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Abstract

Background: Understanding the underlying molecular mechanisms in human diseases is important for diagnosis
and treatment of complex conditions and has traditionally been done by establishing associations between
disorder-genes and their associated diseases. This kind of network analysis usually includes only the interaction of
molecular components and shared genes. The present study offers a network and association analysis under a
bioinformatics frame involving the integration of HUGO Gene Nomenclature Committee approved gene symbols,
KEGG metabolic pathways and ICD-10-CM codes for the analysis of human diseases based on the level of inclusion
and hypergeometric enrichment between genes and metabolic pathways shared by the different human disorders.

Methods: The present study offers the integration of HGNC approved gene symbols, KEGG metabolic pathways
andICD-10-CM codes for the analysis of associations based on the level of inclusion and hypergeometricenrichment
between genes and metabolic pathways shared by different diseases.

Results: 880 unique ICD-10-CM codes were mapped to the 4315 OMIM phenotypes and 3083 genes with
phenotype-causing mutation. From this, a total of 705 ICD-10-CM codes were linked to 1587 genes with
phenotype-causing mutations and 801 KEGG pathways creating a tripartite network composed by 15,455
code-gene-pathway interactions. These associations were further used for an inclusion analysis between diseases
along with gene-disease predictions based on a hypergeometric enrichment methodology.

Conclusions: The results demonstrate that even though a large number of genes and metabolic pathways are shared
between diseases of the same categories, inclusion levels between these genes and pathways are directional and
independent of the disease classification. However, the gene-disease-pathway associations can be used for prediction
of new gene-disease interactions that will be useful in drug discovery and therapeutic applications.

Background
In medical research the use of computational and math-
ematical tools for analysing large networks between genes,
diseases and metabolic pathways has gained increasing
interest in recent years [1–7]. This analysis has led to the
discovery of associations between phenotypes and disease
genes, enabling the discovery of comorbidities and disease
associations providing potentially important tools for
disease diagnosis and prevention [8]. Comorbidity has an
impact on the diagnosis, choice of treatment, morphology
and rate of survival in patients with different diseases such
as cancer.
In order to understand the associations that lead to an

observed phenotype in human diseases, several interac-
tions have been explored and several strategies have been

developed in order to analyse the information contained
in these disease network. It has been stated that disease
modules are highly interconnected considering that
perturbations caused by one disease can affect other dis-
eases, and a diseasome has been coined to systematically
map such network-based relationships between diseases
where nodes are diseases and edges represent different
studies showing comorbidities. Among the molecular
relationships linking disease associations in network ana-
lysis are genes, metabolic pathways, microRNA and phe-
notypes [1, 8–10]. However, despite the discovery of
shared biological roles between highly connected nodes,
analysing the level and directionality of inclusion be-
tween genes and metabolic pathways shared by different
diseases can lead to the formulation of new hypotheses
based on the directionality of the associations. We there-
fore generated a network of genes, metabolic pathways
and diseases, and in order to avoid difficulties with
changes in gene names and disease classifications we
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used standardised nomenclature for diseases, genes and
pathways. This network was further adapted and used in
the development of an inclusion study between diseases
and in an enrichment analysis aiming for the discovery of
new disease-related genes.

Results and discussions
Disease network
We integrated the HUGO Gene Nomenclature Committee
(HGNC) approved gene symbols and ICD-10-CM (Inter-
national Classification of Diseases) codes for diseases classi-
fication in order to provide the most updated human
disease network to date. The disease-gene associations were
obtained from the OMIM database that offers an updated
list of phenotypes for which the molecular basis is known
in association of genes with phenotype-causing mutation.
As of the time of the study, the downloaded OMIM mor-
bidity map included a collection of 4315 phenotypes and
3083 genes with phenotype-causing mutation. The original
OMIM morbid map included a list of 9102 genes with
phenotype-causing mutation producing 15,310 gene-
disease interactions, but when the database was updated
following HGNC rules for approved gene symbols the list
was reduced to 3083 genes and 4618 interactions. We be-
lieve it is important to incorporate the HGNC rules as
genes are constantly being reviewed and updated including
name and symbol changes or locus type reclassification by
the HGNC, which is the only worldwide authority

