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Abstract 

Generally, a microorganism’s phenotype can be described by its pattern of metabolic fluxes. 

Although fluxes cannot be measured directly, inference of fluxes is well established. In 

biotechnology, often, the aim is to increase the capacity of specific fluxes. For this, metabolic 

engineering methods have been developed and applied extensively. Many of these rely on balancing 

of intracellular metabolites, redox and energy fluxes, using genome-scale models (GEMs) that in 

combination with appropriate objective functions and constraints can be used to predict potential gene 

targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene 

expression, however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are 

usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To 

facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and 

assembly of naturally non-existent, but well characterized components into a living organism. To 
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describe these systems kinetic models are often used, and to integrate these systems with the standard 

metabolic engineering approach it is necessary to expand the modeling of metabolism to consider 

kinetics of individual processes. This review will give an overview about models available for 

metabolic engineering of yeast and discusses their applications. 

 

Running head: Computational modeling in metabolic engineering of yeast 

 

One-sentence summary: An overview of different types of computational models and their 

application in the field of metabolic engineering of yeast. 

 

Keywords: genome-scale model; kinetic model; biotechnology; synthetic biology 

 

Introduction 

In nature, evolution takes place partly due to imperfect processes of DNA replication resulting 

in appearance of mutations followed by natural selection. Although relatively rare (approximately 1 in 

50 million), this phenomenon has allowed (micro-)organisms to evolve during millions of years and 

adapt to varying environmental conditions. Using the same principles, adaptive laboratory evolution 

has become a valuable method in biotechnology to select desired traits in microorganisms by applying 

a selective pressure during multiple generations of growth. In addition to the improved phenotypes, de 

novo sequencing of the evolved strains gives valuable fundamental knowledge about the metabolic 

regulation. This method has been used to evolve strains with higher stress resistance (Cakar et al. 

2005; Almario et al. 2013; Avrahami-Moyal et al. 2012; Dhar et al. 2011) or to increase the 

consumption of non-preferred substrates (Hong et al. 2011; Demeke et al. 2013; Yuan & Zhao 2013). 

However, adaptive evolution cannot always be directly used to increase the production of a desired 

metabolite or chemical which is often the aim of modern biotechnological applications. Therefore, 

together with the developments in whole genome sequencing, the field of metabolic engineering has 

emerged and rapidly developed within the past 25 years. Metabolic engineering has been defined as 

directed modulation of metabolic pathways using methods of recombinant technology for the purpose 

of overproducing fuels and chemical and pharmaceutical products (Bailey 1991). 

 

To be able to predict the genome modifications necessary for the desired pathway fine-tuning, 

good knowledge about pathway patterns and flux values is needed. Based on the genome sequence of 

a microorganism, the presence of enzymes and functional pathways can be elucidated using 

bioinformatics. However, measurements of flux rates require relative timely and resource consuming 

experimental methods with labeled carbon and measurement of its distribution in proteinogenic amino 

acids (Choi & Antoniewicz 2011; Frick & Wittmann 2005; Blank et al. 2005; Gombert et al. 2001). 
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These methods for inference of metabolic fluxes have been thoroughly developed and used 

extensively. Although the results are usually highly informative, the outcome may be biased when the 

system is not in a steady state; enzymes differentiate between labeled and unlabeled substrates; or due 

to the incomplete network or imperfections in modeling the cell compartmentalization. Additionally, 

using the latter method flux distributions can only be collected from the central carbon metabolism 

and biomass formation pathways. As an alternative, genome scale metabolic models (GEMs) have 

been created and constrained based modeling methods have been developed to predict intracellular 

fluxes. These methods are described below in more detail and their applications together with 

shortcomings are discussed. 

 

While providing a good overview and starting point, the knowledge about intracellular flux 

distribution may not be enough to design successful strategies to control and modify metabolic flux 

rates, as fluxes are seldom regulated at the transcription level (Chubukov et al. 2013; Bordel et al. 

2010; Daran-Lapujade et al. 2007; Valgepea et al. 2013). Specially, this is the case for central carbon 

metabolism where enzymes have been demonstrated to be in abundance and working far from their 

maximal enzyme activity rates but being ready to increase their activities when environmental 

conditions improve (Oliveira et al. 2012). In those cases enzyme activities are often controlled by 

allosteric regulation or through post-translational modifications and modifications affecting the 

transcriptional level may have very limited effect on actual flux rates (Daran-Lapujade et al. 2004; 

Hauf et al. 2000; Feder & Walser 2005). Additionally the observation that flux patterns can be altered 

within the second scale indicates that they are not exclusively regulated at the transcriptional level 

(Link et al. 2013). More and more understanding is gained on allosteric control and post-translational 

modifications (Oliveira & Sauer 2012; Henriksen et al. 2012; Zhang et al. 2013). These regulatory 

analyses suggest that the global control over the metabolic regulation is distributed between several 

layers of metabolism and alternative back-up mechanisms exist to increase the robustness of the cell 

(Gerosa & Sauer 2011), potentially hindering the designed metabolic engineering approaches. 

 

To improve the throughput and success rate in metabolic engineering approaches, synthetic 

biology methods have been used to produce efficient and well characterized tools. The field synthetic 

biology represents more fundamental analysis where the aim is to engineer biological components of 

the cell to improve their performance. Parallels have been drawn with synthetic organic chemistry, a 

field that blossomed in the second half of 19th century where synthesis of naturally occurring 

chemicals was discovered (Yeh & Lim 2007). One of the goals of synthetic biology would be to 

create a fully synthetic platform cell with minimal maintenance and energy costs as the desired trait. 

So far synthetic biology is contributing the most for synthetic DNA production and modifications of 

protein structures (Annaluru et al. 2014; Dymond et al. 2011; Dantas et al. 2006). Additionally, toggle 

switches, cell oscillators and biosensors for instant feedback of transcript, protein or metabolite 

https://www.researchgate.net/publication/261184542_Total_Synthesis_of_a_Functional_Designer_Eukaryotic_Chromosome?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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abundances are appearing with the aim to understand and control the regulation of metabolic fluxes 

(Gardner et al. 2000; Elowitz & Leibler 2000; Zhang et al. 2012; Pfleger et al. 2007; Paddon et al. 

