
A schematic for comparing web
backend application frameworks

With regards to responsiveness and load scalability

Master’s thesis in Software Engineering

Mathias Dosé
Hampus Lilja

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2015:June

A schematic for comparing web backend
application frameworks

With regards to performance and scalability

MATHIAS DOSÉ
HAMPUS LILJA

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
Gothenburg, Sweden 2015

A schematic for comparing web backend application frameworks
With regards to responsiveness and load scalability
MATHIAS DOSÉ
HAMPUS LILJA

© MATHIAS DOSÉ, HAMPUS LILJA, 2015.

Supervisor: Morgan Ericsson, Department of Computer Science and Engineering
Examiner: Miroslaw Staron, Department of Computer Science and Engineering

Master’s Thesis 2015:June
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
SE-412 96 Gothenburg

iv

Abstract

This thesis aim to engineer a schematic that is to be used for evaluating and com-
paring web backend application frameworks with regard to responsiveness and load
scalability. A partial study was conducted in order to determine what affects these
characteristics of performance in a web backend application framework. These find-
ings were named and defined as influences, which where mapped to microbenchmarks
called test types. These test types in combination with methods to visualize the re-
sults constitute the schematic. The schematic was evaluated through a running
example where Express.js and .NET MVC was compared. The schematic proved
successful as it was possible to draw a conclusion about these frameworks from the
results in the context of use.

Keywords: web, backend, application, framework, benchmark, performance,
scalability, Node.js, ASP.NET, MVC

v

Acknowledgements

The following thesis in Software Engineering was performed during the spring of
2015 at Chalmers University of Technology within the department of Computer
Science and Engineering. We would like to thank our supervisor Morgan Ericsson
for his assistance, engagement and counseling throughout this thesis, as well as our
examiner Miroslaw Staron for his feedback and guidance.

Mathias Dosé, Hampus Lilja, Gothenburg, June 2015

vii

Contents

Acronyms xi

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Background . 1
1.2 Purpose of study . 2

2 Foundation 3
2.1 Performance in web applications . 3
2.2 Web backend application framework 4
2.3 Benchmarks . 5

2.3.1 Micro- vs Macrobenchmark 6
2.3.2 Techempower . 7
2.3.3 PayPal . 8

3 Research Method 9
3.1 Design Science Research Methodology 9
3.2 Identifying influences of a WBAF . 10
3.3 Constructing the Schematic . 12
3.4 Evaluating the Schematic . 13

4 Influences of a WBAF 15
4.1 Request routing . 17
4.2 Serialization . 17
4.3 Template Engine . 18
4.4 O*M . 18

4.4.1 ORM . 19
4.5 Cache client . 20
4.6 Authentication . 21
4.7 JSON Web Token . 21
4.8 WebSocket . 23

5 Schematic 25
5.1 Environment and tools . 25

ix

Contents

5.2 Concurrences . 26
5.3 Charts . 26

5.3.1 Throughput Line Chart . 27
5.3.2 Throughput Comparison Line Chart 27
5.3.3 Throughput Bar Chart . 28
5.3.4 Throughput Comparison Bar Chart 29
5.3.5 Response time Line Chart . 30
5.3.6 Response time Comparison Line Chart 30
5.3.7 Response time Bar Chart . 31
5.3.8 Response time Comparison Bar Chart 32

5.4 Test types . 32
5.4.1 Request Routing . 33
5.4.2 Serialization . 35
5.4.3 O*M . 37
5.4.4 Template Engine . 38
5.4.5 JSON Web Token . 40
5.4.6 Cache client . 42
5.4.7 Websockets . 43
5.4.8 Authentication . 44

6 Express.js vs .NET MVC 45
6.1 Use case . 45
6.2 Specifications . 46
6.3 Test types . 46

6.3.1 Request Routing . 47
6.3.2 Serialization . 49
6.3.3 O*M . 50
6.3.4 Template engine . 53
6.3.5 JSON Web Token . 55
6.3.6 Cache . 56
6.3.7 Websockets . 58

7 Evaluation 59
7.1 Threats to Validity . 60

8 Conclusion 61
8.1 Future work . 62

Bibliography 65

x

Acronyms

AFBW Applicable For Building WBAF.

AGR Active GitHub Repositories.

CoC convention over configuration.

DIRT data intensive real-time.

DRY do not repeat yourself.

DSRM Design Science Research Methodology.

HTTP Hyper Text Transfer Protocol.

JIT just in time.

JWA JSON Web Algorithm.

JWT JSON Web Token.

MPFF Most Popular Fullstack Framework.

MVC model view controller.

ORM object relational mapper.

OS operating system.

OVB omitted-variable bias.

PM package manager.

RBC Response time Bar Chart.

RCBC Response time Comparison Bar Chart.

RCLC Response time Comparison Line Chart.

RLC Response time Line Chart.

xi

Acronyms

SPA single page application.

TBC Throughput Bar Chart.

TCBC Throughput Comparison Bar Chart.

TCLC Throughput Comparison Line Chart.

TLC Throughput Line Chart.

TLFAPM Top List Found of Any Package Manager.

WBA web backend application.

WBAF web backend application framework.

WS WebSocket.

xii

List of Figures

3.1 The DSRM process constructed by Peffers et al. 9
3.2 The process of deriving influences from programming languages . . . 12

4.1 A template engine processes a template and data to HTML 18
4.2 Illustration of how a string is encrypted and decrypted using either a

secret or private/public key architecture. 22
4.3 WebSocket sequence diagram. 24

5.1 The environment prerequisite for executing the test types in the
schematic. 25

5.2 Example TLC showing throughput with regard to single test type
variable for different concurrency levels 27

5.3 Example TCLC illustrating a comparison of the throughput with re-
gard to single test type variable for two WBAF’s 28

5.4 Example TBC showing throughput with regard to multiple variants
of a test type for different concurrency levels 29

5.5 Example TCBC illustrating a comparison of the throughput with
regard to multiple variants test type for two WBAF’s 29

5.6 Example RLC illustrating response time with regard to single test
type variable for different concurrency levels 30

5.7 Example RCLC illustrating comparison of the response time with
regard to test type variable for two WBAF’s 31

5.8 Example RBC showing response time with regard to multiple variants
of a test type for different concurrency levels 31

