
Chalmers Publication Library

Four-Dimensional Coded Modulation with Bit-Wise Decoders for Future Optical
Communications

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Journal of Lightwave Technology (ISSN: 0733-8724)

Citation for the published paper:
Alvarado, A. ; Agrell, E. (2015) "Four-Dimensional Coded Modulation with Bit-Wise
Decoders for Future Optical Communications". Journal of Lightwave Technology, vol.
33(10),  pp. 1993-2003.

http://dx.doi.org/10.1109/JLT.2015.2396118

Downloaded from: http://publications.lib.chalmers.se/publication/220044

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/JLT.2015.2396118
http://publications.lib.chalmers.se/publication/220044


JOURNAL OF LIGHTWAVE TECHNOLOGY, TO APPEAR, 2014 1

Four-Dimensional Coded Modulation with Bit-wise

Decoders for Future Optical Communications
Alex Alvarado and Erik Agrell

Abstract—Coded modulation (CM) is the combination of for-
ward error correction (FEC) and multilevel constellations. Coher-
ent optical communication systems result in a four-dimensional
(4D) signal space, which naturally leads to 4D-CM transceivers.
A practically attractive design paradigm is to use a bit-wise
decoder, where the detection process is (suboptimally) separated
into two steps: soft-decision demapping followed by binary
decoding. In this paper, bit-wise decoders are studied from an
information-theoretic viewpoint. 4D constellations with up to
4096 constellation points are considered. Metrics to predict the
post-FEC bit-error rate (BER) of bit-wise decoders are analyzed.
The mutual information is shown to fail at predicting the post-
FEC BER of bit-wise decoders and the so-called generalized
mutual information is shown to be a much more robust metric.
For the suboptimal scheme under consideration, it is also shown
that constellations that transmit and receive information in each
polarization and quadrature independently (e.g., PM-QPSK, PM-
16QAM, and PM-64QAM) outperform the best 4D constellations
designed for uncoded transmission. Theoretical gains are as high
as 4 dB, which are then validated via numerical simulations of
low-density parity check codes.

Index Terms—Bit-interleaved coded modulation, bit-wise de-
coders, channel capacity, coded modulation, fiber-optic commu-
nications, nonlinear distortion, low-density parity-check codes.

I. INTRODUCTION AND MOTIVATION

In coherent fiber-optic communication systems, both

quadratures and both polarizations of the electromagnetic field

are used. This naturally results in a four-dimensional (4D)

signal space. To meet the demands for spectral efficiency,

multiple bits should be encapsulated in each constellation sym-

bol, resulting in multilevel 4D constellations. To combat the

decreased sensitivity caused by multilevel modulation, forward

error correction (FEC) is used. The combination of FEC and

multilevel constellations is known as coded modulation (CM).
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The most popular alternatives for CM are trellis-coded

modulation (TCM) [1], multilevel coding (MLC) [2], and

bit-interleaved coded modulation (BICM) [3]–[5]. TCM has

been considered for optical communications in [6]–[10] and

MLC in [11]–[15]. Regardless of the paradigm used at the

transmitter (see [16, Fig. 3] for a schematic comparison), the

optimum receiver structure is the maximum likelihood (ML)

decoder. The ML decoder finds the most likely transmitted

sequence, where the maximization is over all possible coded

sequences. The ML solution is in general impractical1, and

thus, suboptimal alternatives are preferred. One pragmatic and

popular approach is BICM, which we study in this paper.

The key feature of BICM is a suboptimal decoder that

operates on bits rather than on symbols. We refer to this

receiver structure as a bit-wise (BW) decoder. In a BW

decoder, the detection process is decoupled: first soft infor-

mation on the bits (logarithmic likelihood ratios, LLRs) is

calculated in a demapper and then a soft-decision FEC (SD-

FEC) decoder is used. BW decoders are very flexible, where

the flexibility is due to the use of off-the-shelf binary encoders

and decoders. In the context of optical communications, a

BW decoder for binary modulation and low-density parity

check (LDPC) codes was studied in [17], where a finite-

state machine and a histogram-based estimation of the channel

was used to compute LLRs. A BW decoder with multilevel

modulation and LDPC codes was considered in [18]. An

LDPC-based BW decoder with a 24-dimensional constellation

was experimentally demonstrated in [19]. Optimized mappings

between code bits and constellation symbols for protograph-

based LDPC codes were recently presented in [20].

To improve upon simple BW decoders, iterations between

the binary FEC decoder and demapper can be included. In such

a configuration, the FEC decoder and demapper iteratively

exchange information on the code bits. This is usually known

as BICM with iterative demapping (BICM-ID). BICM-ID for

optical communications has been studied in [21]–[23], [24,

Sec. 3], [25, Sec. 3], [26, Sec. 4]. BICM-ID offers remark-

able improvements with demapper iterations. These gains are

typically obtained by custom-tailoring the constellation and

its binary labeling to the channel and the encoder–decoder

pair as well as the iteration scheduling [26]. In BICM-ID,

iterations between the decoder and demapper are added to a

possibly already iterative FEC decoder and to keep the number

of iterations low, one can trade FEC decoder iterations for

demapper iterations. However, this leads to nontrivial designs

1A notable exception is TCM, where the FEC encoder is a convolutional
encoder and the resulting CM code has a trellis structure, which allows an
ML decoder based on the Viterbi algorithm to be implemented.
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which reduce flexibility. On the positive side, BICM-ID is

expected to perform very close to an ML sequence detector,

and thus, to outperform BICM. To the best of our knowledge,

no exact complexity-performance tradeoff analyses providing a

clear-cut answer about BICM vs. BICM-ID exist. In this paper,

we focus on BICM because of its simplicity and flexibility.