2013), but applications of these in industrial production strain is still to be seen. This kind of approach 

presumes more input from dynamic modeling as constraint-based models lack information about 

regulatory functions. This is particularly important as kinetic modeling is used extensively in 

synthetic biology to gain a better understanding of the system, to see what components are responsible 

for certain dynamic behavior and integration of synthetic biology components into complete 

metabolic networks therefore will require a better understanding of the kinetics of these systems. 

 

The use of mathematical models for quantitative description of biological systems has been 

used for long time, but with the development of high-throughput analytical techniques for analysis the 

cellular transcriptome, proteome, metabolome etc. mathematical modeling has become essential for 

integration of these data, and today the use of mathematical models for integrative analysis of 

biological systems is generally referred to as systems biology. Furthermore, the combination of 

comprehensive mathematical models of metabolism, often referred to as genome-scale metabolic 

models, with omics type data has shown to be very valuable for identification of novel metabolic 

engineering targets (Lee et al. 2007; Otero et al. 2013) 

 

Here we review different computational modeling methods in metabolic engineering of S. 

cerevisiae. We explain the principles of constraint-based genome-scale metabolic models and kinetic 

models, the various ways they can be applied to address metabolic engineering questions and whether 

they can handle regulatory processes, while highlighting examples of their use in the metabolic 

engineering of S. cerevisiae. Finally, we give our perspectives about where the field is moving. 

 

Yeast GEMs 
Description 

The development of constraint-based genome scale metabolic models (GEMs) started in the 

late 1990s after the first whole genome sequences became available. GEMs are comprehensive 

descriptions of all known metabolic reactions in an organism, based on the available genome 

sequence. Automated bioinformatics tools have been created for fast reconstruction of metabolic 

networks for any desired organism for which the genome sequence is available (Agren, Liu, et al. 

2013; Schellenberger et al. 2011; Henry et al. 2010; Pitkänen et al. 2014). The reconstructed networks 

can be converted into mathematical stoichiometric matrices (S), where rows represent metabolites and 

columns represent individual reactions (Figure 1). This matrix will determine the solution space of the 

metabolic network. Genome scale models are constrained by (i) the stoichiometry of the network; (ii) 

pre-set upper and lower boundaries for selected reactions (usually substrate uptake reactions, but can 

https://www.researchgate.net/publication/235372166_Industrial_Systems_Biology_of_Saccharomyces_cerevisiae_Enables_Novel_Succinic_Acid_Cell_Factory?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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also describe thermodynamics); and (iii) the assumption of a steady state. The latter assumption 

presumes that all the flux rates and metabolite concentrations are constant over time. This state can be 

reached in chemostat cultivation experiments and, in theory, during the controlled batch logarithmic 

growth phase when organisms grow at their maximum specific growth rate and the change of neither 

substrate concentration nor product formation will affect the growth regulation. 

 

Constraint-based modeling 

Due to the large number of reactions, GEMs are underdetermined and additional constraints are 

necessary to determine the flux distribution. Flux Balance Analysis (FBA) is commonly used for this 

purpose, where an assumed biological objective is applied in the form of maximizing (or minimizing) 

a certain flux. This results in a solution in the solution space that satisfies the presumed objective 

(Figure 1). Selection of correct optimization function has been the subject of investigation for some 

time as a universal objective for all cells and growth environments seems to be absent. The most 

commonly used objective functions maximize the specific growth rate, ATP generation or product 

formation (Schuetz et al. 2007; Burgard & Maranas 2003). However, the selection of the objective 

function is selected by the user and the result may therefore be biased. Furthermore, a single 

objective function might not be sufficient, as metabolism seems to operate at an optimal surface 

in multi-dimensional space which is defined by competing objectives (Schuetz et al. 2012). 

Methods for selecting objective functions for specific conditions based on the analyzed data have 

been developed. As an example Biological Objective Solution Search (BOSS) has been created to find 

the most suitable objective function by minimizing the difference between experimental flux data and 

in silico flux distributions (Gianchandani et al. 2008); or minimalization of metabolic adjustment 

(MOMA) where metabolic phenotype is approximated by performing distance minimization in flux 

space (Segre et al. 2002). Additionally, unbiased methods have been developed where the whole 

solution space is scanned by using random sampling or Markov chain Monte Carlo techniques 

(Schellenberger et al. 2011; Bordel et al. 2010). These methods use a large number of randomly 

chosen reactions as objective functions, and therefore results in a distribution of results for each 

intracellular flux, representing a flux range that is allowed according to given constraints. 

 

To overcome the optimization issues additional constraints can be added to the GEMs, for 

example thermodynamics and ranges of intracellular metabolite concentrations. Addition of Gibbs 

free energy constants of the reactions and measurements of metabolite concentrations helps to 

describe the direction and reversibility of the metabolic reactions and therefore a more feasible 

solution space is obtained. Such an approach has been used on smaller constraint-based models 

where, first the reactions reversibilities at different conditions are determined with Flux Variability 

analysis (FVA), subsequently all thermodynamically feasible reactions are calculated, combined with 

https://www.researchgate.net/publication/10823291_Burgard_A._P.__Maranas_C._D._Optimization-based_framework_for_inferring_and_testing_hypothesized_metabolic_objective_functions._Biotechnol._Bioeng._82_670-677?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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intracellular metabolomics data, and finally fluxes are determined using Elementary Flux Modes 

(EFM; (Jol et al. 2012)). Therefore, EFM is an alternative methodology to FBA where optimization of 

one selected reaction is not needed. 

 

For another constraint based modeling approach – metabolic flux analysis (MFA) – a fully 

determined network is generated with an equal number of metabolites and reactions. This allows 

finding a unique solution without using any optimization algorithms. As MFA models are simplified 

in terms of network complexity and usually smaller in size compared to GEMs, they lack the global 

perspective of the flux patterns. At the same time, the combination of MFA with stabile isotope 

labelling experiments allows more accurate measurements of in vivo metabolic fluxes (Gombert et al. 

2001; Blank et al. 2005; Frick & Wittmann 2005). 

 

History of the yeast GEMs 

After the development of the first smaller scale constraint-based models of yeast (van Gulik & 

Heijnen 1995; Vanrolleghem et al. 1996; Nissen et al. 1997), the first genome-scale yeast model 

iFF708 was reported in 2003 (Förster et al. 2003). The model contained 708 metabolic genes 

associated with 1175 reactions and 733 metabolites, divided between three cellular compartments. 