responsible for assignation of standardised symbols to hu-
man genes [11].
The established database was manually curated in order

to assign the correspondent ICD-10-CM code to each of
the OMIM phenotypes. The ICD-10-CM is the 10th revi-
sion of the medical classification list by the World Health
Organization (WHO). It is intended to be the standard
diagnostic tool for epidemiology, health management and
clinical purposes and depending on the country the ICD-
10-CM codes are used for reimbursement and resource al-
location decision-making. The classification includes more
than 14,000 different codes allowing expansion to over
16,000 by using optional sub-classifications. The ICD-10-
CM codes are organized in twenty one main categories
(Fig. 1a) from which several sub-categories are developed
until specific codes are assigned to each disease.
880 unique ICD-10-CM codes were mapped to the 4315

OMIM phenotypes in the database, and a bipartite network
was developed linking the 880 unique codes with the 3083
genes carrying phenotype-causing mutations resulting in
4241 disease-gene associations. Based on this bipartite net-
work, 3430 interactions (disease-pairs) were found between
diseases sharing at least one gene. This network is showed
in Fig. 1b in which each node is an ICD-10-CM code and
the edges are gene-disease association linking two codes if
they share at least one gene. The size of the node denotes
the number of genes (edges) involved in the disease and the
width of the edge is proportional to the number of genes
shared by both diseases. The main advantage of the ICD-
10-CM classification is the grouping of some of the

Fig. 1 Disease-disease interactions. a ICD-10-CM code classification. b Bipartite disease-disease network for 4315 OMIM phenotypes classified into
880 unique ICD-10-CM codes. Nodes represent codes and edges represent shared genes. The size of the node denotes the number of edges
involved in each code
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OMIM diseases into a particular code creating disease as-
sociations based on shared disease names which can be
traced hierarchically to obtain larger disease clusters by
main categories. Figure 1b shows some of the clusters
formed in the disease network for different disease classifi-
cations such as neoplasms (C00-D49), congenital malfor-
mations (Q00-Q99), disease of the eye (H00-H59),
diseases of the circulatory system (I00-I99) and diseases of
the blood (D50-D89). Hereby it is possible to easily explore
the level of association between diseases corresponding to
the same classification. Due to the characteristics of the
OMIM phenotypes with validated gene-disease associa-
tions, it is anticipated that some of the ICD-10-CM codes
have no link with any OMIM phenotype. This is the case
for external causes of morbidity (V00-Y99) and injury, poi-
soning and certain other consequences of external causes
(S00-T88) (Fig. 2a).

Figure 2b shows the number of unique genes involved in
each corresponding disease classification group along with
the number of enzyme-encoding genes. It is noticeable that
717 of the 3083 disease-genes are enzymes, covering 25 %
of the enzymes reported in the HPA database [12]. In order
to evaluate whether there is any enrichment of specific
metabolic pathways associated with specific diseases, we
added to the gene-disease associations a link to metabolic
pathways, and hereby created associations between meta-
bolic pathways, genes and diseases. With this, we expected
to expand the possibility of disease associations by estab-
lishing more complex mechanism underlying the disease-
disease networks. For this purpose, a tripartite network was
created linking diseases and genes with their associated
metabolic pathways from the KEGG database. For the
study, pathways (ko), modules (M) and diseases (H) from
the KEGG database were included in order to increase the

Fig. 2 Gene and disease network analysis. a Number of OMIM phenotypes and codes by ICD-10-CM category. b Number of unique disease-
genes by ICD-10-CM category and the number of enzyme-producing genes. c 880 unique ICD-10-CM codes are linked to 3083 genes with
phenotype-causing mutation creating 4241 disease-gene associations. Of the 880 codes a total of 705 codes and 1587 genes are linked to 801
metabolic pathways creating 15,455 code-gene-pathway interactions. A further analysis revealed a total of 6706 genes being involved in at least
one KEGG metabolic pathway, and hereby 5119 genes with no known phenotype-causing mutation could be included in our analysis. These
5119 genes with no known phenotype-causing mutation are linked to 546 different KEGG pathways sharing 479 pathways with genes carrying
phenotype-causing mutation and are only linked to 67 additional KEGG metabolic pathways