5.9 Example RCBC comparing two WBAFs by showing response time
with regard to multiple variants of a test type 32

5.10 Illustration of when to add the routes in R5. 34
5.11 Illustration of how the two templates in the test type should be con-

structed. 39

6.1 Request routing .NET TLC . 48
6.2 Request routing Express.js TLC . 48
6.3 Request routing .NET RLC . 48
6.4 Request routing Express.js RLC . 48
6.5 Request routing C10 TCLC . 48
6.6 Request routing C10 RCLC . 48

xiii

List of Figures

6.7 Serialization .NET MVC TLC . 49
6.8 Serialization Express.js TLC . 49
6.9 Serialization .NET MVC RLC . 50
6.10 Serialization Express.js RLC . 50
6.11 Serialization C10 TCLC . 50
6.12 Serialization C10 RCLC . 50
6.13 Illustrating a case of not utilizing full CPU capacity in the O*M test

type as only three threads are awake. 51
6.14 O*M .NET MVC TBC . 52
6.15 O*M Express.js TBC . 52
6.16 O*M .NET MVC RBC . 52
6.17 O*M Express.js RBC . 52
6.18 O*M C10 TCBC . 53
6.19 O*M C10 RCBC . 53
6.20 Template engine .NET MVC TLC . 54
6.21 Template engine Express.js TLC . 54
6.22 Template engine .NET MVC RLC . 54
6.23 Template engine Express.js RLC . 54
6.24 Template engine C10 TCLC . 54
6.25 Template engine C10 RCLC . 54
6.26 JSON Web Token .NET MVC TBC 55
6.27 JSON Web Token Express.js TBC . 55
6.28 JSON Web Token .NET MVC RBC 56
6.29 JSON Web Token Express.js RBC . 56
6.30 JSON Web Token C10 TCBC . 56
6.31 JSON Web Token C10 RCBC . 56
6.32 Cache .NET MVC TLC . 57
6.33 Cache Express.js TLC . 57
6.34 Cache .NET MVC RLC . 58
6.35 Cache Express.js RLC . 58
6.36 C10 TCLC . 58
6.37 C10 RCLC . 58

xiv

List of Tables

4.1 Result of the partial study to compile the applicable programming
languages to derive from. AGR - Active GitHub Repositories, AFBW
- Applicable For Building WBAF, TLFAPM - Top List Found of Any
Package Manager, MPFF - Most Popular Fullstack Framework 15

4.2 Result of the inspection of the top lists of package managers. 16
4.3 Result of the inspection of the contents of fullstack frameworks. . . . 16
4.4 JWA’s to use in JWT specified by IETF. 23

5.1 The values of concurrences to use in the test types 26
5.2 The values of variables to use in request routing benchmark 34
5.3 The values of variables to use in request routing benchmark 36
5.4 The variants in the O*M benchmark 38
5.5 The values of variables to use in template engine benchmark 39
5.6 By BlueKrypt, calculated key sizes in bits safe for use in 2015 by

using methods from different publications. 40
5.7 The variants in the JSON Web Token test type 42
5.8 The number of data entries that shall be fetched from the external

cache in Cache benchmark . 43
5.9 The length of each message to be sent by the benchmarking tool. . . 44

xv

List of Tables

xvi

1
Introduction

1.1 Background

The web is still a young phenomena that is evolving at a rapid rate, the complex data
intensive real-time (DIRT) [32] applications and the responsive mobile applications
that is seen today have come a long way from the static web sites of the 90’s.
Companies that wish to stay competitive with their products and consulting services
are required to keep an eye open for new technologies, to mitigate the risk of what
they are providing becoming outdated.

Selecting a technology stack when developing a new web application is a complex
task, where one major decision is to choose a web backend application framework
(WBAF). There are different ways to deal with this decision, ranging from purchas-
ing reports from technology research companies to establishing an evaluation com-
mittee that would by consensus reach a decision. If there would be no significance
on time to market and developer cost would be zero, the ultimate way to evaluate
a WBAF would be to build the whole application in the WBAF’s of interest and
simply measure and compare the results in a production environment. Naturally
this is an unrealistic approach because of the mentioned prerequisites.

Groupon allocated three months to meetings and research in their decision of a
WBAF when rebuilding their backend [84]. They elicited a set of requirements that
the application should meet, and evaluated a couple of WBAF’s by building sim-
ple prototypes and comparing their performance. The creation of these prototypes
enabled the developers not only to evaluate the performance criteria, but also the
developer motivation to work in said WBAF and its ecosystem maturity. Natu-
rally they didn’t affirm the choice solely on these artificial experiments, rather it
enabled them to make a more thought through and contemplated choice based on
the additional knowledge acquired.

The WBAF evaluation criteria are contextual, meaning what’s an important re-
quirement for one project might be insignificant for another. Evaluation criteria can
be developer productivity, scalability or ecosystem maturity etc. A reason to the
complexity of choosing a WBAF is that the importance of the evaluation criteria
varies to this extent. Another reason to why it is so difficult is the absence of open
objective opinions of when to use which framework. There is a lot of evangelists for
every WBAF that proclaim that their WBAF is the solution to the problem.

1

1. Introduction

One evaluation criteria being scalability, is defined by [1] as the ability of a sys-
tem to handle growth in traffic (load scalability), and the ability to expand in a
chosen dimension without architectural modifications (structural scalability). Re-
sponsiveness is the ability of a system to meet its objectives for response time or
throughput.

Throughput can be measured by how many requests per second an application
can manage for a given hardware setup. More efficient solutions will require less
resources, especially in multibillion dollar businesses where every percentage gain in
hosting costs can have huge impact on the revenue [101].

In a web backend application context, response time refers to how much time it takes
for the server to respond to a specific request, i.e the request latency [38]. With the
web transitioning from the concept of returning static HTML pages to todays AJAX
heavy single page applications (SPA), not only has the throughput demand of the
applications seen an huge increase, but also the significance of the applications to
provide good response time [4]. Responsiveness being a key ingredient in SPA’s
stress the importance of a low request latency, especially on the mobile platform
where the connectivity usually are worse. Amazon did A/B tests on this matter
and results showed that an increased latency of 100ms decreased the sales with 1%.
Google noticed during experiments that an increase of 0.5s in requesting a search
resulted in 20% decrease in traffic and revenue [26].