CM transceivers are typically based on quadrature amplitude

modulation (QAM) or phase shift keying (PSK). Traditional

constellations include polarization-multiplexed (PM) quadra-

ture phase-shift keying (PM-QPSK)2, PM-16QAM, and PM-

64QAM. However, recent years have seen an increased inter-

est in formats that use the available four dimensions more

efficiently than by pure multiplexing. Polarization-switched

QPSK (PS-QPSK) was shown in [27, Fig. 1] to be the

most power-efficient 8-ary 4D constellation. Power efficiency

should here be understood as the energy per bit for a given

minimum Euclidean distance between constellation points.

This is the classical sphere packing problem, which has been

used to optimize constellation formats for uncoded transmis-

sion since the 1970’s [28]–[30]. It arises when minimizing

either the pre-FEC bit error rate (BER) or the symbol error

rate for the additive white Gaussian noise (AWGN) channel

at asymptotically high signal-to-noise ratio (SNR) [30], [31],

[32, Sec. 5.1]. 4D constellations optimized in this sense were

compared in [31]. Spherically shaped 4D constellations based

on the D4 lattice were studied in, e.g., [23], [33]. Somewhat

less power efficient, but easier to implement, are the cubically

shaped constellations based on D4, called set-partitioning

QAM [33], [34]. Other irregular constellations include the am-

plitude phase-shift keying constellation optimized for channels

with strong nonlinear phase noise in [35]–[37].

Of particular interest for this paper is the constellation C4,16
introduced in [38], which is the most power efficient 16-

ary 4D constellation known. Another constellation we will

study in this paper is subset-optimized PM-QPSK (SO-PM-

QPSK) introduced in [39] as an alternative to C4,16 with lower

complexity. In terms of power efficiency, C4,16 and SO-PM-

QPSK offer asymptotic gains over PM-QPSK of 1.11 dB and

0.44 dB, respectively. The asymptotic gains offered by C4,16
have been experimentally demonstrated in [40], [41]. We also

consider the power-efficient 4D constellations C4,256 [42, Ta-

ble. IV], [43, Table I] and C4,4096 [30], which are, respectively,

the best known 256-ary and 4096-ary constellations.

The performance of a BW decoder based on hard decisions

(HDs) can be accurately characterized by the pre-FEC BER.

In this paper, we study SD-FEC, i.e., when LLRs are passed

to the soft-input FEC decoder, and thus, we question the

optimality of constellations designed in terms of pre-FEC

BER. Furthermore, we show that a different metric is more

relevant for capacity-approaching SD-FEC encoder–decoder

pairs: the so-called generalized mutual information (GMI).

Achievable rates provide an upper bound on the number

of bits per symbol that can be reliably transmitted through

the channel. From an information-theoretic point of view, a

BW decoder does not implement the ML rule, and thus, a

2Also known in the literature as dual-polarization QPSK (DP-QPSK) and
polarization-division-multiplexed QPSK (PDM-QPSK).

penalty in terms of achievable rates is expected. While the

mutual information (MI) is the largest achievable rate for any

receiver, for a BW decoder, this quantity is replaced by the

GMI [5, Sec. 3]3 Although the MI and the GMI coincide when

the SNR tends to infinity, for any nontrivial case, the MI is

strictly larger than the GMI for any finite SNR. This penalty,

which depends on the constellation and its binary labeling, can

be very large [4, Fig. 4]. The MI has been considered as the

figure of merit for optical communications in [14], [38], [40],

[45]–[49]. To the best of our knowledge, however, the GMI

has been considered in optical communications only in [24].

One problem often overlooked when designing 4D-CM with

a BW decoder is the problem of choosing an appropriate

binary labeling for the constellation. Finding good labelings

based on brute force approaches quickly fails, as the number of

binary labelings grows factorially with the constellation size.

For example, for the relatively simple case of 16 constellation

points, there are about 2·1013 different binary labelings. When

regular constellations (QAM, PSK, etc.) are considered, a Gray

code4 is typically used, as Gray codes have been proven to

be asymptotically optimum in terms of pre-FEC BER [51].

This conclusion holds only in the regime of asymptotically

large SNR and only for the AWGN channel. The problem is

considerably more difficult when the GMI is the cost function.

Although results in the asymptotic regimes exist (see [52]–

[56] and [57] for low and high SNR, respectively), finding

the optimal binary labeling in terms of GMI for a finite SNR

remains as an open research problem.

In this paper, achievable rates for 4D constellations with

a BW decoder in the context of future generation coherent

optical communication systems are studied. It is shown that

the GMI is the correct metric to predict the post-FEC BER

for a BW decoder. It is also shown that constellations that

are good for uncoded systems are also good in terms of MI

if the SNR is sufficiently high. These constellations, however,

are not the best choice for coded systems based on a BW

decoder. Numerical results based on LDPC codes confirm the

theoretical analysis.

The remainder of this paper is organized as follows. In

Sec. II, the system model is introduced and achievable rates

are reviewed. Post-FEC BER prediction based on the GMI is

studied in Sec. III and numerical results on achievable rates

are shown in Sec. IV. Conclusions are drawn in Sec. V.

