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Off-shell, maximal supersymmetry & exceptional geometry
ANNA KARLSSON
Department of Fundamental Physics
Chalmers University of Technology

Abstract

Two lines of research are presented in this thesis, both with a focus on funda-
mental properties within the supersymmetric theories of high energy physics.
The first features analyses based on the actions for maximal supersymmetric
Yang–Mills theory and supergravity, provided by the pure spinor formalism.
The second is the development of the theory of exceptional geometry.

The analyses within maximally supersymmetric Yang–Mills theory and super-
gravity, benefitting from the pure spinor formalism, centres around the inves-
tigations of the UV divergences of the amplitude diagrams, where the case of
maximal supergravity is subject to ongoing research. There is currently an in-
teresting development in connection to the four-dimensional theory, regarding
a possible finiteness, indicated in the pure spinor formalism setting of the re-
search articles appended to this thesis. The results are contrary to the expected
divergence, currently of amplitude diagrams with more than six loops.

Exceptional geometry is an extension of supergravity that is constructed to in-
corporate U-duality. It is a geometric formulation with an extended space, in a
way similar to in doubled geometry, where T-duality is the symmetry accom-
modated for. Constituting a rather recent area of research, the theory is under
development with respect to the inherent symmetries, the tensor formalism,
etc., regarding the properties affected by the extended space. Its recognised fea-
tures, construction and concepts to be investigated are the objects of interest in
this thesis.

Keywords: Maximal supersymmetry, maximal supergravity, pure spinors, loop
amplitudes, exceptional geometry, U-duality, high energy particle physics
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Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.

Albert Einstein

1
Introduction

Within mathematical high energy physics, there is an angle at the supersym-
metric theories required for unifying quantum field theory and gravity: to ex-
amine their most fundamental properties in terms of cause and effect. Barring
string theory, this leads to the maximally supersymmetric Yang–Mills theory
(SYM) [1,2] and supergravity (SUGRA) [3–6]. Their formulations are tricky due
to issues with keeping the symmetry present off-shell, but there is one way
to construct the actions: in superspace [4, 5, 7–15], in the pure spinor formal-
ism [16–30].

The pure spinor formalism provides a way to examine what maximal su-
persymmetry means to a theory. A similar situation is the object of interest in
exceptional geometry [31–52], but for U-duality [53–56] instead of supersymme-
try. There, SUGRA is altered to capture the dualities of the five string theories,
a symmetry absent in string perturbation theory, but retained in the low energy
limit SUGRA shows up in — both theories in perturbative limits of an elusive
M-theory, desirable to capture.

Main points

A key feature in the work of the Papers is that of manifesting characteristics
— in general symmetries, but truly any generating property or main feature —
with the goal of a better understanding of the theories involved. Firstly, in tak-
ing advantage of the maximal SYM and SUGRA formalisms using pure spinors
to, in a compact and relatively transparent way, approach the theories and the
properties thereof, primarily in terms of the

1



2 Introduction

— ultraviolet (UV) divergences in maximal SUGRA amplitude diagrams,

but as an aside, also in the context of Born–Infeld theory [57], describing string
theory D-branes [58–68] and with maximal SYM in a perturbative limit [10–13,
15, 69].

Secondly, in developing the theory of exceptional geometry: SUGRA with
manifest (inherent and explicit) U-duality, obtained through an extension of the
spacetime geometry and the concepts connected to it.

1.1 Key results with backgrounds

The backbone of the major theme — off-shell, maximal supersymmetry — is the
pure spinor formalism. It is not restricted to maximal SYM and SUGRA; in fact,
it was first constructed in string theory, but its key feature is the introduction of
a (ghost) spinor that encodes the type of structure displayed by the maximally
supersymmetric theories. Regrettably, it is undervalued and deserving of more
attention. Within the high energy physics community, it is regarded as compli-
cated or difficult by many, at the same time as there is a general misconception
of the realisation of off-shell maximal supersymmetry as practically impossible.

Off-shell, maximal SUGRA

The most surprising result of the Papers has to do with a

— controversial possibility of UV finiteness of D = 4 maximal SUGRA.

The issue of divergences in maximal SYM and SUGRA is due to the perturbative
aspect with respect to energy which they are characterised by. The question of if
the theories yield finite results, and under what circumstances, has been central
to many an investigation [24, 28, 70–112]. While maximal SYM proved finite in
D ≤ 4 [79–81], maximal SUGRA has been a tougher nut to crack.

Investigations [70–75, 89, 95] have confirmed a SUGRA behaviour equal to
that of SYM for low-loop amplitudes, but pointed towards a first divergence in
D = 4 at 7 loops for the 4-point amplitude [97, 98, 101, 102], and with a subtlety,
not for the higher-point ones. The result of Paper IV points towards a cut-off of
the loop dependence, not only in a higher-than-seven loop sense, but also (and
only) for the 7-loop 4-point amplitude.

The coincidence is striking, but in need of verification, most prominently in
(or in relation to) a setting outside the pure spinor formalism. The situation has
been further analysed in Paper V, in addition reproducing the general ampli-
tude behaviour in the pure spinor setting, but the drawback of the too compact
formulation remains: what displays the results hides the commonplace inter-
pretation. It becomes difficult to establish key, controversial results as true.
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Part of the matter is that there ought not be two inequivalent, consistent
quantum theories with gravity. M-theory certainly is one, which implies D = 4
SUGRA to be ruled out. Perhaps a quotation from Niels Bohr is in place:

‘How wonderful that we have met with a paradox.
Now we have some hope of making progress.’

The first step of which is either to verify or discard the results of Paper IV–V.

Exceptional geometry

The second interesting research area is

— extending concepts into exceptional geometry to get at U-duality.

In this, the subject of Paper III is just a small part of a much larger process.
Exceptional geometry is SUGRA (D < 11) with a fibre bundle custom-made to
accommodate the U-duality usually hidden in D = 11 SUGRA, but visible in
terms of the string theory dualities. Due to the common origin of the theories,
and the certain limits the theories amount to, the latter can be analysed in terms
of the former. The process constitutes a way of capturing a property of M-theory,
and in extension represents a step towards constructing that very theory.

In exceptional geometry, it is the extended space that is of interest, encod-
ing the U-duality, and to exploit the construction the geometric approach must
be formulated in terms of it. To begin with, the Lie derivative is generalised,
which means that the precise meaning of the transformations of tensors must
be reinterpreted, etc., in combination with many other features of the geometric
formulation. This process is not yet altogether settled.

The theory constitutes a rather recent area of research, of increasing interest
these last years. It is a more general version of the established doubled geometry
[31, 113–145], concerning a subset of U-duality: T-duality [146–148]. Both are
extended geometries.

Off-shell, maximal SYM

Last, and least, comes the example(s) applicable to off-shell maximal SYM. For
the purposes of this thesis, its pure spinor setting is mostly used as a point of ref-
erence for the maximal SUGRA examinations, since it constitutes a simpler yet
similar version. However, it can equally well be used for investigations within
SYM, for example in relation to

— constructing the pure spinor action for the D-brane Born–Infeld theory,

which was initialised in Paper III and continued in [149,150]. Such constructions
are, of course, made in the hopes of that the pure spinor formalism, through its
virtues, will shed more light on the properties connected to the areas of research.
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1.2 Thesis overview

With an attempt at some self-containment, this thesis will start out by introduc-
ing basic supersymmetry and superspace concepts, in chapter 2. Certain con-
ventions regarding notation and the supersymmetry algebra are to be found
there, as well as a slight discussion on the usage of flat (the setting of the pure
spinor formalism) or curved space, especially in the construction of SUGRA.

In chapter 3, the pure spinor formalism is introduced. The maximal SYM
and SUGRA component theories, not sporting off-shell supersymmetry, are pre-
sented with an explanation of how an extension to superspace lays the ground
for the introduction of the pure spinor. How the correct, off-shell maximal su-
persymmetry properties are captured is detailed, as well as how the component
theory shows up; a highly relevant check of consistency. Finally, the attributes
of the formalism are discussed. Another extensive review is to be found in [151].

Following this, the investigations of UV divergences in maximal SYM and
SUGRA are described. General procedures are set out in terms of SYM prior to a
review of the maximal SUGRA examinations, including the explicit calculations
for the 4-graviton amplitude, the counterterm approaches, and the pure spinor
formalism studies. In addition, the results of maximal SYM are described prior
to the analysis of the current situation in maximal SUGRA, with respect to the
UV divergences, for a thorough understanding of the principles involved.

Chapter 5 deals with exceptional geometry, beginning with U-duality and
how it is made manifest in SUGRA. The necessary reconsiderations of the ge-
ometric treatments are introduced in terms of doubled geometry, followed by
the exceptional, slightly more involved, extension. Moreover, the so far estab-
lished (extended) concepts within exceptional geometry are described, with
some analysis regarding applications and further areas of interest.

The final chapter constitutes a short comment on the general ideas behind
the type of research presented in the Papers, of the values of keeping properties
manifest as far as possible and the advantages thereof. It also contains a mention
of the Born–Infeld theory, so far as it will be presented.

Paper (contribution) overview

Concerning the Papers, the two last are wholly mine, as is most of Paper II,
barring the initial idea and the analysis of the algebraic properties of the non-
minimal variables, e.g. in connection to the projection operator in the gener-
alised regularisation. In the first Paper, I contributed to the calculations and
recognised the relations between the operators (essentially the ∆a base), en-
abling the identification of the abelian action, whereas I in Paper III helped with
the calculations in connection to the compatible (affine) connection, and took
part in the general discussions.
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1.3 Outlook

The two main lines of research presented in this thesis, the investigations of UV
divergences in maximal SUGRA and the development of exceptional geometry,
are very much subject to continued research. The former needs a consensus
with regard to what happens in four dimensions. The latter is at a relatively
initial stage, with every possibility of providing new information on M-theory
characteristics, etc.; the investigations of different properties that currently are
the objects of interest in the pure spinor formalisms remain to be addressed.

Finally, it is important not to forget the advantages of manifest symmetries,
or constructions which to various degrees aim at inherent and explicit formula-
tions, thereby facilitating research in general.





It is because simplicity and vastness are both beautiful that
we seek by preference simple facts and vast facts; that we take
delight, now in following the giant courses of the stars, now
in scrutinising with the microscope that prodigious smallness
which is also a vastness, and now in seeking in geological ages
the traces of a past that attracts us because of its remoteness.

Henri Poincaré 2
Supersymmetry basics

The incompatibility of quantum field theory and gravity in combination with
the desire for one fundamental theory for both, or rather the physics of the uni-
verse, calls for extra symmetries in the former. Although the basic principles of
quantum field theory have been discussed in terms of consistency in relation to
the firewall paradox of black holes, the theory remains our best description of
the so far observed physics, excepting gravity. Despite the mathematical beauty
called for in the Standard Model of particle physics, and issues with dark mat-
ter etc., the theory predicts experimental results uncannily well. Nevertheless,
in the search for an extension, the most promising candidate is supersymmetry
— also known from string theory, where gravity is caused by the string dynam-
ics.

In the setting of this thesis, the original field theory properties are retained
and central to the description. It is not necessary to limit the investigations to
fields — other options include e.g. strings and particles — but a field theory
description is both exhaustive and the natural choice of an extension.

2.1 Supersymmetry

Supersymmetry [152–154] is an additional symmetry of quantum field theory,
incorporating fermionic symmetry generators transforming under the Lorentz
algebra. Together with conformal1 symmetry, it represents the only spacetime
symmetry compatible with quantum field theory and the symmetries thereof:

1Invariant under local, angle-preserving transformations, e.g. including scale invariance.

7



8 Supersymmetry basics

the translations2 (Pm) and Lorentz transformations (Mmn). Any other extension
(excepting internal symmetries in trivial combinations with the spacetime sym-
metries) fails to give a result consistent with Lorentz invariance, as stated by
the Coleman–Mandula theorem [155]. An attempt at extending quantum field
theory therefore naturally includes the introduction of supersymmetry.

The supersymmetry operators (Qα) open up the possibility to alter the spin
and the statistics of a field. For example, an operator acting on some field ψ with
spin j results in the following:

Qαψj  ψ′
j± 1

2
. (2.1)

The description is that of how to turn fermions and bosons into one another, re-
lating matter particles (fermions) to force particles (bosons), in particular within
certain sets of superpartners. Through the introduction of supersymmetry in
quantum field theory, each particle of the original theory is assigned a super-
partner, representing the other half in the pair within which the supertransfor-
mations take place.

These properties still remain to be observed in nature; the predictions of at
which energy levels their presence might be detectable have yet to be verified.
There are hopes for positive results in relation to the experiments at the Large
Hadron Collider (LHC) at CERN, Switzerland, where the presence of super-
symmetry e.g. would result in additional Brout–Englert–Higgs (BEH) bosons
[156–158] to the one so far observed [159,160]. However, it is uncertain whether
it is possible to find superparticles at the energy levels of the LHC, or if they
would be recognised by the experiments, if indeed present. Regardless, the con-
struction is of theoretical value, although the question has been raised of its
practical use if, indeed, the energy levels at which it occurs are too high.

2.1.1 The supersymmetry algebra

The conjecture of a symmetry between fermions and bosons includes the sym-
metry being compatible with the symmetries of the original theory, and the op-
erators of it obeying an algebra compatible with the same. The anticommutators
of the fermionic creation (Qα) and annihilation (Q†β) operators, raising and low-
ering the spin, are required to give results in terms of the symmetry operators of
the theory. This is usually expressed in terms of flat space, where the anticom-
mutator of two supersymmetry operators must be expressible in the original
Poincaré algebra. This leaves but one choice of an algebra, up to a constant, the
only non-zero algebra component (among the anticommutators) of which is:

{Qα,Q
†
β} = cγaαβ∂a, c ∈ C, (2.2)

2Note that in the conventions of this thesis and the Papers, bosonic indices are denoted by minus-
cules and fermionic by greek minuscules. (m. . . , µ . . .) denote curved indices while the corresponding for
(a . . . ,α . . .) is flat.
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with ∂a denoting the momenta, equivalently replaceable with Pa, in total de-
scribing a general coordinate transformation. The convention in this thesis is
c = 2, although the variant of 2i is common outside the context of section 3.3,
effectively that of Paper I,II and IV. In this setting of a real algebra, Q†β ≡ Qβ .

The ensuing, total algebra goes by the name of super-Poincaré. When it
holds, it includes both supersymmetry and Lorentz symmetry. Moreover, under
certain conditions it can be extended to include several sets of supersymme-
try operators, obeying the supersymmetry algebra within each set (QI

α) while
opening up for non-trivial relations otherwise. The algebra is then termed to be
N -extended, with N denoting the number of sets of supersymmetry operators.

Supersymmetry in curved space

A general setting of a supersymmetric theory is not restricted to flat space, as
the supersymmetry algebra given in the previous paragraph. Yet the discussion
of this thesis will be limited to just that, when not treating the D = 11 maximal
SUGRA component theory in a general setting; that is where the pure spinor
formalisms are formulated.

For SYM, this is a common choice. The dynamics does not depend explicitly
on the background, which merely enters in terms of the geometry, and so it is
suitable to investigate the perturbation theory in terms of flat space. Also, as
for most investigations, examinations with respect to supersymmetry are most
easily performed in the absence of curvature, and a good understanding of the
flat case is required for any attempt at a more extensive description. In curved
space, the known formulations containing supersymmetry are limited to certain
backgrounds.

For SUGRA, the choice of a certain background is limiting; the gravity fluc-
tuations are central to the theory. However, the pure spinor formulation ought
to be of value and feasible for other backgrounds. It is possible to note that
the restriction, in terms of the flat background of the pure spinor formalism,
really only concerns the topology — the diffeomorphisms3 are present in the for-
mulation. By their presence, the fields deform the geometry to include fluctu-
ations, despite the appearance of a flat background. Effectively, a background
invariance of the theory is implied, much like in string perturbation theory in
flat space, where there exist fluctuations in the perturbative degrees of free-
dom. However, the diffeomorphism symmetry in the SUGRA pure spinor for-
malism is comparable to the maximal supersymmetry in that it is not quite
manifest, compare section 3.4.4. Both exist in terms of cohomology4, and while
the diffeomorphisms seem to include what is necessary for background invari-

3Invertible function between smooth manifolds, with f and f−1 smooth: preserving the differentiable
structure.

4For an explanation of this concept, turn to section 3.4.4.
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ance, strictly manifest diffeomorphisms (the geometrical interpretation in su-
perspace) have to be identified for the general statement.

Anyway, for the purposes of the Papers and this thesis, flat space is an excel-
lent setting for investigations.

2.2 Superspace

The introduction of the supersymmetry algebra by default extends the bosonic,
curved spacetime (xm) with fermionic components (θµ), the total of which rep-
resents superspace, described by zM = (xm, θµ). The spinors of this space are
governed by the Clifford algebra, spanned by the irreducible representations
of the relevant Lie algebra, and a convenient notation for the tensors is that of
differential forms. The following section consists of a selection of superspace
concepts of value to the discussion in the following chapters.

The Clifford algebra and additional properties of the spinors

In D dimensions, the fermionic space consists of 2bD/2c Dirac spinor compo-
nents, with the exponent rounded off to the closest (lower) integer and dxe in-
stead referring to the higher equivalent. Additional constraints are present in
some dimensions, sporting Majorana and/or Weyl spinors, reducing the num-
ber of components further.

The algebra of the spinors is that of the Clifford algebra, associated with the
Lorentz group, where the generating elements are the Dirac matrices γm:

{γm, γn} = 2ηmn1, (2.3)

with two (free) spinor indices implicit. In general, the algebra is complex, but
in a Majorana setting, valid in D = 2, 3, 4 mod 8, it can be described in terms
of real components. It is then possible to set the spinors to be real, due to the
equivalence of the descriptions.

Likewise, in even dimensions the Weyl representation is valid, splitting the
Dirac matrices into two off-diagonal blocks described by the Weyl matrices σm
and σ̄m. The algebra then splits into two (in some sense) equivalent sets, result-
ing in the presence of two chiralities of the spinors, presenting dual descriptions
where one may be chosen consistently. Effectively, the degrees of freedom of the
spinors are reduced by half. However, the change of matrices in the formula-
tion, from Dirac to Weyl, will remain implicit in this thesis. Where applicable, γ
denotes σ.

Moreover, the Lie algebra is described by up to bD/2c antisymmetrised (Dirac
or Weyl) matrices, and only half of the bD/2c-antisymmetrisation if D is even,
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e.g. presenting the way for how tensors are expanded in θµ. The antisymmetri-
sations of (D − p) and p matrices are dual with respect to the encoded degrees
of freedom, with the presence/absence of the p indices filling the same function.

2.2.1 Differential forms

A useful notation of vectors, in various mathematical contexts, is that of dif-
ferential forms. They are usually defined in a purely bosonic setting, but the
concepts can equally well be extended to fermions and used for objects on su-
perspace. However, when not otherwise specified, the bosonic form is what is
intended.

A differential form is (implicitly) coupled to the basis elements of the space
under consideration, which encode the properties of the form. In superspace,
with the local coordinates zM = (xm, θµ), a general p-form is described by

Ω(p) =
1

p!
dzMp ∧ dzMp−1 ∧ . . .∧ dzM1ΩM1...Mp , (2.4)

where the form indices can be replaced by [M1 . . .Mp) to explicitly denote the
symmetrisation of the bosonic and fermionic indices: antisymmetrisation be-
tween all indices except pairs of fermionic ones, which are symmetrised. This
follows from the properties of the wedge product:

dzM ∧ dzN =

{
dzN ∧ dzM , (M,N) = (µ, η)
−dzN ∧ dzM , otherwise . (2.5)

It also represents a choice in that it sets the convention for what is incorporated
in the (anti-) symmetrisation of the tensor indices to

A[mBn] =
1

2
(AmBn −AnBm). (2.6)

A quantity Ωmn implicitly has the indices antisymmetrised unless otherwise
specified, such as for the contraction of indices through δab and ηab, where the
indices are symmetrised. In addition, ∗Ω(p) denotes the dual (D− p)-form.

The product of two forms is

Ω(p) ∧Ω′(q) =
1

(p+ q)!
dzMp . . .dzM1 ∧dzNq . . .dzN1

(
p+ q

p

)
Ω′[N1...Nq

ΩM1...Mp), (2.7)

whereas contractions of indices are described by the interior product, for a vec-
tor:

ıXΩ(p) =
1

(p− 1)!
dzMp ∧ . . .∧ dzM2XM1Ω[M1...Mp). (2.8)
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For example, the exterior derivative acts according to

dΩ(p) = Ω(p) ∧ d←−. (2.9)

The ordering can however be simplified in a purely bosonic setting, due to the
absence of fermionic quantities in the forms.

2.2.2 Irreducible representations

As to the Lie algebra, the most convenient way to denote the irreducible rep-
resentations of the Lorentz group is by the highest weight Dynkin labels. The
standard enumeration is described by the Dynkin diagrams, e.g. [161]

D = 10, D5 : u u u��
1 2 3

u
PP u5

4
(2.10a)

D = 11, B5 :
u u u u u〉

1 2 3 4 5
(2.10b)

both of which have Dynkin indices presented by a vector with five entries.
There, the first entry represents the number of constituent (bosonic) 1-forms
(symmetrised, but not contracted) etc. up to the third and fourth entry, respec-
tively. In D = 10 (00011) denotes a 4-form, because the fourth and fifth entries
correspond to the two different spinor chiralities, of which there is only one in
D = 11. In eq. (2.10a), the Weyl spinors are clearly visible. The 5-form is de-
noted by the value of 2 at the position of the spinor (of the chosen chirality). For
higher forms, the duality of n-forms and (D − n)-forms needs to be taken into
consideration. At most one spinor index is free; pairs are interpreted in terms of
projections into n-forms. In total, the consideration of constellations of indices
constitutes Lie group computations, with rearrangements of the spinor indices
given by the Fierz identities. For further details on that, look to the appendices
of the Papers.

Lie algebras & groups

Implicit in all this is that the symmetries are described in terms of Lie groups
and Lie algebras, the properties of which are presented in e.g. [161, 162]. A de-
tailed analysis will not be performed here; but for the central concepts, look to
chapter 5. Due to the theme of that chapter — the extension of spacetime and
effectively a reformulation of the ordinary Lie algebra — e.g. the Lie deriva-
tive is best presented there, in relation to the change it is subject to in extended
geometry.
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Young tableaux

A alternative way of displaying the form properties is through Young tableaux

. . .

...
. . .

where each square denotes a bosonic index, of which horizontal rows denote
symmetrisation and vertical antisymmetrisation. In the absence of the dots, the
Young tableau above corresponds to (11000) in terms of eq. (2.10). However, this
does not capture the presence of a free spinor index.

2.2.3 Torsion & curvature

While spacetime is described by a metric, the concept fails to strictly translate
into superspace. However, the superspace vielbein EM

A(zM) provides map-
pings between different local reference frames, just as in spacetime, so that the
concepts of spacetime carry over to superspace, with an extension to the super-
space indices. The analogy holds, e.g. for the central concept of torsion.

Parallel transport along a curve may twist an initial reference frame. How is
defined by the torsion, given by the covariant exterior derivative acting on the
vielbein:

TA ≡ DEA = dEA +EB ∧ΩB
A, (2.11a)

with the 1-form spin connection Ω encoding curvature.
In flat space, this is reduced to

TA = dEA⇔ [∂A, ∂B} = −TABC∂C : Tab
C = 0, (2.11b)

where the derivatives are required to be covariant. To fulfil this, the spinor
derivative must be altered, a procedure which will be addressed in the next
chapter. To be precise, the flat space is only required to have zero torsion in the
above specified sense.

