22 

3.3.1. Tree Canopy Cover 

Observed TCC values ranged from 0% to 88.9% (mean = 21.9%), whereas predicted TCC had 

a slightly smaller range between 0.8% and 84.1% (mean = 15.1%). The models based on the reduced 

predictor datasets resulted in significantly more accurate predictions of TCC compared to the RF models 

based on the full predictor variable dataset. The best model for predicting TCC (Figure 6) was based on 

five predictor variables, including a phenology variable (the product of dry season NDVI).  

The multi-temporal model produced significantly more accurate estimates of TCC compared to the 

model based on single date imagery (Z = −7.6, p < 0.001). However, the difference in predictive ability 

between using the multi-temporal and the single date imagery was not statistically significant when the 

full predictor variable dataset was used to build the model (Z = −1.1, p = 0.272). The model based on 

multi-temporal imagery shows tendencies to overestimate low and underestimate high TCC values. 

  

Figure 6. Relationship between observed and predicted tree canopy cover (TCC) using 

multi-temporal imagery and the reduced model. The dashed 1:1 line shows an optimal model fit. 

The map of TCC to the right was derived from the most accurate model (i.e., multi-temporal 

imagery and reduced model). 
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3.3.2. Aboveground Biomass 

The range for observed and predicted AGB was 0 to 153 tons∙ha−1 (mean = 22.2 tons∙ha−1) and 1.7 to 

119 t∙ha−1 (mean = 20 tons∙ha−1), respectively. For the AGB predictions, variable selection did not result 

in significantly more accurate models for either multi-temporal (Z = −0.9, p = 0.353) or single date 

imagery (Z = −0.1, p = 0.911) compared to the models based on the full predictor variable dataset. 

However, multi-temporal imagery outperformed single-date imagery both for the reduced (Z = −3.8,  

p < 0.001) and the full predictor variable datasets (Z = −2.8, p = 0.006). The most accurate model for 

predicting AGB was based on four predictor variables, including a phenology variable (median; Figure 7). 

  

 

Figure 7. Relationship between observed and predicted aboveground biomass (AGB) using 

multi-temporal imagery and RF variable selection. The dashed 1:1 line shows an optimal 

model fit. The map of AGB to the right was derived from the most accurate model  

(i.e., multi-temporal imagery and reduced model). 

4. Discussion 

Several assessments have shown that global tree cover products based on satellite data have clear 

limitations for characterizing areas where the tree canopy is open [21,27–29]. Improved approaches are 

therefore needed to enable collection of accurate spatial information on key tree cover attributes, 

including TCC and AGB, in areas such as the Sudano-Sahelian woodlands. To our knowledge, this is 

the first study to map TCC and AGB using the Landsat 8 sensor and multi-temporal imagery in this 

region. We showed that spatially detailed and reasonably accurate maps of TCC and AGB can be derived 

using freely available Landsat 8 imagery. The coefficient of determination (R2) between Landsat 8  

based predictions and the reference data reached 0.77 for TCC (RMSE = 8.9%) and 0.57 for AGB 

(RMSE = 17.6 tons∙ha−1). The relative RMSE was relatively high for AGB (66%) and lower for TCC 

(40.6%), however, the mean values of AGB and TCC are quite low with a wide range of values within 

the study area. The accuracy of the maps was assessed at plot level using 10-fold cross validation.  
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If TCC and AGB estimates from application of the models were to be aggregated over larger areas,  

the errors would be lower. 

The observed prediction errors highlight the uncertainties and limitations associated with mapping 

tree cover attributes using optical remote sensing. A main problem of using optical imagery in areas with 

an open tree canopy is that the understory vegetation and soil contributes to the spectral signal and therefore 

renders the relationship between the tree cover and the remote sensing data less predictable [22].  

In particular bright soil types, such as those found in the study area, have been shown to negatively affect 

the prediction of tree cover attributes from optical remote sensing data [21]. An additional complicating 

factor is that woodland tree cover in general, and in the study area in particular, is composed of a 

relatively large number of tree species [2] which are partly characterized by variations in the spectral 

properties of leaves and canopies [28]. 

We aimed to account for the contribution from understory vegetation by using imagery from periods 

when the phenological differences between trees and grasses/crops are largest [28,37,89], including  

the early wet season and the dry season. However, the understory vegetation in the study area also 

includes a considerable component of shrubs and tree coppice, which contribute to the spectral signal. 