II. SYSTEM MODEL AND ACHIEVABLE RATES

In Fig. 1, a generic structure of the CM transceiver we

study in this paper is shown. At the transmitter, a rate-Rc

binary FEC encoder encodes a binary input sequence U into m
binary sequences B1, . . . , Bm, where Bk = [B1,k, . . . , BNs,k]

3The term GMI was coined by Martinez et al. in [44], where the BW
decoder was recognized as a mismatched decoder. The GMI is known in the
literature under different names such as “parallel decoding capacity”, “receiver
constrained capacity”, and “BICM capacity.”

4In fact, Gray codes are not unique, and the one often used is the so-called
binary reflected Gray code (BRGC) introduced in 1953 [50].
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Fig. 1. CM structure under consideration. The CM encoder is a concatenation of a rate-Rc binary FEC encoder and a memoryless mapper. The CM decoder
is either an ML decoder or a BW decoder (see Fig. 2).

for k = 1, . . . ,m and Ns is the symbol block length.5. A

memoryless mapper then maps B1, . . . , Bm into a sequence

of symbols X = [X1,X2, . . . ,XNs
], one symbol at a time.

After transmission over the physical channel, the received

symbols Y = [Y 1,Y 2, . . . ,Y Ns
] are processed by the CM

decoder, which gives an estimate of the transmitted informa-

tion sequence Û .

We consider the discrete-time, memoryless, vectorial

AWGN channel

Y n = Xn +Zn (1)

where Xn,Y n,Zn are 4D real vectors and n = 1, 2, . . . , Ns

is the discrete-time index. The components of the noise vector

Zn are independent, zero-mean, Gaussian random variables

with variance N0/2 in each dimension, and thus,

fY n|Xn
(y|x) =

1

(πN0)2
exp

(

−
‖y − x‖2

N0

)

. (2)

The communication channel in Fig. 1 encompasses all

the transmitter digital signal processing (DSP) used after

the bit-to-symbol mapping (i.e., pulse shaping, polarization

multiplexing, filtering, electro-optical conversion, etc.), the

physical channel (the fiber, amplifiers, regenerators, etc.), and

the receiver DSP (optical-to-electrical conversion, filtering,

equalization, digital back-propagation, matched filtering, etc.).

The use of the AWGN channel in (1) to model all these blocks

can be justified in amplified spontaneous emission noise domi-

nated links where chromatic dispersion and polarization mode

dispersion are perfectly compensated. The AWGN assumption

also holds for uncompensated coherent systems where the so-

called GN model has been widely used (see [47] and references

therein).

At each time instant n, the transmitted vector Xn is

selected with equal probability from a constellation S ,

{s1, s2, . . . , sM}, where M = 2m. The average symbol

energy is Es , E[‖X‖2] = (1/M)
∑M

i=1
‖si‖

2 and the SNR

is defined as γ , Es/N0. For a rate Rc FEC encoder, the

spectral efficiency in bits/symbol is η = Rcm. The length of

the information sequence U is Nb = ηNs and the average bit

energy is Eb = Es/η.

The transmitter in Fig. 1 is a one-to-one mapping between

the information sequence U ∈ {0, 1}Nb and the coded

5Throughout this paper, vectors are denoted by boldface letters x, sequences
of vectors by underlined boldface letters x, and sets by calligraphic letters X .
Random variables, vectors, and sequences are denoted by uppercase letters and
their outcomes by the same letter in lowercase. Probability density functions
and conditional probability density functions are denoted by fY (y) and
fY |X(y|x), respectively. Expectations are denoted by E[·].

X

Z

...

Y

Optimum Decoder

ML Decoder

argmaxx fY |X(y|x)

BW Decoder

AWGN Channel

Demapper

Λ1

Λm

Binary

SD-FEC
Decoder

Û

Û

Fig. 2. Two implementations of the CM decoder in Fig. 1: Optimum (ML)
decoder (top) and BW decoder (bottom).

sequence X ∈ C ⊆ SNs , where |C| = 2Nb . The set C is called

the codebook, and the mapping between the 2Nb information

sequences and the code C is called the CM encoder. At the

receiver side, a CM decoder (see Fig. 1) uses the mapping

rule used at the transmitter (as well as the channel char-

acteristics) to give an estimate of the information sequence.

The triplet codebook, encoder, and decoder forms a so-called

coding scheme. Practical coding schemes are designed so as

to minimize the probability that Û differs from U , while at

the same time keeping the complexity of both encoder and

decoder low.

A. CM Decoder Structures

Fig. 2 shows two possible receiver structures for the CM

encoder in Fig. 1 together with the AWGN channel in (2):

the optimal ML decoder and the (suboptimal) BW decoder.

The ML decoder operates on the sequence of symbols Y

and finds the most likely coded sequence, i.e., it performs

û = argmaxx fY |X(y|x). On the other hand, the BW decoder

computes soft information on the code bits B1, . . . , Bm on

a symbol-by-symbol basis. This soft information is typically

represented in the form of LLRs Λ1, . . . ,Λm, where Λk =
[Λ1,k, . . . ,ΛNs,k] for k = 1, . . . ,m. These LLRs are then

passed to a binary SD-FEC decoder.6

Assuming perfect knowledge of N0, at each discrete-time

6Alternatively, an HD demapper can be combined with an HD-FEC decoder.
In this paper, we only consider SD-FEC decoders.
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instant n, m LLRs are calculated as

Λn,k , log
fY n|Bn,k

(y|1)

fY n|Bn,k
(y|0)

(3)

= log

∑

s∈Sk,1
exp(− 1

N0
‖y − s‖2)

∑

s∈Sk,0
exp(− 1

N0
‖y − s‖2)

(4)

≈
1

N0

(

min
s∈Sk,0

‖y − s‖2 − min
s∈Sk,1

‖y − s‖2
)

(5)

where (4) follows from (2) and Sk,b ⊂ S is the set of

constellation symbols labeled with a bit b ∈ {0, 1} at bit

position k ∈ {1, . . . ,m}. The approximation in (5) follows

from using the so-called max-log approximation [58].