Garcia-Albornoz and Nielsen BMC Systems Biology  (2015) 9:35 Page 3 of 8



level of interaction between diseases. The 3083 disease-
genes were mapped to the KEGG database from where a
total of 1587 genes were linked to 801 KEGG pathways;
these genes were mapped with 705 ICD-10-CM codes cre-
ating a tripartite network composed by 15,455 code-gene-
pathway interactions (Fig. 2c). From this tripartite network
112,956 associations (disease-pairs) were found between
diseases sharing at least one pathway.
A further analysis was made to create links between

genes with no known phenotype-causing mutation and
pathways based on KEGG database. The whole HGNC
gene database was then mapped to the KEGG database
finding a total of 6706 genes being involved in at least one
KEGG metabolic pathway. 5119 genes with no known
phenotype-causing mutation were linked to 546 different
KEGG pathways; sharing 479 pathways with genes carrying
phenotype-causing mutation (see Fig. 2c).

Inclusion analysis
In order to obtain a more robust analysis of the disease-
disease associations, the level of inclusion was calculated
for all the 3430 disease-disease pairs sharing at least one
gene and for all the 112,956 disease-disease pairs sharing at
least one pathway. This information is important since the
number of shared genes or pathways between diseases
compared to the total pool is different for each disease,
therefore, the inclusion index (τ) allows establishing not

only the number of genes or pathways shared between two
diseases but at what degree the genes or pathways of dis-
ease X are contained in disease Y which can lead to the dis-
covery of subsets of elements between diseases (Fig. 3a).
The study reveals that the level of inclusion based on
shared genes between disease-pairs belonging to the same
ICD-10-CM category (Fig. 3b) is high for 6 disease
categories: infectious and parasitic diseases (A00-B99),
mental, behavioural and neurodevelopmental disorders
(F01-F99), diseases of the skin and subcutaneous tissue
(L00-L99), diseases of the musculoskeletal system and con-
nective tissue (M00-M99), diseases of the genitourinary sys-
tem (N00-N99) and diseases during pregnancy, childbirth
and the puerperium (O00-O9A). When the study is done
by shared pathways (Fig. 3c), the diseases show poor level
of inclusion inside their category with the exception of
pregnancy and childbirth diseases (O00-O9A).
It is important to notice the existence of certain disease

categories where there is no inclusion between genes or
pathways. This can be as a result of the current characteris-
tics of the human-disease classification which is based on
clinical features and do not take into account the under-
lying molecular basis shared by a group of diseases. This is
emphasized by the fact that in the ICD-10 classification it is
possible for certain diseases to be classified into two differ-
ent groups, showing a lack of understanding of the real dis-
ease mechanism. The results are important to address if the

Fig. 3 Inclusion analysis by disease category. a For two diseases sharing a certain number of elements (genes or pathways), the inclusion index
(τ) will be low for a disease with a high number of total elements compared with the number of shared elements. When the number of shared
elements increases compared with the total number of elements of the disease, the index level increases. Therefore, different index values can be
calculated for two diseases sharing elements depending on the total number of elements of each disease. Consequently, this index allows
obtaining not only the degree of interaction between diseases, but also the directionality of the interaction. A value of τ = 1 indicates that one
disease is a subset of another. b Boxplot of calculated level of inclusion between disease-pairs belonging to the same ICD-10-CM category based
on shared genes. c Boxplot of calculated level of inclusion between disease-pairs belonging to the same ICD-10-CM category based on
shared pathways
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official disease classification is helpful in order to give the
right diagnosis and treatment of human conditions and go-
ing further, the lack of understanding of the molecular
mechanism under the development of human diseases can
poorly explain the occurrence of comorbidities and their
development. Adding to this, some diseases are so pheno-
typically complicated that the ICD classification relies on
general classifications such as “Other malformations not
elsewhere classified” which includes a large amount of
non-understood human conditions and newly found
perturbations.
Somewhat surprising the neoplasm category was showing