Within the following years the model was improved by addition of more compartments (Duarte et al. 

2004), removal of dead end reactions (Kuepfer et al. 2005) and addition of fatty acid metabolism 

(Nookaew et al. 2008). With the increase of contributors and complexity of the models, inconsistency 

between different models grew, impeding the merger and comparison of different models. To 

overcome those issues, which could hinder progress, a consensus metabolic network called Yeast 1.0 

was created. Yeast 1.0 followed standardized rules, and in particular ensured strict naming 

conventions for metabolites (Herrgård et al. 2008). Further improvements in terms of increased 

number of genes and reactions and compartmentalization have been carried out and the most updated 

information about the models can be found from the web page http://yeast.sf.net. Meanwhile, 

additional yeast genome-scale models have been constructed that are not part of the yeast consensus 

model effort (Osterlund et al. 2012). 

 

Applications 

GEMs represent a data driven approach where typically the objective is to achieve a global 

picture of possible flux patterns. FBA is often used for estimating the biotechnological potential of 

microorganisms and pinpoint genetic manipulations that could improve the performance of a cell. The 

main applications of FBA could be listed as follows: 

 

• Instructions for metabolic engineering purposes 

• Biological interpretation and discovery through contextualizing high throughput data 

https://www.researchgate.net/publication/8371632_Genome-Scale_Reconstruction_of_the_Saccharomyces_cerevisiae_Metabolic_Network?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/23310375_Herrgard_M._J.et_al._A_consensus_yeast_metabolic_network_reconstruction_obtained_from_a_community_approach_to_systems_biology._Nature_Biotech.26_1155-1160?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/221702338_System-Level_Insights_into_Yeast_Metabolism_by_Thermodynamic_Analysis_of_Elementary_Flux_Modes?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/7561438_Kuepfer_L._Sauer_U.__Blank_L.M._Metabolic_functions_of_duplicate_genes_in_Saccharomyces_cerevisiae._Genome_Res._15_1421-1430?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/51575945_Fifteen_years_of_large_scale_metabolic_modeling_of_yeast_Developments_and_impacts?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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• Development of a computational framework 

• Evolutionary elucidation 

• Description of multi-species communities 

 

The first two subjects will be elaborated in the current review. More information about the 

other applications can be found elsewhere (Osterlund et al. 2012; Lewis et al. 2012). 

 

Instructions for metabolic engineering 

GEMs and FBA can be applied to identify potential metabolic engineering strategies, or even 

select the best performing network among alternatives. There have been several successful examples 

where genome-scale constraint-based modeling was applied for strain improvement (Table 1). The 

increasing crude oil price has created a demand for bio-based chemicals and succinic acid, an 

intermediate chemical for a broad range of applications, represents a lucrative target for biobased 

production. Through genome-scale metabolic network analysis of S. cerevisiae in silico metabolic 

engineering targets for improved succinic acid production were identified (Otero et al. 2013). 

Potential deletion targets were identified by using the evolutionary programming method OptGene 

(Patil et al. 2005). Production was improved by blocking succinic acid conversion into fumarate by 

knocking out an essential subunit of succinate dehydrogenase and re-directing serine and glycine such 

that it was derived from glyoxylate. As glyoxylate is derived from the glyoxylate cycle, which also 

results in production of succinic acid, production of this organic acid was coupled to growth. 

Followed by adaptive evolution experiments and transcriptional characterization of the evolved strain, 

the need to overexpress the TCA cycle enzyme ICL1 was identified, and by over-expressing the ICL1 

gene a strain was obtained that had a more than 30-fold improvement in succinic acid production. A 

recent constraint-based modeling study, where the RAVEN toolbox (Agren, Liu, et al. 2013) was used 

to test all the combinations of single and double deletions while optimizing the growth under a 

limiting glucose uptake rate, reported an alternative pathway, where by deletion of the inner 

dicarboxylate mitochondrial transporter (DIC1) it was possible to obtain a low-level succinic acid 

production at anaerobic conditions (Agren, Otero, et al. 2013). 

 

Alternatively, GEMs and FBA has been used for modeling the protein secretory mechanisms 

(Feizi et al. 2013). A genome-scale secretory network was constructed, although using a bottom-up 

approach rather than directly from the genome annotation. Being connected with different cellular 

processes the model allowed integration of genome-scale datasets. The model can assist to design 

engineering strategies for high level protein production by (i) determine the secretory class the protein 

of interest belongs to; (ii) predicting the metabolic demands of secretory mechanism and (iii) 

estimating catalytic activities of the machinery components. 

 

https://www.researchgate.net/publication/236106081_The_RAVEN_Toolbox_and_Its_Use_for_Generating_a_Genome-scale_Metabolic_Model_for_Penicillium_chrysogenum?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/236106081_The_RAVEN_Toolbox_and_Its_Use_for_Generating_a_Genome-scale_Metabolic_Model_for_Penicillium_chrysogenum?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/236693368_Genome-Scale_Modeling_of_the_Protein_Secretory_Machinery_in_Yeast?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/51575945_Fifteen_years_of_large_scale_metabolic_modeling_of_yeast_Developments_and_impacts?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/235372166_Industrial_Systems_Biology_of_Saccharomyces_cerevisiae_Enables_Novel_Succinic_Acid_Cell_Factory?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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Biological interpretation and discovery through contextualizing high throughput data 

To acquire more comprehensive understanding of the flux regulation mechanisms and to detect 

the potential network interactions that likely determine the fluxes, global datasets can be overlaid with 

the changes in fluxes as estimated from the GEMs. For example, firstly, integration of transcriptomics 

data into constraint-based models is to increase the predictive capability of GEMs (various published 

methods are compared in Machado & Herrgård, 2014). Secondly, the comparison of flux change and 

gene expression allows identification of fluxes that could be regulated at the transcriptional level. In 

contrary to this, poor correlations between flux rates and transcriptional changes indicate other 

regulation levels, like post-transcriptional, post-translational or allosteric control (Bordel et al. 2010). 