Alternatively, the LLRs in (3) can be defined as

Λn,k = log
fY n|Bn,k

(y|0)

fY n|Bn,k
(y|1)

, (6)

which could have some advantages in practical implementa-

tions. For example, in a popular complement-to-two binary

format, the most significant bit carries the sign, i.e., when an

MSB is equal to zero (0), it means that a number is positive,

and when an MSB is equal to one (1), it means that the number

is negative. Then, if (6) is used, the transmitted bit obtained

via HDs can be recovered directly from the MSB.

Without loss of generality, in this paper we use the definition

in (3). Furthermore, since the mapper, channel, and demapper

are all memoryless, the time index n is dropped from now on.

Throughout this paper we denote the pre-FEC BER and the

post-FEC BER by BERpre and BERpos, respectively. BERpre

can be obtained from the max-log LLRs in (5) as [59,

Theorem 1]

BERpre =
1

m

m
∑

k=1

1

2

∑

b∈{0,1}

∫ ∞

0

fΛk|Bk
((−1)bλ|b) dλ (7)

and depends only on the constellation, its binary labeling and

the communication channel.7 On the other hand, BERpos also

depends on the choice of FEC code.

The BW decoder in Fig. 2 is usually known as a BICM

receiver/decoder, owing its name to the original works [3],

[4], where a bit-level interleaver was included between the

FEC encoder and mapper. We refrain from using such a name

because the interleaver might or might not be included, and if

included, it can be assumed to be part of the FEC encoder.

B. Achievable Rates

A rate R (in bits/symbol) is said to be achievable at block

length Ns and average error probability ǫ if there exists a

coding scheme, consisting of a codebook C, an encoder, and

a decoder, such that |C| = 2RNs and Pr{Û 6= U} ≤ ǫ.
The largest achievable rate at given Ns and ǫ is denoted by

R∗(Ns, ǫ). The channel capacity C is the largest achievable

rate for which a coding scheme with vanishing error proba-

bility exists, in the limit of large block length [60, Sec. 1 and

14], i.e.,

C , lim
ǫ→0

lim
Ns→∞

R∗(Ns, ǫ). (8)

7Note that HDs on the exact LLRs in (4) give slightly worse pre-FEC BER
results in the low-SNR regime.

The channel capacity is often defined subject to an average

power constraint P , which means that every codeword X =
[X1, . . . ,XNs

] ∈ C must satisfy
∑

n ‖Xn‖
2 ≤ P .

For memoryless channels and a given constellation S, the

largest achievable rate is the MI between X and Y defined

as

I(X;Y ) , E

[

log2
fY |X(Y |X)

fY (Y )

]

. (9)

By Shannon’s channel coding theorem, the channel capacity

of a discrete-time memoryless channel with an average power

constraint can be calculated as [60], [61, Ch. 7]

C = sup
fX :Es≤P

I(X;Y ) (10)

where I(X;Y ) is the MI in (9) and the maximization in (10)

is over all distributions8 of X that satisfy the average power

constraint Es ≤ P , for a given channel fY |X . For the 4D

channel in (1), (10) gives

C =
N

2
log2

(

1 +
2

N
γ

)

= 2 log2

(

1 +
γ

2

)

(11)

which is attained by a zero-mean Gaussian input distribution

fX with a diagonal covariance matrix with all diagonal entries

equal to Es/4 = P/4.

In this paper, we consider equally likely symbols and dis-

crete constellations S, and thus, fX is a uniform distribution

over S. In this case, the MI in (9) becomes

I(X ;Y ) =
1

M

∑

s∈S

∫

R4

fY |X(y|s) log2
fY |X(y|s)

fY (y)
dy.

(12)

The MI I(X ;Y ) in (12) is the largest achievable rate for the

optimum ML decoder and a given constellation S. Thus, for

the optimal ML decoder, reliable transmission with arbitrarily

low error probability is possible if η < I(X;Y ). By Shan-

non’s channel coding theorem, the rate in (12) is achievable

using a codebook C consisting of 2RNs codewords of length

Ns, each symbol drawn independently and uniformly from S.

When the BW decoder in Fig. 2 is considered, due to the

fact that this decoder is not ML, the largest achievable rate

is unknown. The most popular achievable rate for the BW

decoder is

Igmi =

m
∑

k=1

I(Bk;Y ) (13)

where

I(Bk;Y ) = E

[

log2
fY |Bk

(Y |Bk)

fY (Y )

]

. (14)

We use the notation Igmi because (13)–(14) are derived from

the general GMI expression in [44, (59)–(60)] when the bits

B1, . . . , Bm are independent [64, Theorem 4.11].

We emphasize that the GMI is not necessarily the largest

achievable rate for the receiver in Fig. 2. Other achievable

rates include the so-called LM rate [62, Part I] and the newly

8In general, the capacity-achieving distribution can be discrete, continuous,
or mixed.
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derived rate for nonequally likely constellation points (i.e.,

probabilistic shaping) [63, Theorem 1].