1.2 Purpose of study

The aforementioned complexity of conducting a deliberate choice of WBAF in com-
bination with the claimed significance of the evaluation criteria load scalability and
responsiveness, leads to the demand of the product of this thesis with the main goal
and research questions as followed.

The goal of this thesis is to analyze web backend application frameworks to eval-
uate what affects its performance with respect to responsiveness and load scalabil-
ity.

RQ1 What affects the load scalability and responsiveness of a web backend appli-
cation framework?

RQ2 How to compare load scalability and responsiveness of web backend application
framework’s?

This thesis will produce a schematic with a set of test types that will be used to
conduct a comparison between different WBAFs.

2

2
Foundation

2.1 Performance in web applications

Smith and Williams defines performance as the degree to which a software system
or component meets its objectives for timeliness [16]. There are many dimensions
of performance, and two important ones are responsiveness and scalability. Re-
sponsiveness is the ability of a system to meet its objectives for response time or
throughput. Response time being the time required to respond to an event, and
throughput is the number of events processed in a specified duration [43]. Scalabil-
ity is defined by Bondi as the ability of a system to continue to fulfill its requirement
of responsiveness as the demand for the software function increases (load scalability),
and the ability to expand in a chosen dimension without architectural modifications
(structural scalability) [1].

In the context of a WBA, throughput refers to number of requests being processed
during a specified duration, and response time refers to how long time it take for
the WBA to respond to the incoming requests.

Load scalability is, in the context of a WBA, the ability to continue to serve re-
quests with the required response time when the amount of concurrent requests
are increased. Furthermore, structural scalability is, in the context of a WBA, the
ability to deploy additional processes of a specific WBA behind a load balancer to
ensure that the system is load scalable [92]. In practise this usually means that the
new WBA process is hosted on a new node, as the reason for deploying it is that
the current nodes have reached a resource bottleneck. WBAs that are more load
scalable will thus require less nodes, which results in a lower hosting cost for the
company [101].

Performance is a pervasive quality of software systems; everything affects it, from the
software itself to all underlying layers, such as operating system, middleware, hard-
ware, communication networks, etc [49]. These elements that affect the performance
of an entity are called Influences in this thesis. These Influences are characterized
by a transitive relation, thus the web backend application framework (WBAF) will
affect the web application performance.

3

2. Foundation

2.2 Web backend application framework

There are some ambiguities to what a web application actually is. Some refers the
term to the application that is rendered and then executed in the browser, i.e the
HTML and Javascript, while other definitions include or limits the definition to the
part which is run on the server [17, 105]. AngularJs [7] - a client side Javascript
framework, and Express.js [22] - a server side Javascript framework, is both defined
on their respective homepage as frameworks for building web applications. The
definition that is going to be used in this thesis is; a web application comprise all
the elements that are required for the web based solution to meet its functional
requirements.

With the term web application occupied with the definition in this chapter, in
combination with the demand for a common term that refers to the backend part
of the web application, the term web backend application (WBA) has been coined.
The WBA comprise the operating system (OS), the web server, the platform, the
WBAF and the implementation.

The ambiguity when defining web application naturally follows when trying to define
web application framework, thus usage of that term has been avoided. Aligned with
the newly coined term web backend application, a framework for building such appli-
cations is consequently termed web backend application framework (WBAF).

In a sense all web sites works in the same way. A client, which is often represented by
a browser, makes a request to a WBA. The request is routed to a machine that hosts
a WBA. The WBA interprets the request and sends a response to the client. This
means that there are a lot of functionality that has to act in the same way for each
and every WBA. To make web development less tedious and repeatable, libraries
that makes it easier to communicate were built for different platforms [41].

The term web server has two meanings, it can resemble the physical computer or
the software that is used to host anything web related. However, in this thesis it’s
going to be used as reference to the latter. Web servers can host web applications or
static files and provide a set of features, e.g load balancing and serving error pages.
Examples are IIS [57], Apache [8] and Nginx [65]. Some platforms can act as its
own web server, NodeJs is an example platform of this phenomena.

Libraries are also used to abstract other types of common or complex functionalities
in web development. Some examples of those functions are database-access, caching,
authentication etc. When multiple libraries that concerns web backend development
are combined and labeled it is called a WBAF. A WBAF is not required to have
a specific set of functionalities to be called a WBAF, what’s included is up to
the author. It can range from just including the minimum abbreviations such as
communicating with the client to communicating with the database and all of the
logic in between.

In the web context, a platform refers to the underlying system or API on which web
applications or web sites can run [104, 24, 105]. Platforms are commonly mistaken
for the programming language, i.e that C# [54] would be a platform, which isn’t

4

2. Foundation

the case. Platforms doesn’t have a one-to-one relation with the language itself. An
example is both the .NET [55] and Mono [60] platforms use C# as programming
language while still being two different platforms.

The abstraction of commonly needed functionality does not only help developers
with complex and tedious tasks, it also helps to enforce some of the software en-
gineering principle’s such as do not repeat yourself (DRY), which means that code
repetition should be kept at a minimum. Every WBAF enforces the DRY principle
to some degree by keeping shared functions in libraries, thus decreasing the need
of manually written code at different places in the application [27]. Other good
practises that can be enforced by the WBAF are for example the paradigms such as
convention over configuration (CoC) and patterns like model view controller (MVC)
[19].

2.3 Benchmarks

It is a cumbersome task to measure performance in computer systems. One reason
is because of the difficulty to quantify the results of experiments performed on such
a complex and dynamic system that have such a large number of ever changing parts
as a computer system has. Some people will even go so far as to say that Computer
Science is not real science because of it’s inability to draw deterministic results from
experiments [39]. Even so, scientists, engineers and organizations have tried to find
ways of measuring and benchmarking computer components and software. One
approach is to isolate specific parts in the system, thus making the environment
more controlled. Most of the performance benchmarks published by researchers and
organizations are done on hardware components such as CPU and GPU and not
in the area of software performance [106]. One reason might be that it’s easier to
isolate a specific hardware component in a computer system then it is to isolate a
software that runs in the system making use of several hardware components.