Adding the global scale data from proteome analysis which has recently appeared mainly for single 

conditions would help to give an additional layer to distinguish between post-transcriptional and post-

translational regulation levels. Comparison of global proteome and flux data have been carried out for 

E. coli and B. subtilis (Valgepea et al. 2013; Buescher et al. 2012; Ishii et al. 2007; Kohlstedt et al. 

2014; Peebo et al. 2014), but is currently still carried out only in small scale for yeast (Oliveira et al. 

2012; Fendt et al. 2010) .  

 

Recently, Zelezniak et al. (2014) used genome-wide mRNA fold changes from three 

perturbation studies in S. cerevisiae to estimate metabolite fold changes. The estimated metabolite 

changes were subsequently compared to measured metabolite fold changes and it was found that 

higher correlations were found when a larger part of the metabolic network was taken into account for 

the estimation. It will be interesting to see whether inclusion of protein abundance or activity data in 

this analysis would improve the observed correlations. 

 

Challenges 

Although GEMs are widely used as standard tools for data analysis and interpretation, they 

encounter a number of challenges and limitations. One limitation is related to the required steady state 

of the system. Often, industrial processes are run in fed-batch or batch mode where the cultures are 

not strictly in a steady state. Additionally, stressful conditions such as high temperatures, high 

concentrations or organic acids and osmotic stress that are of high industrial interest can perturb the 

system, but these adaptations are typically out of the scope of general genome-scale constraint-based 

modeling. Although it is usually presumed that the homeostasis at the level of metabolites will be 

established within seconds, accompanied changes in transcriptome and protein levels may take much 

longer and therefore introduce a significant error. 

 

While GEMs can predict the best performing engineering strategies based on the metabolic 

network, the application of those changes may not be as straight forward, as metabolic networks are 

highly regulated at various levels to ensure the robustness of the functional system. Predictions of 
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allosteric regulation, functional state of enzymes (post-transcriptional modifications) are currently not 

taken into account in genome-scale models. Additionally, enzyme kinetics and performance of 

nonnative genes/proteins are currently not covered in GEMs. Although the first genome-scale and 

reduced constraint-based models that take regulation into account have emerged for E. coli (Kotte et 

al. 2010; Covert et al. 2001) they have so far only been created for certain regulatory systems present 

in yeast (Christensen et al. 2009). Although the lack of regulatory predicting power in GEMs hinders 

the quality of predictions for metabolic engineering purposes, the combination of modeling data with 

real experiments can precisely identify the regions which are highly regulated at post-transcriptional 

level and allows one to investigate those regions more thoroughly using bottom-up approaches 

(described below). 

 

Kinetic modeling 

GEMs are top-down, kinetic modeling is bottom-up 

GEMs follow a top-down approach of systems biology, where information from the different 

layers of the system (genome, transcriptome, metabolome etc.) are integrated to construct a 

comprehensive view of metabolism, and insight is gained by studying the behavior of this system as a 

whole (Bruggeman & Westerhoff 2007). Contrastingly, a bottom-up approach assumes that the 

behavior of a system can be deduced from the characteristics of its constitutive parts (Bruggeman & 

Westerhoff 2007). The interactions of these parts give rise to the behavior of the system, and therefore 

a good understanding of the parts of the system is paramount. Models of metabolism that follow this 

paradigm are called kinetic models, and the constitutive parts of this system are the enzymes, their 

metabolites, other effectors, and their interactions. The separation of models of metabolism between 

top-down and bottom-up is not completely black and white as it is now also possible to construct 

kinetic models on a genomic scale, as detailed below. 

 

History 

Kinetic modeling of metabolism has essentially evolved out of the fields of molecular biology 

and enzymology, moving from characterizing one enzyme in isolation to investigating them in the 

biological context of a metabolic pathway. Fundamentals were laid in the 1960s and 70s, through the 

development of biochemical systems theory (BST) and metabolic control analysis (MCA), which are 

discussed in more detail below. Since then, different parts of yeast metabolism have been subjected to 

kinetic modeling, but focus has been on glycolysis. 

  

The structure of a kinetic model 

The structure of a kinetic model, but also the process of generating a new kinetic model, can be 

divided into three parts which will be discussed here briefly: (i) description of the structure of the 
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metabolic pathway; (ii) description of kinetic rate expressions of the metabolic reactions; and (iii) 

parameterization of said rate expressions. An overview of this process is shown in Figure 2, while 

kinetic models in metabolic engineering have recently been reviewed in detail by Almquist et al. 

(2014). 

 

(i) The network structure (stoichiometry) of the metabolic pathway to be modeled is described 

in the S-matrix, similar as in GEMs (Figure 2). Kinetic models typically only included one or a few 

pathways, in contrast to GEMs, primarily due to the difficulty of identifying the large number of 

model parameters that would appear in comprehensive models. Yeast metabolic pathways that have 

been modeled include sphingolipid and ergosterol metabolism (Alvarez-Vasquez et al. 2004, 2011), 

xylose utilization (Parachin et al. 2011), the pentose phosphate pathway (Vaseghi et al. 1999; Messiha 

et al. 2014), but most focus has been on modeling glycolysis (Smallbone et al. 2013; Hynne et al. 

2001; Galazzo & Bailey 1990; Teusink et al. 2000; van Eunen et al. 2012)). 

 

(ii) The metabolic reactions from (i) that are represented as the rows of the S-matrix are 

described using kinetic rate expressions. The detail of these rate expressions can vary significantly 

from elementary mass-action kinetics, describing the association and disassociation of each 

metabolite with the enzyme-metabolite complex, to familiar approximations as Michaelis-Menten 

kinetics and Hill equations. Alternatively, more abstract rate expressions can be used to describe the 

enzyme kinetics, typically with the argument that the kinetics for most of the enzymes are unknown or 

complex and unreliable, such that further abstraction of the rate equations does not signify a loss of 

information while reducing the complexity of the model. As more abstract rate expressions typically 

contain less parameters, inductive parameterization (discussed below) also becomes easier to perform 

(Heijnen 2005). Examples of these approximative rate expressions are generalized mass action and S-

systems (both extensively reviewed by Voit, 2013), log-linear (Hatzimanikatis & Bailey 1996), lin-log 

(Visser & Heijnen 2003), convenience kinetics (Liebermeister & Klipp 2006) and modular rate laws 

(Liebermeister et al. 2010). These abstract rate expressions are often not able to fully describe the 

kinetic behavior of enzymes: some can only handle non-zero metabolite concentrations, while others 

do not demonstrate the typical saturation that is observed when metabolite concentrations are high 

(Heijnen 2005). Instead of using deterministic equations one can also describe the kinetics using 

stochastic rate expressions. However, the number of metabolites in yeast metabolism are typically 

high enough (more than 102–103 as a rule of thumb (Chen et al. 2010)) that fluctuations due to 

stochasticity are negligible. 