In analogy with (12), we consider in this paper independent,

equally likely bits, in which case the GMI in (13) becomes

Igmi =
1

2

m
∑

k=1

∑

b∈{0,1}

∫

R4

fY |Bk
(y|b) log2

fY |Bk
(y|b)

fY (y)
dy.

(15)

This rate is achievable with a BW decoder, without iterative

decoding, using the same codebook C that achieves (12)

with an optimum decoder. Note that designing a codebook

by drawing symbols independently and uniformly from S
corresponds to independent and equally likely bits Bk.

When the LLRs are calculated using (4), it can be shown

that [64, Theorem 4.21]

Igmi =

m
∑

k=1

I(Bk; Λk) =

m
∑

k=1

E

[

log2
fΛk|Bk

(Λk|Bk)

fΛk
(Λk)

]

. (16)

When the LLRs are calculated using (5), the resulting achiev-

able rate is smaller than Igmi in (16). Under certain conditions,

this loss can be recovered by correcting the max-log LLRs, as

shown in [65], [66] (see also [64, Ch. 7]).

Achievable rates for BW decoders were first analyzed in [4].

The BW decoder was later recognized in [44] as a mismatched

decoder, where it was shown that the GMI in (13) is an

achievable rate. It was also shown in [44] that in terms of

achievable rates, the interleaver plays no role, and that the

key element is the suboptimal (mismatched) decoder.

The GMI in (13) is an achievable rate for BW decoders

but has not been proven to be the largest achievable rate.

Finding the largest achievable rate remains as an open research

problem. Despite this cautionary statement, the GMI has been

shown to predict very well the performance of BW decoders

based on capacity-approaching FEC encoder–decoder pairs.

This has been shown for example in [67, Sec. V], [68, Sec. V-

D], and [69, Sec. IV]. Generally speaking, when good turbo

or LDPC codes are used, the gap between the coded system

and the GMI prediction is usually less than 1 dB.

The mapper is one-to-one, and thus, I(B;Y ) = I(X;Y ).
The chain rule of MI [61, Sec. 2.5] gives

I(B;Y ) ≥

m
∑

k=1

I(Bk;Y ) (17)

and thus,

Igmi ≤ I(X;Y ). (18)

The difference I(X ;Y )−Igmi can be understood as the loss in

terms of achievable rates caused by the use of a BW decoder.

Furthermore, the GMI (unlike the MI) is highly dependent

on the binary labeling. Gray codes are known to be good

for high SNR [4, Fig. 4], [55], [70, Sec. IV], but for many

constellations, they do not exist.

Closed-form expressions for the MI and GMI are in general

unknown, and thus, numerical methods are needed. For the

AWGN channel, both MI and GMI can be efficiently calcu-

lated based on Gauss–Hermite quadrature. To this end, the

ready-to-use expressions in [70, Sec. III] can be used. The

GMI can also be calculated using the approximation recently

introduced in [69]. This approximation is particularly useful to

find good binary labelings in terms of GMI. When the channel

is unknown or when the dimensionality of the constellation

grows, Monte Carlo integration is preferred.

III. POST-FEC BER PREDICTION VIA GMI

In this section, we consider the problem of predicting the

decoder’s performance for a given code rate. To this end,

we first introduce the concept of the BICM channel (see

[71, Fig. 1], [72, Fig. 1]). The BICM channel9 encompasses

all the elements that separate the encoder and decoder (see

Figs. 1 and 2), i.e., the mapper and demapper, transmitter and

receiver DSP, fiber, amplifiers, filtering, equalization, etc. The

BICM channel is then what the encoder–decoder pair “sees”.

In principle, to predict the post-FEC BER of a given encoder

over different BICM channels (e.g., different constellations,

different amplification schemes, different fiber types, etc.),

the whole communication chain should be re-simulated. To

avoid this, one could try to find an easy-to-measure metric

that characterizes the BICM channel and hope that different

channels with the same metric result in the same BERpos. Here

we consider four different metrics and argue that the GMI in

(13) is the most appropriate one.

Consider the irregular repeat-accumulate LDPC codes pro-

posed by the second generation satellite digital video broad-

casting standard [73] and the 6 code rates

Rc ∈ {1/3, 2/5, 1/2, 3/5, 3/4, 9/10} (19)

which correspond to the FEC overheads

{200, 150, 100, 66.6, 33.3, 11.1}%. Each transmitted block

consists of 64 800 code bits which are randomly permuted

before being cyclically assigned to the binary sequences

B1, . . . , Bm. At the receiver, LLRs Λk are calculated using

(4) and passed to the SD-FEC decoder, which performs 50

iterations.

Fig. 3 shows the performance of the LDPC decoder with

PM-QPSK, PM-16QAM, PM-64QAM, and PM-256QAM as a

function of SNR. There are 24 different coding and modulation

pairs, leading to 24 spectral efficiencies η = Rcm. The results

in this figure show that, for any given code rate, different

modulations have very different SNR requirements. For ex-

ample, for Rc = 3/5 and a target post-FEC BER of 10−4,

the SNR thresholds are 5.1 dB, 10.8 dB, 15.5 dB and 20 dB

for PM-QPSK, PM-16QAM, PM-64QAM, and PM-256QAM,

respectively. This leads to the obvious conclusion that SNR

cannot be used to predict the post-FEC BER performance of

a given code when used with different constellations.