low levels of inclusion based on both genes and pathways.
A detailed study was done in order to understand their
level of interaction. In Fig. 4a it can be seen that neoplasms
have no significant difference in the directionality of inclu-
sion when act like either disease X or disease Y, meaning
that they show a general low level of inclusion when being
included by or including genes of other diseases. However,
a detailed study by ICD-10-CM classification shows that
this directionality is different between ICD-10-CM categor-
ies with some categories showing low level of inclusion of
genes in neoplasms but being totally included by the

neoplasms (Fig. 4b and c). Genes in diseases of the respira-
tory system (J00-J99), diseases of the skin and subcutaneous
tissue (L00-L99) and diseases of the musculoskeletal system
and connective tissue (M00-M99) have a big change in dir-
ectionality and happens to be subsets of certain neoplasms,
but not in the other way round with the exception of cer-
tain infectious and parasitic disease (A00-B99) showing
total inclusion in both directions. When the analysis is
made by shared pathways the results show a small increase
in the level of inclusion when neoplasms change from dis-
ease X to disease Y, meaning that they are more prone to
include pathways of other diseases rather than being in-
cluded by these diseases. However, results show long tails
and deviations, meaning that this behaviour is not general-
ized and every neoplasm should be analysed independently
and not as part of a general classification (Fig. 4d, e and f).
Since neoplasms show a general tendency to include path-
ways and genes from other diseases rather than being
included, this can give a hint about the comorbidities ob-
served in cancer patients. In a recent publication, it was
shown that, according to different studies, comorbidity is
common in patients with colon cancer (14 %–68 %),
breast cancer (20 %–35 %) and lung cancer (26 %–81 %)

Fig. 4 Inclusion analysis for Neoplasm category. a Boxplot of calculated level of inclusion (τ) based on shared genes for neoplasms as disease X
and Y. b Boxplot of calculated level of inclusion based on shared genes for neoplasms as disease X by ICD-10-CM category. c Boxplot of
calculated level of inclusion based on shared genes for neoplasms as disease Y by ICD-10-CM category. d Boxplot of calculated level of inclusion
based on shared pathways for neoplasms as disease X and Y. e Boxplot of calculated level of inclusion based on shared pathways for neoplasms
as disease X by ICD-10-CM category. f Boxplot of calculated level of inclusion based on shared pathways for neoplasms as disease Y by
ICD-10-CM category
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with the percentage of occurrence depending on the
demographic characteristics of the study. In this studies, it
was found that for these three types of cancer, diabetes,
chronic obstructive pulmonary disease, congestive heart
failure and cerebrovascular disease are among the most
common comorbidities [13].

Gene-disease prediction
The disease-gene-pathway associations created in the
present study were further explored in order to evaluate
the usefulness of the network for gene-disease predictions.
As mentioned before, 5119 genes with no known pheno-
type-causing mutation were linked to 546 different KEGG
pathways. This 5119 genes share 479 pathways with genes
having phenotype-causing mutation, and we can hereby
predict new putative genes involved in different diseases
not yet reported in the OMIM database. A total of 348,882
disease-gene pairs were found sharing at least one pathway
and the statistical significance of the shared metabolic path-
ways was calculated for each pair using a two-tailed Fisher’s
test. From the total of 348,882 disease-gene pairs evaluated
using the standard hypergeometric distribution, 31,066
pairs were enriched with a p-value ≤ 0.001. Table 1 shows
the top 10 rated gene-disease pairs. We demonstrated the
ability of our network-enrichment method to produce
relevant results by finding genes that are being already
analysed as potential targets in different gene-disease
associations. Although we demonstrated the utility of our
method on the KEGG pathways, it is equally applicable
to other classifications or enrichment methods. Among
the top rated gene-disease pairs are genes previously
reported/suggested as candidates in different diseases.
This consistency with previously reported clinical findings
not included in the OMIM database demonstrates the
predictive power of the methodology. The analysis
produced three top genes related to several cancer
types, PIK3CB, PIK3CG and PIK3R3 that have been