The first and most difficult hazard that should be recognized when benchmarking in
Computer Science is the statistical hazard omitted-variable bias (OVB). Especially
when trying to isolate a specific part in a system the risk of inflicting OVB increases.
OVB appears when variables that have impact on the end result is, deliberately or
unintentionally, not taken into the equation. For example, comparing the perfor-
mance of a precompiled language against a just in time (JIT) compiled language
will always benefit the precompiled language on short test runs. If the JIT’s warm
up time is not taken into consideration the test will not spend the same amount of
time testing the actual code of the JIT language that it does testing the precompiled
code thus making the JIT results skewed. There can be even more shifty variables
that are harder to detect that inflicts unpredicted results. Some of these variables
could be the compiler settings that was used when building the software, the heap
size of the garbage collector, the operating system caching etc. A solution to tackle
some of these hazards are to re-run the experiment in the same environment to get
relevant result, and either include more data and variables in the equation or be as
transparent as possible about the specifications and settings used when the exper-

5

2. Foundation

iment was conducted so that the results could be analysed with their environment
[15].

Second, there is a hazard that software have been tuned just to score higher in a
set of specific benchmarks. One recent event that got much media attention was
when it became known how Samsung and other phone producers had programmed
their phone software to notice when a benchmark was performed on the system and
then releasing more CPU and memory power from the system to the benchmark
[85].

Third, when tests that are the basis for a benchmark gets known by companies that
wants to compete on the ranking list they would want to improve their software in
that specific area. This pursuit of higher rankings by the means of only focusing
on increasing performance for the benchmark specific operations might decrease the
performance in other areas that doesn’t get the same amount of attention.

Fourth, benchmarks that are conducted by organizations that have something to
gain on the scores should be scrutinized for biased test environments, test types,
test permutations etc.

Finally, as for everything in Computer Science, if benchmarks are not frequently
updated they soon get outdated. Outdated benchmarks can become trivial i.e. no
longer test anything of importance or in worst case claim to test one thing while
in practise they test a completely different thing due to speedup in some areas
[15, 39].

In this thesis the focus is not primarily on benchmarking but instead on the actual
comparison of WBAFs. This means that the result of testing a single WBAF doesn’t
say anything until there is another result from a different WBAF that has been
tested on the same environment. The hazards described above does still apply to
a comparison but in this case the environment can be tailored to the exact same
environment as the one that will host the application. This mitigates the risk of
getting different result when the final product is deployed.

2.3.1 Micro- vs Macrobenchmark

To avoid confusion and misunderstandings it is important to specify which type of
benchmark that is used when benchmarking an application or software. In worst
case scenario a microbenchmark recognized as a macrobenchmark can make an or-
ganization choose WBAF on the wrong premises.

Measuring the performance of an isolated operation in a web application is a typical
use case of a microbenchmark. To be precise and to minimize the OVB hazard
in a test, the code that executes the operation in question should be as simple as
possible. By writing a simple and precise code it ensures that the exact steps for
performing the operation of the benchmark is tested. This makes it easier to specify
which part of the WBAF that have been tested. However, a real world application

6

2. Foundation

often have more factors that affect the performance such as authentication, larger
logic blocks, more complex data relations etc.

Macrobenchmark To measure the performance of a WBAF in a real world im-
plementation a benchmark of the type macro needs to be conducted. Unlike mi-
crobenchmarks where the workload is usually set to a high generic value without a
real scenario in mind, an analysis or a realistic idea of the workload that the actual
application should be able to handle is important to have and to make use of in the
benchmarks. As stated above a macrobenchmark should be performed on hardware
and software that has similar setup as the environment that will run the appli-
cation in production. Finally, a good macrobenchmark should run the tests for a
longer period of time to get a more realistic time scenario than the microbenchmarks
[25, 15].

2.3.2 Techempower

Techempower is a company that consults in the field of web development and their
philosophy is that performance when developing for the web matters a great deal
[94]. They also have, if not the only, one of the biggest ongoing WBAF performance
comparison and benchmarking on the web. The benchmarks are focused on a couple
of normally occurring actions performed by web applications such as JSON serializa-
tion, database queries and templating. The tests are run a couple of times per year
and the results are published on their web page by ranking the WBAFs from best
to worst throughput. They are transparent about which environment that is used
and the code that is executed. The code is mostly contributed by the community
surrounding the benchmark suite and everyone is welcome to contribute to the code
base which is located on GitHub.

The code that is exercised in each test is just the bare minimum to be able to
perform the operation specified for each test. This in combination with generic
data and non-motivated workloads during the tests characterizes the Techempowers
benchmarks of the microbenchmark type.

Critics of Techempower argues that it’s only interesting to compare WBAFs that
run on the same platform because of the big impact the platform has on the WBAFs
performance. They also think that the tests are way to small and the time spent
testing the actual logic is next to none compared to the time spent in the kernel of
the web servers OS and the internal network communication. Instead they propose
to extract the IO operations and test them in a separate test by varying the size of
the header and entity values [50]. Another critic thinks that the measure request per
second or response, in Techempowers tests, doesn’t say anything about performance.
He claims that when measuring performance the metric that should be in focus
should instead be the duration of each request. The critic conclude that measuring
requests per second only gives the throughput of the application and that is only
interesting if one is building an application that needs to serve millions of concurrent
users such as Facebook or Google [47].

7

2. Foundation

When analysing the results of the different tests displayed on Techempowers website
one framework stands out from the rest. Not that it outperforms the other frame-
works but while this framework score among the top result on several tests there is
little information of this framework on the web. The framework in question is Gem-
ini, and when looked into it, it soon becomes clear that this is a WBAF developed
by Techempower them self [10]. The code is not open sourced or publicly available
which makes it impossible for outsiders to analyze it and to see what makes this
WBAF so fast. Techempower never claim to be unbiased but they don’t show any
clear indication of the opposite either. Evidently Techempower is not completely
unbiased and the fact that it’s impossible to scrutinize their Gemini code in order
to look for benchmark hazards such as software tuning they leave some unanswered
questions.

With this said, Techempower can and should still be considered as a valid source of
inspiration when it comes to benchmarking WBAFs. Thanks to the clear explana-
tions and descriptions on how the benchmarks are constructed and executed they
contribute with great value to how performance in WBAFs could be measured. Per-
formance differences are important when choosing a framework, and Techempower
does it’s part to provide help with the choice of the best performing WBAF.