Under some assumptions on independent errors within a

block,10 the pre-FEC BER in (7) can be used to predict the

post-FEC BER of HD-FEC decoders. Based on such relations,

the conventional design paradigm in optical communications

is to design systems for a certain required pre-FEC BER,

the so-called FEC limit or FEC threshold, which is typically

in the range 10−4 − 10−3. The HD-FEC decoder is then

9Also called “modulation channel” in [68, Fig. 1].
10This can be guaranteed by properly interleaving the code bits.
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Fig. 3. Post-FEC BER (BERpos) for different code rates Rc and constellations
as a function of the SNR γ. The constellations are PM-QPSK (squares), PM-
16QAM (circles), PM-64QAM (triangles), and PM-256QAM (stars).

assumed to bring down the post-FEC BER to, say, 10−12 or

10−15, without actually including any coding in simulations

or experiments.

For a given (fixed) BICM channel, the pre-FEC BER can

also be used to predict the post-FEC BER of an SD-FEC

decoder. This has been done for example for some of the

SD-FEC decoders in the G.975.1 standard [74], where post-

FEC BER values are given as a function of pre-FEC BER.

There is nothing fundamentally wrong with presenting post-

FEC BER as a function of pre-FEC BER. However, more

often than not, reported uncoded experiments or simulations

rely on these tabulated values and claim (without encoding and

decoding information) the existence of an SD-FEC decoder

that can deal with the measured pre-FEC BER. The caveat

with this approach is that it relies on the strong assumption

that the same SD-FEC encoder and decoder pair will perform

identically for two different BICM channels which happen to

have the same pre-FEC BER.

To study the robustness of the pre-FEC BER as a metric to
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Fig. 4. Post-FEC BER (BERpos) as a function of pre-FEC BER (BERpre)
for the 24 cases in Fig. 3. The same markers are used.

predict post-FEC BER, we show in Fig. 4 BERpos as a function

of BERpre for the same 24 combinations of constellations and

codes as in Fig. 3. Ideally, all lines corresponding to the same

code rate should fall on top of each other, indicating that

measuring BERpre is sufficient to predict the post-FEC BER

when the BICM channel changes (in this case, due to the

change in modulation format). The results in this figure show

that the curves get “grouped” for the same code rate, and thus,

BERpre is a better metric than SNR (cf. Fig. 3). The results

in Fig. 4 also show that BERpre is a good metric for very

high code rates. For low and moderate code rates, however,

BERpre fails to predict the performance of the decoder. The

implication of this is that measuring pre-FEC BER cannot

be used to predict the post-FEC BER of an encoder–decoder

pair across different BICM channels. The FEC-limit design

paradigm fails.

In Fig. 5, we consider BERpos as a function of the (normal-

ized) MI. The obtained results indicate that the MI is slightly

better than BERpre at predicting BERpos (the curves for low

code rates are more compact). The same trend was observed

in [75] (for a BW decoder with differentially encoded PM-

QPSK), where the idea of using MI instead of BERpre was first

introduced. As explained in Sec. II-B, however, the MI is in

principle not connected to the performance of a BW decoder,

which may explain why the curves are still significantly spread

out, particularly at lower code rates.

Based on the analysis in Sec. II-B, we propose here to study

BERpos as a function of the GMI. The information-theoretic

rationale behind this idea is that a SD-FEC decoder is fed

with LLRs, and thus, the GMI is a better metric (see (16)).

The values of BERpos as a function of the GMI are shown

in Fig. 6.11 These results show that for any given code rate,

changing the constellation does not greatly affect the post-FEC

BER prediction if the GMI is kept constant. More importantly,

and unlike for the pre-FEC BER, the prediction based on the

GMI appears to work across all code rates.

11The MIs and GMIs were estimated using Monte Carlo integration.
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Fig. 5. Post-FEC BER (BERpos) as a function of the normalized MI
(I(X;Y )/m) for the 24 cases in Fig. 3 (same markers).
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Fig. 6. Post-FEC BER (BERpos) as a function of the normalized GMI

(Igmi/m).

The results in Fig. 6 suggest that measuring the GMI of

the BICM channel is the correct quantity to characterize the

post-FEC BER of a (capacity-achieving) SD-FEC decoder.

Although for high code rates the results in Fig. 6 are somehow

similar to those in Figs. 4 and 5, we have no theoretical

justification the use BERpre or MI as a metric to predict

the performance of a SD-FEC. More importantly, having a

metric like the GMI that works for all code rates is very

important. Considering only high code rates—as is usually

done in the optical community—is an artificial constraint that

reduces flexibility in the design, as correctly pointed out in

[76, Sec. II-B].

IV. ACHIEVABLE RATES

In this section, we focus on cases where the number of bits

per dimension is an integer, due to their practical relevance.

The examples studied have 1, 2, and 3 bits/dimension, which

corresponds to, respectively, 4, 8, and 12 bits/symbol or M =
16, 256, and 4096 constellation points.

A. Achievable Rates for M = 16

We consider three 4D constellations with M = 16: PM-

QPSK, C4,16, and SO-PM-QPSK. While C4,16 is asymptoti-

cally the best constellation in terms of BERpre, PM-QPSK and

SO-PM-QPSK have the advantage of a lower implementation

complexity. On the other hand, the results in [40], [41] show

that C4,16 gives higher MI than PM-QPSK at all SNRs.

This indicates that C4,16 is the best choice among these

constellations for capacity-approaching CM transmitters with

ML decoding.