 

(iii) Parameter values need to be given for the rate expressions described in (ii). The 

combination of rate equations and parameters forms the v-vector (Figure 2). Parameter values of rate 

equations, such as Km and vmax values, have been determined experimentally one-by-one from cell-

https://www.researchgate.net/publication/46110364_Classical_and_Contemporary_approaches_to_modeling_biochemical_reactions?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/7740271_Approximative_kinetic_formats_used_in_metabolic_network_modeling._Biotechnol_Bioeng?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/51192298_Kinetic_modelling_reveals_current_limitations_in_the_production_of_ethanol_from_xylose_by_recombinant_Saccharomyces_cerevisiae._Metab_Eng?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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free extracts for over 100 years. One can perform these measurements themselves or obtain kinetic 

parameters from literature, with databases that collect these values, such as BRENDA (Schomburg et 

al., 2013; 888 unique EC-number associated reactions for S. cerevisiae, with many duplicates of the 

same reactions) and SabioRK (Wittig et al., 2012; 115 reactions for S. cerevisiae). Whether kinetic 

parameters are measured experimentally or obtained from literature, it is important that these values 

have been determined in relevant conditions. Eunen et al. (2012) updated a kinetic model of yeast 

glycolysis with enzyme kinetics that had been measured in an in vivo-like buffer, and only results 

from the improved model were in correspondence with various steady-state and dynamic conditions. 

 

Parameter values can alternatively be induced by measuring other variables of the system 

(Mendes & Kell 1998). By reversing the bottom-up assertion that a system’s behavior emerges from 

interactions of its constitutive parts, detailed knowledge of the behavior of a metabolic pathway can 

be used to induce the kinetics of the enzymes. The systemic behavior that can be measured and used 

for inductive parameter estimation includes the dynamics of metabolite concentrations over time, or 

upon perturbation of the system. Not only can multiple parameters be estimated simultaneously, 

parameter estimation has the additional advantage that experimental data can be derived from in vivo 

measurements, where the enzymes are in their native environment. However, kinetic models are often 

too complex and over-parameterized for parameter estimation to assign unique values to each 

parameter (Gutenkunst et al. 2007). This problem is somewhat reduced by using more abstract rate 

expressions, which typically require less parameters. 

 

Uncertainty of parameter values 

The parameter values that are used in the rate equations are single, precise values. However, the 

knowledge of these values is often uncertain, due to measurement errors or lack of data. Also, 

parameter estimation methods often do not provide singular values, but rather distributions of possible 

parameter values. This uncertainty can be taken into account by generating a set of models, each with 

a different set of parameter values (Achcar et al. 2012). Assuming even more uncertainty, an 

ensemble of models can be described where each model has a different combination of parameter 

values (Tran et al. 2008). This ensemble can be narrowed down by only keeping a subset that is 

capable to reproduce experimental data, i.e. subset that fits with experimental data. In this sense, 

ensemble modeling is comparable to parameter estimation of the whole metabolic network, but 

ensemble modeling also has the ability to take alternative stoichiometries into account. 

 

Size and modularity of the model 

Kinetic models are typically covering only one or a few metabolic pathways. The complexity of 

these models increases significantly when the scope is enlarged to include more pathways, resulting in 

more rate expressions and more parameter values that need to be measured or estimated. Kinetic 

https://www.researchgate.net/publication/257259347_Universally_Sloppy_Parameter_Sensitivities_in_Systems_Biology_Models?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
https://www.researchgate.net/publication/23285909_Ensemble_Modeling_of_Metabolic_Networks?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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models therefore typically only investigate one particular pathway, outside of the context of the whole 

metabolic network. Efforts have been made to generate genome-scale kinetic models. Smallbone et al. 

(2010) generated a genome-scale kinetic model of yeast metabolism using linlog-kinetics. While this 

model heavily depends on estimation due to absence of parameter values, it does demonstrate a proof-

of-principle of genome-scale kinetic models. As some reactions are more important than others in the 

regulation of metabolic flux (see Metabolic Control Analysis below), it might not be necessary to 

model all the reactions in great detail. This principle has been used in a pipeline to generate a genome-

scale model of kinetics where only the reactions that are the most important have their kinetics 

described (Stanford et al. 2013). 

 

As an intermediary to genome-scale kinetic modeling, existing kinetic models can be extended 

in a modular fashion, where each module can represent a certain pathway, biological function or level 

of regulation. It has been proposed that such a modular approach can be used to build a SiliconCell 

(Snoep et al. 2006), as the bottom-up philosophy dictates that integration of functional sub-networks 

will result in a network with emerging properties from the interactions of the individual sub-networks. 

In a very interesting example, Klipp et al. (2005) modelled the response of yeast to osmotic shock by 

integrating modules that described osmotic sensing (a phosphorelay system and MAP kinase cascade 

are involved in signal transduction), gene expression (glycerol kinase and glycerol-3-phosphate 

dehydrogenase are upregulated) and metabolism (glycerol production is induced).  

 

Applications of kinetic modeling 

The combination of the S-matrix and the v-vector that describe the kinetic model results in a set 

of ordinary differential equations (ODEs) that describe the dynamics of the metabolite (dX) over time 

(dt) (Figure 2). These models can subsequently be used in a variety of ways to address different 

questions regarding metabolism, such as how to increase or reduce the yield of a particular 

(by-)product (Table 1). In the light of metabolic engineering, of particular interest is the analysis of 

flux control, while these models can also be used for the evaluation of different engineering strategies. 

Two theoretical frameworks can be used to investigate kinetic models: 

 

• Metabolic control analysis 

• Biochemical systems theory 

 

These two frameworks will be briefly discussed below. 