The parallel transport is equally described by the affine connection Γ, show-
ing up in the covariant derivative (in a geometric setting) as

DM ∼ ∂M + ΓM , (2.12)

with the affine connection representing a matrix (ΓM)N
P , where one of the ma-

trix indices gets contracted with the tensor the derivative acts on. As in ordinary
geometry, the curvature can be derived from this entity (Γ) as well as Ω: [163]

RA
B = dΩA

B + ΩA
C ∧ΩC

B. (2.13)
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2.3 Supersymmetric gravity & Yang–Mills theories

At the introduction of supersymmetry, and hence the presence of spinors, the
supersymmetry operators play a central role. The number of them that act non-
trivially on states differ between theories. For the object of interest in this thesis,
maximal supersymmetry, the states are massless, obeying some Bogomol’nyi–
Prasad–Sommerfield (BPS) condition, which means that the type of multiplet
under consideration is short (BPS multiplets). Only half of the supersymmetry
operators are relevant for the supersymmetry transformations.

In this setting, the number of non-trivial supersymmetry operators equals
the degrees of freedom of the spinors (obeying the Dirac equation): half of the
initial amount of spinors (ns) set by the Clifford algebra [164]. For consistency in
the formation of superpartner pairs, the degrees of freedom of the bosons fur-
thermore must amount to the same number, a circumstance restricting the type
of theory under consideration to certain dimensions. In specific, this require-
ment — if fulfilled on-shell5 — also holds off-shell provided the supersymmetry
algebra holds likewise. In Yang–Mills theory, with D = (d+ 1), the bosonic de-
grees of freedom are given by (D− 2), while the corresponding count in gravity
is slightly more involved.

Regarding the maximal change of spin obtainable through the application
of the supersymmetry operators acting on a field or a particle, it is a quarter
of the non-trivial number of supersymmetry operators (ns/8), as half of that
number is constituted by creation operators, and the rest by annihilation oper-
ators, each yielding a change in spin of 1/2. Depending on the dimension and
the maximal spin of the theory under consideration, a different number of sets
of supersymmetry operators is required in order to fully capture the possible
transformations of the supersymmetrisation of the theory.

In Yang–Mills theory, constituting a gauge theory, the maximal spin is 1,
given by the presence of the photon. In the presence of gravity, however, the
maximal spin is 2, due to the graviton. Hence, the former theory is spanned by
4 creation and 4 annihilation operators, whereas the equivalent for the latter is
8, as illustrated in fig. 2.1. No more supersymmetry operators can be fitted into
the theories.

2.3.1 N -extended supersymmetry theories

In many dimensions, there is room for more than one set of supersymmetry op-
erators in the theory, in total not surmounting the upper limit on their number,
set by the maximal spin. If a supersymmetry theory is extended in this way, it
is termed N -extended. For example D = 4 SUGRA can have up to N = 8, with

5A theory is termed on-shell if the equations of motion are fulfilled, as opposed to off-shell.
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0 1
2 1 3

2 2−1
2−1−3

2−2

Qα−→Q†β←−

Figure 2.1: Spin step illustration. Effectively, there exists one creation and annihilation
operator for each step in spin when the theory is fully supersymmetric in the sense that
all possible spin states can be reached. The amount required differs between theories
of different maximal spin: Yang–Mills theory has a maximal spin of 1 and requires 8
operators to capture the full transition between the spin states of −1 and 1. Gravity
includes a maximal spin of 2 and a corresponding set of 16 supersymmetry operators.

the N s denoting different theories. At the point of N = 8, the number of super-
symmetry operators equals the maximum of 16 and maximal supersymmetry
is obtained. Importantly, not only does N = 8 in the sense of presenting maxi-
mal supersymmetry constitute the maximal value of N , but covers the full set
of spin transitions in the theory.

Maximal, N = 1 supersymmetry

Under certain conditions on the dimension of a theory, maximal supersym-
metry is obtained with a single set of supersymmetry operators. These the-
ories, with D = 10 in the case of Yang–Mills theory and D = 11 for SUGRA,
are especially interesting as they ‘encode’ lower dimensional, N -extended su-
persymmetric theories, for all N , in that the dimensions can be compactified
and, through further procedures, the ensuing extended supersymmetry broken.
The (overall) properties observed in N = 1 maximally supersymmetric theo-
ries therefore in some restricted senses (unbroken supersymmetry: in general)
limit what may be valid for those supersymmetric theories, e.g. in the sense of
providing perturbatively finite theories, see chapter 4. By extension, they also
set the actual properties, although that requires extensive analyses. This makes
them especially interesting for diverse investigations, even more than what is
due to the crucial simplifications associated with maximal supersymmetry, de-
spite the fact that only broken supersymmetry is expected to be observed in
nature.





It is the harmony of the diverse parts, their symmetry, their happy balance;
in a word it is all that introduces order, all that gives unity, that permits us
to see clearly and to comprehend at once both the ensemble and the details.

Henri Poincaré

3
Maximal supersymmetry

The formulation of an action in gravity or Yang–Mills theory, in the presence
of maximal supersymmetry and with that symmetry as an inherent part of the
formalism, at present requires pure spinors. Without the introduction of such
spinors the theories formed out of the corresponding field contents are rep-
resented by (component) actions giving rise to supersymmetry variations that
only close on-shell.

This situation is unique to the maximally supersymmetric theories. The fol-
lowing chapter describes the formulation of the actions for maximalN = 1 SYM
and SUGRA, beginning with the properties of the component actions, the de-
sired equations of motion and how the on-shell theories are described in a su-
perspace formalism. It continues with how the pure spinor formalism is tailor-
made to fit the original, flat theories while allowing for off-shell maximal su-
persymmetry. Finally, the actions in the pure spinor formalisms are described
with respect to their inherent parts and distinctive features, including how the
characteristics correspond to those of the original theories, where applicable
(on-shell).

In total, the pure spinor formalism enables a powerful formulation, encoding
theories of lower dimension. In some respects, the identification of properties
inherent to the theory are facilitated. However, the dense formulation, where
component fields are reduced to parts of a series expansion of a single super-
field, can be difficult to decipher in terms of the conventional component field
theory approach. In addition, the inherent maximal supersymmetry is perhaps
not to be termed manifest in SUGRA, as it is present as a part of the cohomology
rather than explicitly, see section 3.4.4.

17
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3.1 The component, maximally supersymmetric theories

The component actions of N = 1 maximal SYM [1, 2] and SUGRA [3–5] are

S =
1

g2
YM

∫
d10x tr

(
− 1

4
FabF

ab +
1

2
ψγaDaψ

)
, (3.1a)

S =
1

2κ2

∫
d11x
√−g

[
R(ω)− 1

24
HmnpqHmnpq − ψmγmnpDn

(ω + ω̂

2

)
ψp−

−
√

2

96
(ψnγ

abcdnpψp + 12ψaγbcψd)(H + Ĥ)abcd

]
−
√

2

3κ2

∫
C ∧H ∧H.

(3.1b)

The first action, describing SYM, contains terms representing the Maxwell
Lagrangian and the Lagrangian for a massless Majorna–Weyl spinor, in the
presence of the gauge coupling parameter1 gYM of classical Yang–Mills theory.
In addition, the Lie algebra indices, with respect to which the trace is taken, are
implicit.

The second action, describing SUGRA, contains the terms belonging to a
graviton, a 3-form Cmnp and a gravitino (the first three terms), with the grav-
itational constant κ, followed by terms necessary for the supersymmetry to
be present. Depending on the conventional constant in eq. (2.2) the end result
varies slightly, e.g. compare with [3, 165]. The present description follows from
a constant of 2, which is used in the pure spinor formalism.

Moreover, in contrast to theories with less supersymmetry, these actions can-
not be altered through an introduction of auxiliary fields G in the shape of ad-
ditional terms G†G, which constitutes a frequent procedure to achieve off-shell
supersymmetry. In maximally supersymmetric theories, nothing can represent
such a field.

The field contents of the theories are

SYM : Aa, ψ
α (gauge field, spinor),

SUGRA : gmn, ψ
α
m,Cmnp (graviton, gravitino, 3-form),

(3.2)

where the SYM fields take values in the Lie algebra. Of these, gmn can be repre-
sented by the vielbein ema since

gmn = em
aen

bηab. (3.3)

The remaining fields, such as the field strengths F = dA+A∧A and H = dC, as
well as the Ricci scalar, are constructed out of these fields. For example in SYM,

1The fields can also be set to incorporate gYM and its equivalent in SUGRA; a reinterpretation which
will not be performed here, or in relation to the pure spinor formalism.
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the additional components in the action are

Da = ∂a +Aa,

F I
ab = 2∂[aA

I
b] + ([Aa,Ab])

I = 2∂[aA
I
b] + f IJKA

J
aA

K
b ,

(3.4a)

where f IJK are the structure constants of the Lie algebra2. In SUGRA, the co-
variant derivative in contrast incorporates the Lorentz connection ω(e), and the
short notation used in the action is

ωm
ab = ωm

ab(e) +Km
ab,

Kmab = −(ψmγbψa − ψaγmψb + ψbγaψm) +
1

2
ψnγmab

npψp,

ω̂mab = ωmab −
1

2
ψnγmab

npψp,

Ĥmnpq = Hmnpq + 3
√

2ψ[mγnpψq].

(3.4b)

The hatted quantities are supercovariant, i.e. at a local supersymmetry variation
of the fields, they do not contain a derivative ∂m acting on the supersymmetry
parameter; compare to eq. (3.6b).

The equations of motion of the SYM theory is

DaF
ab − ψγbψ = 0,

( /Dψ)α = 0,
(3.5a)

easily obtainable at a variation of the fields. The first equation corresponds to
δAa: the equation of motion for the gauge field; the latter to δψα. The SUGRA
equivalent for the graviton, the gravitino and the 3-form (in that order) is

Rmn(ω̂)− 1

2
gmnR(ω̂) =

1

24
(4ĤmabcĤ

abc
n − 1

2
gmnĤabcdĤ

abcd),

γmnpDn(ω̂)ψp −
√

2

144
γmnp(γn

abcd − 8ηanγ
bcd)ψpĤabcd = 0,

Dm(ω̂)Ĥmnpq −
√

2

4!4!
εnpqabcdijklĤabcdĤijkl = 0,

(3.5b)

although the ones most frequently encountered are the bosonic parts:

Rmn −
1

2
gmnR =

1

24
(4HmabcHn

abc − 1

2
gmnH

2),

∗ ıdH −
√

2H ∧H = 0.

2The Lie algebra indices will be kept implicit from here on.
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3.1.1 The supersymmetry algebra of the component theory

The supersymmetry transformations turning bosonic and fermionic fields into
one another, essentially δε ∼ εαQα, are limited to certain expressions by dimen-
sional properties, spin and statistics. Typically, the dimension of the variable x
is set to −1, so that the field strength has dimension 2 in SYM. With the same
convention, the dimension of C is set to zero in SUGRA, at which point the
dimensions of the other components follow from the action being dimension-
less. For example, an ordinary spinor variable such as εα is fermionic and of di-
mension −1/2. Moreover, the action being invariant under the supersymmetry
variations yields that they in SYM are restricted to the global transformations of

δεAa = εγaψ,

δεψ
α =

1

2
Fab(γ

abε)α,
(3.6a)

whereas in the case of SUGRA, they are local: [3–5]

δεem
a = 2εγaψm,

δεψ
α
m = Dm(ω̂)ε+

√
2

144
(γm

abcd − 8ηamγ
bcd)Ĥabcdε,

δεCmnp = − 3√
2
εγ[mnψp].

(3.6b)

Here, it is possible to note that the identification δεψ
α
m = D̂m(ω̂)ψαm does not

match with an identification of (γmnpD̂n(ω̂)ψp)
α = 0 for the equation of motion

for the gravitino, as is the case in [3]. For that, the coefficient in front of Ĥ in
δεψ

α
m has to be purely imaginary.
The ensuing supersymmetry algebra is modulo gauge transformations, in

the case of SYM the local Lorentz transformation Λ ∼ (εγaε′)Aa, with

[δε, δε′ ]Aa = −2(εγbε′)∂bAa +DaΛ,

[δε, δε′ ]ψ
α = −2(εγaε′)∂aψ

α + [ψα,Λ] + f(ε, ε′)αβ( /Dψ)β,
(3.7a)

where f is some function and δε has been set to (εQ) : [δε, δε′ ] = −εαε′β{Qα,Qβ}.
The first term in each can be reinterpreted in terms of the Lie derivative, com-
pare to eq. (5.4). In SUGRA, (γm)αβ = em

a(γa)αβ needs to be identified through-
out the variations and the gauge transformation is Λab. The algebra itself is
slightly more complicated than in SYM, but follows the same pattern of

[δε, δε′ ] ∼ L−2(εγaε′) + δΛ + δEOM, (3.7b)

where the equations of motion enter only for, and in relation to, the gravitino.
Importantly, the supersymmetry algebras only close on-shell, since the form
displayed in eq. (2.2) only is achieved when eq. (3.5) is fulfilled.
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3.2 The superspace constructions of the on-shell theories

The failure of the component action (SYM or SUGRA) to describe off-shell, max-
imal supersymmetry leaves one possible way to achieve that very thing: a su-
perspace formulation of the theory. In order to treat the fermions and bosons in-
volved in the supersymmetry equally, a spinor variable θα (of dimension −1/2)
is included alongside x, and the fields are generalised to also carry spinor in-
dices. To capture the relevant component theory, the general fields in it (that
may be present in superspace) are considered and examined. With respect to
their properties, it is possible to provide a formulation describing the physics
of the component formalism, as will be outlined here. The equations of motion
correspond to those of eq. (3.5) with the addition of one, which when imposed
brings about the rest through the Bianchi identities (BIs).

The procedure furnishes an on-shell theory equivalent to that of the (corre-
sponding) component action, and in SYM the maximal supersymmetry is re-
spected (present off-shell), but no action has been possible to construct in either
theory. The formulation thus remains incomplete; in examinations of the max-
imally supersymmetric theories, not only the presence of maximal supersym-
metry is crucial for a full analysis, but also the existence of an action respecting
the maximal super-Poincaré symmetry. However, in contrast to the component
theory, the superspace formulation can be used as a starting point for the con-
struction of a theory defined by an action respecting maximal super-Poincaré
symmetry; that of the pure spinor formalism, which is the subject of the next
section.

The superspace extension

The superspace formulation considers all possible fields belonging to a theory,
so that the 1-form in SYM is AA = (Aa,Aα), the 2-form FAB, etc. The fields are
dependent on the superspace variables zM = (xm, θµ) and the symmetry accom-
modated for by default is that of supersymmetry. In flat space, the form

Qα = ∂α + (γaθ)α∂a : {Qα,Qβ} = 2γaαβ∂a (3.8)

of the supersymmetry operator sets the algebra to that of eq. (2.2), in contrast to
what is true in the component theory, where the result of Qα acting on a field is
set by what can be expressed in terms of the fields of the theory. In superspace,
the maximal supersymmetry algebra always holds.

The superfield formulation has a few fundamental issues to begin with:

1. The spinor derivative does not map superfields into dittos: {Qα, ∂α} 6= 0.

2. A redundancy of field components. For example, there are two different
1-forms in SYM. The situation in SUGRA is similar, with multiple fields
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filling the same function. The extra fields need to be removed for the theory
not to be degenerate, i.e. constraints need to be introduced.

3. The BIs must be respected by the changes brought about by (2).

4. The equations of motion must match the component theory. In this, an
alternative object of interest is the abelian3 theory. Although incomplete, it
represents the starting point for the pure spinor formalism.

The first issue is remedied by replacing the spinor derivative ∂α (except for
in Qα) with a covariant spinor derivative, Dα:

Dα = ∂α − (γaθ)α∂a : {Qα,Dβ} = 0, {Dα,Dβ} = −2(γa)αβ∂a, (3.9)

where the last entity in flat space sets the only non-zero torsion as specified by
eq. (2.11b).

The second one leads to a search for constraints on the fields compatible
with the third point. In particular, one such constraint (in SUGRA, a set of con-
straints) shows up which in the absence of curvature sets the BIs to be equiv-
alent to the equations of motion of the flat component theory of SYM and lin-
earised SUGRA. In addition, a second, separate set of constraints in SUGRA
likewise gives the full component theory in curved space. Each condition can
be identified to compose of two parts; one necessary for the BIs to hold, the
other interpretable as an equation of motion for one of the superfields unique
to superspace. It represents the only equation of motion necessary to consider,
as the BIs in its presence give rise to the rest.

3.2.1 The SYM superspace

In SYM, maximal supersymmetry in the N = 1 setting takes place in a D = 10
theory with Majorana-Weyl spinors. Consequently, the spinor space is split into
two dual chiralities with 16 degrees of freedom each, with Dirac matrices of
up to five antisymmetrised indices (and only half of the 5-form projection) as a
valid basis of the Lie algebra. The superspace is described by zM = (xm, θµ), and
the subsequent theory was recognised in [7, 8, 12].

The gauge theory has the gauge field A = EAAA (EA = dzMEMA) and its
2-form field strength F , with the BI DF = 0, and is typically examined in flat
space, compare to section 2.1.1. Moreover, the description is degenerate as it
contains two 1-forms, Aa and the A′a in the series expansion of Aα:

Aα = cα + (θγa)αA
′
a + . . . , (3.10)

one of which needs to be eliminated (expressed in terms of the other). The best
way to attempt this while respecting the BIs is through a condition on F , the part

3The free theory, also called linearised: no interactions present.
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which ought to be unphysical in the sense of the component theory aimed at:
that of dimension 1. Except forAa, there are no physical fields of that dimension,
and Aa does not count as it does not transform homogeneously under Lorentz
transformations. So Fαβ better be zero.

As it turns out,
Fαβ = 0 (3.11a)

in flat space not only respects the BIs, but ensures that they make up the equa-
tions of motion. That of dimension 3/2 is trivial, 2 describes the existence of
a spinor field, 5/2 the equation (3.5a) of motion of that field and 3 the BI of
the 2-dimensional field strength. Another covariant (spinor) derivative acting
on the spinor equation of motion gives the field equation for the vector field, a
procedure which when repeated yields a pattern: the result proportional to the
equations of motion, alternating, and any other information trivial. In this way,
the condition of eq. (3.11a) in flat superspace exactly corresponds to formulating
the on-shell component theory.

However, a softer condition, the conventional constraint [12, 13]

(γa)αβFαβ = 0 (3.11b)

is consistent with the BIs. It sets Aa to be a function of Aα. Moreover, it defines
the full, flat superspace theory, with interactions, to consist of Aα and zA, with
the equation of motion and subsequent gauge invariance:

(γ5)αβD(αAβ) = 0, δΛAα
(3.9)
= DαΛ. (3.12)

The flat superspace formulation thus (through the BIs) coincides with the com-
ponent theory when the equation of motion is fulfilled, corresponding to the
part of the theory desirable to describe that is known to be correct. Further-
more, global maximal supersymmetry is present as superfields transform into
superfields; it is given by Killing vectors on the background superspace. The
problem is that it is unclear how to formulate an action encoding the structure
without extending the superspace with the pure spinor.

3.2.2 The SUGRA superspace

In SUGRA, maximal supersymmetry in theN = 1 setting occurs in D = 11. The
theory has symplectic spinors, making it convenient to (in flat space) consider
all spinor indices to be subscripts, and contracted through the antisymmetric
εαβ . Order is of vital importance4. There are 32 fermionic degrees of freedom

4In this setting, a raised index (without further notation) strictly does not make any sense. The gravi-
ton ψαm is best interpreted as ψm,α, with ψmβ (connecting to the right) equal to ψm,αεαβ . However, in a
discussion on both SYM and SUGRA, this difference will be implicit.
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with Dirac matrices of up to five antisymmetrised indices as a valid basis of the
Lie algebra, and the superspace is described by zM = (xm, θµ).

The theory of gravity consists of the superfieldsEMA (vielbein incorporating
em

a and ψαm) and CMNP (3-form). Its degeneracy can be treated in two different
ways:

1. Through a supergeometric approach [4, 5, 9]. For two reasons, this con-
struction centres around the torsion T = DEA and its BI [163]

DTA = EB ∧RB
A, (3.13)

rather than the other fields initially present: R and C. Firstly, the BI for the
curvature R is encoded by the torsion equivalent. Secondly, it is unneces-
sary to consider C in order to capture the equations of motion through the
BIs. The field strength H shows up anyway, in the torsion and the curva-
ture.

To constrain the theory, the torsion therefore is the object of interest. The
condition which makes the BIs equivalent to the equations of motion of
the component theory is

Tαβ
c = 2(γc)αβ, (3.14a)

as the only non-vanishing torsion component. A softer condition in rela-
tion to this also allows for the modules [10, 11, 15]

Tαβ
c ∈ ⊕ , (3.14b)

which brings about the elimination of all fields unique to the superspace
formulation except for the γ-traceless part of Eµa. It represents the only
field of interest, in the sense ofAα in SYM, but in the presence of curvature.

Nevertheless, an action cannot be formulated from this. For that, the pres-
ence ofC is required, in contrast to what is true for the equations of motion.

2. Through an approach based on C [4, 5], where the linearised theory is ob-
tained. While the superspace geometry usually enters the BIs of the 3-form
in the shape of torsion, complicating the third point of section 3.2, this is
not the case in flat space, in the absence of interactions, where

D(αCβγδ) = 0 (3.15)

gives the on-shell, linearised component theory. Moreover, the constraint
can be softened into a conventional constraint, with the theory described
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by zA and Cαβγ , the field equation and gauge of which is [15]

D(αCβγδ)

⊕ ⊕

= 0,

δΛCαβγ = D(αΛβγ) : (γ1)αβΛαβ = 0.

(3.16)

At this point, however, the formulation of the corresponding action is just
as problematic as in SYM.

In these constructions, both the geometric and 3-form superspace formulations
fail to provide maximal supersymmetry; that local structure is absent, compare
to section 3.4.4, which is what is required, in contrast to what is true in SYM.
The main advantage of the reformulations is the compactness of the superspace
theories, each contained in a single superspace field through the conventional
constraints and the BIs, and the possible extension to the pure spinor formalism.

3.3 The pure spinor formalism construction

A closer look at the equations of motion and the gauge variations of the SYM
and SUGRA superspace formulations show a peculiar pattern. It is most easily
recognised for abelian SYM, where the condition on D(αAβ) is that the 5-form
vanish on-shell. Off-shell, a 5-form current Jαβ is allowed. In combination with
the gauge, this indicates a series of modules connected by a projection operator:

Λ
PDα→ Aα

PDβ→ Jαβ → . . . , (3.17)

with the projection symmetrising the indices into 5-form irreducible represen-
tations, while respecting the gauge invariance (and supersymmetry). Equiva-
lently (and more generally), the process can be regarded as symmetrising the
indices while removing the 1-form, effectively forcing DαDβ to zero (generat-
ing the gauge) and removing torsion components. Compared to the equation
of motion and gauge invariance, the fields in each module are physical only if
they are unconnected to the other modules. [12]

This pattern is visible in SUGRA as well. The linearised theory sports an
equation of motion where the 1-form projections of the indices are absent, i.e.
already set to zero by the conventional constraint, and similar restrictions apply
to the gauge. Meanwhile, the non-abelian theory contains a 1-form torsion on-
shell while (in addition) 2- and 5-form modules are present off-shell. As such,
the off-shell physics desirable to capture is centred around the symmetric mod-
ules of the irreducible representations that do not contain a 1-form.



26 Maximal supersymmetry

The wish for a reformulation of the superspace theory then naturally centres
around the projection operator encoding the physics, and it is the recognition
of it and the ensuing theory that gives rise to the pure spinor formalism. A
formalism characterised by a focus on the end properties being correct rather
than the procedure being conventional.