previously reported to be involved in several cancer types
with bidirectional gene expression. PIK3CB has been
studied in breast cancer [14], and in PTEN-deficient
cancers [15]. PIK3CG has been reported as a candidate
myeloid tumour suppressor [16], and as candidate in
the growth and progression of colorectal cancers [17].
PIK3R3 expression and function has been studied in
Asian patients with gastric cancer [18], and in metasta-
sis promotion in colorectal cancer [19].
These three genes have been as well top rated for their

role in seborrheic keratosis, and may be proposed candidate
genes associated with this disease since a previous study
found that oncogenic mutations of a related gene, the
PIK3CA which is the catalytic subunit p110 of class I phos-
phatidylinositol 3-kinase (PI3K), occur in epidermal nevi
and seborrheic keratosis [20].
Among the top gene predictions the SOS2 and the

GRB2 are involved in gingival enlargement and the PLCB3
in epilepsy. Previous studies have revealed the relationship
and affinity between SOS2, SOS1 and GRB2, being strong
candidates for gingival fibromatosis (gingival enlargement)
[21, 22]. In the case of PLCB3, discordant results have
been reported when the gene is knocked out in mice
producing both embryonic lethality and normal develop-
ment in different studies [23, 24]; however, it has been
found that the knockout of a related gene, the PLCB1, de-
veloped epilepsy in mice [25].
Another set of top rated genes for neoplasms were the

MAPK1 and MAPK3, which were linked to several neo-
plasms. The MAPK pathway has long been studied as an
attractive pathway for anticancer therapies. The rela-
tionship of the RAS–mitogen activated protein kinase
(MAPK) signalling pathway in cancer is an area of in-
tense research since a highly-activated MAPK pathway
has been reported in many types of cancers with several
inhibitors being currently under investigation for their
potential application as oncology drugs [26–28].
Among the newly proposed genes as candidates to be

involved in different cancer types we can mention GNAI1,
APC2, PDGFA, CREB3, PRKACA, CREB5, ATF4, ITPR3
and ADCY1 among others. The whole table with all the
disease-gene pairs with p-values at the 0.001 level or
below is given as Additional file 1.
With our method, from a total of 348,882 disease-gene

pairs evaluated the method produced 31,066 pairs with p-
values at the 0.001 level or below enabling the proposal of
several candidate genes as potential phenotype-causing
mutation genes. Our method is able to capture the
bidirectional activity of the genes in the diseases allowing
finding genes with greater biological relevance.

Conclusions
Several attempts have been made in order to classify dis-
eases, but since these classifications have been done based

Table 1 Top 10 rated gene-disease pairs

Gene Disease

PIK3CB Neoplasms, seborrheic keratosis

PIK3CG Neoplasms, seborrheic keratosis

PIK3R3 Neoplasms, seborrheic keratosis

SOS2 Gingival enlargement

GRB2 Gingival enlargement

MAPK1 Neoplasms

MAPK3 Neoplasms

PLCB3 Epilepsy

RELA Streptococcal infection

NFKB1 Streptococcal infection, immunodeficiency

Top 10 rated gene-disease pairs using the hypergeometric distribution
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on their phenotype, this approach only poorly show the
real level of inclusion or interaction between different dis-
eases. The current tendency of disease classification is
based on observational correlations and existing know-
ledge of clinical syndromes giving more importance to
the phenotypes than to the molecular interconnection
between diseases resulting in poor specificity in defining
diseases [2]. The present study shows that the level of
interaction between diseases can in some cases be irrele-
vant to disease classification and individual analysis should
be made in order to obtain valid results for gene and
metabolic pathway interactions. This information could
be potentially important for studies of enrichment or gene
set analysis, since diseases should be analysed individually
or re-defined under different cluster classifications in
order to guarantee similar phenotype or metabolic mech-
anism. It was expected that diseases belonging to the same
cluster would have common underlying mechanisms, in-
cluding gene and metabolic pathways interactions; how-
ever, this was not the general case when the analysis was
made using directionality of inclusion which shows that
even when diseases from the same category tend to share
several genes or metabolic pathways, the level of inclusion
of this genes and pathways can vary individually and inde-
pendently with respect to the disease classification.
It has been previously found that the level of comorbidity