 

Metabolic Control Analysis (MCA) 

The enzymes that make up a metabolic pathway all have a certain level of control over the 

metabolic flux. As metabolic engineering is often focused on increasing or decreasing a particular 

https://www.researchgate.net/publication/7719919_Integrative_model_of_the_response_of_yeast_to_osmotic_shock._Nat_Biotechnol?el=1_x_8&enrichId=rgreq-cbb18069-e1dd-4a1f-bbf4-164c2044f421&enrichSource=Y292ZXJQYWdlOzI2NTAxNjg2MztBUzoxNTM1ODQwNjY4OTU4NzJAMTQxMzYyODcwMzQ1NA==
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flux, it is of interest to know which enzymes control the flux. The distribution of this control can be 

studied using the concept of MCA (Kacser & Burns 1973, 1981, 1979), reviewed by Moreno-Sánchez 

et al. (2008), which provides the means to quantify the control by calculating flux control coefficients. 

A metabolic pathway typically contains many non-zero control coefficients, which means that the 

control of the flux is shared over the different enzymes rather than one rate-limiting enzyme (Kacser 

& Burns 1979). It is likely, however, that the values of some of the control coefficients will be larger 

than those of the other enzymes. This indicates that those reactions are having a larger control over 

the metabolic flux and suggest potential targets for metabolic engineering. 

 

MCA has been used by Cronwright et al. (2002), who produced a small model of glycerol 

synthesis in S. cerevisiae using both measured and published parameter values for glycerol 3-

phosphate dehydrogenase (GPD) and glycerol 3-phosphatase. S. cerevisiae produces glycerol as a 

major by-product of ethanol fermentation, and a decreased glycerol production flux would be of 

industrial interest. MCA analysis of this model showed that GPD exerts the majority of the control 

over the glycerol synthesis flux, with a flux control coefficient of 0.85, suggesting this as a potential 

target for metabolic engineering. Unfortunately these results were not evaluated experimentally. 

 

MCA has also showed that the glucose transporter has most of the control over the glycolytic 

flux in suspended cells (Galazzo & Bailey 1990) and that the flux through the pentose phosphate 

pathway is highly controlled by the growth rate and oxidative stress (Messiha et al. 2014). 

Interestingly, Smallbone et al. (2013) used MCA to guide how a model of yeast glycolysis should be 

refined: in iterative rounds the reaction that had the highest control over the glucose uptake and which 

kinetics had not been described in detail were characterized, resulting in a model that improved by 

each round. 

 

Biochemical Systems Theory (BST) 

BST is a mathematical framework for modeling of complete metabolic pathways that was 

introduced by Savageau (1969). Within this framework the rate of each reaction is defined as power 

law expressions, and in these expressions the rate is a function of the product of the metabolite 

concentrations imposed to a certain power. Parameters in the rate expressions are a rate constant and 

the power coefficients. Despite the empirical nature of the rate expression used in BST, this modeling 

approach has shown to efficiently describe the kinetics of complex metabolic pathways, e.g. 

spingolipid metabolism of yeast (Alvarez-Vasquez, 2004). An interesting aspect of the BST is that 

power coefficients in the rate expressions are identical to the so-called elasticity coefficients of MCA 

and there is hereby a link between these two approaches to analyze the kinetics of metabolic 

pathways. The elasticity coefficients of MCA specify the sensitivity of the individual reaction rates to 

each of the metabolites in the pathway, and hence the power coefficients have a direct biochemical 
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interpretation. Alvarez-Vasquez (2004) generated three models of yeast sphingolipid metabolism, one 

with Michaelis-Menten kinetics and the other two with two types of power law rate expressions 

according to BST, and it was found that the power law abstractions were able to show the same 

dynamic behavior compared to a model based on detailed Michaelis-Menten kinetics, but with fewer 

fitted parameters. Polisetty et al. (2008) generated a BST model of glycolysis and demonstrated in 

silico that increasing the glucose uptake rate is the most beneficial strategy to improve ethanol 

production. This result was obtained by optimizing a model for ethanol production, while each of the 

reaction rates were separately allowed to deviate within fivefold around the nominal steady-state 

values. While no experimental validation was provided others have showed that overexpression of the 

hexose transporter increases ethanol production (Gutiérrez-Lomelí et al. 2008).  

 

Evaluating engineering strategies 

While MCA allows one to calculate the control each enzyme has on the flux, and as such 

suggest potential metabolic engineering targets, these control coefficients are based on small 

perturbations of the parameter values. The control coefficients do not generally hold for larger 

changes in enzymes levels, as obtained through metabolic engineering strategies such as genetic 

manipulation. The control tends to be redistributed if the parameter values change, especially when 

the expression of an enzyme with high flux control is increased. This is at least partly due to changes 

in metabolite concentrations around an enzyme upon changing its expression level, these changes 

does not only affect the reaction rates around these metabolites, but can also induce other homeostatic 

responses via for instance gene expression. 

 

Nonetheless, kinetic models can readily be used to study larger perturbations in enzyme 

kinetics: in principle any perturbation to the system can be tested in silico by changing parameter 

values and comparison of the original with the moderated model. Parachin et al. (2011) made a 

kinetic model to evaluate different strategies to allow S. cerevisiae to use xylose as a carbon source. 

Parameterization was performed as a combination of literature data and estimation with fermentation 

data. The in silico model was used to simulate different enzyme activities, showing that a further 

overexpression of xylulokinase is required to increase the xylose intake. Overexpression of an E. coli 

xylulokinase confirmed this experimentally.  

 

Chen et al. (2012) also generated a kinetic model of glycolysis that was parameterized using 

literature and estimation with fermentation data. Production of the fine chemical building block 

DHAP was increased in silico by removing the triose-phosphate isomerase (TPI) reaction from the 

model, simulating a TPI knockout. No experimental validation was provided with this work. 
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As mentioned above, genetic manipulation of metabolic pathways often leads to changes in 

metabolite concentrations, which can subsequently have other, undesired, effects. In a proof-of-

principle, Adamczyk and Westerhoff (2012) demonstrated in silico that the phosphotransferase 

system from Lactococcus lactis can be replaced with a glucose transporter and hexokinase from S. 

cerevisiae, while keeping the concentrations of glycolytic intermediates unchanged. They showed 

with time-course simulations that fine-tuning of the pyruvate kinase activity is required to keep the 

concentrations stable. This was, however, not validated experimentally. 