The reference dataset therefore has limitations because (i) only trees with DBH ≥ 5 cm were surveyed 

in the field and (ii) the tree crown delineation in the WorldView-2 imagery has a higher likelihood of 

omitting small trees [57]. A complete sampling of all woody vegetation in the field plots would require 

substantially more time and resources, which were not available in this study. A compromise between 

limited resources and field data completeness could be to use a nested inventory design where different 

types of woody vegetation are surveyed in small sub-plots [90]. A further potential limitation of the 

reference dataset that may cause prediction errors is the use of allometric equations to obtain plot-level 

AGB from individual tree attributes (i.e., height, DBH, and crown area). We opted to use species specific 

equations developed in areas with similar environmental conditions as those of the study area to the 

largest extent possible. However, the availability of species specific equations is limited in Africa [91] 

and the pan-tropical allometric equation by Chave et al. [68] was therefore used for 28 of the tree species 

(42% of the field data). Furthermore, our approach to estimate AGB from tree crowns delineated in 

WorldView-2 imagery includes two uncertainties. Firstly, the crown delineation in the WorldView-2 

image includes errors, especially for small trees [57]. Secondly, the allometric equation used for 

estimating AGB from crown area was developed for Vitellaria paradoxa and may therefore not be 

optimal for other tree species. The relationship between crown area and AGB is also complicated due to 

the pollarding of trees, which is a common practice in the region [92,93]. 

In order to reduce the effect of potential spatial mis-registration between remote sensing data and 

reference data, one suggestion is to average the remote sensing data within a window (e.g., 3 × 3) of 

pixels [16,31,39]. However, the spatial variation in tree cover properties is extremely high in woodlands 

and parklands, and such an approach was therefore not suitable for this study. Instead we extracted the 

remote sensing predictor variables from individual Landsat pixels. This approach is heavily dependent 

on the spatial correspondence between the remote sensing data and the reference dataset. We estimate 

that the geo-location accuracy of the Landsat 8 imagery is below half a panchromatic pixel (i.e., 7.5 m), 

thereby giving confidence to the approach used in this study. Similarly accurate spatial registration of 

Landsat 8 was also recognized by Zandler et al. [94].  
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4.1. Relationships between Predictor Variables and Tree Cover Attributes 

The panchromatic band proved to be the most important variable for predicting both TCC and AGB, 

ranking above all of the vegetation indices. The observed strong inverse relationship between the 

panchromatic band and the tree cover attributes suggests two things. Firstly, the image acquisition date 

in early June (i.e., early wet season) provided good contrast between tree cover and background 

components due to low growth activity of grasses, crops, and shrubs [95]. Specifically, the foliage of 

Sudan-Sahelian tree species is known to develop before the re-growth of the herbaceous vegetation [96,97]. 

Secondly, the size of the 15 m panchromatic pixels seemed to be better suited to capture the reflectance 

contributions from trees, which may be mixed (e.g., trees and grass) in the larger 30 m Landsat 

multispectral pixels when the tree canopy is open [28]. This observation was reinforced since image 

texture derived from the panchromatic band also proved useful for predicting both TCC and AGB.  

The relatively strong relationship between image texture, in particular the gray level co-occurrence 

matrix (GLCM) homogeneity, and tree cover attributes found in this study agrees with previous research 

suggesting that image texture is particularly useful in areas where the tree canopy is open [31–34,98].  

In addition to the panchromatic band, tasseled cap components adapted to Landsat 8 [52] proved to be 

important for predicting tree cover attributes; greenness and wetness were strongly related to TCC and 

AGB, respectively. Greenness measures the amount of green vegetation by quantifying the contrast 

between the NIR band and the visible bands that results from spectral properties of leaf cellular structure 

and plant pigments. The better performance of greenness to predict TCC compared to the other vegetation 

indices can be explained by the inclusion of a mechanism to account for soil reflectance [50,51].  

Soil reflectance can be highly variable in the Sudano-Sahelian zone and has been shown to complicate 

relationships between vegetation indices and vegetation properties [99]. Individual SWIR bands have 

been shown to be sensitive to vegetation water content [100,101]. Wetness contrasts the SWIR bands 

against the visible and NIR bands in order to isolate the reflectance contribution from water content in 

leafs and soil [51]. Previous research has found wetness and SWIR bands to be among the most important 

for predicting forest structure, including AGB, in various types of environments [28,102–104]. The same 

pattern is seen in the present study where the importance of wetness and SWIR bands is more pronounced 

when predicting AGB as compared to predicting TCC. 