In terms of binary labelings, we use the unique Gray code

for PM-QPSK, which assigns a separate bit to each dimen-

sion. Thus, PM-QPSK becomes the Cartesian product of four

binary shift keying (BPSK) constellations,
∑m

k=1
I(Bk;Y ) =

I(X;Y ), and thus, (18) holds with equality. In other words,

PM-QPSK causes no penalty in terms of achievable rates if a

BW decoder is used. For SO-PM-QPSK, we use the labeling

proposed in [39], while for C4,16 we use a labeling (found

numerically) that gives high GMI for a wide range of SNR.

In Fig. 7, the MI and GMI for the three constellations

under consideration are shown.12 For PM-QPSK, the GMI

and the MI coincide. This is not the case for the two other

constellations. The results in Fig. 7 show that C4,16 gives

a high MI at all SNRs; however, a large gap between the

MI and GMI exists (more than 1 dB for low code rates).

Therefore, C4,16 will not work well with a BW decoder. The

situation is similar for SO-PM-QPSK, although in this case the

losses are smaller. Interestingly, when comparing the GMIs

for C4,16 and SO-PM-QPSK, we observe that they cross at

around η ≈ 3.25 bits/symbol. This indicates that a capacity-

approaching transmitter with a BW decoder will perform better

with C4,16 than SO-PM-QPSK at high SNR. However, PM-

QPSK is the best choice at any SNR.

To show that the conclusions above correspond to gains

in terms of BERpos, we consider the LDPC codes defined in

Sec. III and the additional code rate Rc = 1/4 (also defined in

[73]). The obtained BER results for 4 different code rates are

shown in Fig. 8. Among the three constellations, PM-QPSK

always gives the lowest BERpos. The gains offered by PM-

QPSK with respect to C4,16 for low code rates are about 1 dB.

More importantly, these gains are obtained by using a very

simple demapper that computes four BPSK LLRs, one in each

dimension. These results also show that the GMI curves in

Fig. 7 predict the coded performance of the system well. For

example, the GMI curves indicate that at high code rates, C4,16
is better than SO-PM-QPSK, which is exactly what happens

in terms of BERpos (i.e., for Rc = 9/10, C4,16 gives a lower

BERpos than SO-PM-QPSK).

B. Achievable Rates for M = 256

For M = 256 (i.e., 2 bits/dimension) we consider two

constellations. The first one is PM-16QAM, which is a

12Calculated numerically via Monte Carlo integration.



8 JOURNAL OF LIGHTWAVE TECHNOLOGY, TO APPEAR, 2014

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Eb/N0 [dB]

η
[b

it
s/

sy
m

b
o

l]

Channel Capacity

MI

GMI

C4,16

SO-PM-QPSK

PM-QPSK

Fig. 7. MI and GMI for three constellations with M = 16: PM-QPSK
(circles), C4,16 (crosses), and SO-PM-QPSK (stars). The MI and GMI overlap
for PM-QPSK. The channel capacity in (11) is also shown (thick line).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR γ [dB]

B
E

R
p
o
s

R
c
=

1
/
4

R
c
=

1
/
2

R
c
=

3
/
4

R
c
=

9
/
1
0

Fig. 8. Post-FEC BER (BERpos) for the LDPC code with different code
rates and PM-QPSK (squares), SO-PM-QPSK (diamonds), and C4,16 (filled
squares).

straightforward generalization of PM-QPSK formed as the

Cartesian product of four 4-ary pulse amplitude modulation

(PAM) constellations. The labeling problem for PM-16QAM

then boils down to labeling a 4-PAM constellation. Here we

then consider the three nonequivalent binary labelings for 4-

PAM: the BRGC [50], [51], the natural binary code (NBC)

[55, Sec. II-B], and the anti-Gray code (AGC) [57, Sec. IV-

E].

The second constellation we consider is a lattice-based

constellation which we denote by C4,256. It consists of all

points with integer coordinates, such that the coordinate sum

is odd and the Euclidean norm is 3 or less.13 In lattice

13The same construction used with norm 1 gives PS-QPSK.
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terminology, C4,256 consists of the five first spherical shells

of the D4 lattice centered at a hole. The constellation was

first characterized in [42, Table. IV] and [43, p. 822] and it

corresponds to a point on the solid line in [33, Fig. 1 (a)]

(4 bits/symbol/pol).

To label this constellation, we use a numerically optimized

labeling obtained using the binary-switching algorithm (BSA)

and the GMI approximation in [69]. The BSA was executed

300 times, and every time initialized with a randomly gener-

ated seed. A labeling was obtained, optimized for an SNR

of γ = 5 dB (i.e., for MI around 3 bits/symbol). Binary

labelings that give a slightly higher GMI can be obtained when

optimizing at lower SNR; however, the gains are marginal.

The obtained results are shown in Fig. 9 and are quite

similar to the ones in Fig. 7. When compared to PM-16QAM,

the constellation C4,256 gives higher MI but lower GMI. We

thus conclude that C4,256 is unsuitable for a BW decoder. A

major advantage with PM-16QAM is the existence of a Gray

code, which not only offers good performance but also lets

the LLRs be calculated in each dimension separately, thus

reducing complexity. The results in Fig. 9 also show a quite

large gap between the MIs for C4,256 and PM-16QAM in

the high-SNR regime. This is explained by the increase in

minimum Euclidean distance of C4,256 with respect to PM-

16QAM [33, Fig. 1 (a)].