That said, the pure spinor was initially introduced as a means to provide
a super-Poincaré covariant quantisation of the ten-dimensional superstring in
[16]. The quantisation method was then applied to the scalar superparticle in
[20] to provide a simpler case for studies of the method, to better understand it.
It is this latter case which naturally represents the D = 10 maximal SYM theory.
However, for clarity in the context of maximal SYM and SUGRA, the primary
focus of this chapter, the pure spinor formalism will be presented as it figures
there, rather than as it once was identified. The superstring formulation will
merely be touched upon in the next section, to illustrate how the principles were
recognised and to give a better insight into the different pure spinor approaches
of the next chapter.

The formulation of the pure spinor formalism starts out with the recogni-
tion of that the addition of a pure spinor to the superspace makes it possible to
capture the properties of the projection operator through a Becchi–Rouet–Stora–
Tyutin (BRST) operator, with the theory (SYM or linearised SUGRA) possible to
be reinterpreted as a BRST formalism. The key property of this formulation is
the presence of an abelian action respecting maximal supersymmetry, see sec-
tion 3.4.4. The second most important feature is that it represents a formula-
tion with a classically recognised extension to a theory of interactions in the
Batalin–Vilkovisky (BV) formalism [166, 167], respecting the same symmetries.
Moreover, through incorporating the properties of the interactions (observed in
each superspace theory) into the BV formalism, a specific part of the on-shell
formulation corresponds to that of the non-abelian component theory. In this
way, the introduction of the pure spinor furnishes a way to formulate a theory
of interactions, in terms of an action, respecting the super-Poincaré symmetry,
for both maximal SYM and SUGRA.

3.3.1 The covariant quantisation of the superstring

The Green–Schwarz action [168], invariant under super-Poincaré symmetry, can
be quantised in a number of different ways, for example in the light-cone gauge.
With vanishing Ramond–Ramond (RR) field strengths, the Ramond–Neveu–
Schwarz (RNS) formalism [169, 170] is another option, to which the Ramond
states can be added afterwards. Either way, it is impossible — at least so far
as is known — to keep the relevant (maximal) symmetries inherent to the de-
scription (with subsequent simplifications) without proceeding according to the
pure spinor formalism of [16]. The previously described situation in SYM and
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SUGRA, representing the low energy limits of open and closed superstrings,
naturally mirrors this setting.

The construction originates in an analysis of the situation in conformal gauge
investigated by Siegel [171] in comparison with other formulations, in an at-
tempt to keep the covariance of the first while obtaining a working formalism.
In specific, it is possible to observe a demand on the Lorentz current of the ver-
tex operator5 for the massless open superstring conjectured by Siegel in order
for it to correspond to that of the gluon vertex operator of the RNS formalism.
An additional term Nmn is required, providing a formulation encompassing the
two different quantisations. The properties of this term can be constructed out
of a pure spinor λα, as it will be described in the next section (Nmn is composed
of λα and its derivative). In the presence of this additional, ghost variable, a
formalism with maximal supersymmetry is available. [16]

The recognition of the pure spinor makes it possible to define a new formal-
ism with vertex operators constrained to belong to the cohomology (of the same
ghost number as λ) of a nilpotent operator [16]

Q =

∮
[dz]λα(z)dα(z). (3.18)

with dα as the covariant string spinor derivative. The subsequent formalism,
checked for consistency in [17–19, 21, 22], contains (in an extended version) the
integrated vertex conjectured by Siegel and provides a way to compute scatter-
ing amplitudes. Meanwhile, all the desired symmetries remain inherent to the
formalism, regardless of the background, including curved ones with RR flux.
The trade-off for this efficient formulation is the visibility of what goes on in the
calculations, which is why the case of the scalar superparticle soon followed as
an illustrative example.

3.3.2 The BRST formalism — mimicking the free theory

The properties of the physical fields in abelian SYM (Aα) and SUGRA (Cαβγ) can
be captured through the introduction of a bosonic spinor (of dimension −1/2)
obeying the condition [16, 20]

λα : λγaλ = 0, (3.19)

and thus henceforth being referred to as pure. The key point is that λ2 removes
the 1-form projection of the spinor indices it is attached to, in line with the ob-

5A vertex operator represents an emission of states from the world surface of a string. Effectively, it may
be interpreted as splitting one state into several others. For open strings, the only one present is the 3-point
vertex, by default termed unintegrated (simply the vertex). An integrated variant in addition describes the
propagation of one of the associated states.
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servations for the superspace theory. With this spinor, an operator

Q = λαDα Q2 (3.9)
= 0 (3.20)

can be formed and used to reformulate the theory in flat space in combination
with an alteration of the fields under consideration to

SYM : ψ = λαAα, (3.21a)

SUGRA : ψ = λαλβλγCαβγ. (3.21b)

The theories are then equally described, instead of by eq. (3.12) and (3.16), by

Qψ = 0, δΛψ = QΛ. (3.22)

In this, the conventional constraints are fulfilled by default in the sense of the
entities falling out of the theory, compare to eq. (3.11) and (3.15). Torsion sim-
ilarly drops out, with exactly the right components retained for interactions in
SUGRA, although that is a comment running ahead of the discussion. In this
setting, the only field under consideration is ψ, with its BI captured by the nilpo-
tency of Q and an encoding of the component theory fields, see section 3.4.4, in
an abelian sense due to Q constituting a linear operator.

By endowing the pure spinor with a ghost number (1) the nilpotent operator
Q can be interpreted as a BRST operator and the theory as that of a BRST formu-
lation. Consequently, the physical fields matching the component theory have
ghost number zero and the field ψ ghost number (1,3). Its dimension is (0,−3).
A general ψ is furthermore, in the BRST reinterpretation of the theory, consid-
ered to contain a general set of fields (of any ghost number different from zero)
apart from the contents of eq. (3.21). It then represents the pure spinor super-
field, containing all possible ghosts and antifields while encoding the abelian
SYM and SUGRA theories at ghost number zero. [16, 20]

The reinterpretation of the theory as described by a BRST formalism (natu-
rally abelian) gives the abelian pure spinor formalism, containing zAλ = (xa, θα, λα)
and the superfield ψ, with the field equation of eq. (3.22). It is desirable as

1. The BRST operator Q respects the supersymmetry present through

{Q,Qα} = 0, (3.23)

in the same way as Dα in the superspace formalism. It also encodes it (lo-
cally) as gauge symmetry, see section 3.4.4. As a result, maximal super-
symmetry is present in the BRST formalism and the constructions based
on it, as long as gauge invariance is respected.
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2. The BRST formalism provides an action for the theory:

S ∼
∫
ψQψ[dZ], (3.24)

granted the existence of a working integral measure [dZ]. It stems from the
requirement of a variation δψ in the action to give a vanishing expression
on-shell, through the field equation displayed in eq. (3.22).

In combination, these two points yield the key feature of the pure spinor for-
malism: the action describes a theory (either SYM or SUGRA) where off-shell,
maximal supersymmetry has been realised. The problem of the BRST formalism
only describing the abelian theories is furthermore easily overcome due to the
existence of a natural extension to a theory of interactions: the BV formalism.

3.3.3 The BV formalism — extending to a theory of interactions

The extension of an abelian theory to a non-abelian setting, in consistency with
the gauge invariance, is typically not a trivial procedure. In classical field theory
it is dealt with through the BV (or antifield) formalism, where the BRST sym-
metry is central [166, 167]. Essentially, the BRST structure can consistently be
generalised to the BV one.

Both formalisms are characterised by a replacement of the symmetries of the
theory under consideration with a rigid symmetry. In the BRST formalism, the
BRST charge (Q) is constructed to be nilpotent and respecting the symmetry
variations, and ghosts and antifields are introduced to that end as well as for
a full action (invariant under the BRST symmetry). In the BV formalism, de-
scribing interactions, the symmetry does not act linearly on the fields, but is
described by the generalised action, acting on fields through an antibracket:

(F,G) =
δRF

δΦA

δLG

δΦ∗A
− δRF

δΦ∗A

δLG

δΦA
, (3.25a)

with R and L referring to the standard right and left derivatives. This illustrates
the classical case, where ghosts and antifields need to be introduced at the BV re-
formulation: F andG are functionals of the fields and antifields (ΦA,Φ∗A), with a
hidden dependence on x in the indices so that integration is included. However,
in the pure spinor formalism those fields are already present in ψ, constituting
its own antifield — no more fields can be introduced. The generalisation from
the BRST formalism to the BV one then is restricted to a replacement of the BRST
charge (Q) with the BV charge (S), acting through the only antibracket possible
to formulate (in the presence of one, single field) [29]:

(A,B) ∼
∫
δA

δψ

δB

δψ
[dZ]. (3.25b)
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In addition, a check on the component fields in the cohomology verifies this
construction as the correct one, compare to section 3.4.4.

The BV formalism describes the theory through

(S,ψ) = 0, δΛψ = (S,Λ), (3.26)

the first equation constituting the equation of motion and the second the gauge,
with a variation of the field: δψ = (S,ψ). The identical terms are typical for BV
formalisms. Meanwhile, the nilpotency of the BRST symmetry translates into

(S,S) = 0, (3.27)

which represents the master equation for the action, the requirement for the
theory to capture the interaction counterpart to the initial BRST formulation. It
sets the form of the action, in combination with the shape of the interactions
given by the superspace formulation.

3.3.4 The integral measure & the non-minimal superspace

For the BRST and BV formalisms to be valid, a working integral measure must
be present. It turns out to be difficult to construct such a non-degenerate entity
from the superspace variables (xa, θα, λα) alone. To begin with, the [dZ] must
have ghost number (−3,−7) and dimension (−6,−3) due to the shape of the
abelian action and the coupling constants of the component theories, which are
of dimension (−3,−9/2). The action itself is of course required to be dimension-
less and of ghost number zero. These criteria are not met by

[dzλ] = dDx dnθ [dλ], n = (16,32), (3.28)

since an examination of the effects of the pure spinor constraint on the volume
form of the pure spinor gives [23, 25, 27, 29]

[dλ]λα1 . . . λαi = ?T̄α1...αi
β1...βj

dλβ1 ∧ . . .∧dλβj , (i, j) :

{
(3,11) SYM
(7,23) SUGRA

(3.29)

where T projects into the irreducible representations of (00003) for SYM and
(02003) for SUGRA, and j reflects the degrees of freedom of the pure spinor.
The integration over λ absorbs λi from the integrand, giving [dzλ] the correct
ghost number, but it does not have the required dimensional properties. Nor
does an addition of a function of the variables help in this; the resulting mea-
sure would be degenerate, excluding most of ψ by effectively chopping it off at
some point in the series expansion in θ. Although there is a formulation with so-
called picture-changing operators which allows for the construction of a correct
integral measure [24], the most versatile option is to introduce new variables in
the spinor space.
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The non-minimal superspace contains ZA = (xa, θα, λα, rα, λ̄α). In addition to
the pure spinor and the superspace variables, there are two counterparts to
(θ,λ): (r, λ̄). The former is a fermionic spinor of ghost number 0, the latter a
bosonic spinor of ghost number −1. Both have dimension 1/2, and obey

(λ̄γaλ̄) = (λ̄γar) = 0, (3.30)

which results in that their (respective) degrees of freedom equal that of the pure
spinor. The advantage of the new set of variables is that

[dλ̄]λ̄α1 . . . λ̄αi = ?Tα1...αi
β1...βjdλ̄β1 ∧ . . .∧ dλ̄βj , (3.31a)

[dr] = λ̄α1 . . . λ̄αi ? T̄
α1...αi

β1...βj

∂

∂rβ1
. . .

∂

∂rβj
, (3.31b)

with [dZ] presenting the right properties for the integral measure. [27]
However, the introduction of the non-minimal formalism has consequences

beyond the existence of a well-defined integral measure. Effectively, all fields
become dependent on the non-minimal variables, so to retain the physics, the
previous concept of cohomology must be interpreted as a subclass of the ex-
tended theory: [27]

Q = (λD) + (rω̄), ω̄α =
∂

∂λ̄α
. (3.32)

While incorporating the extended theory to its fullest, this allows for an extrac-
tion of the original theory, present in each cohomology class as independent
of the non-minimal variables. The desired properties remain, the theory is en-
larged with what is necessary, and finally it is reinterpreted from the subse-
quent point of view, in line with what previously has been described for the
pure spinor, the BRST and the BV formalisms.

3.3.5 The actions

The first term in the BV action is the abelian action in eq. (3.24). It represents a
natural starting point, the abelian theory, to which the correct interactions must
be added in compliance with the master equation. The remaining question is
how to add the interactions, expected to show as 3-point couplings (∼ ψ3) and
possibly higher terms. In part, what goes into the action is limited by what is
possible to formulate, with the correct ghost and dimensional properties, in the
theory. However, it also has to capture the non-abelian physics disregarded at
the linearisation in section 3.2.2 and 3.3.2.

The gauge theory

In SYM, to include interactions merely consists of the recognition of the theory
as similar to Chern–Simons theory. The fields are all part of the superfield ψ,
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and the only possible additional term in the action is proportional to ψ3. The
subsequent BV action [16, 20]

SSYM =
1

g2
YM

∫
[dZ]tr

(
1

2
ψQψ +

1

3
ψ3

)
, (3.33)

with implicit Lie algebra indices on the superfield, obeys the master equation.
In that way the only BV extension of the abelian theory, consistent with the non-
abelian theory, has been identified. Since the BV extension classically yields the
correct interactions and symmetry invariance, this does as well.

Supergravity

The case of SUGRA is slightly more involved than that of SYM. While the ψ built
from the 3-form C contains the linearised theory, the full superspace theory is
only obtainable from Eµ

a, as outlined in section 3.2.2. Therefore, with the action
to be formulated in flat space, there is an additional presence of Eαa in the full
theory, and one more field than ψ needs to be considered as part of the pure
spinor BV formulation: the field Φa containing λαEαa as one of its components
(the only minimal, of set ghost number). Naturally, Φa is extended to contain
ghosts and antifields in the same manner as ψ, but the property of Eαa being
γ-traceless translates into the equivalence

Φa ≈ Φa + (λγaρ), ρ : any spinor (3.34)

for the field. Typically, this type of relation is referred to as a ‘shift symmetry’
[29, 30, 172, 173], which constitutes a key concept in Paper I.

The presence of Φa complicates matters, apart from presenting new oppor-
tunities at forming interaction terms in the BV action. There would seem to be
two pure spinor fields present in the theory. However, to a certain degree the
physics overlaps: the cohomology of ψ and Φa are partially identical. Moreover,
the pure spinor field ψ is more fundamental (as indicated for the linearised the-
ory) in that Φa is expressible as [29]

Φa = Raψ, (3.35)

with the recognition of a new operator in the theory:

Ra = η−1(λ̄γabλ̄)∂b − η−2(λ̄γabλ̄)(λ̄γcdr)(λγbcdD)

− 16η−3(λ̄γa[bλ̄)(λ̄γcdr)(λ̄γe]fr)(λγfbλ)(λγcdeω),
(3.36a)

where η = (λγabλ)(λ̄γabλ̄). This operator represents the necessary addition to the
linearised theory in order to capture the interactions through a BV formulation.
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The BV 3-point coupling possible to form in the presence of Ra is limited by
gauge invariance6, ghost and dimensional properties to [29, 30]

(λγabλ)ψRaψRbψ,

a term which at its introduction in the action by the master equation implies the
additional presence of a 4-point coupling. The unexpected property of this is
that with the introduction of a second operator [30]

T = 8η−3(λ̄γabλ̄)(λ̄r)(rr)(λγabω), (3.36b)

the 4-point coupling can be formulated as the final part of the action: the master
equation is fulfilled. With no other possible terms in the action, it turns out to
be [29, 30]:

SSUGRA =
1

κ2

∫
[dZ]

(
1

2
ψQψ +

1

6
(λγabλ)

(
1− 3

2
Tψ
)
ψRaψRbψ

)
, (3.37)

where it is possible to verify the correct encoding of the component theory in
terms of section 3.4.4.

In total, eq. (3.33) and (3.37) describe the pure spinor formulation of maxi-
mal SYM and SUGRA. The actions provide theories with inherent, maximal
supersymmetry (present both on- and off-shell) and retainable interpretations
in terms of the component theories; the so desired reformulations of eq. (3.1).

3.4 Features of the pure spinor formalism

The pure spinor formalism calls for a reinterpretation of many concepts as well
as a recognition of the new features displayed, e.g. concerning BRST equiv-
alence, the procedure for gauge fixing and how to regularise divergent inte-
grands. Another integral feature is how the correct and desirable physics of the
maximal SYM and SUGRA theories shows up in the construction —- as coho-
mology in the case of the component fields, and as gauge in the case of the
supersymmetry variations and the diffeomorphisms. Although powerful, the
pure spinor formulation complicates matters in that it shows neither supersym-
metry nor component fields explicitly.

3.4.1 BRST equivalence

The pure spinor formalism holds one key, novel property. The fact that any ex-
ternal state is on-shell and freely propagating (the only physical kind) brings

6A term ∼ λ2Φ5 is ruled out.
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with it that a calculation concerning them — effectively any calculation — only
is defined up to BRST equivalent terms. Considering how the solution to eq.
(3.22) remains unchanged under a transformation

1↔ 1 + {Q,χ}, χ :
fermionic scalar
dimension 0
ghost number − 1

, (3.38a)

provides the reason why: the extra terms do not affect the end result. Because
of this, alterations as in eq. (3.38a) can be performed in any expression, at any
time. This freedom of the theory constitutes a property known as BRST or Q-
equivalence, which is surprisingly useful. It is most known in the shape of the
special case of regulators

e{Q,χ}, (3.38b)
which are introduced frequently. The expression is especially versatile as it cap-
tures the entire series expansion of the exponential function. In addition, the
BRST equivalence constitutes a reminder of the (most likely) many equivalences
present in the pure spinor formalism, yet to be pinned down.

3.4.2 Gauge fixing

The standard way for gauge fixing in the BV formalism is that of introducing a
gauge fixing fermion χ to eliminate the antifields. Through

Φ∗A =
δχ

δΦA
, (3.39)

the physical quantities are set to be independent of the choice of gauge. How-
ever, this is not an option in the pure spinor formalism. The single field present,
the pure spinor superfield, contains both the fields and the antifields and ought
not be split, as previously mentioned at the extension of the BRST formalism
to the BV one. Instead, the process of gauge fixing is performed in a manner
borrowed from string theory.

In the pure spinor formalism, the Siegel gauge [174] for a scalar particle is
imitated through the introduction of a b-ghost figuring in the free propagator

b

p2
(3.40a)

and required to obey a condition

{Q,b} = ∂2 ⇒ {b, b} = 0, (3.40b)

where the implied property should hold by default, at least in a Q-equivalent
sense. In this setting, the choice of gauge is

bψon-shell = 0. (3.40c)
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3.4.3 Singularities & general regularisations

Integration is only well-defined in the absence of divergencies. These ought not
arise at all, in a well-defined theory, but especially not from the presence of in-
troduced variables, such as (λ, λ̄, r). With respect to this, the bosonic spinors are
troublesome, in the non-minimal formalism. Their presence in the integrands
threaten to cause divergences for both large and ‘small’ (λ, λ̄), though only su-
perficially so, as regulators can be applied in the manner of the general regular-
isations to provide convergence.

The limit of infinity

The first type of divergence is the one most easily remedied. An introduction of
a regulator [27]

e{Q,χ} =
[
χ = −λ̄θ

]
= e−λλ̄−rθ (3.41)

ensures a good convergence in the limit of infinity for (λ, λ̄): the divergence of
any polynomial in either is suppressed. At the same time, the regulator provides
a way to saturate the fermionic integrals [dθ] and the [dr] in eq. (3.31). This is
important for integrands containing fewer of the fermionic spinors than their
degrees of freedom, which are an integral part of the theory. An insensitivity to
those parts of an integrand on behalf of the integration would make the theory
void, which is perhaps most notable in the case of r, on which the minimal part
of the theory does not depend. However, it is equally important with respect
to θ. Without the option to saturate the fermionic integrals for the minimal in-
tegrands, key information would be disregarded and the theory would fail to
capture the physics of maximal SYM and SUGRA.

Singular subspaces

The second type of divergence is connected to singularities with respect to
(λ, λ̄), originating in that scalars of (λ, λ̄) may appear in the denominator of
an integrand. There are two kinds of such scalars: [27, 29]

ξ = (λλ̄), η = (λγabλ)(λ̄γabλ̄) ∼ ξ2σ2, (3.42)

of which the latter only exists in SUGRA. Clearly, it carries a possible singular-
ity not only for small (λ, λ̄), but also for a subspace where either (λγabλ) or its
counterpart (both ∝ σ) is zero separately from ξ. Despite this, it is convenient
to refer to the type of divergence in a manner relatable to SYM, which is why
the additional subspace is implicitly incorporated in the ‘limit of small (λ, λ̄)’ of
Paper IV.

Meanwhile, the integral measure contains

diλ diλ̄
SUGRA∝ d14σ, i = (11,23), (3.43a)
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since the submanifold has real codimension 14 in SUGRA. Moreover, as [dZ]
extracts λ7 ∼ σ2 in SUGRA, compare to eq. (3.29), it behaves like:

[dZ] ∼ ξkdξ σldσ, (k, l) :

{
(10,0) SYM
(22,11) SUGRA

. (3.43b)

An integrand is convergent (and an expression well-behaved) with respect
to the singularities if it contains less than (11,23) inverse ξ and 12 inverse σ.
In addition, any divergent expression composed of well-behaved operators is
BRST equivalent to a convergent expression, since each part can be regularised
through the introduction of a new set of variables with a matching regulator
and integral measure [28], a procedure generalised to SUGRA in Paper II. As
each operator in the theories is well-behaved with respect to the singularities,
this means that any integrand can be regularised into convergence.

The regularisation removing the singularities has the key feature of intro-
ducing a new set (or any number of sets) of variables z′A = (fα, f̄α, g

α, ḡα) which
make up counterparts to (λα, λ̄α, θ

α, rα). Naturally, each set comes with its own
integral measure, and so removes a singularity corresponding to that of eq.
(3.43b) while a regulator converts variables of the old set into the new, and a
second regulator removes divergences with respect to large (f, f̄). The principle
follows

Oreg(λ, λ̄) =

∫
[dz′]e−{Q,f̄g}eiε{Q,gW+f̄V }O(λ, λ̄), (3.44a)

with (W,V ) representing gauge invariant operators acting on (λ, r), and ε a con-
stant. Implicitly, the regulators act on the operator and Q has been extended by
the addition of z′, much in the same way as when the non-minimal variables
were introduced, so that the first exponential represents a regulator with a func-
tion corresponding to that of eq. (3.41). In this way, what effectively takes place
is a change

O(λ, λ̄) 
∫

[df ][df̄ ]e−ff̄eiε(fW+f̄W̄ )O(λ, λ̄) =

=
[
λ′ = eiεfWλ , λ̄′ = eiεf̄W̄ λ̄

]
=

=

∫
[df ][df̄ ]e−ff̄O(λ′, λ̄′),

(3.44b)

with (W,W̄ ) as gauge invariant versions of (ω, ω̄). Effectively, part of the singu-
larities are ‘smeared out’ in the manner of a heat kernel regularisation in quan-
tum mechanics. The procedure can be performed any number of times, each
increasing the tolerance by what was initially allowed for. [28]
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Regularising expressions

The general regularisations have one final thing in common: their existence
is crucial, but they are not performed in practice. Although the theory would
be divergent in their absence, once they are applied the analysis of an inte-
grand is severely complicated. Especially the regularisation of the singularities
is opaque, because once applied, the different sets of variables are related in
ways not explicitly captured by the formulation. The description as such be-
comes unnecessarily rigid. Due to these circumstances, regularisation is typi-
cally left off to the very last, merely figuring as an existing concept connected to
integration, which in practice is not performed. They take care of what needs to
be taken care of, end of story.