The inclusion of phenology variables generally improved the predictions of TCC and AGB;  

the product of dry season NDVI was included in the best TCC model (Figure 6), while the median of 

dry season NDVI was included in the best AGB models (Figure 7). The decreased RMSE for both TCC 

(−9.1%) and AGB (−9%) predictions suggest that the dry season NDVI time series contain additional 

information related to phenology and seasonal differences in soil moisture that facilitates the separation 

between tree cover and background components. These results are promising, but further research will 

be required to investigate the underlying mechanisms of this observation and to optimize the procedure 

for the Sudano-Sahelian woodland landscape. For example, the dry season time series could be 

contrasted to climate data, field observations of phenological events and temporal profiles from MODIS 

in order to better understand the Landsat 8 phenology variables. We used NDVI to characterize 

vegetation during the dry season, but other remote sensing variables could be used. The results from this 

study suggest that tasseled cap greenness and wetness are potential candidates for the phenology 
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variables due to their stronger relationship to TCC and AGB in this study. The temporal definition of  

the dry season and frequency of image acquisition during this period may also merit further research. 

4.2. Random Forest Regression and Variable Selection 

We used the error rate calculated from the OOB data to perform variable selection with RF in order 

to assess its effect on the predictive performance of the resulting models. Previous research has shown 

this to be a statistically sound and efficient approach because the OOB data provide reliable internal 

estimates of error rate when compared to results derived from 10-fold cross-validation [84,105,106].  

The results show that variable selection did improve predictions of both TCC and AGB. This finding is 

in line with previous related remote sensing research [84,86,106], and suggests that the effect of variable 

selection should be evaluated when RF is used for predicting tree cover attributes from remote sensing 

data. A plausible explanation to the better performance of the reduced models is that the mechanisms of 

RF partly fail to block the influence of noisy predictor variables [106]. 

RF regression has several advantages for modeling remote sensing data [47], but also limitations.  

In this study, RF appeared to consistently overestimate low values and underestimated high values, 

which partly explains the absence of bias in the TCC and AGB predictions. This effect was most 

pronounced for AGB predictions and is due to both properties of the algorithm and characteristics of the 

reference data. The final prediction from a RF model is based on the average value of individual trees 

generated from bootstrap samples [47]. If the reference dataset contains too few extreme values they 

might be consistently underrepresented in the tree construction and RF predictions may therefore be 

biased towards the mean value. This property of the RF algorithm needs specific attention when 

reference data are collected. Specifically, the reference data need to cover the full range and represent 

the variability of the variable of interest in the specific study area. A stratified sampling design is 

therefore recommended for reference data collection. 

The results from this study are promising, especially for the mapping of TCC. However, the approach 

should be tested in a larger area, preferably a site that covers a wider tree cover gradient. We used 

WorldView-2 imagery in addition to field data to derive the reference dataset. Availability of such 

imagery may be restricted due to high costs, especially for large areas. However, Wu et al. [75] showed 

that Google Earth is an interesting alternative source of high resolution imagery by using it to manually 

derive a reference dataset of TCC for the main part of Sudan. 

5. Conclusions 

In this study, we assessed the utility of Landsat 8 OLI imagery for mapping tree canopy cover (TCC) 

and aboveground biomass (AGB) in a Sudano-Sahelian woodland landscape. Spectral, texture, and 

phenology predictor variables were extracted from multi-temporal Landsat 8 imagery and used as input 

to Random Forest (RF) models. A combination of field data and WorldView-2 imagery was used to 

create a reference dataset, which facilitated integration with the Landsat data at pixel level. The following 

conclusions are drawn from this study: 

• Landsat 8 is more suitable for mapping TCC compared to AGB in this landscape type: the best 

model for TCC resulted in a coefficient of determination (R2) of 0.77 and a root mean square error 
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(RMSE) of 8.9 percent and the best model for AGB resulted in an R2 of 0.57 and a RMSE of  

17.6 tons∙ha−1. The weaker relationship between the Landsat 8 data and AGB was expected, and 

can be explained by the difficulty of resolving information related to the three dimensional 

structure in optical satellite data. 

• The use of variable selection to reduce the number of predictor variables improved the 

performance and interpretability of the RF models, and should therefore be considered when RF 

is used for similar tasks. From the total of 31 predictor variables, five were included in the best 

model for TCC and four were included for AGB. 

• All three types of predictor variables (spectral, texture, and phenology), were included by the 

variable selection in the best model, which suggests that they provide complementary information 

to the predictions. 

• The methods presented in this study are relatively simple and applicable over the Sudano-Sahelian 

woodlands where sufficient reference data for calibration and validation is available. High resolution 

satellite data, such as WorldView-2, represents a useful complement to field data in this context. 

• The large contribution of Landsat’s 15 m panchromatic band and the phenology variables to the 

prediction success suggests that the upcoming Sentinel-2 optical sensor will have spatial and 

temporal features well suited for mapping tree cover attributes in Sudano-Sahelian woodlands. 

Future research will focus on (i) assessing the transferability of this approach to other woodland areas 

with different tree cover characteristics; and (ii) testing the capacity of Sentinel-2 data for mapping tree 

cover attributes in Sudano-Sahelian woodlands. 
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