2.3.3 PayPal

In 2013 PayPal decided to look for alternatives for their WBAF. The reason was that
it was hard to find fullstack developers, e.g. developers that could work with both
the client- and the server-side logic. PayPal’s original server platform was built with
Java and the client side platform made use of JavaScript. The WBAF that made
them interested for an alternative was Node.js which uses JavaScript on the server
side as well. While the main reason wasn’t the performance factor it would show
that it was a considerable difference between the alternative WBAF’s. In a blog
post by Harrell, J. [40] he describes the test set up and results from the performed
benchmark tests.

The benchmark is performed on the hardware that is used to host paypal.com and
the tested routes executed the same logic that would be executed in production.
Because of the real world environment these benchmarks can be categorized as
macrobenchmarks.

While they display and described the results in a clear and concrete way they do
not discuss why there are such a difference in performance. Also, by not releasing
the source code that is executed in the tests it’s impossible for outsiders to draw
own conclusions on what it is that is effecting the performance and to look for
benchmarking hazards. Some of the benchmarking hazards that these tests are
prone to encounter are that the software for one of the WBAF might have been
tuned and implemented with awareness of the benchmark in mind. Secondly, under
the development of PayPal’s new architecture a Node.js framework were constructed
and while this framework is open source they still have a lot to gain if the community
grows around their framework. This might make the results biased.

8

3
Research Method

3.1 Design Science Research Methodology

In Design Science Research Methodology (DSRM) there are 6 activities that should
be performed and the iterative cycle could be done through activity 2-6. The activity
that starts the research doesn’t have to be activity 1. Depending on the context
of the research the entry point to DSRM could vary from activity 1 through 4. A
problem centered research should enter the process on activity 1 while researches
that are more centered around the objective should enter on activity 2. If the design
and development is the center of the research the entry point could be activity 3
and finally, if the research is initiated in a client context the 4th activity could be a
suitable starting point. See figure 3.1 for the whole methodology process.

Figure 3.1: The DSRM process constructed by Peffers et al.

Activity 1 is the identifying and motivating activity. This is where the research
is justified by defining and explaining the problem and the value that a solution
to the problem would have. Activity 2 is where the means of achieving a solution
to the problem are defined. The knowledge about the problem from activity 1
combined with knowledge about current solutions should be used to define possible
and feasible solutions. In activity 3 an artifact is designed and constructed. A
design research artifact can be anything that includes research contributions to
solve the research problem. The demonstrating activity that is activity 4 is where
the artifact constructed in the previous activity is demonstrated on its ability to
solve parts of the research problem. Some of the demonstrating techniques that

9

3. Research Method

could be conducted are case study, experiments, proofs etc. It is also important to
demonstrate knowledge on how the artifact solves the problem. Activity 5 is where
the evaluation of the solution takes place. The result from activity 4 is compared
to the objective defined in activity 2 to observe how well the implemented solution
performs in regards to the desired solution. It’s important that there is knowledge
on how to interpret the metrics and how to analyze the results. After activity 5
have been performed it is possible to iterate back to either activity 2 to find another
solution or to activity 3 to improve the artifacts effectiveness to solve the problem.
The final activity, activity 6, is where the research shall be communicated to the
relevant audience through different publication channels. It’s important that the
research paper is written in a clear and professional way to get the audience to focus
on the important aspects of the research. After this activity it is also possible for
external researcher to either continue the research or iterate back to complement or
extend the current research [42].

Hevner et al. [5] have established seven guidelines that works as a basis for De-
sign researchers that strives for effective design-science research. These guidelines
are:

3.2 Identifying influences of a WBAF

Influences are elements that affect the performance of an entity. They are charac-
terized by an transitive relation, meaning that if A influences B and B influences
C, then A will also influence C. This term was coined early in this project with the
purpose of enabling a common way of referring to these elements.

In order to engineer the test types for the schematic, the influences of a WBAF had
to be identified. However, there is no definition or limit on how much functionality
should be included in a WBAF, that’s a decision for each creator of each WBAF.
Consequently, there was no way of defining all the influences of a WBAF. Instead
test types for the most used influences was developed, therefor these had to be
identified. In order to identify these popular influences, the nature of the concept
micro framework and fullstack framework was utilized in a small study. This study
resembles activity 2 in the DSRM process.

A fullstack framework comes packed with all necessary features for development of a
WBA. However, a fullstack WBAF doesn’t necessarily limit the developer to use the
provided features. An example is the ASP.NET MVC fullstack WBAF that comes
with an ORM component called Entity Framework [58], which can be replaced with
another ORM component of choice, e.g NHibernate [66].

A micro framework applies the mindset of a minimal and extensible core, where fea-
tures are applied as optional packages rather than out of the box. However, request
routing must be included. Examples are the Express.js framework for Node.js, or
Flask [23] for Python, they don’t come with features like an ORM component or
JSON web token out of the box, however these features are available as packages.
These packages usually serve a single purpose, and its category can be directly

10

3. Research Method

mapped to an influence of a WBAF. Installing and managing these packages are
most commonly done in a so called package manager (PM). Homepages or third
party sites of these PM’s usually supply a top list of the most downloaded packages,
which was inspected in order to identify the most used influences. This was done for
the top lists of the most popular package manager of the most popular programming
languages that are Applicable For Building WBAF.

In order to evaluate which programming language was the most popular, its Active
GitHub Repositories (AGR) was examined. If the language then fulfilled the crite-
ria of being Applicable For Building WBAF (AFBW) and Top List Found of Any
Package Manager (TLFAPM), it was then chosen as one of the six programming
languages in the study. Later in the study the Most Popular Fullstack Framework
(MPFF) of each language would be needed, thus it was also included in this partial
study. Which fullstack framework was MPFF for each language had already been
calculated by HotFrameworks.com [30] and was thus used in this study. HotFrame-
works.com combines GitHub and StackOverflow score [89] to determine popularity.
The GitHub score is based on the number of stars the framework’s repository has
on GitHub, and the StackOverflow score is based on the number posts tagged with
the framework in question [31], both scores are on a log scale.

The inspection of each top list of the six package managers was done according a
predefined process defined in the process diagram in figure 3.2. Some packages was
only used for development, e.g testing or building, thus these was skipped. Out of
the packages that are to be used during run time, a best guess approach was used to
determine if the category of these could be translated into an influence of a WBAF,
this approach sufficed as a first filter. Furthermore, there were a lot of duplicate
packages in the same category, e.g "fancyName-O*M-mysql" and "otherFancyName-
O*M-mongodb" both belongs to the O*M category, these were distinctly added with
regards to its category. Finally, the inspection prolonged until at least 10 possible
influences were found and 150 packages had been inspected. If the influence then
was found in more than half (three) of the result sets in this partial study, then
it was considered a popular influence in a majority of the package managers, and
would thus progress to the next part of the study.