Important to note in this is that if an integrand under scrutiny contains parts,
in total divergent with respect to the singularities, which seem to combine into
zero by the properties of the variables subject to the regularisation (λ, λ̄, θ, r),
that zero is superficial. In order to actually examine such a part, enough of the
general regularisation for the expression to represent a convergent entity7 must
be considered. This is for example the situation in the examinations of the UV
divergences in the theories. There however, the complications brought about by
the general regularisation are utilised/dodged (as far as possible) by a reinter-
pretation of the new set of variables as loop variables.

A key feature is, however, that convergent parts of an integrand retain their
individual pre-regularisation properties during the procedure of regularisation.
All alterations are Q-exact, i.e. of the type in eq. (3.38a).

3.4.4 The relevant physics captured

The main feature of the pure spinor formalism is that the associated actions
respect maximal supersymmetry. This is achieved by construction: first through
requiring that the operators (anti)commute with the supersymmetry operator,
then by putting supersymmetry on an equal footing with the gauge symmetry
(pure spinor construction), and finally carried through by a restriction to gauge
invariant components in the theory.

Worthwhile to note in this is that gauge invariance with respect to the pure
spinor stipulate a dependence on ω modulo (λγi)Ai: A any 1-form. That is why
all pure spinor derivatives must show only in the combinations of

(λω) (λγabω), (3.45)

usually denoted byN andNab. Expressions of other combinations may be gauge
invariant also, but are then possible to reformulate in terms of eq. (3.45), as
shown for Ra in Paper IV.

7Note that the entity under discussion might be a very small fraction of the final integrand. The point
made is that any convergent part can be examined on its own, without loss of information.



38 Maximal supersymmetry

However, the first crucial verification in the pure spinor formalism is that
the relevant component theory is encoded. Provided that the field contents are
correct, the relevant equations of motions can be verified in relation to eq. (3.22),
with a starting point in the field contents: the cohomology of ψ, also accommo-
dating the supersymmetry variations and the diffeomorphisms.

Cohomology & partition functions

In the BRST formalism, the physical fields show up as cohomology of ψ. The
concept arises from the presence of a nilpotent operator (Q), appears as [175]

Hp = Ker(Qp)/Im(Qp−1), (3.46)

and concerns different modules Vp, where the cohomology Hp is the kernel of Q
in Vp modulo the images from Vp−1. Essentially, the solutions to eq. (3.22) in the
presence of a field of general ghost number.

In the pure spinor formalism, the module of interest naturally is the one of
ψ. Here, it is possible to check that the theory truly describes maximal SYM or
SUGRA — the component fields must reside in the cohomology. This is indeed
the case, as illustrated in table 3.1, where the (minimal) cohomology of ψ has
been solved for in the absence of a dependence on x. The equivalent of Φa is
also displayed. As a physical field, it obeys the same equation of motion as
ψ: QΦa = 0 or (S,Φa) = 0 modulo gauge, and despite its carrying no original
information (Φa = Raψ), the cohomology is of interest e.g. at an analysis of the
non-abelian equations of motion.

A second way of checking the cohomology is through an examination of
why it is non-trivial, which in the case of Q = λD amounts to an examination of
the pure spinor, in specific the effects of the constraint, without which the coho-
mology would have stopped at a scalar. To this purpose, the object of interest is
the pure spinor partition function.

In their simplest shape, partition functions encode the number of states of a
quantum number (most commonly energy levels). For spinor components, this
looks like:

P (t) = 1 +
∞∑

i=1

cit
i, (3.47)

with |ci| = dim(Rn) denoting the number of states for i spinors, deductible by
the irreducible representations Rn they show up in. If the overall sign of the
term is negative, the complex is fermionic, and the initial constant represents
the bosonic state in the absence of any spinor whatsoever.

While a fermionic spinor component is described by (1− t) and a bosonic by
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HHHHHHdim
gh #

1 0 −1 −2

0 (00000)

1
2 • •

1 • (10000) •

3
2 • (00001) • •

2 • • • •

5
2 • • (00010) •

3 • • (10000) •

7
2 • • • •

4 • • • (00000)

Table 3.1a: The zero-mode, minimal cohomology in ψ for maximal SYM [20]. It repre-
sents the solutions to Qψ = 0 (abelian field equation) modulo gauge, compare to eq.
(3.22), when the dependence on (x, λ̄, r) of the field is disregarded, which is preferable
for a qualitative assessment of the cohomology. The superfield ψ(Z) contains fields
beyond the superfield Aα (of ghost number 0), fields of nonzero ghost number. The
contents can be displayed through a series expansion in (θα, λα):

ψon-shell(θ,λ) = c+ (λγaθ)Aa + (λγaθ)(θγaχ) + . . . .

The horizontal direction represents the expansion of the superfield in terms of λ, that of
the vertical is θ and λ. The irreducible representations of the component fields are listed
with their Dynkin indices (compare to section 2.2.2) at positions describing their ghost
numbers and dimensions. For example, the spinor χα of ghost number 0 and dimension
3/2 in the series expansion above shows as (00001). This corresponds to a convention
for the chiralities with a lowered spinor index in (00010). Note that the spinor and
the gauge field of the component theory (ghost number 0) are present (χα ∼ ψα), with
the addition of the scalar c and the antifields. The latter mirror the properties of the
fields with respect to a slanting line (ne-sw) through the point (0.5,2) in the diagram.
Compare with the situation in SUGRA, table 3.1b, where ghost fields other than the
trivial c show up.
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HHHHHHdim
gh #

3 2 1 0 −1 −2 −3 −4

−3 (00000)

−5
2 • •

−2 • (10000) •

−3
2 • • • •

−1 • • (01000)
(10000)

• •

−1
2 • • (00001) • • •

0 • • •
(00000)
(00100)
(20000)

• • •

1
2 • • • (00001)

(10001)
• • • •

1 • • • • • • • •

3
2 • • • • (00001)

(10001)
• • •

2 • • • •
(00000)
(00100)
(20000)

• • •

5
2 • • • • • (00001) • •

3 • • • • • (01000)
(10000)

• •

7
2 • • • • • • • •

4 • • • • • • (10000) •

9
2 • • • • • • • •

5 • • • • • • • (00000)

Table 3.1b: The zero-mode, minimal cohomology in ψ for maximal SUGRA, following
the principles outlined in table 3.1a [14]. Note the parts of zero ghost number: the 3-
form C, the (graviton) g(ab) = g̃(ab) + c1ηabg̃ (both of dimension 0) and the (gravitino)
χaα = χ̃aα + c2(γaχ̃)α (of dimension 1/2), with ci as some constants. Compare to eq. (3.2).
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HHHHHHdim
gh #

1 0 −1 −2 −3 −4

−1 (10000) . . .

−1
2 (00001) •

0 • (20000) •

1
2 • (00001)

(10001)
• •

1 • (00010)
(10000)

• • •

3
2 • • (00001)

(10001)
• • •

2 • •
(00000)(00002)
(00100)(01000)
(10000)(20000)

• • •

5
2 • • • • • •

3 • • •
(00000)(00002)
(00100)(01000)
(10000)(20000)

• •

7
2 • • • (00001)

(10001)
• •

4 • • • • (00010)
(10000)

•

9
2 • • • • (00001)

(10001)
•

5 • • • • (20000) •

11
2 • • • • • (00001)

6 • • • • • (10000)

Table 3.1c: The zero-mode, minimal cohomology in Φa = Raψ in maximal SUGRA, fol-
lowing the principles outlined in table 3.1a [14]. As the expansion there concerns λαAα
for the components of zero ghost number, here it concerns λαEαa. In a comparison with
table 3.1b, note the presence of g̃(ab) and χαa , with the addition of the 4-form H of di-
mension 1. As Φa is not the fundamental field, some extra, ‘irrelevant’ components are
present, like the Weyl scalar, compare to [9].
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1/(1− t), the pure spinor in SYM has [26]

P (t) =
1− 10t2 + 16t3 − 16t5 + 10t6 − t8

(1− t)16
=

(1 + t)(1 + 4t+ t2)

(1− t)11
, (3.48)

where the first expression describes the constraints on a bosonic spinor of 16
components, while its most simple form shows the presence of 11 bosonic de-
grees of freedom. The constraints represent a scalar (1), a vector (10) and a
spinor (16) with characters opposite to the ones displayed due to the fermionic
character of ψ.

In total, the partition function provides information in unison with table
3.1 down to the accompanying number of θ, if not λ itself. This is also true
in SUGRA, although that is a more complicated case. Additional information,
compared with P (t), can be provided through the formal partition function
[26, 176–178]

P(t) =
∞⊕

n=0

Rnt
n. (3.49)

Equations of motion

In table 3.1 the minimal field contents at ghost number zero of SYM and SUGRA
were identified to correspond to the component theories. In the zero-mode ab-
elian theory this corresponds to an identification of what is allowed in a series
expansion in (λ, θ), while yielding a vanishing result when acted on by λα∂α,
yet not constituting a product of that operator on another entity. The equations
of motion of the abelian theory are reconstructible, in a similar way, with an
extension to a dependence on x of the zero-mode components.

Take for example theAa(x) in maximal SYM. The equation of motion for that
part of the field gives a non-zero entity (λγbθ)(λγaθ)∂[aAb] possible to match with
λα∂α acting on (θγabcθ)(λγaθ)Fbc (not a gauge). The field equation then states the
existence of Fab ∼ ∂[aAb] in the abelian theory:

ψ : λ1θ1A λ1θ3F λ1θ5T

↙ ↘ ↙ ↘ ↙ ↘ ,

Qψ : 0 λ2θ2(F − ∂A) λ2θ4(∂F − T ) 0

(3.50)

modulo constants (rescalings are possible). The entity λ2θ4∂F can be matched
with a tensor T , but only in (11000) as the λ1θ5 does not support the other ‘3-
index’ configurations: (00100) and (10000). Consequently, Qψ = 0 at λ2θ4 repre-
sents the BI ∂[aFbc] = 0 and the abelian equation of motion ∂aFab = 0. It also sets
T to the remaining ∂F , representing cohomology as the term at λ1θ5 in ψ is not
expressible as gauge. Finally, the chain stops as (λγaθ)(λγbθ)∂[a∂b] = 0.
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This illustrates the general mechanisms for how the BIs and the equations of
motion at ghost number zero show up. In the presence of interactions, the non-
linear action of the BV charge must be considered in terms of (S,ψ), rendering
the procedure more delicate in terms of gauge, etc. In SYM, this translates to

Qψ + ψ2 = 0, (3.51a)

with e.g. dA+ A ∧ A to be matched by F . Considering the hidden Lie indices
in the equation of motion, the zero-mode cohomology and the abelian situation
described above, this is quite apparently fulfilled. The ∂A in Qψ shows up at
λ2θ2 and the part at the same expansion in ψ2 is A2. At λ2θ4, where the BI and
the equation of motion of F were recognised, additional terms show up from
the λ1θ2 in ψ (with a total of χ2) and the combination of the terms at λ1θ1 and
λ1θ3 (AF ), in unison with the equation of motion for the gauge field in eq. (3.5a),
concerning ∂F +AF − χ2 in (10000).

A similar check can be done for the spinor, both of which can be extended
to a thorough examination. Naturally, the cohomology changes not only with
the introduction of a dependence on x, but also with the generalisation to in-
teractions. At a qualitative assessment, however, it is possible to check what
the non-abelian cohomology8 accommodates for in terms of the (zero-mode)
abelian situation, as the latter is contained in the former and further corrections
show up at a higher order in terms of the number of fields incorporated.

In SUGRA, in a comparison with eq. (3.5b), it is simplest to look to the grav-
itino and the field strength. With χ at λ3θ4 in ψ, ∂χ shows up at λ4θ5 in Qψ. The
BV equation of motion in a minimal setting,

Qψ + (λγabλ)ΦaΦb = 0, (3.51b)

then shows the presence of additional terms at λ4θ5 through the zero-mode co-
homology of Φ. The contributions from the ghost number zero components
reside at λ1θ3 and λ1θ2, yielding χH and accommodating for ∂χ+ χH = 0. In
terms of the field strength, ∂H ∼ ∂2C sits at λ4θ6 in Qψ with interaction addi-
tions in terms of zero-mode cohomology only from λ1θ3 in Φ: H2, consistent
with ∂H +H2 = 0. The further components in terms of eq. (3.4b), e.g. a general-
isation to Ĥ ∼H +χ2, ought to show up in a further analysis of the non-abelian
cohomology in Φ, e.g. of what sits at λ1θ3.

Consequently, the zero-mode cohomology in table 3.1 is in accordance with
equations of motion matching eq. (3.5). It provides the possibility to confirm the
correctness of the embedding of the component theories at ghost number zero
in the minimal setting; the feature contained by construction. Strictly speaking,

8Cohomology is generally used in terms of a nilpotent operator acting linearly on fields. However,
the BV charge is a concept extended from this, acting consistently in a nilpotent way albeit non-linearly,
presenting a cohomology in a non-abelian sense. This is what is referred to here.
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though, what is contained in Aa etc. of the pure spinor formalism is not quite
restricted to the component theory entities. Much like the operators of Paper I,
they fill the correct niche but might be just a bit more general than that.

Supersymmetry and diffeomorphisms in the pure spinor formalism

The maximal supersymmetry figures in two different ways in the pure spinor
formalism, depending on the theory. In SYM, the fact that the covariant spinor
derivative commutes with the supersymmetry operator makes the entire con-
struction invariant under the supersymmetry; Killing vectors on the background
give the global maximal supersymmetry.

Anyhow, it is possible to see the equivalence of a field and its variation in
the cohomology. A field redefinition

Aa ≈ Aa + (εγaχ), (3.52)

is allowed, with any coefficient and spinor χ, as long as the correct dimension,
spin and statistics are demonstrated by the extra term and no further depen-
dence on (λ, θ) exists. Under these conditions, the term exists as cohomology
and is equivalent to Aa, representing a gauge, though not in terms of QΛ. It
is an extra symmetry accommodated for. Note that the supersymmetry varia-
tions are equally observable through δεψ, which is no surprise, as ψ′ = ψ + δεψ
is a superfield, just as ψ. With δε = εαQα this exactly reproduces the structure
in eq. (3.6a): δε encode dimension etc. by (λ, θ), same as Q; except for the pure
and the infinitesimal spinors, the difference is the sign in front of the ∂. For ex-
ample in the zero-mode cohomology, χ at λ1θ2 is brought down to λ1θ1, where
Aa is, by εα∂α, with the element at λ1θ1 in ψ + δεψ as the right hand side of eq.
(3.52). The option of a general, real coefficient corresponds to the cohomology
accommodating any real supersymmetry algebra. At a rescaling of Qα, the min-
imalQ undergoes the same redefinition through eq. (3.9), but remains nilpotent.
Consequently, any real, maximal supersymmetry algebra is respected in the for-
malism.

In SUGRA, the supersymmetry is local, and the variations only present in
terms of the field redefinitions, e.g. for the 3-form as

Cabc ≈ Cabc + (εγ[abχc]), (3.53)

under the conditions already mentioned in connection to SYM. Just as there,
they correspond to eq. (3.6b) and can be analysed in terms of δεψ, etc. In addi-
tion, the same type of equivalence allows for

(λ3θ3)abcCabc(x
a) ≈ (λ3θ3)mnpCmnp(x

m), (3.54)

i.e. a change of the supervielbein from one smooth manifold to another, describ-
ing diffeomorphisms. As all indices are contracted, the pure spinor formulation
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is insensitive to the alteration. Contrary to what is true in SYM, the diffeomor-
phisms change the fields, which are background dependent, and in this way
background invariance is implied in SUGRA, despite an initial formulation on
a flat background. As noted in section 3.3.2, a presence of the soft condition
torsion modules in eq. (3.14b) is captured.

The important point is that the maximal supersymmetry of SUGRA is present
in the cohomology: respected by the formulation, which also goes for the dif-
feomorphism symmetry. They are inherent in the formalism, but not explicitly
so — the equivalence classes are a rather circumvent feature, bundled up with
gauge symmetries etc., so that the symmetries are just short of manifest, a con-
cept used a bit too liberally in Paper II and IV. In fact, even the matter of manifest
supersymmetry in SYM can be questioned in terms of the general regularisa-
tions and the subsequent dependence on θ (in an equivalence class). That action
does, however, present manifest supersymmetry. Compare to the discussion in
chapter 6; any advantage is best taken care of. At present, the importance of the
pure spinor formalism lies in it constituting the only known way of describing
an action respecting maximal supersymmetry. How to achieve a formulation
with it present explicitly is another thing entirely: completely unknown, as well
as the possible benefits thereof. Be it SYM or SUGRA, in terms of explicitness,
the Q-equivalence falls short of what might be wished for.

Interestingly, the structure in SYM and linearised SUGRA is present already
in the superspace formulation. The pure spinors merely encode the symmetry
properties.

Discerning properties in terms of the component theory

The opaqueness of the pure spinor formalism with respect to the symmetries
has an equivalent concerning the fields of the theory. They show up in a series
expansion of the pure spinor superfield, and are in many ways best left alone
there. Any attempt at tracking a part of the field ψ, or extracting it from calcula-
tions, will prove troublesome; a feature especially regrettable when it comes to
comparisons between the pure spinor formalism and other approaches, as will
be illustrated in the next chapter.

However, when left alone, the sheer compactness of the theory is what makes
it so attractive. In many ways it simplifies the observation of properties, which
is a key feature in Paper I, II and IV. Compared, for example, to the examina-
tions of the UV divergences in SYM, the corresponding procedure in the pure
spinor formalism is remarkably straightforward.





The known is finite, the unknown infinite; intellectually
we stand on an islet in the midst of an illimitable ocean
of inexplicability. Our business in every generation is to
reclaim a little more land, to add something to the extent
and the solidity of our possessions.

Thomas Huxley 4
Ultraviolet divergences

The theories of SYM and SUGRA describe interactions, and it is natural to won-
der at what those look like. Key features can be illustrated and analysed in terms
of ‘super-Feynman rules’ and amplitude diagrams; a process possible to fashion
in a number of ways, e.g. through the use of the pure spinor actions in maxi-
mal SYM and SUGRA. Importantly, the search connected to the supersymmetric
theories does not end at the actions, for what they contain is the true object of
interest.

Integral to any examination of these theories, representing low energy lim-
its, is whether or not the results are perturbatively finite. Ideally, perturbative
finiteness is provided by default in a formulation. In its absence, it is either nec-
essary to consider non-perturbative treatments, or to restrict the examinations
to areas where perturbative finiteness is ensured, for accurate results. In this,
the dimension of four is of special relevance, as it represents the type of theory
directly related to our experienced reality; what is desirable to describe.

Regarding the maximally supersymmetric theories, perturbative finiteness
has been a subject of interest for quite some time. The issue can be divided
into two categories: the ultraviolet (UV) and the infrared (IR) regimes, where
the theories may threaten to diverge. In specific, it concerns the integrations
over free momenta (corresponding to x) present in loop amplitudes as loop mo-
menta, and the ensuing dependence on the momentum cut-off. However, the
IR divergences are comparatively well-known [179–193] and possible to reg-
ularise through restoring the momentum dependence of the amplitude dia-
grams [91, 194], as only diagrams independent of the momenta display IR di-
vergences. Therefore, the subject of this chapter is the UV divergences.

47
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The UV divergences in maximal SYM have long been well-known [79–81].
The theory is perturbatively finite in up to four dimensions, and as such con-
stitutes a very well-behaved theory, for the purposes of investigations related
to the physical world. The situation in maximal SUGRA is more complex, quite
unsurprisingly considering the fundamental differences between the two theo-
ries. In general, SYM at best is a guideline for what happens in SUGRA, though
usually a highly important one. The UV divergences in maximal SYM provide a
general understanding for what to expect in maximal SUGRA — a dependence
on the number of loops present, and the dimension of the theory under con-
sideration. The higher either of those is, the more divergent the corresponding
amplitude diagram. The SYM investigations also provide the groundwork for
some of the examinations of the SUGRA equivalent.

The UV divergences in maximal SUGRA still remain to be determined in
full. The final result may range anywhere between that of SYM and a theory
convergent in up to two dimensions; the first limit arises naturally as SYM is
part of SUGRA, and the second, since the theory of gravity in two dimensions
is trivial. The key question is what happens in four dimensions.

In fact, maximal SUGRA is not expected to prove finite in D = 4. That would
correspond to the theory constituting a well-defined quantum theory, on its
own. The same is expected for M-theory, and the presence of two consistent,
inequivalent field theories would present a strange situation. It is currently sup-
posed that maximal SUGRA needs to be altered in some way, through taking a
non-perturbative treatment of the underlying (M-)theory into account, for it to
make sense. The ongoing investigations ofN = 8,D = 4 SUGRA points towards
a first possible divergence at 7 loops, but the results of Paper IV and V in addi-
tion show a removal of the divergent terms at and above 7 loops. Due to this,
there is a possibility of perturbative finiteness in D = 4, which warrants further
investigations. The situation is highly interesting.

This chapter starts out from the UV divergences in maximal SYM; the associ-
ated general methods and features are described in order to facilitate the out-
line of the situation in maximal SUGRA. The subsequent presentation of the
investigations in maximal SUGRA, past and present, includes an outline of the
general investigations using counterterms, the explicit calculations which are
performed for the four-graviton amplitude, and the investigations based on the
pure spinor formalism. Finally, the current results are summarised.

4.1 Maximally supersymmetric Yang–Mills theory

Maximal SYM is perturbatively finite in D ≤ 4, as first proven in [79–81], and
the means to get to the proofs adequately illustrate the key properties of the UV
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divergences in the maximally supersymmetric theories; the effects of a restric-
tion on a finite, non-perturbative theory. They are visible as a dependence of
the amplitude diagrams on the momentum cut-off, and are at times superficial
in that they cancel out due to symmetry properties. Some cases are perturba-
tively finite, others not. In determining which are which, the starting point is in
the generalisation of what takes place in ordinary space; the situation of quan-
tum field theory naturally provides a basis for the workings of the superfield
theories. There, the divergences are described in terms of counterterms.

Counterterms

So-called counterterms occur in quantum field theory as local, physical opera-
tors that are products of the procedure of renormalisation — one of the ways to
remove the UV divergences of a theory. They constitute the extra terms in the
renormalised action (compared to the initial one) that appear as the convergent
and divergent terms are separated. In this, the counterterms represent the di-
vergent parts of the theory: one type of divergence for each counterterm. The
renormalised perturbation theory includes Feynman rules with counterterms,
but the divergences can be suppressed through an alteration of the coefficients
in the counterterms. The procedure is especially suitable for analysing and re-
moving the superficial UV divergences of multi-loop diagrams. [164]

In the supersymmetric theories, the concept of counterterms is simply ex-
tended to the supersymmetric setting, by default connected to the UV diver-
gences in the loop amplitudes in the same way as is the case in ordinary quan-
tum field theory. However, a theory cannot be altered into finiteness. Instead,
the relevance of the counterterms lies in the identification of the perturbative
behaviour of a theory. The object of interest in the analysis of whether a theory
is perturbatively finite or not is the set of counterterms that may be formulated
non-trivially in it, as that equals an identification of the unavoidable UV diver-
gences. If no such counterterms can be formulated, the theory is perturbatively
finite. In a step-by-step approach, each type of diagram is proven perturbatively
finite through a proof of the absence of counterterms.