To show that the performance of a BW decoder based on

LDPC codes follows the GMI prediction, we simulated 7 dif-

ferent code rates: 1/4 and the ones in (19) (all of them defined

in [73]), PM-16QAM labeled by the BRGC, and C4,16 using

the numerically optimized binary labeling. For each of the

14 coding and modulation pairs, we measured the minimum

value of Eb/N0 needed to guarantee BERpos = 10−4. The

obtained results are shown with circles in Fig. 9, where the

vertical position of the marker is given by the achieved spectral

efficiency (i.e., η = Rcm). The obtained results clearly show
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that the BW decoder based on LDPC codes follow the GMI

curve quite well. The SNR penalty of this particular family of

LDPC codes with respect to the GMI is between 1 and 0.5 dB

for low and high code rates, respectively.

C. Achievable Rates for M = 4096

For M = 4096, we consider PM-64QAM labeled by the

BRGC and by the NBC. This choice is motivated by the

fact that the BRGC and the NBC are good labelings for the

constituent 8-PAM constellation in terms of GMI for high and

low SNR, respectively. We also consider C4,4096, which is the

best known 4096-point constellation for uncoded transmission

at high SNR [30], it is a subset of the D4 lattice, found by

extensive numerical search, and its binary labeling was also

numerically optimized.14 The obtained results are shown in

Fig. 10 and indicate that 4D optimized constellation offer

gains in terms of MI, however, when the GMI is considered, it

performs suboptimally.15 For example, at η = 6 bits/symbol,

the losses caused by using C4,4096 and a BW decoder with

respect to PM-64QAM with the BRGC are about 4 dB.

Similarly to Fig. 9, Fig. 10 also shows the achieved spectral

efficiencies for a target BERpos = 10−4 and the same code

rates used in Sec. IV-B. The results show that the penalties

caused by using C4,4096 with respect to PM-64QAM are much

larger than the corresponding penalties in Fig. 9.

For M = 4096, the problem of selecting the binary labeling

is very challenging. Although good labelings in the low-

and high-SNR regimes can be found, these labelings are not

necessarily suitable for the practically relevant medium-SNR

regime. On the other hand, using 8-PAM in each dimension

simplifies the search for labelings and results in penalties (with

14The numerically optimized labelings obtained for C4,16 , C4,256 , and
C4,4096 have no regular structure and are available as supplementary down-
loadable material at http://ieeexplore.ieee.org.

15Due to the large number of constellation points and dimensions, the MI
and GMI for C4,256 and C4,4096 was estimated via Monte Carlo integration.
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respect to the MI) tending to zero for medium and high SNR

values.

To conclude, we selected the constellations and labelings

that give the highest MI and GMIs in Figs. 7, 9, and 10.

The results are presented in Fig. 11 and show that the best

constellation in terms of MI, regardless of the targeted spectral

efficiency, is C4,4096.16 The gap to the channel capacity for

η ≤ 10 bits/symbol is less than 1 dB, which makes us believe

that changing the shape of a constellation with large cardinality

is enough to make the MI to be close to the channel capacity.

When the GMI is considered, the results in Fig. 11 indicate

that for η ≤ 3 bits/symbol, PM-QPSK should be the preferred

alternative, for 3 ≤ η ≤ 6 bits/symbol, PM-16QAM labeled

by the BRGC should be used, and for η ≥ 6 bits/symbol,

PM-64QAM with the BRGC should be used. For 3 ≤ η ≤
6 bits/symbol and PM-16QAM, the optimum FEC overheads

should then vary between 33.3% and 166%, which is good

agreement with the code rates considered in Sec. III (see (19)).

The results in this figure also show that for η ≥ 3 bits/symbol,

the loss from using a BW decoder instead of an ML decoder

is typically less than 1 dB.

V. CONCLUSIONS

In this paper, we studied achievable rates for coherent

optical coded modulation transceivers where the receiver is

based on a bit-wise structure. It was shown that the generalized

mutual information is the correct metric to study the perfor-

mance of capacity-approaching coded modulation transceivers

based on this paradigm. We conjecture that the correct metric

for a bit-wise receiver with iterative demapping is the mutual

information.

For the suboptimal bit-wise structure under consideration,

both analytical and numerical results show that simply trans-

mitting and receiving independent data in each quadrature

16This is of course ignoring practical problems that would arise by using
large constellations at low SNR.
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of each polarization is the best choice. Multidimensional

constellations optimized for uncoded systems were shown to

give high MI, and are thus good for ML decoders; these con-

stellations, however, are not well-suited for bit-wise decoders.

On top of the weaker performance and higher demapper

complexity, such constellation also carry the design challenge

of selecting a good binary labeling.

We did not try to increase the generalized mutual informa-

tion by changing the shape of the constellation (geometrical

shaping) or the probability of the transmitted symbols (prob-

abilistic shaping). Constellation shaping and the effect of the

nonlinear optical channel using the GMI as a figure of merit

are left for future work. The intriguing connection between

the generalized mutual information and the pre-FEC BER (see

Figs. 4 and 6) is also left for further investigation.
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(University College London) and Tobias Fehenberger (Tech-

nische Universität München) for fruitful discussions regarding

different parts of this manuscript.

REFERENCES

[1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE

Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[2] H. Imai and S. Hirakawa, “A new multilevel coding method using error-
correcting codes,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 371–
377, May 1977.

[3] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans.

Commun., vol. 40, no. 3, pp. 873–884, May 1992.

[4] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.
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