The nature of fullstack frameworks were used as a second filter to verify that the
best guessed influences found in the previous part of the study actually were in-
fluences of a WBAF. What characterizes a fullstack framework is that it contains
all the necessary, in the creator’s point of view, features to build WBA’s. Conse-
quently, the best guessed influences in the previous part of the study was matched
against the content of the Most Popular Fullstack Framework (MPFF) of the most
popular programming languages in the first part of this study. When evaluating if
an influence is part of the fullstack framework, both its core assembly and its dedi-
cated packages were examined. The requirements for a package to be dedicated to
a fullstack framework was that it had to have a dependency on the core, and it had
to be created or verified by the creator of the core. If the influence then was part of
more than or equal of half (three) of the fullstack frameworks it was considered one
of the more popular WBAF influences, and was thus included as a test type in the
schematic.

11

3. Research Method

Figure 3.2: The process of deriving influences from programming languages

3.3 Constructing the Schematic

The artifact of this thesis, i.e. the schematic, consists of a number of test types,
where each test type represent one of the derived influences. The structure and
the content of the schematic and each test type were initially unknown, and was
gradually reformed in an iterative manner through activity 3 to 5 in the DSRM
process.

In order to engineer the test types, a deeper understanding of each influence was
required. Therefor research about each of these influences were conducted and
compiled. The aim of this in depth research was to find out how the influence affected
the responsiveness and load scalability of a web backend application. The research
and the development of the test types were done iteratively. The implementation
of each test type were developed in one of the example WBAFs, i.e. .NET MVC or
Express.js. When the test type was considered complete, its understandability was
evaluated by implementing the test type in the other WBAF that hadn’t been used

12

3. Research Method

in the first place.

With the in depth analysis of the influences it could be determined if the test type
would be engineered with an adjustable variable that would determine the result,
or with multiple variants of same test type. If the influence had several features
or possible usages, it would be engineered as a variant test type. Complexity in
visualization delimited the engineering of combining variable and multiple variants
within the same test type. During development local benchmarks were performed
to see which variables could be adjusted to make an impact on the responsiveness
and load scalability.

When a couple of test types had been engineered they were analyzed and common
denominators were identified. This was done in order to give the test types a more
unified look thus lowering the threshold for future users to understand the process of
implementing these tests. The analyse also showed that the results from each test
could be streamlined into different charts, making the performance impact more
visible. These charts could also be given a unified look where line charts were used
to display results from test types were a variable impacted the result and bar charts
for test types that had multiple variants.

3.4 Evaluating the Schematic

When the test types had been constructed they were evaluated by running the tests
in accordance to the specifications given by the schematic. The implementation that
was executed for the test was the code developed during the construction of the test
type. If the results from the tests seemed accurate with regard to the knowledge
gained from the in dept research about the influence it was seen as a valid test type
and example implementation. This was a large evaluation process and the last time
activity 5 in the DSRM process was performed.

The graphs in the schematic was used to evaluate the results of the test types. If
the results was in some way unexpected or peculiar then a reasoning behind these
were done.

13

3. Research Method

14

4
Influences of a WBAF

This chapter presents the results of the partial study to identify the influences de-
scribed in section 3.2, and the compiled research of each of these. Table 4.1 illustrates
the results of the first part of the influence study. The languages that are marked
as bold in the table are the ones that fulfilled the criteria of being Applicable For
Building WBAF and Top List Found of Any Package Manager. Furthermore, the
package managers and Most Popular Fullstack Framework found for these languages
are presented in the table as well.

Table 4.1: Result of the partial study to compile the applicable programming
languages to derive from. AGR - Active GitHub Repositories, AFBW - Applicable
For Building WBAF, TLFAPM - Top List Found of Any Package Manager, MPFF
- Most Popular Fullstack Framework

Language AGR [28] AFBW TLFAPM PM MPFF
Javascript 323,938 Yes Yes [71] NPM [70] Sails [86]

Java 222,852 Yes Yes [64] Maven [51] Spring [88]
Python 164,852 Yes Yes [79] PyPI [78] Django [20]
CSS 164,585 No - -
PHP 138,771 Yes Yes [77] Packagist [76] Symfony [91]
Ruby 132,848 Yes Yes [11] Gems [83] Rails [82]
C++ 86,505 Yes No -
C 73,075 Yes No -

Shell 65,670 Yes No -
C# 56,062 Yes Yes [73] Nuget [72] .NET MVC [56]

Table 4.2 visualize the result of the next part of the influence study, i.e the inspection
of the top lists of the package managers. All possible influences found in any of the
top list are presented in the leftmost column. The remaining columns illustrates
whether each possible influence was found in that specific package manager top list.
The influences marked in bold are the ones found in more than half, i.e three, and
was thus progressed to the final part of the influence study.

The results of the final part of the influence study are presented in table 4.3. The
influences that are marked in bold were found in more than half of the fullstack
frameworks derived from the first part of the influence study. These are the influ-
ences that will be concerned in the schematic, and the test types will be engineered

15

4. Influences of a WBAF

Table 4.2: Result of the inspection of the top lists of package managers.

Influence NPM Maven PyPI Packagist Gems Nuget
Internationalization l l

Serialization l l l l l

O*M l l l l l l

Template engine l l l l l l

Mail client l l l l

HTML Parser l l l l

Javascript executer l

HTTP client l l l l l l

SSL l l l l l

Cache client l l l l

Authentication l l l l l l

Token generator l l l l l l

Websocket l l l

Async l l l l

to cover them. The influence called Request routing will be added to the seven influ-
ences that this partial study resulted in, the reason behind this is that a WBAF will,
by definition 2.2, always contain this influence and is thus the most used influence
of them all. In order to engineer test types that actually will benchmark these influ-
ences, one must know what they actually are. In the following sections the required
knowledge about each influence will be compiled, which will lay a foundation for the
test types.

Table 4.3: Result of the inspection of the contents of fullstack frameworks.