 

Why dynamic models are not used extensively in metabolic engineering 

A number of examples are given above, where kinetic models of yeast metabolism were used to 

address metabolic engineering questions. Theoretically there are significant advantages to use kinetic 

models to investigate and evaluate strategies for genetic manipulation, such as the easy tinkering with 

the system by effortlessly changing parameter values in silico. Nonetheless, the number of successful 

uses of kinetic models of yeast metabolism all the way to actual increased production are slim, most 

of the approaches strand with the in silico suggestion of potential targets. This is potentially due to 

some disadvantages of kinetic modeling: it relies on correct description of the system, in the form of 

realistic rate expressions, parameter values, but also inclusion of relevant regulatory processes. The 

determination of parameter values can be very laborious and time-consuming, values can vary 

significantly depending on condition, but also expression levels, phosphorylation states and allosteric 

regulation can cause major changes to the enzyme activity. Additionally, transcriptomic changes are 

not necessarily reflected in the proteome and in enzyme activities, such that these methods cannot be 

used to easily estimate vmax values in different experiments. Also other parameters such as affinity 

constants can change depending on the environments’ pH, ionic strength or levels of other regulators. 

This variety can partly be mitigated by taking uncertainty into account during the simulations, 

however, larger parameter distributions also result in less precise predictions, reducing the power of 

modeling. Taking uncertainty into account, however, does not address the adaptation and regulation 

that can occur upon genetic manipulation, which is central in metabolic engineering. Moisset et al. 

(2012) generated a promising model of glucose repression in yeast, where the expression of genes was 

dependent on the level of glucose, and this model was able to reproduce metabolic fluxes during 

exponential growth on glucose or ethanol. Such an approach could be used to model other types of 

regulation. 

 

Even when in silico parameter values correspond to real in vivo parameter values, dynamic 

models typically cover only or a few reaction steps or pathways. This means that large parts of the cell 

are not taken into account, which can for instance react to changes in co-factor ratios that are observed 

in the pathway under study (Chen et al. 2014). Although efforts are made to generate genome-scale 

kinetic models of metabolism, these models heavily rely on parameter estimation methods, typically 
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in combination with the use of abstract approximate rate expressions. As the use of models is to gain 

understanding of the system, it is better not to make the model more complicated than necessary. 

 

Perspectives 

Computational models of metabolism play an important role in metabolic engineering, as 

metabolism is a complex network that requires a systemic view. Application of systems biology 

becomes more and more important in metabolic engineering as “lower hanging fruits have already 

been collected” (Almquist et al. 2014) and better understanding of metabolism and its regulation is 

required to further advance metabolic engineering and synthetic biology. GEMs and kinetic models 

both have their advantages and drawbacks. GEMs are comprehensive, but are dependent on a pseudo-

steady state and in their current form do not take regulation, such as gene-protein and protein-protein 

level interactions, allosteric regulation or regulation at post-translational level, into account. At the 

same time kinetic models require parameter values that are difficult to estimate at the global scale. As 

neither of them can fully replace the other, there has been a considerable effort on combining these 

two approaches in a singular model or applying them in succession. GEMs in combination with global 

datasets are invaluable for detecting the metabolic bottlenecks, but due to lack of kinetic data about 

enzyme activities or regulation mechanisms they are limited in their predictive power. Applying 

kinetic models on metabolic bottlenecks previously detected with GEMs can help to understand the 

regulation or kinetics of these specific enzymatic steps, as one would not need model parameters for 

the whole system (Figure 3). 

 

Metabolic models that describe a sub system of a network and take basic metabolic regulation 

into account have been developed for bacterial systems. Regulatory and integrated FBA models have 

been developed for E. coli (Covert et al. 2001, 2004, 2008) and it has found that those models that 

take into account transcriptional regulation can well predict the diauxic growth of E. coli which is not 

possible with conventional constraint-based models. Regulation in terms of four well described global 

regulators of E. coli was introduced into a medium size central carbon metabolism model and, 

similarly, diauxic shifts were characterized. In another study thermodynamics and enzyme kinetics 

were taken into account for reconstructing a genome-scale model for E. coli and it represents a large 

scale nonlinear metabolic model that takes into account changes in enzyme activities while being used 

for designing metabolic engineering strategies (Chakrabarti et al. 2013). Larger scale whole cell 

modeling approach where genome-scale metabolic networks were combined with cell cycle and 

protein-DNA association have been developed for small bacteria Mycoplasma genitalium (Karr et al. 

2012). Another similar model where the bacterial cell cycle is combined with DNA replication and 

cell volume using Cooper-Helmstetter theory have been developed (Abner et al. 2013) and should 

bring us closer to the understanding how different cellular sub-systems are working together. The 

current challenges in yeast metabolic modeling include catching up with bacterial models in terms of 
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combining ODEs with constraint-based models as eukaryotic cells contain additional challenges 

related with compartmentalization. Therefore, inclusion of a detailed description of protein synthesis 

and translation machinery and their connection to metabolism, instead of simple inclusion of their cost 

in the biomass equation, would represent the next steps in advancing yeast GEMs and would have 

similarities to the model developed for Mycoplasma genitalium (Karr et al. 2012). This allows 

investigation of these processes, how they affect metabolism and how changes in their characteristics 

can affect the whole system. Furthermore, by considering the cell cycle it would be possible to shift 

from analysis at the population level to analysis of single cells and hereby take us closer to understand 

cellular mechanisms and therefore improve strategies for synthetic biology applications. 

 

Although larger scale and more complex integrated models represent a way to understand the 

global regulation of the cell and hereby drive synthetic biology towards creation of synthetic cells, the 

adage ‘more-is-better’ does not necessarily hold for the size of models in all cases. The purpose of a 

model is to aid in the understanding of a system, and larger and more complex model do not 

necessarily obtain this but might rather make it much harder to identify the core principles of a 

system. Very large and complex models might eventually be able to simulate the cell perfectly, 

proposed as a SiliconCell (Snoep et al. 2006; Westerhoff 2001), and constructed for Mycoplasma 

genitalium (Karr et al. 2012), but this does not necessarily mean that we understand the cell any 

better. For metabolic engineering, however, a near-perfect SiliconCell would be extremely valuable 

for testing different strategies in silico before initiating in vivo engineering. 