Miraculous cancellations

A typical trait of the supersymmetric theories is unexpected cancellations among
the UV divergences. Some UV divergences that initially might be considered
unavoidable because of a presence of befitting counterterms in a context anal-
ogous to quantum field theory, simply vanish in the superfield perturbation
theory. This is e.g. the case in the Wess–Zumino model [195–197], which con-
tains no mass or interaction counterterms. The simplifications are caused by the
supersymmetry present in the theories, making it integral to keep the super-
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symmetry as a natural part of the formulation during investigations. Without it,
a loss of predictability occurs, or at least, predictions are rendered more difficult
by far. This is doubly true for maximally supersymmetric theories, constrained
by ‘extra’ symmetries as far as possible.

Utilising the symmetries

Since it is of interest to keep as many as possible of the symmetries of a theory
manifest during investigations, for maximal simplicity, in (flat) maximal SYM
the super-Poincaré symmetry preferably should be an inherent part of the for-
mulation. Moreover, for an overall proof, an action is required. In its presence,
e.g. the equivalent of Feynman rules can be identifies and utilised, to all order
of perturbation theory. In the absence of an action, the divergences need to be
addressed order by order.

However, there is no action for any maximally supersymmetric theory with
strictly manifest maximal supersymmetry. More importantly, at the time of the
maximal SYM proof of perturbative finiteness in D ≤ 4, even an action with
nearly manifest maximal supersymmetry (as provided by the pure spinor for-
malism) remained to be formulated. Consequently, the only way to get to an
overall proof was to keep as much of the symmetry as possible.

In [79–81], for the proof of perturbative finiteness in D = 4 maximal SYM,
manifest Lorentz symmetry was abandoned for the presence of maximal su-
persymmetry, in line with or perhaps as additional proof of the statement in the
section on miraculous cancellations: that of the supersymmetry to be the central
piece in the puzzle. The proofs were performed in two different ways:

• In [79, 80], the light-cone frame was used for the formulation of an action,
with the subsequent amplitudes given by supergraph Feynman rules in
a certain gauge, where the amplitudes could be proven finite (to any or-
der of perturbation theory) through a power counting of the constituent
momenta. The gauge invariance of the UV divergences (by them being a
product of on-shell external states) then set the theory to be finite.

• In [81], the N = 4, D = 4 theory was captured through an N = 2 SYM
theory coupled to an N = 2 matter theory in the adjoint representation.
In that setting, the non-renormalisation theorem (limiting how renormal-
isation can change a theory) set the UV divergences originating in two
loops or more to correspond to gauge invariant functionals of the back-
ground fields, which by symmetry properties vanish. In addition, conver-
gence was shown for the 1-loop structures. Consequently, no non-trivial
counterterms existed, yielding a finite theory.

From this, finiteness in the dimensions lower than four is given by default.
However, D = 4 also represents the upper limit on the perturbative finiteness
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of maximal SYM. In D = 5, the theory is UV divergent, as conjectured in [85]
and shown in [86], both approaches which are quite different from the ones just
presented. The latter uses harmonic superspace [198] whereas the former is a
unitarity method developed for the examination of the maximal D = 4 SUGRA
theory, though based on SYM investigations [84, 85, 100, 106, 107].

The methods of investigation relevant for the UV divergences in maximal
SYM that have been developed since the D = 4 proof will be described in more
detail in the following section on maximal SUGRA, apart from the one in [86].
This includes, besides the unitarity method, approaches based on the pure spinor
formalism, which are equally applicable to the maximal SYM and SUGRA the-
ories. In the detailed situation in maximal SYM now to be addressed, the in-
clusion of the pure spinor results e.g. is relevant in a comparison with SUGRA.
Partly, it also helps in establishing the relevance of the results (as they are in ac-
cordance with the results produced by other means) and partly in that the pure
spinor results in some ways are more specific than that.

4.1.1 Factors influencing the UV behaviour of the amplitudes

The limit on maximal SYM for perturbative finiteness, [79–81]

D ≤ 4, (4.1a)

can be specified in more detail with respect to different amplitude diagrams,
or parts thereof. Naturally, a general statement concerns all possible amplitude
diagrams involved, but in understanding the nature of the UV divergences, it is
equally important to note how they arise. This is doubly true in a comparison
with SUGRA; in order to specify the overall UV behaviour, it is necessary to
identify the factors that determine it, and how they do so.

The loop dependence

The most obvious factor contributing to the UV divergences of an amplitude
diagram is the number of loops present in it. An amplitude with no loops is
convergent in any dimension, while perturbatively finite in the presence of L
loops if [78, 85, 86]

D < 8 L = 1,

D < 4 +
6

L
L > 1.

(4.1b)

The overall constraint on the maximal SYM theory in eq. (4.1a) is here due to the
open limit of L→∞. For separate amplitudes, the higher the number of loops
present, the more severe the constraint on the dimension. The first divergence



52 Ultraviolet divergences

a)
.

.

.

.

.

.

��

HH

b)
.

.

.

.

.

.

�
�

@
@

Figure 4.1: A one-particle irreducible 2-point connection to a loop structure (a) and
the by default (if allowed by loop integration) accompanying one-particle reducible 2-
point connection (b). The cut indicated divides the diagram in (b) into two separate
one-particle irreducible parts, impossible to divide further (non-trivially) by a single
cut. The subsequent tree diagram part in (b) could equally be replaced with a second
loop structure mirroring the first, provided no more connections exist between the two.

in five dimensions occurs for the 6-loop diagram, as stated in [86], and explicitly
calculated in [107].

The limits originate in the power of the momentum cut-off being required to
be negative:

ΛDL−8L� 1 L = 1,

ΛDL−4L−6� 1 L > 1,
(4.1c)

where DL shows up by default due to the integration over D loop momenta
in each loop. Effectively, this means that the higher the dimension, the more
divergent the theory (or less convergent, when the requirements are fulfilled).
The same also goes for an increase in the number of loops under consideration.

The relevant parts of an amplitude diagram

Most investigations are performed for the 4-point amplitude: a completely gen-
eral set of amplitude diagrams, with four external particles. This represents the
lowest number of external particles that may be present, since tree diagrams
naturally have this lower limit1 and loop diagrams are required to be charac-
terised similarly, by the non-renormalisation theorem, for finiteness. Their van-
ishing is typically confirmed separately in each setting for the investigations of
the amplitudes, for example as in [24, 104]. Moreover, the general n-point am-
plitudes are not expected to behave any worse than the 4-point versions. As for
the absence of the lowest n-point diagrams, the arguments for this take different
shapes in different settings.

A general amplitude diagram can be divided into one-particle irreducible
parts, as illustrated in fig. 4.1. In this setting, the requirement of four external
particles is not to be confused with the required connections to a one-particle
irreducible subset of the amplitude diagram. Naturally, any overall number of

1Simply a 3-point vertex between external particles (on-shell) is trivial.
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legs free to connect to a diagram may do so in any configuration, e.g. as illus-
trated in fig. 4.1, but the different parts thereof are separate. In the one-particle
irreducible setting, the absolute lower bound for an n-point (strictly speaking:
part of a) diagram is 2 instead of 4. The former allows for the latter2 through ver-
tices external to the one-particle irreducible loop structure, while avoiding the
total derivative a single propagator would constitute on the expression, thereby
representing a valid, non-trivial entity.

A somewhat subtle point, and the reason for considering one-particle irre-
ducible loop structures, is that the UV divergences of those parts of an ampli-
tude diagram are independent of one another. This is observed in general for
maximal SUGRA, but is perhaps most obvious in a pure spinor approach. The
loop momenta shared between different loops is what sets the UV divergences,
and loop momenta are not shared between one-particle irreducible subsets of
a diagram. As such, amplitude diagrams may be split into their one-particle
irreducible parts before an analysis of the subsequent UV divergences, and a
diagram does not diverge any more than what is set by the worst behaved one-
particle irreducible part of it.

The UV behaviour of the one-particle irreducible parts of an amplitude diagram

For a one-particle irreducible loop structure, the number of loops is not the only
factor that sets the UV divergence. When the number of legs (j) connected to
it is considered, it is possible to observe that the UV behaviour changes to the
better for higher j. It is most commonly noted e.g. for the 4-point 3- and 4-loop
amplitude diagrams of one single one-particle irreducible loop structure that,
depending on the configuration of the loops, demand different minimum js.
The result is that the UV divergences differ between the different configura-
tions. In Paper IV and V, this was mentioned and the conditions for finiteness
for such a part implied to alter from eq. (4.1b) into

D < 2j L = 1 4 ≤ j ≤ 10,

D < 8 + 2

⌈
j − 1

2

⌉
L = 1 j > 10,

D < 6 +
2j − 6

L
1 < L ≤ 3 L+ j ≤ 7,

D < 4 +
4 + 2dj/2e

L
L ≥ 5 2L+ j > 12,

D < 4 +
2d(L+ j)/2e

L
otherwise,

(4.1d)

2And the latter is required through varying properties, e.g. in the pure spinor formalism for the inte-
gration over the fermionic variables to be non-zero (additional terms required), as noted in [104].



54 Ultraviolet divergences

with additional conditions: j ≥ 4 for L = 2, j ≥ 3 for L = 3 and j ≥ 2 for L ≥ 4.
That is, in the 3-loop 4-point amplitude diagram, there are two types of configu-
rations with 3-loop one-particle irreducible structures, different with respect to
their UV divergences: the 4-point and 3-point diagram parts. The first is pertur-
batively finite in D < 20/3, the second in D < 6, as observed in e.g. [103, 104]. It
is also possible to note that the leading divergence at L = 4 (D < 11/2) is caused
by j = 2, just as observed in [100].

Summary

What is of interest for the examinations of the UV divergences is the behaviour
of the L-loop one-particle irreducible parts that go into the amplitude diagrams.
In maximal SYM, the power of the momentum cut-off increases with the dimen-
sion and the number of loops, but decreases with a higher number of legs at-
tached. Therefore, the lowest number of j allowed for sets the overall behaviour
of the L-loop, n-point one-particle irreducible diagram. The overall UV diver-
gence of an amplitude is effectively that of the most divergent one-particle irre-
ducible constituent part.

4.2 Methods of investigation in maximal supergravity

There exists quite a number of approaches to deducing the UV divergences of
maximal SUGRA. Most investigations (but not those using pure spinors) take
place in N = 8, D = 4 SUGRA [6]. The most common object of investigation is
furthermore the existence or absence of counterterms: that of what limits their
presence. However, regardless of the method, the results can always be inter-
preted in terms of counterterms.

In this, some approaches are set apart from the others in terms of their unique
methods or the importance of their results, such as the explicit calculations for
the four-graviton amplitude, the U-duality and counterterm arguments for the
UV behaviour up to seven loops, and the examinations using pure spinors. In
particular, it may be noted that the pure spinor field theory approach, that of
Paper II, IV and V, does not build on a deduction of counterterms, although the
result may be interpretable in terms of them, in a way similar to the situation
in [103, 104].

Possible counterterms

The behaviour of a theory (i.e. of its amplitudes) is a product of on-shell external
states. As such, the UV behaviour ought to be gauge invariant and independent
of the diffeomorphisms of the theory in question. For maximal SUGRA, with
graviton external states, this leaves a possible dependence of the counterterms
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on the Riemann tensor and the Ricci tensor and scalar, transforming homoge-
nously under coordinate transformations [88]. In addition, further restrictions
occur due to dimensional properties. The counterterms are usually denoted by
covariant derivatives acting on Riemann tensors, schematically:

D2kRL+1−k, (4.2a)

where a loop dependence on the interpretation of the counterterm is visible,
occurring due to dimensional properties. The first possible divergence for each
loop configuration, the logarithmic divergence, is for the 4-point diagrams de-
scribed by

D2(L−3)R4. (4.2b)
With an increase in k compared to this, the counterterms describe increasingly
worse UV divergences. In total, the behaviour of a diagram is partly set by the
tendencies towards divergence of each loop in it, and partly by the overall loop
configuration. [88]

4.2.1 General summary of the investigation methods

There has been a number of different approaches to restricting the counterterms
further, apart from what is set by gauge invariance and dimensional properties.
Light-cone, non-Lorentz covariant, harmonic and conventional superspace ap-
proaches, as for maximal SYM, have traded one type of manifest symmetry for
another in different configurations, for an accurate description of the interac-
tions through Feynman rules etc. Naturally, the removed property is utilised to
reduce the derived counterterms (of the restricted theory) in retrospect or sepa-
rately, in want of a complete formalism more like the kind provided by the pure
spinor. Furthermore, the string theory dualities have been applied to different
degrees, in order to catch the properties of the SUGRA theory that are hidden in
the low energy limit representation, and otherwise lost in approaches inD < 11.

The finiteness up to three loops [70–75, 89] can e.g. be explained in terms of
the amplitudes being colourless3 and exhibiting crossing symmetry [90]:
• At the investigation of an n-point amplitude, it is necessary to consider

a summation over all possible orderings of the external legs, as well as
over all possible diagram contributions. Hence, additional cancellations of
the divergences, not exhibited by the solitary diagrams and external leg
configurations, may occur.

or investigated in terms of helicity amplitudes [92]. At that point, it also be-
comes apparent that U-duality4 is present as a relevant mechanism in the am-
plitude calculations. A review of the situation for up to three loops can be found

3In gravity, there is no concept of colour, in contrast to what is true in quantum chromodynamics
(QCD).

4Chapter 4 provides an introduction to this. In four dimensions, the relevant symmetry is E7(7).
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in [93], although the at the time conjectured limits for UV finiteness at higher
loop order differ from the current situation, described in section 4.3. In addi-
tion, [96] tried to determine whether or not the 3-loop finiteness could be com-
pletely explained by E7(7) invariance, without a conclusive result.

The proof of perturbative finiteness for 4-loop amplitudes [95], through ex-
plicit calculations for the four-graviton amplitude, caused renewed interest in
the perturbative behaviour of maximal SUGRA. Supersymmetry and U-duality
arguments were combined to further narrow down the possible counterterms.
[99] found the non-linearised theory to be non-anomalous with respect to con-
tinuous U-duality, to all orders in perturbation theory:

• Counterterms must respect the E7(7) symmetry.

This requirement was used in [97, 101, 102] to exclude counterterms in the 6-
point D = 4, N = 8 SUGRA amplitudes up to 6 loops, in accordance with the
4-point results of [98], obtained through arguments for that the UV behaviour
from 4 loops and upwards should be determined by the factorisation of the
D8R4 operator. At 7 loops, the only valid counterterm was recognised to be
precisely D8R4, in summary a

• D = 4 first possible counterterm at 7 loops (4-point), encoding logarithmic
divergence.

Since a counterterm invariant under both supersymmetry and U-duality had
been recognised to exist at eight loops early on [76, 77], [98, 102] effectively im-
plied the question of UV divergence in four dimension to be between 7 and 8
loops.

Meanwhile, the pure spinor approaches merely (or at best, depending on
the amount of properties considered) confirmed the results of the analyses per-
formed through other means, up until the results of Paper IV, where an interest-
ing cut-off at seven loops was recognised. This, as well as the aforementioned
results, will be further discussed in the following section on the current state of
affairs for the UV divergence in maximal SUGRA.

4.2.2 Explicit calculations for the four-graviton amplitude

A systematic search for the UV divergences of maximal SUGRA is to be found
in the explicit calculations performed for the four-graviton amplitude in [89,91,
95, 105], where [89, 95] provided the proofs of 3- and 4-loop finiteness. The pro-
cedure is meticulous in its execution, working its way up from the amplitude
diagrams with the lowest number of loops, and at each new step drawing upon
the previous results. It is also highly time-consuming and dependent on the
available computer power, and increasingly so with an increasing number of
loops in the amplitude diagrams, as the number of different diagrams possible
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to construct increase drastically with L. The latest computations could not have
been performed a few decades ago, nor is it very reasonable to believe them to
be carried on very far — the related goal is to determine the deviations from
the maximal SYM case and when the maximal SUGRA diagrams get UV diver-
gent, as well as what causes those additional divergences. It is, on the whole, a
thoroughly impressive procedure.

The investigations concern the 4-point amplitude and take place directly in
the field theory, with two key concepts to make the whole feasible: the unitar-
ity method and the Kawai–Lewellen–Tye (KLT) relations. These are applied to
simplify the field theory description of the interaction amplitudes, so that the
complicated loop structures (causing the divergences) can be termed in tree di-
agram parts in maximal SYM. Still with an encoding of the UV divergences, of
course. Because of this, the (computer) calculations include the investigations of
the maximal SYM case, previous to the SUGRA investigation, which is why re-
sults from this approach were brought up in the section on maximal SYM. The
simplifications are vital for the feasibility of the investigations, the first to get
rid of the complicating loop structures with subsequent loop momenta, etc., the
second to end up performing the calculations in a well-known setting, easier to
deal with: maximal SYM. A detailed introduction can e.g. be found in [88].

The unitarity method

Since the scattering matrix is unitary, unitary relations can be applied to the de-
scription of the amplitude diagrams with the end result unaltered. In specific,
this is relevant due to the existence of unitary relations between structures of
a certain genus — number of loops — and those with lower genus, effectively
all the way down to tree level. Provided an amplitude fulfils certain conditions,
such as is the case in the D = 4 maximally supersymmetric theories, it is so-
called cut-constructible. That is, the amplitude is constructible from informa-
tion on its cuts and the intermittent tree diagram parts. The computation of the
interaction amplitudes, or that of possible counterterms present, in that way
simplifies to that of tree computations, which is of key value in the investiga-
tions of e.g. the UV divergences in maximal SUGRA. However, it is not to to
be confused with the property of perturbative finiteness of the tree diagrams,
which does not hold for the loop diagrams. [82, 83]

The Kawai–Lewellen–Tye relations

The KLT relations [199] concern closed and open string tree amplitudes: the for-
mer can always be expressed as a sum of the latter. Since the maximal SYM
and SUGRA theories represent the low energy limits of these superstring the-
ories [78], SYM from the type I open superstring and SUGRA from the type II
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closed superstring, the KLT relations infer relations between maximal SUGRA
and SYM. With them, it is possible to interpret supergravity tree amplitudes in
terms of SYM tree amplitudes.

Progress

The explicit calculations for the four-graviton amplitude have so far reached
four loops, up to which point there is no deviation in the UV divergences of
maximal SUGRA from the maximal SYM results. The latter have been per-
formed for up to five loops, also including non-planar loops: loops not pos-
sible to represent by diagrams in a plane, although one investigation also has
addressed the maximal SYM D = 5,L = 6 situation. The 5-loop calculation in
maximal SUGRA is currently underway, but perhaps to some degree at a stand-
still. Not only is the analysis time-consuming, but there has also been an issue
with the solution ansatz not being general enough, while seemingly containing
what ought to be enough for the description. It is a complicated issue and not
the only project of the associated researchers. Nevertheless, the results are of
true relevance and eagerly awaited.

4.2.3 U-duality & D8R4 arguments

The presently conjectured behaviour of loop diagrams with 5 ≤ L ≤ 7 in maxi-
mal SUGRA is the result of [98,102], representing two different approaches. The
first is based on what type of counterterm, representing the worst possible UV
divergence, might be allowed in the amplitudes based on the situation at four
loops. The second is due to an analysis of what possible counterterms might be
invariant under the required E7(7) symmetry.

D8R4 arguments

In [98], the analysis is based on the counterterm responsible for the worst UV
divergence for the 4-loop amplitude in D = 4 maximal SUGRA: the D8R4. This
is the counterterm responsible for the worst divergence (all dimensions) that
may exist above 3 loops, and it is not loop dependent above L = 4. Depending
on L, the divergence it causes sets different limits on the dimension, for pertur-
bative finiteness of the theory, through a connection to the momentum cut-off
according to

Λ(D−2)L−6−2βLD2βLR4, (4.3)

with βL restricted [95] to be at least 4 for L ≥ 4. A similar analysis of the di-
mensional restrictions can be made for L ≤ 4 in accordance with the results
obtained regarding the counterterms, which restrict βL to be at least L, compare
to eq. (4.4).
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U-duality restrictions on counterterms

The results of [102] concern the possible counterterms for 5- to 9-loop diagrams
with up to 6 external states. The key test is what counterterms are invariant
under E7(7), and to obtain the candidate counterterms that may exist in max-
imal SUGRA, closed string amplitudes obtained from the open string ampli-
tudes of [200–202] through the KLT procedure are analysed. The matrix ele-
ments are acquired from the α′-expansion of the closed string tree amplitude
rather than e.g. through Feynman rules, which would contain too may compli-
cations. Furthermore, averaging etc. over the external states is performed before
a final analysis of the U-duality invariance of the counterterm candidate, which
is analysed in the soft scalar limit of the obtained next-to-maximally-helicity-
violating (NMVH) amplitudes.

4.2.4 Pure spinor approaches

Despite the ingenuity of analyses unconnected to actions with maximal super-
symmetry, the importance of methods based on such actions is not to be ne-
glected. As pointed out in the section on maximal SYM, inherent symmetries
are expected to simplify the analysis to the outmost, which due to the compli-
cated setting becomes all the more relevant in maximal SUGRA. It is not easy to
determine the UV divergences without a full description.

The pure spinor investigations were initiated in [24, 28, 94]. As already men-
tioned, the pure spinor itself was initially introduced to provide a covariant
description of the superstring and the superstring amplitudes. The tree ampli-
tude results of [16], found to give at hand perturbatively finite 1-loop diagrams
in [87], was extended to loop amplitudes in [24], reformulated in the presence
of the non-minimal variables in [28], and further developed with respect to in-
tegrated vertex operators etc. in [94].

These investigations, continued and to some degree improved in [103, 104],
are characterised by their string theory approach, in contrast to what is true
for the field theory approach of Paper II, IV and V. The fundamental difference
lies in the construction of the amplitude diagrams for the scalar particle. In the
string theory approach, the amplitude diagrams are determined by arguments
from string theory, in a way similar to how operators and characteristics of the
pure spinor formalism were identified. Typically, the inherent maximal super-
symmetry is lost, and it is necessary to check BRST invariance of the results to
verify their consistency.

In the field theory approach, however, the rules for the amplitude diagrams
are deduced from the action in question, SYM or SUGRA, in eq. (3.33) and
(3.37). In this way, the symmetry properties are kept inherent in the formulation
throughout the investigations. Arguably, this invokes the symmetry properties
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of the theory to a maximal extent, at least in the absence of an action with (truly)
manifest supersymmetry.

The string theory approach (1st quantised version)

The string theory approach of Berkovits centres around the vertex operators
and the pure spinor properties of the open superstring description along with
the propagator obtained from a gauge fixing for the scalar particle. The ampli-
tudes (for the scalar particle) are built from from these components. For exam-
ple, a propagating field can be split into two states by a vertex operator acting
on it. The ensuing states can be described to propagate further by adding prop-
agators acting on them, etc. In this, there is a choice of expressing the process
in unintegrated or integrated vertex operators, the latter of which encodes the
propagation of one of the two states in the just mentioned example, and is possi-
ble to describe in terms of an unintegrated vertex, a propagator and an integral.
The description of any amplitude is in this way built piece by piece.

The resulting amplitudes initially figure in a kind of maximal SYM setting,
as the chosen propagator for the open superstring is the same as for maximal
SYM. However, the inherent BRST equivalence of the formalism is by no means
guaranteed in the ad hoc (though by no means strange in a pure spinor con-
text) recognition of the amplitude construction. Therefore, the results need to
be checked for BRST invariance, which typically is present. The encodement as
such seems satisfactory and complete.

For the SUGRA results, the SYM procedure is generalised to describe max-
imal SUGRA in D = 10 through an imitation of the transition from the open
string to the closed string, a process which includes doubling all fields except
for xa and its momenta. This alters the vertex operators, the degrees of freedom
of the variables, etc., and in the end provides results for maximal SUGRA in
D ≤ 10.