Influence Sails Spring Django Symfoni Rails .NET MVC
Serialization l l l l l

O*M l l l l l l

Template engine l l l l l l

Mail client l l l

HTML parser l

HTTP client l l

SSL
Cache client l l l l l

Authentication l l l l l

Token generator l l l l l

Websocket l l l l l

Async l

16

4. Influences of a WBAF

4.1 Request routing

Hyper Text Transfer Protocol (HTTP) is the transfer protocol that is used through-
out the entire world wide web to transfer data between all its nodes. In order for
a web backend application to determine what task it should perform for a specific
HTTP message it receives, request routing functionality is implemented [41].

The first part of a HTTP message is called the Request-Line and it contains the
method token, the request URI and the protocol version used in the message [36],
see listing 4.1 for a visualization. The request routing will use the two first parts
of the Request-Line, i.e the mehod token and the request URI, to determine what
to do for said request. In practise this means that the method and the URI will
be mapped to a certain function. With the example used in listing 4.1, GET and
/login would together be used to determine which function should be excecuted. In
order to do this, the WBAF must somehow store all the routes that is created at the
application start up. When a user then connects to a certain route, the WBAF will
do a lookup to see which function should be executed for that specific route.

Listing 4.1: Template and example of the Request-Line of a HTTP message
% Technichal template f o r the Request−Line
Method SP Request−URI SP HTTP−Vers ion CRLF

% An example o f the Request−Line
GET / l o g i n HTTP/1 .1

The request routing functionality is something that is essential for every web appli-
cation, and it would be redundant to write this functionality for each application,
thus it’s implemented in every WBAF. However, how the different WBAF’s imple-
ment request routing differs, and how efficiently this is done has an influence on
responsiveness and load scalability [41].

4.2 Serialization

Serialization is the process of converting the state of an object instance into a binary
or textual form, this is most commonly done in order to persist it into storage or
transport it over a network [95]. The latter use case is realized when a WBA and a
client are exchanging data. Serialization is done according to a serialization format,
which in HTTP is specified by the Content-type header. The value of this header
is called an Internet media type, and it is an identifier that indicates what type of
data the message contains [36]. There is an extensive amount of different media
types allowed, where some of the most common are text/xml, application/json or
text/csv.

17

4. Influences of a WBAF

4.3 Template Engine

In order to make a web page dynamic, it’s creation must be controlled by a template
engine on either the client with the help of Javascript, or by the server. In some
cases both options are used. A template engine processes a template together with
data, often from a data source, and produces a HTML page ready to be returned to
the requesting client, as shown in figure 4.1.

Figure 4.1: A template engine processes a template and data to HTML

Template engines doesn’t only inject data into placeholders, other common features
include variable declaration, string escaping, looping and more.

4.4 O*M

If a database is used in a web application then it is the web backend application’s task
to communicate with that database. To be able to communicate with the database
and exchange data with it some type of functionality needs to be implemented in
the WBA. Not only does the WBA need to set up a secure connection between
the database and the WBA it also needs to map the data that is interchanged
with the database. These actions can be abstracted by an Object * Mapper (O*M)
component. The O*M is primarily responsible for abstracting the most common
database interactions such Create, Read, Update and Delete (CRUD) by mapping
objects written in backend code to data in a database. Backend platform objects
that represents data from a database are referenced as entity objects. The * in the
O*M represents the type of the database. O*M components are often used when
interacting with relational databases, i.e object relational mapper (ORM), which
virtually are SQL based databases. Recently other forms of databases have started
to grow in popularity, some of them are Document, Key-Value and Graph based
databases. These are often casually grouped together as NoSQL databases. The
main difference between SQL and NoSQL is that the schema for SQL databases

18

4. Influences of a WBAF

is static while NoSQL databases usually have dynamic schema [59]. If an O*M
component is present in the WBAF then it’s probably one of the largest influences
for that WBAF. As with every other influence, a WBAF doesn’t need to include an
O*M and it’s only fullstack WBAFs that does include one out of the box.

4.4.1 ORM

As stated above, ORM is the most popular type of O*M and because of the complex
nature of a relational database, this deserves a deeper explanation of what the ORM
does to help developers.

To map a single table or column from a database to an entity object on the different
programming platforms is an uncomplicated and straightforward implementation
as long as there exists a valid connector between the platform and the database.
But in a relational database the tables of data are usually related to other tables
in more or less complex ways, where the relations are other than just one-to-one
and multiple tables could inherit data columns from the same data table. On top
of these complex relations a program will usually have entity objects representing
data from multiple tables in it’s runtime memory making the relation from the data
in the database to the data in the program memory even more intricate. The more
complex the data relations are the more complex the CRUD queries will be. It is
for these complex environments that ORM can be really helpful. By abstracting the
actual database queries and giving the programmer an entity object representing
the data to work with instead [46].

ORMs can have different types of features and functions depending on how complex
the implementation of the ORM is. Bauer and King categorize ORMs into four
different categories in their book Hibernate in Action [14]. The categories are as
follows:

Pure Relational
When the application itself is designed in a similar way as the relational
database storing the data for the application. Stored procedures are the main
entry point from the application to the database which move some of the
workload from the applications business layer to the database.

Light object mapping
Database entities are manually mapped to objects in the application. The
mapping is hidden from the business layer of the application using different
design patterns.

Medium object mapping
When the application design does not need to represent the design of the
relational database. The SQL statements for interacting with the database
are generated at build time or at runtime. SQL queries are usually specified
in a platform specific way e.g. object-oriented. Stored procedures are not
common in these types of ORM.

19

4. Influences of a WBAF

Full object mapping
Supports complex data relations such as inheritance, composition, polymor-
phism and persistence by reachability. Persistence by reachability mean that
if a transient object X reference another transient object Y then persisting X
will also persist Y. Full object mapping also implements the data retrieving
strategies lazy and eager fetching and different caching strategies that the ap-
plication can take advantage of. Some well known Full object mapping ORM’s
are Entity Framework from Microsoft [58] and Hibernate used by JPA [29].

These four categories abbreviates the data fetching and storing procedures in dif-
ferent ways and to varying extent. An ORM with full object mapping puts more
strain on the application performance with all the mapping and templating logic.
An ORM of the pure relational type on the other hand, moves most of the work to
the database server thus adding next to none strain on the application performance
regarding the CRUD operations.