 

As models can have different levels of complexities and scopes, all with their own purpose, it 

might be more important that resources and knowledge in these models is shared efficiently. Model 

building should be a community effort, where knowledge from all directions is incorporated. The 

yeast consensus networks are examples of this (Herrgård et al. 2008). A connection between these 

models and kinetic models, stored on databases such as BioModels database, would allow one to truly 

build a model in a modular fashion, gather information about all important processes and particularly 

focus on (model kinetically) those related to the area of interest. 

 

Finally, while models are valuable tools by themselves in metabolic engineering and synthetic 

biology, they also represent a mindset of doing research. Kinetic modeling can provide very exact 

numbers for the control coefficient and final concentrations, but because of the dynamics and 

changing behavior of the cell, these values are not that interesting as the system can adapt anyways, 

and it may sometimes not be worth the effort to determine a large set of kinetic parameters. On the 

other hand large scale whole cell models will demonstrate how different subsystems of metabolism 

(e.g. DNA replication, ribosome synthesis, protein turnover, etc.) function together in time and space 

and would enable us to better design cell factories in the future. 
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Legends 

Figure 1: Reconstruction and uses of genome-scale models. (A) The genome annotation, but 

also other omics data can be used to reconstruct the metabolic network. (B) Gene-protein-reaction 

relationships are defined for the metabolic model. While this whole map is used for contextualizing 

high-throughput data, only the reaction network is used to construct the stoichiometry matrix (C). A 

solution space is defined from the constraints applied to the model and subsequent analysis can, 

among other things, provide instructions for metabolic engineering strategies, or contextualizing high-

throughput data. 
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Figure 2: Overview of kinetic modeling of metabolism. Kinetic parameters need to be defined 

through experimentation, estimation or literature data (A), to populate the rate expressions (B) that 

describe the reactions of the metabolic network that is being modeled (C). The resulting system of 

ordinary differential equations can be used to evaluate engineering strategies (here the effect of 

doubling the enzyme activity on the metabolic flux is shown) or identify flux controlling reactions 

through MCA (the control coefficient is related to the slope of the flux over enzyme activity).  

 

Figure 3: Perspective of the combined use of genome-scale models and kinetic models: GEMs 

provide the large context of the whole metabolic network and analysis of this system can indicate 

where more detailed description of the kinetics can be of interest. A number of examples of 

investigations that are possible with kinetic modeling are indicated with the colored boxes. 

 

Table 1: A selection of applications of mathematical models of metabolism in metabolic 

engineering of S. cerevisiae. 

 

 

Table 1 

Reference Aim Model Outcome Experimental 
confirmation 

Bro et al., 
2006 

Production 
of ethanol 

GEM – iFF708 
(Förster et al. 
2003) 

The resulting strain had a 40% lower 
glycerol yield on glucose while the ethanol 
yield increased with 3% without affecting 
the maximum specific growth rate 

Yes 

Dikicioglu 
et al., 2008 

Production 
of ethanol 

GEM – iFF708 Several single mutants that effected in 
partial or complete deficiency of respiration 
were cultivated in chemostat experiments 
and the outcome was compared with the 
FBA results. 

Yes 

Hjersted & 
Henson, 
2009 

Production 
of ethanol 

GEM – iJH732 
(same paper) 

A combined 
deletion/overexpression/insertion mutant 
with improved ethanol productivity 
capabilities was computationally identified 
by dynamically screening multiple 
combinations of the ten metabolic 
engineering strategies. 

No 

Asadollahi 
et al., 2009 

Production 
of 
sesquiterpen
es 

GEM – iFF708; 
OptGene (Patil et 
al. 2005) and 
MOMA (Segre et 
al. 2002) 

Deletion of GDH1 led to an approximately 
85% increase in the final cubebol titer. 

Yes 

Brochado 
et al., 2010 

Production 
of vanillin 

GEM – iFF708 Three of the mutants showed up to 1.5 fold 
higher vanillin β-D-glucoside yield in batch 
mode, while continuous culture of the ∆pdc1 
mutant showed a 2-fold productivity 
improvement. This 

Yes 

Otero et Production GEM – OptGene The resulting strain represents a 30-fold Yes 
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al., 2013 of succinic 
acid 

improvement in succinate titer, and a 43-fold 
improvement in succinate yield on biomass 

Agren et 
al., 2013b 

Production 
of succinic 
acid 

GEM – iFF708 Metabolic modeling suggested several 
potential mutations for improved succinic 
acid productions, where ∆dic1 produced the 
product with a yield of 0.02 C-mol/C-mol 
glucose 

Yes 

Hanly & 
Henson, 
2014 

Production 
of ethanol in 
co-culture 
with furfural 
present 

GEM – iMM904 
and iBB814 

A co-culture of S. cerevisiae and S. stipitis 
was simulated by combining two GEMS and 
including extracellular mass-balances. 
Reduced synthesis of acetate by S. 
cerevisiae yielded the highest ethanol 
production.  

No 

Cronwright 
et al., 2002 

Decrease 
glycerol 
production  

Kinetic model – 
MCA 

MCA of a small model of glycerol synthesis 
indicated that G3PDH has a control of 0.85 
over the glycerol flux, but that also DHAP 
and ATP levels are controlling the flux. 

No 

Polisetty et 
al., 2008 

Production 
of ethanol 

Kinetic model – 
BST 

Overexpression of glucose uptake would 
lead to the highest increase in ethanol yield. 
This was not experimentally validated by the 
authors. 

Not by same 
authors 
(Gutierriez-
Lomeli et al., 
2008) 

Parachin et 
al., 2011 

Xylose as 
carbon 
source 

Kinetic model –
simulate different 
enzyme activities 

Increasing xylulokinase activity improved 
the xylose consumption in silico, while 
experimental validation showed a 27-37% 
increase in xylose consumption. 

Yes 

Chen et al., 
2012 

Production 
of DHAP 

Kinetic model –
simulate knockout 

In silico knockout of the triose phosphate 
isomerase (TPI) resulted in higher DHAP 
accumulation (28% more than the measured 
experimental flux), depending on the 
glucose uptake rate. 

No 
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