The extensions of [103, 104] in this setting mainly is a matter of how to deal
with the problems with loops that occur in the pure spinor formalism. The prop-
agator is too local (proportional to a delta function) with respect to the pure
spinors to work in a context with loop integrations, and needs to be altered in a
BRST equivalent way for the formation of loops. This is feasible in an ingenious
combination of general regularisations and loop properties: the loop momenta
are introduced as one set of the general regularisation variables, introduced for
the loop in question to render the propagator non-local enough [28]. This, done
for each loop in a diagram, takes care of the loop integration in a way consistent
with the pure spinor formulation.

However, there is a slight problem with relying on the results of [103, 104]
in the light of Paper IV, due to the absence of certain non-minimal variable con-
stellations which was not previously recognised. The difference for the SYM
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results can be expected to be less to (most probably) none due to the small
change introduced as well as the nature of it, though the results reasonably
cannot change, either, since they correspond to the results for maximal SYM
established through other methods than the pure spinor approach. It is, how-
ever, difficult to conclude the implications for the SUGRA results, despite their
reproduction of the expected results from the explicit 4-graviton calculations
and [98, 102].

The field theory approach (2nd quantised version)

This pure spinor approach was developed in Paper II and represents a com-
plete field theory approach originating in the pure spinor action for SUGRA of
eq. (3.37). What corresponds to the Feynman rules in quantum field theory has
been derived from the action and the propagator, by consistency demands such
as that the overall ghost number of an amplitude diagram ought to be zero for
it to be physical, etc. The loop integration is that of [103, 104], representing a
BRST equivalent alteration of the theory. This process was originally performed
for maximal SYM, which was not addressed in Paper II since the results were
the same as those in [103, 104]. In Paper IV, on the other hand, some new in-
sights regarding the non-minimal variables were presented, and the SYM case
displayed both as an illustrative example and for a consistency check of the
SUGRA results.

The marked similarities between the observed workings of the string and
field theory approaches in SYM at an analysis of the UV divergences is unsur-
prising: the building blocks are effectively very much the same. However, in
SUGRA marked differences show in the shape of the propagator (the field the-
ory version is nothing like the SYM ditto) and the vertices. Most likely, these
differences make it easier to capture the maximal SUGRA properties, observed
in Paper IV and V in the (D = 11) field theory setting.

In contrast, the processes of the two different field theories (SYM and SUGRA)
in principle differs but little from each other (due to dimensional properties and
different degrees of freedom) but for the existence of operators in the vertices
in SUGRA. This, clearly visible already in the difference between the SYM and
SUGRA 3-point and 4-point interactions in eq. (3.33) and (3.37), changes the
properties of the theory, which is not surprising — theories of gravity are fun-
damentally different from gauge theories.

Still, SUGRA in many ways follows suit after SYM, disregarding a more al-
lowing situation for divergent terms resulting in more severe UV divergences,
except for a circumstance of the restrictions brought on by the non-minimal
variables, as observed in Paper IV (which furthermore made the conjectured
UV divergences of Paper II void for L > 1). This is discussed in more detail in
the next section.



62 Ultraviolet divergences

It is difficult to tell in what way the formulation would benefit from mani-
fest supersymmetry. Due to the construction, the maximal supersymmetry is an
inherent part of the description. Nor does SYM require a formulation more to
the point than provided by the pure spinor formalism. In addition, the further
properties, unique to SUGRA, that remained to be identified after Paper IV in
order to give rise to the (known) overall UV behaviour, was identified in Paper
V. Perhaps further simplifications would occur in a manifest setting, but it is
likely that any result is equally observable in the pure spinor formalism.

4.3 The state of affairs in maximal supergravity

The analysis of the UV divergences in maximal SUGRA has a long history, and
so have the numerous results. The ones here presented are deemed to be the
most integral to the current limits on the perturbative finiteness of the maximal
SUGRA theory. For a more extensive coverage of the subject, the reader e.g. is
referred to the proceedings5 of the workshop on ‘Breaking of Supersymmetry
and Ultraviolet Divergences in Extended Supergravity’ that was held in 2013,
the volume of the ‘other publication’ in the list of appended research papers of
this thesis.

4.3.1 Summary of the results concerning the UV divergences

The results can be divided into two categories:

1. The counterterms explicitly determined by 4-graviton calculations (though
not initially for L = 1,2). These are set for L ≤ 4.

2. The counterterms constrained by the symmetries of maximal SUGRA, set-
ting a limit on the worst possible UV divergences.

Implicit in this is as a rule of thumb that the investigations concern 4-point am-
plitudes. Not much effort has been spent on analysing n-point diagrams with
n > 4, although the exception to the rule [102] will prove most intriguing, and
an increased interest in 5-point amplitudes has been visible since Paper IV. In
specific, the second point above can be divided into three areas of interest:

• L < 7 where divergences cannot occur in D = 4.

• L = 7 where supersymmetry and U-duality properties allow for a coun-
terterm in D = 4 for the 4-point amplitude [98, 102] but not for the n-point
one-particle irreducible amplitude with 5 ≤ n ≤ 6 [102]. Meanwhile, the
result of Paper IV states that the 4-point diagram vanish, and Paper V in-
dicates those of n > 4 to be convergent in D = 4.

5Presentations given at the workshop can also be found at http://www.lnf.infn.it/theory/buds.
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• L > 7 where supersymmetry and U-duality properties allow for countert-
erms for all n-point diagrams (n≥ 4) [76,77,102], while the results of Paper
IV (and V) state that all such one-particle irreducible diagrams vanish, lim-
iting the divergences to those of L ≤ 7.

Up until recently, the L = 7 amplitude was regarded as the amplitude to set the
limit of the perturbative finiteness of D = 4 maximal SUGRA: either the pertur-
bative theory was to diverge at L= 7, or at L= 8. However, in combination with
the results of Paper IV, the results of [102] (reproduced in Paper V for all n), spe-
cific with respect to the n-point dependence of the possible counterterms, open
up for the scenario of D = 4,N = 8 SUGRA as perturbatively finite. Even when
disregarding the result of Paper V, it is unlikely that counterterms show up for
7-point diagrams, or higher, when absent for the lower ones. This is extremely
interesting, calling for further investigations in the different settings, due to the
opaque workings of the pure spinor formalism.

An overview of the explicit results is illustrated in fig. 4.2, the properties of
which will now be discussed in detail.

At L ≤ 4

The counterterm results of the L ≤ 4 amplitude diagrams set the limit on the
UV perturbative finiteness to [70–75, 89, 95]

D < 8 L = 1

D < 4 +
6

L
2 ≤ L ≤ 4

(4.4)

for the 4-point amplitude: exactly the same (overall) behaviour as in maximal
SYM. In fact, the coincidence with SYM carries surprisingly far with respect to
the number of loops. A deviation from the SYM case was expected earlier, and
has now been postponed to the L = 5 amplitude, where the actual case remains
to be explicitly addressed.

At 5 ≤ L ≤ 6

The key point of interest in this regime is when maximal SUGRA deviates from
the SYM case. The loops above L= 4 and below L= 7 are characterised by a UV
behaviour somewhere in-between the limits of [98, 102]

2 +
14

L
≤ Dc ≤ 4 +

6

L
4 ≤ L ≤ 6, (4.5)

where Dc is the critical, lowest dimension where UV divergences may occur.
The situation in SYM provides the best case scenario, while the worst possible
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Figure 4.2: The limit on the dimension (D) of a maximal SUGRA theory for it to be per-
turbatively finite, as deduced through different studies. It is presented for the 4-point
amplitude, as a function of the number of loops (L) present. The blue colour refers
to the situation in maximal SYM (compare to section 4.1.1) where the requirement is
D< 4 + 6/L forL> 1. This SYM boundary (the lowest dimension for divergence) repre-
sents the upper bound for what may be the case in SUGRA. The dashed line represents
the highest dimension in which maximal SYM is perturbatively finite (all loop configu-
rations considered). The red colour denotes various SUGRA investigations, in analogy
with the SYM markings. The results from the four-graviton calculations are in unison
with the results by the counterterm approaches and Paper V, otherwise displayed as
red circles. There are two highly interesting points here, the situations for L = 5 and
L = 7. The first is where SUGRA currently is expected to deviate from the SYM case,
a limit that previously has been lower. When a deviation occurs, and how it appears,
will provide an indication for what to expect at higher L, in specific when the D = 4
theory turns divergent. At present, any deviation is expected to result in a curve below
the SYM boundary, possibly tangent to the SUGRA lower boundary, forcing the overall
limit below four dimensions. The first possible divergence then occurs at 7 loops. How-
ever, the pure spinor results of Paper IV state that the loop dependence ceases after 7
loops, making the L = 7 situation integral. Since the same results state that the 7-loop
configurations strictly are not allowed in a 4-point diagram, the relevant examination
is that of the 5-point amplitude, with [102] and Paper V implying convergence. This
opens up for a situation where maximal SUGRA is perturbatively finite in D = 4.
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behaviour is bounded from below only by D ≤ 2 in an extended argument, for
the overall number of loops, as also was the result of [103,104]. The correspond-
ing result of Paper II was, however, rendered void by Paper IV, in the absence
of constellations of (λ̄, r) with rx : x > 15, but successfully analysed in Paper V
to give both the results of eq. (4.4) and (4.5).

At L = 7

The amplitude with 7 loops presents the crucial point for the present analysis.
It is where the first UV divergences in D = 4 may occur, with a limit on the
dimension of the theory according to [98, 102] and Paper V:

D < 2 +
14 + 2s

L
s :

{
0 if j = 4
1 if 4 < j ≤ 6

L = 7, (4.6)

with the s as an extension6 of the argument in [98] in the presence of the [102]
results, which specify results for n-point amplitudes, (presumably) directly con-
nected to the number of outer legs of one-particle irreducible loop diagrams.

Usually, this relation is shown for the 4-point amplitude, which was the
subject of investigation in [98]. There, a logarithmic divergence in D = 4 was
shown to be possible. [102] instead specifies the divergences with respect to up
to 6-point amplitudes, with the 4-point amplitude connected to a logarithmic
divergence in D = 4, while the others are found to be perturbatively finite. This
corresponds to the result of Paper V, not limited to n ≤ 6.

On the other hand, according to the results of Paper IV and V, 4-point dia-
grams with 7 loops vanish. For the presence of one-particle irreducible struc-
tures (each 4-point by requirement) with 7 loops, 5 outer legs are required. This
implies a restriction to diagrams that by [102] and Paper V are not as diver-
gent as the 4-point version. The general n-point diagrams have of course not
been investigated outside the pure spinor formalism, but even so, higher point
diagrams ought not present worse divergences than the lower point ones. Con-
sequently:

• The logarithmic divergence seems to be completely avoidable at 7 loops7.

Above L = 7

Traditionally, UV perturbative finiteness in D = 4 has been regarded as highly
unlikely (or impossible) above 7 loops. Counterterms valid in the presence of

6Regardless of the accuracy, the important point is the addition of some positive number on the right
hand side of the relation, for 4 < j < 7.

7Note that this conclusion was not drawn in Paper IV, due to a too heavy focus on the 4-point amplitude
results which overlooked the 5-point result of [102].



66 Ultraviolet divergences

maximal supersymmetry and U-duality at 8 loops were recognised early on [76,
77] and the behaviour effectively conjectured to be that of eq. (4.5) extended to a
higher number of loops. There, the overall lowest limit of perturbative finiteness
in D = 2 is unsurprising, obtainable from a general power counting of the loop
momenta.

The results of Paper IV and V, on the other hand, state a cut-off of the loop
dependence at 7 loops. That is, one-particle irreducible diagrams may not have
more than 7 loops, setting the overall behaviour of the higher loop diagrams
(made out of several one-particle irreducible diagrams) to be that of the 7-loop
diagrams. In that way, the UV divergences are, in combination with [98, 102],
identified as entirely absent in D = 4.

4.3.2 The cancellations of Paper IV and V

There are two parts to the results of Paper IV and V; one controversial, the other
one not. The first is the cut-off of the loop dependence, the second the limit
on the possible counterterms already observed (effectively) in [98, 102]. A first,
logarithmic divergence at 7 loops, as discussed in e.g. [109], is a well-established
scenario. Even a postponement to 8 loops would not be especially unthinkable,
but there has been nothing identified outside the setting of Paper IV and V to
indicate a cut-off of the loop dependence, especially not exactly at the crucial
point of divergence in D = 4. The closest would be arguments for finiteness in
D = 4 like [108], by no means definitely established.

In Paper IV and V, the cut-off of the loop dependence is due to

— a restriction on the effectively present parts of R in the vertices, so as not
to constitute a total derivative.

— an inherent restriction on the non-minimal spinor variable r, which only
shows up in certain constellations, in combination with a duality between
r and λλ̄D, not fully captured by the integrations over the loop momenta.

Importantly, the investigations concern parts convergent with respect to the sin-
gularities of (λ, λ̄), allowing for BRST equivalent analyses of the properties with-
out having to take the general regularisations into account8. The first restriction
is integral as it defines R ∝ r, effectively, in loops, so that there are always two
r on each loop-specific propagator, in contrast to what is true in e.g. SYM. The
second restriction is a consequence of this: there are rs on the loop-specific prop-
agators, which if too many in number have to figure in their dual entity λλ̄D.
However, the integrations over the loop momenta, equivalently figuring on the
loop-specific propagators, render expressions with these additional momenta
to zero.

8Except for with respect to the general UV limits, equally analysed through a power-counting of D
prior to a general regularisation anyway, compare to Paper V.
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Perhaps the final step has to do with U-duality (momenta/brane charge du-
ality). The loop equivalence between r and covariant spinor derivatives (origi-
nating in the loop regularisation) in Paper V provided the limit on the dimen-
sion to those presented (forL> 1), partly ‘normally’ deduced through U-duality
arguments. Effectively, the vanishing of amplitude diagrams in Paper IV and
V may be interpreted as being due to an overall limit on the encoded mo-
menta/coordinate duality in the loops, in terms of what can be accepted by the
integrations over the loop momenta. What that would correspond to in terms of
U-duality is more difficult to divine, but there would seem to be a contradiction
between required dualities and accepted entities.

The most crucial point is, of course, if the analysis truly holds in a BRST
equivalent setting, but the extended analysis of Paper V certainly seems to ver-
ify that.

4.3.3 Outlook

The combined results of [98,102], Paper IV and V imply UV perturbative finite-
ness in D = 4 maximal SUGRA, which is a highly interesting and controversial
result. Further investigations are of interest:

• An extended analysis in settings outside the pure spinor formalism, for
a confirmation of the results and a better understanding of what causes
the counterterm cancellation. In [102] the E7(7) symmetry is found to be
increasingly restrictive for higher loop and point diagrams. The possibility
of the D8R4 counterterm for the 7-loop 4-point amplitude in their analysis
is the product of a remarkable cancellation. Perhaps it is possible to extend
the analysis and obtain results in line with Paper IV.

• It might be desirable to see an explicit proof of the 7-loop 4- and 5-point
amplitudes in the pure spinor formalism setting of Paper IV and V. How-
ever, the overall limit of Paper V in practice already has established the
worst UV behaviour of the one-particle irreducible loop structures, and
the workings of the ‘counterterm cancellations’ have been identified.

Provided the results of Paper IV and V hold, the development of the per-
turbative finiteness in maximal SUGRA has taken an unexpected turn. Interest-
ingly, due to the simplifications of the analysis provided by the inherent sym-
metries of the field theory pure spinor formalism. Perhaps the workings of the
process would be more transparent when formulated in a setting with manifest
U-duality, e.g. in D = 4 with explicit parallels to the other investigations. Such a
pure spinor formalism yet remains to be constructed. However, the D = 11 the-
ory already encodes this, effectively making the observations in Paper V possi-
ble, in part representing the powerfulness of the formulation.





We have to remember that what we observe is not nature herself,
but nature exposed to our method of questioning.

Werner Heisenberg

5
Exceptional geometry

A non-perturbative formulation of string theory has long been an object of in-
terest in theoretical high energy physics. The superstring theories1, originating
in different quantisations of the closed string, are known to be related by du-
alities [53, 203], effectively representing different perturbative versions of one
single theory [203–205]: the so-called M-theory. This theory e.g. arises in the
strong coupling limit of type IIA string theory, with the other string theories
in different limits of low coupling. Importantly, its low energy limit is D = 11
SUGRA.

In understanding the properties of the elusive M-theory, examinations of
D = 11 SUGRA represent key investigations. Through a better understanding
of the low energy properties, an increased knowledge of what ought to go into
the description of M-theory is obtained. Integral to the subject of this chapter
is the U-duality [53–56] properties displayed by D = 11 SUGRA compactified
on tori. This duality encompasses both T- and S-duality and so relates all of
the string theories. The process represents one example of how to, in the low
energy limit of M-theory, identify a property important in its other perturbative
expansions (the string theories).

Essentially, U-duality represents a quantum symmetry of M-theory, and an
attempt can be made at making it manifest in the low energy limit formulation.
The subsequent theory is termed extended geometry and exists in two versions:
doubled and exceptional geometry, with manifest T- (double) and U-duality
(exceptional), although the former represents a special, far more investigated,
case of the latter. The point of these formulations is partly to better understand

1The type I, IIA and IIB theories, and the heterotic SO(32) and E8 ×E8 string theories.

69
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the effects of U-duality in general, but can also be regarded as a step towards
M-theory. A consistent description at low energy, enlarged in lower dimensions
(D < 11) to encompass the U-duality usually broken there, might be possible
to extend to higher energy levels or give a clue to how that is to be done. Such
attempts have been made in other contexts before, especially for T-duality [146–
148, 206, 207], but also concerning theories describing M-branes [208–211]. For
example, a current and important venue of research concerns the M5 theory (in
D = 6) which relates the concepts of D = 4 gauge theory and D = 2 conformal
field theory (CFT) [212–214].

This chapter will start out with a description of how U-duality shows up in
D = 11 SUGRA and what it is characterised by, mainly following [56]. Subse-
quently, the geometric construction for including manifest U-duality in SUGRA
will be described (initially in terms of T-duality), followed by the current sit-
uation for exceptional geometry and the investigations therein, partly related
to Paper III. For a full, detailed and rather recent review of the field, [215] is
recommended.

5.1 U-duality

The dualities relating the superstring theories partly figure in a context where
brane charges and momenta are treated on an equal basis. To (by construction)
get to this property, it is necessary to consider a spacetime with directions con-
jugate to the brane charges. At the same time, the symmetries of the SUGRA
theory, a version of eq. (3.1b), must be preserved. Both criteria are fulfilled by a
compactification of the D = 11 SUGRA theory on a torus of dimension d, where
discrete momenta and brane windings on the torus form the multiplets of the U-
duality groups [55], thereby capturing properties hidden in the D = 11 theory;
the possible remnants from M-theory.

The SUGRA theory compactified in this way displays a superalgebra de-
composed into the maximal superalgebra of the ensuing D = 11− d theory. The
N -extended algebra transforms under

SO(1,10− d)× SO(d), (5.1)

where the latter describes the symmetry relations between the different sets of
supercharges, and thus represents a part of the (local)R-symmetry. For anN = 1
theory, this symmetry is simply described by U(1), but it varies with d to extend
beyond SO(d). The former part naturally denotes the Lorentz group in the un-
compactified dimensions, so that the correct properties of the theory (in total)
are preserved, in line with a valid construction as outlined above.

The interesting result of the compactification is the properties of the subse-
quent theory. It turns out to be invariant under a global symmetryGd containing



5.1 U-duality 71

D d Gd = Ed(d) Hd

10 1 R+ 1
9 2 Sl(2,R)×R+ U(1)
8 3 Sl(3,R)× Sl(2,R) SO(3)×U(1)
7 4 Sl(5,R) SO(5)
6 5 SO(5,5,R) SO(5)× SO(5)
5 6 E6(6) USp(8)

4 7 E7(7) SU(8)

3 8 E8(8) SO(16)

Table 5.1: The symmetry groups of U-duality displayed in D dimensions after a com-
pactification of D = 11 SUGRA on tori of dimension d (T d), representing the inter-
nal symmetries of the compactified directions. These are the Cremmer–Julia symmetry
groups, or equivalently: the exceptional symmetry groups Ed(d). Their maximal com-
pact subgroups Hd correspond to the R-symmetry of the superalgebra. [216, 217]

SO(d− 1, d− 1,R) ./ Sl(d,R), (5.2a)

which denotes a continuous symmetry group generated by two non-commuting
subgroups. The former of the two groups incorporates T-duality, whereas the
corresponding for the latter is S-duality, so that the described global symme-
try incorporates the dualities between the string theories. In addition, the latter
group represents a subgroup of the diffeomorphism symmetry.

In total, the global symmetry Gd is that of Ed(d)(R) [216, 217], as listed in
table 5.1, i.e. the normal real form of the exceptional group Ed. However, in
the quantum theory the gauge potentials transform non-trivially under Ed, so
that the continuous symmetry cannot be valid. Effectively, the states charged
under the gauge potentials are required to have quantised charges, reducing the
continuous symmetry described above to the part of it that remains unbroken
in the quantum theory: the discrete symmetry

Ed(d)(Z). (5.2b)

This is the symmetry group of the U-duality.
Technically, a few more proofs (of the absence of further restrictions) are re-

quired before the last statement can be made, in general. For example, the dif-
feomorphism symmetry in D = 11 SUGRA can be shown to give Sl(d,Z) as an
exact symmetry [53, 218] of the quantised theory. Another, further requirement
is the fact that T-duality, described by SO(d−1, d−1,Z), holds to all orders [219]
in type IIA string perturbation theory. With d ≤ 7, this is sufficient to prove the
exact quantum symmetry to be Ed(d)(Z) [53,218]. For the general statement, ver-
ifications extended all the way to d = 11 [220–222] are necessary. However, the
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interpretations, and relations, of the special cases of d ≥ 10 are slightly different
from the ones previously mentioned.

In summary, the symmetry group in eq. (5.2b) describes how U-duality re-
lates the different superstring theories (effectively through S- and T-duality) as
equivalent perturbative expansions of one and the same theory. The process of
compacitification ofD = 11 SUGRA on tori therefore correctly captures not only
the equivalent treatment of momenta and brane charges first identified among
the string theories, but the entire quantum symmetry connected to that equiva-
lence. A recognition made possible by the complementary situation of the string
and SUGRA theories, perturbative with respect to M-theory in different senses:
the former in a weak coupling limit, the latter in a low energy limit, but neither
in both senses. Most importantly, one property of M-theory, U-duality, has been
uncovered.

5.2 The geometric construction

With one property of M-theory identified, it is possible to extend the low energy
limit of it. That is, the maximal SUGRA theory might be altered (in D < 11) to
comprise the Ed(d) symmetry. The reason for this procedure, as previously men-
tioned, mostly is the opportunity it offers at examining what U-duality brings
about in a theory. Along with the reflections in the previous chapters of this
thesis, symmetries made manifest simplify investigations of different kinds in a
theory. Secondly, of course, it can also be termed an intermediate step towards
M-theory, which certainly must display the Ed(d) symmetry as well as, in a low
energy limit: maximal SUGRA. The resulting formulation though, is neither that
of M-theory, nor in proper terms its low energy limit.

So, how to incorporate theEd(d) symmetry? That question was first addressed
in terms of T-duality, the part of U-duality that shows up in the weak coupling
limit of perturbation theory. There, the symmetry group of relevance is

O(d, d,Z). (5.3)

and the ensuing formulation, first examined in a purely mathematical context
[113, 116, 117], is termed doubled geometry [31]. It represents a special case,
more easily handled than the full U-duality, thoroughly examined [31,113–145]
and providing the guidelines for the exceptional setting.

Integral to the construction, regardless of the symmetry under consideration,
is that the compactified theory (as described in the previous section) naturally
separates into the compactified (internal) and uncompactified directions. The
latter represents the original theory in the dimensions remaining after the T d
compactification, and is well-known. The former, on the other hand, represents
an additional feature, not quite fit to capture the desired symmetry. It is what
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is altered in order to take care of the duality symmetry (manifesting it in the
description) and, consequently, the only part of the description of special sig-
nificance. Regardless of the setting, the compactified directions represent the
first object of investigation.