is higher between diseases sharing genes and metabolic
links between them [8, 29, 30]. However, these works are
based only on the number of genes or pathways shared be-
tween diseases with no account of the directionality of the
inclusion in their relationship. One of the main findings in
the present work is that for two diseases sharing a certain
number of genes, the level of inclusion can be different be-
tween both diseases due to the different pool of genes and
metabolic pathways involved in each disease, and that in
most of the cases, this relationship is independent on the
disease categories. This information captures the structure
of diseases associations under a simple but different point
of view that could be relevant to provide insights into the
occurrence of disease comorbidity, with potentially import-
ant consequences for disease prevention, diagnosis and
treatment.

Limitations and future work
Disease association analysis captures only a small contribu-
tion to the observed disease co-occurrence pattern, which
can strongly depend on environment, lifestyle, treatment
and disease complexity. More research should be done in-
cluding the involvement of different omics data in order to
obtain a more detailed analysis of the influence of different
factors during disease development, making it a more dy-
namic analysis of human conditions.
Another main finding in the present study is the cre-

ation of a network-enrichment methodology based on the

standard hypergeometric method that allows the predic-
tion of new gene-diseases pairs based on their shared
metabolic pathways. The results of our enrichment ana-
lysis can be useful as guidelines in order to obtain a priori
biological knowledge for future gene-disease associations
in drug discovery and therapeutic applications. However,
as mentioned before, it is essential to personalize the
medicine research in order to understand how patient
characteristics such as age and coexisting diseases affects
the detection, treatment, and outcome of the different
human conditions. Among the proposals for future devel-
opments based on the present study, the addition of clin-
ical data, microarray expression data and other omics data
should be included in order to capture a more dynamic
disease analysis leading to a personalized level of medicine
research.

Methods
Network analysis
An updated Morbid Map at the time of the study was
downloaded from OMIM database (http://www.omim.org).
Pathways (ko), modules (M) and diseases (H) were down-
loaded from the KEGG pathway database (http://www.
genome.jp/kegg/pathway.html). The complete HGNC data-
base can be downloaded from genenames.org (http://www.
genenames.org/cgi-bin/statistics). ICD-10 codes are avail-
able on the World Health Organization (http://www.who.
int/classifications/icd/en/). Network analysis and KEGG
associations were performed using R (http://www.r-project.
org/) and Cytoscape using edge-weighted spring embedded
layout (http://www.cytoscape.org/).

Level of inclusion
The level of inclusion between diseases was calculated
following the equation:

τx→y ¼ nx∩ny
nx

ð1Þ

where τ is the inclusion index (0 ≤ τ ≤ 1), nx the number
of genes or pathways in disease X and ny the number of
genes or pathways in disease Y.

Table 2 Fisher’s test statistics table

Pathways in gene Total pathways

Pathways in disease a (Ng∩Nd) c (Nd)

Pathways not in disease b (Ng-Nd) d (N-Nd)

The 2x2 table used to calculate the Fisher’s test statistics, where Ng is the
number of pathways in the gene, Nd the number of pathways in the disease
and N the total number of pathways linked to diseases
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Network-enrichment method
The probability of finding significant gene-disease associa-
tions by random chance was calculated using the hypergeo-
metric distribution showed below:

p ¼
aþ b
a

� �
cþ d
c

� �

n
aþ c

� � ð2Þ

where a is the number of pathways shared between the
gene and the disease, b is the number of pathways in the
gene that are not in the disease, c is the number of path-
ways in the disease, d is the total number of pathways
linked to diseases that are not present in the particular
disease and n is the total number of pathways in the study.
This probability was used to determine which gene-
disease pairs were enriched and to determine their relative
ranks. The p-values were calculated using Python with a
matrix calculated from Table 2 as follows:

fisher�exact a; b½ �; c; d½ �½ �ð Þ ð3Þ

Fisher’s test was performed using Python (scipy.stats.
fisher_exact).

Additional file

Additional file 1: Top rated gene-disease pairs. Table listing all the
disease-gene pairs with p-values at the 0.001 level or below.
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