5.2.1 T-duality construction

The concept of a geometric description of T-duality is central to doubled geom-
etry, giving rise to the term ‘generalised geometry’. It is through an alteration of
the geometry that the desired symmetry invariance is captured.

In specific, the space of the (string) theory, compactified on a torus T d, is a
fibre bundle, which locally looks like the (direct) product of a base space and
a fibre; at each point of the spacetime (not subject to compactification) a copy
of the T d is attached. In the geometric formulation, the space is extended with
respect to the torus fibration, which introduces the concept of a generalised tan-
gent space. A cotangent space is added to the original tangent space, so that
the fibration is described not by one, but two tori, dual to each other. This
shape of the generalised tangent space (doubled coordinates with a duality con-
straint) causes the generalised metric — i.e. the overall metric with respect to the
compactified directions — to split into an O(d, d) invariant metric. In this way,
the added geometric (by compactification) and non-geometric (by construction)
backgrounds make room for the desired symmetry in the theory.

With a metric invariant under the desired symmetry, it possible to accommo-
date the rest of the theory to it. The present T-duality naturally affects the gauge
transformations, which means that the original infinitesimal transformations of
tensors, the Lie derivative in the direction of a diffeomorphism parameter, falls
short of capturing theO(d, d) symmetry. For a correct geometric encoding of the
diffeomorphisms (of the altered theory), the Lie bracket must be generalised ap-
propriately, which is achieved through replacing the ordinary Lie bracket with
the Courant bracket.

The change from the original Lie algebra, which for a theory of gravity is
gl(n), is such that, with a diffeomorphism parameter un and a vector vn, an
infinitesimal transformation is altered from2

δuv
m = Luvm = [u, v]m = un∂nv

m − (∂nu
m)vn (5.4)

to that of a generalised Lie algebra with a generalised Lie derivative (a Dorfman

2Capital letters here refer to inner coordinates (coordinates on the generalised tangent space) in terms
of the forms of the uncompactified theory, and minuscule letters to the original spacetime of the extended
theory (in exceptional geometry: (11 − d)-dimensional). For example, the Lie derivative naturally is only
altered with respect to the inner directions. Note that all forms are bosonic, despite the overlap with the
superspace notation.



74 Exceptional geometry

derivative): [42, 114, 115]

LUV
M = LUV M + Y MN

PQ(∂NU
P )V Q,

Y MN
PQ = ηMNηPQ.

(5.5)

Effectively, the original transportation term (un∂nvm) is kept, while the matrix
of infinitesimal transformations, through the projection Y MN

PQ, is extended be-
yond gl(n) to include the O(d, d) transformations. For example, LU preserves
the O(d, d) structure through

LUηMN = 0. (5.6)

However, the algebra generated by the generalised Lie derivative only closes
provided a restriction on the theory. The corresponding, conventional constraint
in doubled geometry, the so-called section condition is [114]

ηMN∂M ⊗ ∂N = 0. (5.7a)

This version of the constraint, where the derivatives may act on arbitrary, sep-
arate objects, is termed strong. It is necessary for the closure of the algebra in
doubled geometry, although the weak version

ηMN∂M∂N = 0 (5.7b)

is enough to capture the level matching constraint in closed string theory, and
therefore sometimes is used for preliminary investigations. Effectively, the re-
striction of the section condition (when solved for) puts the theory on a sub-
space equalling the normal space of the theory; different solutions of it repre-
sent dual theories, like the different string theories. This e.g. makes the section
condition, and how it arises, interesting with respect to one of the venues of
research mentioned in section 5.3.4.

In the presence of the strong section condition, the Lie algebra is valid and
transforms among itself according to

[LU ,LV ] = L[[U,V ]], (5.8)

with the Courant bracket [115]

[[U,V ]]M =
1

2

(
LUV

M −LVU
M
)

= (5.9a)

= UN∂NV
M − (∂NU

M)V N +
1

2
Y MN

PQ

[
(∂NU

P )V Q −UQ∂NV
P
]
. (5.9b)

This presents the natural way of generalising the Lie algebra, when the Lie
derivative is generalised according to eq. (5.5). In total, the altered Lie algebra
ensures that the theory locally displays the O(d, d) symmetry.
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Conceptually, this provides a geometric interpretation of T-duality, although
further properties must be considered for a general reformulation of the theory,
both in terms of the construction and its implications for the rest of the theory.
For example, the generalised metric contains both the string theory metric and
the B-field, the latter of which may have non-trivial flux, in which case a suitable
alteration of the construction is required for the formulation to fully work [32].
That process of extending the theory will not be touched upon here.

In summary, the doubled geometry unifies the bosonic degrees of freedom
(the fields of the theory) in the generalised metricG. It contains the string theory
metric and the B-field. Meanwhile, the gauge symmetries and diffeomorphisms
of the theory are encoded by the generalised Lie derivative, resulting e.g. in that
an infinitesimal bosonic symmetry transformation is given by

δUG = LUG. (5.10)

In addition, the R-symmetry of the superalgebra translates into the maximal
compact subgroup of the symmetry, rendering the actual symmetry to Gd/Hd

in analogy with the situation in exceptional geometry. The modulo H describes
the equivalence between the different sets of supercharges.

5.2.2 U-duality construction

Generalised geometry in the sense of capturing the U-duality properties, so-
called exceptional geometry, was first recognised by [31,32] and represents a rather
recent object of research. Although increasingly popular, its properties [31–52]
are nowhere near as well understood as those of doubled geometry.

The geometric construction in the U-duality setting very much resembles the
doubled geometry, with an extension of the original theory through a gener-
alised tangent space, a generalised metric and a generalised Lie algebra. Only,
the additional symmetry accommodated for is exceptional instead of double,
and the theory concerned is that of supergravity. It represents a generalisation
of the doubled geometry, in that it is non-perturbative in the coupling constant.

Exceptional geometry fundamentally differs from doubled geometry in that:

• The generalised tangent space (of d dimensions) added to the D = 11− d
maximal SUGRA theory displays Ed(d) invariance.

• The diffeomorphisms are invariant under ed(d) and a real scaling instead of
gl(n): the symmetry group is Ed(d) ×R+.

• The unification of the fields into the exceptional generalised metric makes
manifest the equal treatment of momenta and brane charges.

The first statement effectively means that the compactified directions (the
extended space) in exceptional geometry are described by something a bit more
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exotic than a fibration of a pair of dual tori. The generalised tangent space in-
troduced in the geometric description of the D < 11 maximal SUGRA theory is
constructed to accommodate the exceptional symmetry rather than the O(d, d)
symmetry, and varies with d in unison with the specific symmetries shown in
table 5.1.

The second point brings about a different generalisation of the Lie derivative
compared with the case in doubled geometry. The projection Y MN

PQ needs to
remove the Gl(n) invariance and substitute it with the new symmetry proper-
ties, a feature achieved by [34, 35, 37–40, 42]

LUV
M = LUV M + Y MN

PQ∂NU
PV Q,

Y MN
PQ = δMP δ

N
Q − αP(adj)

M
Q,

N
P + βδMQ δ

N
P .

(5.11a)

Here, the first term in Y MN
PQ removes the undesired infinitesimal transforma-

tions. The second term adds the ones corresponding to the Ed(d) through a pro-
jection onto the adjoint representation of Ed(d), while the third is responsible
for the real scaling. The (α,β) represent real scalars set by the particular theory
(value of d etc.) under consideration.

Furthermore, as in doubled geometry, the generalised Lie algebra does not
close on its own. The necessary and conventional (strong) section condition is

Y MN
PQ∂M ⊗ ∂N = 0, (5.11b)

a condition with a weak counterpart, just as in doubled geometry. The strong
section condition needs to hold for the metric to be invariant, with some addi-
tional constraints, which restricts Y MN

PQ to the R2 representation (2-forms) in
Ed(d) for d ≤ 6 [42], compare to section 5.3.1. The Lie bracket is also altered in
order to accommodate for the closure of the algebra, compare to eq. (5.8), into
an exceptional Courant bracket [32] corresponding to that of eq. (5.9a).

The third statement refers to the treatment of the fields in the theory. While
the symmetries (of U-duality) are taken care of by the added space and altered
Lie derivative (including both S- and T-duality properties) the fields are incor-
porated into the extended metric, as in doubled geometry. Infinitesimal sym-
metry transformations are equally given by eq. (5.10). The difference is that the
full dual situation is contained in the formulation: U-duality is present.

In total, there are naturally more differences between the doubled and ex-
ceptional geometries than what is listed above. In general, the properties of the
latter are both generalised with respect to the former, and more complicated.
There is also a definite difference in interpretation of the higher d-dimensional
formulations.
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5.2.3 Directions in relation to extended geometry

Once the geometric formulation of the U- or T-duality is set, the theory splits
into two parts: the inner and the outer directions, where the former refers to the
compactified part of the theory and, in extension, to the new physics. At this
point, it is optional to extend the spacetime to the same symmetry, obtaining
more than SUGRA with U-duality, by considering extended geometry instead of
generalised, a distinction increasingly made these last years and not necessar-
ily rigorous in e.g. Paper III. The investigations of the tangent space coincide.
Furthermore, it is possible to investigate the consequences of the geometry, or
(in extended geometry) to proceed to what a field theory would correspond to.
The former is the venue of research of Paper III and consequently the one ad-
dressed (primarily) in this thesis. However, there is also a lot of research done
on the field theories [48–50,114,115,120,121,137,138,141,142,144,145,223–225].
Either way, a complicating factor in exceptional geometry is the difficulties of
analysing concepts with respect to a general d, due to the properties of the Ed(d)

representations. Most often, an analysis has to be performed for each value of d.

The doubled & exceptional field theories

An extension of the geometrical approach is to be found in doubled (DFT) and
exceptional (EFT) field theory, where the prime interest is the fields of the theory
instead of the geometry. The EFT structure is similar to that of (11− d) gauged
maximal SUGRA [226, 227], except in that the fields depend on the extended
space. Matters of interest are, for example, the gauge structure and the connec-
tions, the supersymmetry algebra and the form of the action. In part, the results
from the field theory approaches and the investigations from a geometric point
of view concern the same issues, and can then be translated from one formula-
tion to the other. For example, the difference between investigations regarding
the gauge structure and the connections on the generalised tangent space of a
certain theory is mostly a matter of notation.

Comment on the generality of the construction

Some years ago, the question was raised of whether or not the global structure
of exceptional geometry was that of a manifold, and tensors too constrained
(e.g. to flat space) to form a consistent theory. Since then, however, progress on
the intrinsic structure of the theory has been made. This includes, for example,
additional knowledge of the finite transformations, soon to be described in sec-
tion 5.3.1. The accompanying gerbe structure is relevant for coordinate patches
through overlaps, and thereby for the associated manifold. On the whole, the
theory of exceptional geometry represents a promising candidate with respect
to general applications, such as the possibility to get at gauged SUGRA.
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5.3 Exceptional geometry

In exploring the theory of (extended) exceptional geometry, there are a few fun-
damental questions concerning the theory:

1. What symmetries does it show?

2. What tensor formalism and curvature is it characterised by?

3. What is the associated dynamics?

The first question refers to both local and global symmetries, where the latter
so far has proven difficult to describe in a general way. For an illustration of the
concepts, the case of doubled geometry will have to suffice.

The second question has been addressed in a general way for d ≤ 7 (the
cases most easily investigated), which was the subject of Paper III, but remains
to be further investigated for d > 8. It is a matter complicated by the presence of
extra parts in the affine connection of the covariant derivative, which cannot be
allowed to be part of the effective theory.

Thirdly, it is desirable to have a full classification of the dynamics and the
gauge structures of the fields present in the theory. This matter is possible to
approach, in a geometric setting, both from the observed structure of the ten-
sor formalism and through an extension of ordinary gravity. Primarily, it is the
bosonic sector that is subject to an analysis, as the extension to fermions is well-
known.

These issues will now be described in more detail, prior to an outlook with
respect to the different venues of research within exceptional geometry. Since
the formulation is rather recent, there exist both many diverse investigations
and concepts of interest yet to be approached.

5.3.1 Transformations within Ed(d)(R)

In any theory, it is desirable to have a complete classification of the constituent,
local symmetries. This is of course also true in exceptional geometry. With a di-
vision of these transfromations into those finite and infinitesimally small, the
latter is represented by the Lie algebra and well-known. The finite transforma-
tions, however, are far from completely classified.

Diffeomorphisms

Given the Lie derivative of eq. (5.11) the classification of the infinitesimal trans-
formations in exceptional geometry equals the identification of the projection
Y MN

PQ in the different d-dimensional compactifications. This tensor is com-
pletely determined by the requirement that the transformations generated by
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the Lie derivative represent a Lie algebra, which — in addition to the section
condition — is fulfilled iff [42]
(
Y MN

TQY
TP

RS − Y MN
RSδ

P
Q

)
∂(N ⊗ ∂P ) (5.12)

(
Y MN

TQY
TP

[SR) + 2Y MN
[R|T |Y

TP
S)Q − Y MN

[RS)δ
P
Q − 2Y MN

[S|Q|δ
P
R)

)
∂[N ⊗ ∂P )∗

all vanish. [SR) denotes either the anti- or symmetrisation of the S and R in-
dices, with any |X| remaining put, while the [NP )∗ is opposite to the first bracket,
so that the second expression really represents two different objects.

The section condition, as mentioned previously, restricts the projection ten-
sor to a projection into 2-forms for d ≤ 6, while it for higher d also allows for
an additional term. The above displayed terms then set further restrictions, e.g.
resulting in a projection for d = 3:

Y iα,jβ
kγ,lδ = 4δijklδ

αβ
γδ , (5.13)

where each inner index M for d = 3 is represented by a vector and a spinor
index: iα, as a result of the restriction of the 1-form of the D = 11 theory to the
subgroup symmetry present after compactification. [42]

In this way, the infinitesimal transformations have been deduced for d ≤ 7
[42]. In general, the d > 7 theories represent special cases, and this is no ex-
ception. The Lie derivative for d = 8 cannot be restricted into an ordinary Lie
algebra [40,42], but requires further identifications [50,51] for the correct geom-
etry [52] to be captured. The formulations with d > 8 remain to be addressed for
a full identification of the infinitesimal symmetries.

Finite transformations

Despite the fact that the compactification of D = 11 SUGRA on tori is a thor-
oughly understood and entirely feasible procedure, the finite transformations
of the ensuing theory remain to be pinned down in their entirety. In this respect,
the effects of the compactification need to be further recognised.

The situation in doubled geometry, simpler yet relevant, has been investi-
gated in [134, 139, 141, 142], with parallels to the exceptional case. The situation
is as follows:

• In doubled geometry, any global continuous symmetry ought to also be a
local symmetry, due to the string theory background, where all global sym-
metries are gauged [228]. As such, all the continuous symmetries should
be possible to express in terms of the Lie derivative, and the other trans-
formations correspond to discrete, finite (large) transformations. By exten-
sion, this should hold in exceptional geometry too.
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• The finite transformations of tensors in doubled geometry, conjectured in
[134], correspond to an exponentiation of the Lie derivative:

eLξ = eLξ−a
t

= eξ+a−a
t

. (5.14)

Any such exponentiation is equivalent to the finite transformations, allow-
ing for non-translating transformations. However, the situation is not eas-
ily generalised to exceptional geometry, as that exponentiated Lie deriva-
tive contains a term different from at, with properties complicating the
formulation of the finite transformations on a form other than that of an
infinite series, contrary to what is true in doubled geometry. [139]

• The continuous, finite transformations display a so-called gerbe structure;
two finite transformations describe a third up to non-translating transfor-
mations

e∆, ∆ : [LU ,LV ] = L[U,V ] + ∆U,V . (5.15)

The deviation is possible to describe, in doubled geometry, in terms of the
symmetry algebra O(d, d), and is trivial for three consecutive finite trans-
formations. The characteristics are equivalent to those displayed by a fi-
bre bundle, which effectively is the topology of the theory once the sec-
tion condition is solved for. In exceptional geometry, on the other hand,
a higher gerbe structure is expected — perhaps infinite — e.g. due to the
presence of higher n-form potentials in some of the compactifications. [139]

Although this constitutes a promising conceptual knowledge of the situation in
exceptional geometry, a better insight into the finite transformations is required
for a thorough understanding of the global ‘isometries’3.

5.3.2 Torsion, curvature & the tensor formalism

With the symmetries of the theory (partially) recognised, the next concern is for
the tensor formalism. It needs to be well-defined and, preferably, easy to deal
with — a feature complicated by the already mentioned difficulties in making
statements for general d. The former is in turn connected to the torsion of the
theory, or rather the part of it which is not allowed, and leads on to a recogni-
tion of the curvature of the theory, in total presenting a full description of the
exceptional space.

The affine connection

The covariant derivative in exceptional geometry is such that

DMV
N = ∂MV

N + ΓMN
PVP , (5.16)

3Non-distorting mappings.
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with ΓMN
P representing the affine connection in the Lie algebra (ed(d) ⊕R). For

consistency, the covariant derivative of a tensor must also constitute a tensor,
which it does not automatically do. In ordinary differential geometry, this is
solved for in terms of the compatibility condition, i.e. the requirement of the
vielbein to be covariantly constant:

DMEN
A = ∂MEN

A + ΓMN
PEP

A −ENBΩMB
A = 0, (5.17)

with ΩMB
A as the spin connection4. With this relation, the spin connection usu-

ally is expressed in terms of the vielbein and derivatives thereof through a re-
striction to zero torsion; enough of an additional constraint for the curvature to
be solved for. However, in exceptional geometry additional components show
up in the affine connection, complicating the procedure.

Torsion and non-torsion

In ordinary differential geometry, the torsion tensor is proportional to the anti-
symmetrised affine connection

TMNP ∝ Γ[MN ]P , (5.18)

which means that the two first indices in Γ are symmetrised when the torsion
is set to zero. This is a consistent constraint that fails in exceptional geometry
as the affine connection contains unconventional parts, not transforming homo-
geneously. Instead, the relevant components need to be divided into two cate-
gories: torsion and non-torsion. The former transforms with the Lie derivative as
ordinary torsion does and can be put to zero, and the latter represents the parts
subject to further examinations and constraints.

In this way, a feature of exceptional geometry is that the torsion is not com-
pletely determined, with respect to the non-torsion part. Non-torsion compo-
nents in Γ that are left undetermined by eq. (5.17) cannot be part of a well-
defined covariant derivative, and need to drop out of the theory (action, su-
persymmetry variations, etc.) for consistency. Either a constraint on the affine
connection needs to be imposed, or the unwanted irreducible representations
thereof need to fall out of the relevant description. In specific, the Ricci tensor
and scalar must be possible to construct from the affine connection in an unam-
biguous way, compare to eq. (5.20).

Consistent tensor formalisms

There exist different approaches to a formulation excluding the undetermined
non-torsion from the theory, equivalent in their effects but slightly different in
their consequences for the interpretation of the theory.

4In a comparison with section 2.2.3, note that the conventional notation in extended geometry here
displayed neither refers to superspace components, nor implicitly antisymmetrised indices.
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The most obvious approach, pursued in [40, 44], is that it is possible to de-
duce the relevant conditions on the affine connection for it not to contain unde-
termined non-torsion, and apply constraints on it in order to ensure that it does
not. For d < 8, with a torsion set to zero, this translates into the vanishing of the
affine connection in the covariant derivative, fulfilled if

YMN
QRΓQR

P + YMN
PQΓRQ

R = 0, (5.19)

as noted in Paper III.
On the other hand, it is possible to observe that the affine connection con-

tains no undetermined non-torsion if the partial derivatives ∂M in the Lie deriva-
tive are replaced with covariant ones. This leads to the recognition of that there
is a covariant mapping of the covariant derivative between certain modules,
and to the approach of Paper III (d≤ 7) and [45] (d= 7). The latter was extended
with respect to d in [47], but for d ≥ 8, the discussion in [51] gives the so far best
suggestions on how to extend the Lie derivative in a desirable way, specialised
further for d = 8 in [52].

The procedure consists of a classification of between which (pairs of) mod-
ules the covariant derivative is allowed to act; i.e. how a tensor might be altered
by it in a consistent way, without the introduction of undetermined non-torsion
components. The relevant restriction on the theory then becomes a restriction
on the modules involved, rather than constraints on the affine connection. It
presents a geometric solution to the problem in question — how to obtain a
well-defined covariant derivative — and the properties of the affine connection
remain untouched.

Conceptually, the first approach provides torsion-free projections of the affine
connections (one for each d), unique and possible to use in a derivation of the
curvature of the theory. However, the initial connections giving rise to the pro-
jections remain failing with respect to uniqueness, which ought not to be. Only
in d = 4 has a remedy been identified [44], providing a manifestly covariant
tensor formalism. The second approach, on the other hand, removes that issue.
Consequently, while the effects of the two approaches (the results obtainable in
the theory) are equivalent, there is a subtle difference between them, concerning
the treatment of the symmetry of the theory: manifest or not, reflecting upon the
fundamental understanding of what governs the theory.

A useful illustration can be provided by an analogy to Maxwell’s theory,
where the tensor formalism may be described either in terms of the electric and
magnetic fields (E,B), or in terms of 4-tensors. Lorentz covariance is present in
both settings, but while the existence of a manifestly Lorentz covariant formula-
tion is apparent in the first approach, it is not realised in anything but the second
one. In a manifest situation, all components represent tensors under the speci-
fied symmetry transformations, thus constituting a complete tensor formalism,
with no further improvements to be wished for.
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In exceptional geometry, the relevant symmetry is represented either by the
global Ed(d)(Z) transformations or (somewhat stricter) the extended diffeomor-
phisms, but the principle remains the same. The geometry of the theory is con-
structed to encode U-duality as a manifest symmetry. An approach where the
theory at a tensorial level is ‘reduced’ to a matching between which intermedi-
ate results, obtained from the different forms present in the theory, provide the
correct end result, fails to retain the manifest formulation. Such is the removal
of parts of the affine connection, in contrast to a recognition of where the theory
is consistent.

The value of the approaches in Paper III and [45, 47, 52] thus lies in the end
result being given in terms of a tensor formalism with manifest U-duality. It is
also nice to have a slightly more general formulation, valid beyond a specific
d. However, most importantly, a valid tensor formalism exists, despite the non-
torsion problematics, and further properties of the exceptional geometry may
be examined consistently.

Curvature

The presence of a well-defined tensor formalism makes it possible to proceed
with the examination of the curvature in exceptional geometry. The generalisa-
tion from ordinary geometry5 to the exceptional extension is fairly straightfor-
ward. However, a Riemann tensor cannot be constructed, because the extended
version does not represent an object transforming as a tensor. The Ricci tensor,
on the other hand, is perfectly well-defined in g	 h:

RMN = ∂(MΓ|P |N)
P − ∂PΓ(MN)

P+

+ Γ(MN)
QΓPQ

P − 1

2
ΓPM

QΓQN
P − 1

2
ΓP (M

QΓN)Q
P ,

(5.20)

with a restriction to vanishing torsion, as pointed out in Paper III (d ≤ 7). It is
the Ricci tensor and scalar that describe the curvature in exceptional geometry.

5.3.3 Dynamics from the tensor formalism

With a consistent geometric formulation and a valid tensor formalism, as at
least mostly provided for d ≤ 8, the next relevant venue of research concerns
the dynamics and the gauge structure of the existing fields. These are in need of
a full classification.

The (extended) dynamics take place in G/H , with G and H representing the
symmetry group and its maximal compact subgroup in the d-compactification,

5Any construction in exceptional geometry ought to fall back on the case of ordinary geometry under
the condition YMN

PQ = 0. Likewise, the extended geometry represents a generalisation with respect to a
non-zero projection tensor and the subsequent extended Lie derivative.
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listed in table 5.1. With an appropriate tensor formalism, local Hd covariance
is manifest and represents gauge. However, it is possible to proceed in slightly
different ways to obtain the dynamics and the gauge structure of the theory.
The actual situation is in need of further investigation for a full recognition of
the inherent properties.

The starting point, in a geometric setting, can e.g. either be from the ten-
sor structures observed in relation to the requirements concerning the affine
connection, or from the identified curvature and how it ought to appear in an
action to fit with the unextended theory. The former primarily focuses on the
gauge fields of the compactified theory, while the latter represents an initial at-
tempt at capturing the gravitational dynamics.

Implications from the tensor structure

The identification of between which modules the covariant, extended Lie deriva-
tive is allowed to act consistently, described in the previous section, by default
brings about a recognition of the gauge structure and dynamics of the gauge
fields in the compactified theory. These, as in doubled geometry [123, 126, 133],
show up in the modules arising from the compactification of the theory, and the
dynamics in the inner directions is naturally limited by the consistent action of
the Lie derivative. From this, both gauge symmetries and field equations can be
deduced.

As such, the observed tensor structure in Paper III and [45, 47, 52] provides
a first recognition of the gauge structure and dynamics. The modules are Rn

(n-forms in D = 11) with a structure given by

Rn−1

Field strength
←− Rn

Field
←− Rn+1

Gauge parameter
. (5.21)

As in [46], the investigation can be extended to the supermultiplets associated
with these (known) fields, in a setting with manifest U-duality. The degrees
of freedom in the modules between which transformations are allowed then
set the bosonic matter fields, to which spinor and auxiliary fields are added
in a way suitable to represent the desired supermultiplets. However, this type
of procedure merely deals with the gauge fields known from compactification,
and says nothing about e.g. the properties associated with gravity.

The bosonic action

In order to capture the gravitational dynamics of exceptional geometry, it is pos-
sible to look to the unextended theory for a representation of the interactions,
which with an accurate extension ought to provide the correct physics. In this
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manner a candidate for the bosonic action is obtainable through a generalisa-
tion of gravity to Ed(d) × R+, with the bosonic properties effectively described
by the action

SB ∼
∫
R, RMN = 0, (5.22)

in line with the conjecture presented in [40]. Its precise interpretation is com-
plicated by the difficulties in introducing an integration measure (with respect
to the extended metric) without breaking the covariance of the exceptional ge-
ometry theory, with respect to the inner directions (the others are considered a
separate case). For example, a covariant formulation cannot rely on a solution
of the section condition, as the covariance is broken once the section condition
is solved for. Consequently, the treatment of the real, physical space (in gen-
eral) is complicated, as is the issue of how to perform partial integration, partly
discussed in Paper III. The precise appearance of the action remains to be fully
investigated.

However, with the bosonic properties determined, the extension to the ferm-
ionic ones is set, and can be determined, by the extended connection, which
provides the description of the supersymmetry algebra. This was, for example,
shown in the setting of projected affine connections in [43], and the argument
also holds for the manifest interpretation. Because of this, the fermionic sector is
often termed to follow from the bosonic one, with SB constituting the remaining
issue.

5.3.4 Matters of interest

There are many ways of approaching the (relatively) new field of exceptional
geometry, and different opinions of what is important to investigate in it. Some
frequently encountered settings, apart from the geometric approach here pre-
sented, are field theory descriptions concerning strings, the scalar particle, etc.
Regardless of the strategy, the development is promising.

Examples of features remaining to be examined

Effectively, quite a number of interesting venues of research within exceptional
geometry (primarily from a geometric point of view) have already been dis-
cussed in the previous sections of this chapter. The finite transformations, d > 7
examinations of concepts in general and the affine connection (d > 8) in partic-
ular, the action, etc., remain merely partially investigated. However, apart from
those main issues, there exist interesting points to be made concerning features
of the theory which have not been much investigated yet, the ranking of which
of course is individual. Among these are the three examples of:
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— The possibility of an underlying geometric structure, giving rise to the sec-
tion condition in a way similar to an equation of motion.

As previously mentioned, the section condition is necessary for the closure of
the exceptional Lie algebra, and different solutions of it provide dual theories.
This raises the question of if it is a feature, not simply to be identified, but origi-
nating in a more general interpretation of the geometry. Clearly, it is a condition
for the theory to be consistent, and so it may arise naturally from the formu-
lation. The advantage of such a formulation would primarily be the associated
manifest properties, but the concept is intriguing and might give a better un-
derstanding of the observed dualities.

— The description of branes in exceptional geometry and what that may say of
M-branes.

At the beginning of this chapter, one of the most promising lines of investigation
leading up to M-theory (apart from exceptional geometry) was described to
concern the M-branes, with the M5-branes of special interest. The importance
of the M-branes in string and M-theory suggests that a better understanding
of them would provide essential information on the non-perturbative physics
of M-theory. As such, investigations in the setting of the non-perturbative, low
energy limit provided by exceptional geometry ought to be highly relevant for
a better understanding of M-theory, investigations that have been initiated in
terms of brane solutions in [229–231].

— The formulation of an exceptional supergeometry, geometrically extending
superspace and including both U-duality and supersymmetry.

It would be interesting to see what a theory, extended like exceptional geometry
but based on superspace instead of spacetime, would look like. A theory with
both U-duality and supersymmetry manifest6 would be especially interesting
with respect to maximal supersymmetry. As already mentioned, this type of
formulation might facilitate the identification of characteristics in SUGRA, al-
though the D = 11 theory would not be subject to any change. At least, it might
help in the interpretation of e.g. the UV cancellations. However, the concept
and its applications are much more general. Note that it differs from the super-
algebras existing in EFT much as the pure spinor formalism differs from the
component theory.

At present, it is unclear how to introduce maximal supersymmetry in excep-
tional geometry. The corresponding pure spinor would be infinitely reducible,
and attempts at introducing the concept have so far proven futile. It seems the
geometric setting (of superspace) must be analysed further, perhaps initially in
doubled geometry, as initiated in [232, 233].

6Or nearly so, in the sense of a pure spinor formalism.
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General outlook

In total, exceptional geometry constitutes a promising theory growing in in-
terest. It is still at an initial stage, with basic features under consideration and
rapid development. Whereas the geometric groundwork for encoding manifest
U-duality for the most part is laid, further work on higher level components
is necessary. This includes the interesting results connected to tensors, field dy-
namics and branes, many of which have the potential to yield more information
on M-theory. Importantly, M-theory characteristics or the effects thereof still re-
main to be identified. So far, the picture unfolding is in accordance with the
construction, but reasonably new effects ought to show up as well. The theory,
overall, represents a world of possibilities for the deduction of non-perturbative
features of M-theory.





Science is built up of facts, as a house is with stones.
But a collection of facts is no more a science than a
heap of stones is a house.

Henri Poincaré

6
Manifesting characteristics

There is a common thread to much of the discussion in the previous chapters,
discernible to the attentive reader: the theme of manifest constructions with re-
spect to the essentials of the theories, yielding formalisms advantageous for the
investigations of diverse properties. The process of identifying the underlying
structure of a theory is not an easy task, but upon the recognition of the key
features, it is often rewarding to introduce a formulation with the key features
explicitly expressed or, failing that, present in a way where the structures can be
drawn upon to access the true features of the theory. It is an issue of clarity. As
cumbersome as the wrong choice of a description can be, with (insurmountable)
difficulties in proving relations etc., as facilitating the right formulation can be.

There are three steps in this kind of process:

1. Identifying a key property, such as a symmetry.

2. Making that symmetry present in the descriptions in a way as explicit as
possible, preferably manifest (inherent and explicit).

3. Investigating the theory, in a manner compatible with the previous point.

Of these steps, the discussion in this thesis does not particularly address the
first point, except in the sense where it equals the third. At the investigation of
any theory, it is important to keep an open mind to what causes the effects, as
that might give clues to further key properties, or at least to possible benefits
from other treatments.

89
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Manifesting properties

The situation in exceptional geometry is a prime example of the second point
above. The formulation of the theory itself is currently under development; al-
though the geometric formulation including the U-duality has been identified,
the finer points on how the theory works with respect to the alterations are
in various degrees of progress towards identification. To fully access the bene-
fits of the formulation, it is important to keep the symmetry manifest and not to
disregard pointers towards possible reinterpretations and overall constructions.
True, properties may be well caught by a description lacking in this sense, but
that cannot be termed to represent a full investigation. As such, the geometric
formulation is at the centre of chapter 5 rather than the associated field theories;
not as a statement of importance, but in line with the conceptual approach of
the work presented in the Papers, influenced largely by my supervisor Martin
Cederwall. Recall the discussion on the tensor formalism of Paper III in section
5.3.2.

With respect to this argumentation, the pure spinor formalism falls some-
what short, as discussed in section 3.4.4. The inherent supersymmetry is not
explicitly present. In addition, the construction may seem somewhat contrived.
However, it does capture the maximal supersymmetry in a manifest way, bar-
ring explicitness of the actual workings of the present supersymmetry. The for-
mer is a requirement, the latter a circumstance yet to be circumvented. It is
a fact that the formalism holds a lot of inexplicit symmetry, e.g. through Q-
equivalence — it is difficult to spot equivalent descriptions, and to recognise
them as such. For the moment, however, it represents the best formulation avail-
able, which is apparent in comparison with other approaches, treating maximal
supersymmetry, and their results with respects to issues where the properties
of the supersymmetry play a central role.

Investigating properties: Born–Infeld theory

With respect to the pure spinor Papers (I, II, IV and V) there are two contexts to
the investigations, with new approaches enabled by the pure spinor formalism.
The first has hardly been mentioned up until now, as it represents a sidetrack
in comparison to the rest. Despite this, it fits completely well with the overall
theme of the Papers.

Paper I concerns the extension of maximal SYM to Born–Infeld theory [57],
which shows up in the low energy limit of string theory as part of the bosonic
half of the theory describing D-branes [58–68]. This (full) theory is interesting
with respect to higher energy physics and M-theory, which indirectly (in a per-
turbative setting) might be analysed in terms of the D-brane properties, a pro-
cess yielding clues to what components and dualities the M-theory ought to
sport. In specific, Born–Infeld theory shows up with respect to the D-branes in
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terms of the Dirac–Born–Infeld action [60]. By the Born–Infeld theory extension
however, we here denote the full bosonic part of the action for the D-branes,
which can be expressed in terms of a series expansion in the slope parameter
(α′) [10–13, 15, 69], with maximal SYM at the lowest order of the relevant per-
turbation theory.

The extension of the SYM theory to a series expansion in α′ was initiated
in [13] through an identification of the second order (α′2) correction to the SYM
action, representing the first non-zero correction, followed not by the third or-
der [234, 235], but a fourth [236]. In Paper I, the result at α′2 was reformulated
in terms of operators acting on the superfield ψ, making it possible to perform
a full analysis of what, by consistency of the master equation, would represent
the abelian and non-abelian Born–Infeld actions in the pure spinor formalism.
The procedure constitutes a prime example of how to get to the properties of
one theory by extending another (paralleling the situation in exceptional geom-
etry), in order to expand the knowledge of the first theory, a process vital for the
formulation of the target theory, be it Born–Infeld or M-theory.

The Born–Infeld theory itself is only well-known in a component formalism
sense with respect to the abelian theory, where the action is described by an
infinite polynomial. The purpose of Paper I was to investigate the possible sim-
plifications brought about by the pure spinor formalism, with the ultimate goal
of a formulation of the non-abelian action. Although this goal was not reached,
the simplifications were indeed impressive, with an abelian action of only two
terms. Also worth mentioning, is that the actions presented in Paper I are not
strictly proven to directly correspond to the actual Born–Infeld theories. How-
ever, they coincide up to the fourth order in α′, which is a strong indication of
that they represent the relevant theories.

Happily, the investigations of the non-abelian action abandoned in Paper I
were continued in [149, 150]. There, the correct term S3 ∼ ψ3 in the action was
used to devise an iterative procedure for obtaining the infinite polynomial, total
action; a very satisfying result. Note however, that quite a number of the calcu-
lations (preliminary to the S3 discussion) presented there were given, or implicit
by presentation of results, in Paper I.

In total, this nicely illustrates the simplifications brought about by the inher-
ent supersymmetry (if not manifest).

Investigating properties: amplitude calculations

The main topic of the pure spinor investigations in the Papers is the description
of amplitude diagrams in the pure spinor setting. As discussed in chapter 4, this
is far from the only approach to the issue, yet promising with respect to results
on the perturbative behaviour in the UV regime.

The approach is relevant simply for encoding maximal supersymmetry in a
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field theory setting, but the difference between Paper II and IV is also a good
example of the importance of drawing upon the symmetry properties of the the-
ory as much as possible, throughout the investigations. The key development
in Paper IV was the reformulation of the propagator, in specific the expression
for the b-ghost. In the two articles, these entities areQ-equivalent, yet the results
easily identified in Paper IV are difficult to even discern in Paper II — they are
present, but elusive. In Paper IV, the mere choice of pairing derivatives (often
acting on each other with significant implications for the end result) with the
pure spinor, like

(λγ(n)D), (6.1)

makes the existence and vanishing of different combinations (more) explicit,
partly by

— symmetries between the (covariant) spinor derivatives.

— two spinor derivatives acting on each other explicitly resulting in the com-
bination of two pure spinors.

To spot the same characteristics by Fierz identities is a messy business, and it
is significant to note that the supersymmetry constraints on the formalism are
tightly connected to the pure spinor, consequently to be exploited to the out-
most.

This (further) illustrates the importance of keeping the key properties of a
theory manifest. Visibility is a central concept. Part of the problematics arising
in the pure spinor formalism ought of course to be the result of a symmetry
not truly manifest in the description. However, this only makes it all the more
important to keep the symmetries (to the degree present) as discernible as pos-
sible.

Summary & outlook

In the investigation of a theory or a property thereof, it is key to catch the essence
of what causes the behaviour:

• By this, it is easier to spot and identify (new) properties.

• Also, this shows an understanding of the theory, truly required for a full
recognition of what it constitutes.

Although, naturally, the first requirement is to recognise cause and effect, through
the intermediate, highly relevant investigations outside the manifest approach.
In total, it represents how science, as we know it, is expanded.

A second relevant discussion on visibility with respect to the pure spinor for-
malism was brought up at the end of chapter 3: the opaqueness of what is going
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on with respect to the component algebra, and the subsequent difficulties in in-
terpreting the results in terms of known concepts for comparisons etc. This is
the major reason for why the results of Paper IV and V remain to be confirmed,
apart from the adequateness of a second opinion. The pure spinor formalism
and the results provided by it in many ways are regarded with slight scepticism
in the general community of high energy physics. In that sense, a breakthrough
is yet to come, though highly anticipated by e.g. Green, who expresses his hopes
for an increased interest each year at the Strings conference. It remains yet to be
seen when (if) he is proven right.

To a lesser degree, the establishment of an approach as a well-known method
of investigation also is relevant with respect to extended geometry. It is a process
equally important to the one of capturing the manifest characteristics in the first
place.
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[55] E. Cremmer, B. Julia, H. Lü and C. N. Pope, Dualisation of dualities. 1., Nucl. Phys.
B 523 (1998) 73, [arXiv:hep-th/9710119].

[56] N. A. Obers and B. Pioline, U-duality and M-theory, Phys. Rept. 318 (1999) 113,
[arXiv:hep-th/9809039].

[57] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A
144 (1934) 425.

[58] C. G. Callan, C. Lovelace, C. R. Nappi and S. A. Yost, String loop corrections to beta
functions, Nucl. Phys. B 288 (1987) 525.

http://xxx.lanl.gov/abs/1212.1586
http://xxx.lanl.gov/abs/1302.1652
http://xxx.lanl.gov/abs/1302.5419
http://xxx.lanl.gov/abs/1302.6737
http://xxx.lanl.gov/abs/1312.4549
http://xxx.lanl.gov/abs/1312.0614
http://xxx.lanl.gov/abs/1312.4542
http://xxx.lanl.gov/abs/1406.3348
http://xxx.lanl.gov/abs/1410.8148
http://xxx.lanl.gov/abs/1504.04843
http://xxx.lanl.gov/abs/arXiv:hep-th/9410167
http://xxx.lanl.gov/abs/arXiv:hep-th/9707207
http://xxx.lanl.gov/abs/arXiv:hep-th/9710119
http://xxx.lanl.gov/abs/arXiv:hep-th/9809039


References 99

[59] J. Dai, R. G. Leigh and J. Polchinski, New connections between string theories, Mod.
Phys. Lett. A 4 (1989) 2073.

[60] R. Leigh, Dirac–Born–Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4
(1989) 2767.

[61] J. Polchinski, Dirichlet branes and Ramond–Ramond charges, Phys. Rev. Lett. 75
(1995) 4724, [arXiv:hep-th/9510017].

[62] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335,
[arXiv:hep-th/9510135].

[63] M. R. Douglas, Branes within branes, In “Cargese 1997, Strings, branes and dualities”
(1995) 267, [arXiv:hep-th/9512077].

[64] M. B. Green, C. M. Hull and P. K. Townsend, D-brane Wess–Zumino actions,
T-duality and the cosmological constant, Phys. Lett. B 382 (1996) 65,
[arXiv:hep-th/9604119].

[65] M. Cederwall, A. von Gussich, B. E. W. Nilsson and A. Westerberg, The Dirichlet
super-three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997)
163, [arXiv:hep-th/9610148].

[66] M. Aganagic, C. Popescu and J. H. Schwarz, D-brane actions with local kappa
symmetry, Phys. Lett. B 393 (1997) 311, [arXiv:hep-th/9610249].

[67] M. Cederwall, A. von Gussich, B. E. W. Nilsson, P. Sundell and A. Westerberg,
The Dirichlet super-p-branes in ten-dimensional type IIA and IIB supergravity, Nucl.
Phys. B 490 (1997) 179, [arXiv:hep-th/9611159].

[68] E. Bergshoeff and P. K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145,
[arXiv:hep-th/9611173].

[69] P. S. Howe and D. Tsimpis, On higher order corrections in M theory, J. High Energy
Phys. 09 (2003) 038, [arXiv:hep-th/0305129].

[70] M. T. Grisaru, P. van Nieuwenhuizen and J. A. M. Vermaseren, One-loop
renormalisability of pure supergravity and of Maxwell–Einstein theory in extended
supergravity, Phys. Rev. Lett. 37 (1976) 1662.

[71] M. T. Grisaru, Two-loop renormalisability of supergravity, Phys. Lett. B 66 (1977) 75.

[72] S. Deser, J. H. Kay and K. S. Stelle, Renormalisability properties of supergravity,
Phys. Rev. Lett. 38 (1977) 527, [arXiv:1506.03757].

[73] E. Tomboulis, On the two-loop divergences of supersymmetric gravitation, Phys. Lett.
B 67 (1977) 417.

http://xxx.lanl.gov/abs/arXiv:hep-th/9510017
http://xxx.lanl.gov/abs/arXiv:hep-th/9510135
http://xxx.lanl.gov/abs/arXiv:hep-th/9512077
http://xxx.lanl.gov/abs/arXiv:hep-th/9604119
http://xxx.lanl.gov/abs/arXiv:hep-th/9610148
http://xxx.lanl.gov/abs/arXiv:hep-th/9610249
http://xxx.lanl.gov/abs/arXiv:hep-th/9611159
http://xxx.lanl.gov/abs/arXiv:hep-th/9611173
http://xxx.lanl.gov/abs/arXiv:hep-th/0305129
http://xxx.lanl.gov/abs/1506.03757


100 References

[74] S. Deser and J. H. Kay, Three-loop counterterms for extended supergravity, Phys. Lett.
B 76 (1978) 400.

[75] S. Deser and U. Lindström, Extended supersymmetry invariants by dimensional
reduction, Phys. Lett. B 90 (1980) 68.

[76] P. S. Howe and U. Lindström, Higher order invariants in extended supergravity,
Nucl. Phys. B 181 (1981) 487.

[77] R. E. Kallosh, Counterterms in extended supergravities, Moscow 1981, Proceedings,
Quantum Grarity (1981) 415.

[78] M. B. Green, J. H. Schwarz and L. Brink, N = 4 Yang–Mills and N = 8
supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474.

[79] S. Mandelstam, Light-cone superspace and the ultraviolet finiteness of the N = 4
model, Nucl. Phys. B 213 (1983) 149.

[80] L. Brink, O. Lindgren and B. E. W. Nilsson, The ultraviolet finiteness of the N = 4
Yang–Mills theory, Nucl. Phys. B 213 (1983) 323.

[81] P. S. Howe, K. S. Stelle and P. K. Townsend, Miraculous ultraviolet cancellations in
supersymmetry made manifest, Nucl. Phys. B 236 (1984) 125.

[82] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, One-loop n-point gauge
theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217,
[arXiv:hep-ph/9403226].

[83] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Fusing gauge theory tree
amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59,
[arXiv:hep-ph/9409265].

[84] Z. Bern, J. S. Rozowsky and B. Yan, Two-loop four-gluon amplitudes in N = 4
super-Yang–Mills, Phys. Lett. B 401 (1997) 273, [arXiv:hep-ph/9702424].

[85] Z. Bern, L. J. Dixon, D. C. Dunbar, M. Perelstein and J. S. Rozowsky, On the
relationship between Yang–Mills theory and gravity and its implication for ultraviolet
divergences, Nucl. Phys. B 530 (1998) 401, [arXiv:hep-th/9802162].

[86] P. S. Howe and K. S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554
(2003) 190, [arXiv:hep-th/0211279].

[87] O. Chandia and B. C. Vallilo, Conformal invariance of the pure spinor superstring in
a curved background, J. High Energy Phys. 04 (2004) 041, [arXiv:hep-th/0401226].

[88] L. J. Dixon (2010) Ultraviolet behaviour of N = 8 supergravity, [arXiv:1005.2703].

[89] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, D. A. Kosower and R. Roiban,
Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303,
[arXiv:hep-th/0702112].

http://xxx.lanl.gov/abs/arXiv:hep-ph/9403226
http://xxx.lanl.gov/abs/arXiv:hep-ph/9409265
http://xxx.lanl.gov/abs/arXiv:hep-ph/9702424
http://xxx.lanl.gov/abs/arXiv:hep-th/9802162
http://xxx.lanl.gov/abs/arXiv:hep-th/0211279
http://xxx.lanl.gov/abs/arXiv:hep-th/0401226
http://xxx.lanl.gov/abs/1005.2703
http://xxx.lanl.gov/abs/arXiv:hep-th/0702112


References 101

[90] N. E. J. Bjerrum-Bohr and P. Vanhove, On cancellations of ultraviolet divergences in
supergravity amplitudes, Fortsch. Phys. 56 (2008) 824, [arXiv:0806.1726].

[91] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson and R. Roiban, Manifest
ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity,
Phys. Rev. D 78 (2008) 105019, [arXiv:0808.4112].

[92] R. Kallosh, C. H. Lee and T. Rube, N = 8 supergravity 4-point amplitudes, J. High
Energy Phys. 02 (2009) 050, [arXiv:0811.3417].

[93] G. Bossard, P. S. Howe and K. S. Stelle, The ultra-violet question in maximally
supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919, [arXiv:0901.4661].

[94] Y. Aisaka and N. Berkovits, Pure spinor vertex operators in Siegel gauge and loop
amplitude regularisation, J. High Energy Phys. 07 (2009) 062, [arXiv:0903.3443].

[95] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson and R. Roiban, The ultraviolet
behaviour of N = 8 supergravity at four loops, Phys. Rev. Lett. 103 (2009) 081301,
[arXiv:0905.2326].
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