4.5 Cache client

An important technology in Computer Science is the cache technology. Caching is
used in both hardware and software components such as HDD’s, CPU’s and web
browsers. To cache data is to temporarily store the data in a more accessible and
faster way than the original location that the data is primarily stored at. In order
to develop high performance web applications caching is a key aspect to reach that
goal. In web development caching isn’t just a means to access the data faster, it can
also help to make data available even if the connection to the WBA is lost. This
ability increases the robustness and fault tolerance of the web application.

In web development there are generally two types of caching, output caching and
application data caching [62]. As the name indicate, application data caching caches
data in the memory within the application. This cache type is useful when trying to
speedup the logic executed on the web server. It is typically used to reduce the reads
and writes to/from disk or database thus minimizing the time the application will
spend on round trips outside the running program. Output caching caches dynamic
pages and user controls on cache-capable devices so that the pages and user controls
only executes on the first request thus making subsequent requests faster.

Having the cache in the local memory gives supreme speed when accessing the
cached data thus making a larger portion of the time spent on executing the logic
instead of fetching and pushing data to and from storage. The fact that local
cache uses the same memory as the application leads to a number of problems;
sharing the memory means that the cache and the application will affect each others
performance, executing the application over multiple threads gives references issues
to the cache and if the application’s memory gets flushed the cache is lost as well.
However, there are alternative storage solutions that are both fast, reliable and
not dependent on the application memory. These alternative cache providers often
stores the data in a key/value, in-memory fashion. This simple storage usually

20

4. Influences of a WBAF

makes it faster to retrieve the data than it would have been going through all the
layers down to the database and back, even thou the data might need to travel over
the network wire. But if the speed loss of having to retrieve the cached data over
the network are to great there is the possibility add a smaller local cache for data
that are accessed frequently. Having a cache provider outside of the application also
improves the scalability of the application by making it possible to increase the cache
performance without decreasing the application’s performance [81, 52, 63, 61].

When the cache becomes full there are different ways to replace the old data in the
cache with new data. Some of these cache replacement policies are; LRU (Least
Recently Used) policy which replaces the object that where used the longest time
ago, LFU (Least Frequently Used) policy keeps the objects that are accessed more
times and replaces those that aren’t accessed as much. There are also policies that
concerns the size of the data objects which keeps small objects and replaces bigger
ones and some concern the time the data have been in the cache by either deleting
data from the cache after a predefined period of time or prioritize the data by how
long they have left before they expire [99, 80].

4.6 Authentication

Authentication is the process of determining if an individual is who he or she claims
to be [48, 98]. In the context of a WBA, this usually means to match a username
and password to a local database or a third party authentication method. In this
influence the second strategy of the two mentioned will be examined, as the process
of looking up an entity in a database is already concerned in section 4.4, consequently
the O*M test type will concern that performance.

4.7 JSON Web Token

JSON Web Token (JWT) is a means of representing claims to be transferred be-
tween two parties, this allows users to obtain a token by providing their username
and password. This token will then let the users fetch protected resources without
providing their user name and password repeatedly [102]. For this method to work,
a way of signing and verifying tokens is required. The process of signing tokens are
done by encrypting either a secret or private key with a string or an object called a
payload which identifies the user, often the username or a combination of the user-
name and the password. Verifying the tokens encrypted with a secret key is done
with the token itself and the secret key, this process outputs the provided payload.
Ultimately, verifying the tokens encrypted with private keys is done with the token
and a public key, this process also outputs the payload input for signing the token.
These two architectures are illustrated in figure 4.2.

The process of encrypting and decrypting the tokens is done according to a JSON
Web Algorithm (JWA) [44]. One vital part of the JWA is the cryptographic hash

21

4. Influences of a WBAF

Figure 4.2: Illustration of how a string is encrypted and decrypted using either a
secret or private/public key architecture.

function. What characterizes these hash functions is that they are practically im-
possible to invert, meaning to recreate the input data from the hash value alone
[93]. In the context of JWT this means that the secret or public key is required to
acquire the payload from the token. The other vital part that constitutes the JWA
is the digital signature or message authentication code (MAC), i.e the format of the
token.

Hash-based Message Authentication Codes (HMACs) enable one to use a secret to
generate a Message Authentication Code (MAC). RSASSA is a digital signature
algorithm [96] defined according to the standard in [37] which produces a digital
signature using the private/public key architecture. The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) provides for the use of Elliptic Curve cryptography,
which is able to provide equivalent security to a private/public key architecture but
using shorter key sizes and with greater processing speed. The Internet Engineering
Task Force (IETF) have supplied a standard for how JWT should be implemented
[44]. In this standard a list of JWA’s available for encrypting is presented, as well
as a priority level on its implementation. This list can be seen in table 4.4.

22

4. Influences of a WBAF

Table 4.4: JWA’s to use in JWT specified by IETF.

Shorthand Digital Signature or MAC Algorithm Requirement
HS256 HMAC using SHA-256 REQUIRED
HS384 HMAC using SHA-384 OPTIONAL
HS512 HMAC using SHA-512 OPTIONAL
RS256 RSASSA using SHA-256 RECOMMENDED
RS384 RSASSA using SHA-384 OPTIONAL
RS512 RSASSA using SHA-512 OPTIONAL
ES256 ECDSA using P-256 curve and SHA-256 RECOMMENDED
ES384 ECDSA using P-384 curve and SHA-384 OPTIONAL
ES512 ECDSA using P-521 curve and SHA-512 OPTIONAL
none No digital signature or MAC REQUIRED

4.8 WebSocket

WebSocket (WS) is a transport protocol that communicates over TCP just as HTTP.
The difference is that the communication is bidirectional in WS as opposed to
HTTP’s client initiated communication. When having a duplex communication
stream through a single socket the server have the ability to send information to the
client without having the client ask for it. A WS connection is initiated with a client
HTTP request asking the server to change the communication protocol to WS, see
header in listing 4.2. If the web server accepts the change it responds with a HTTP
response confirming the WS connection, see header in listing 4.3. The key field in
the headers are the upgrade field which specifies which protocol the request wants
to switch to and the response have agreed to switch to. After the initial HTTP
handshake the communication is bidirectional until either the server or the client
close the connection, see figure 4.3.

Listing 4.2: Request header initiating a WebSocket communication
GET ws :// l o c a l h o s t :49840/ api /Websockets HTTP/1 .1
Host : l o c a l h o s t :49840
Connection : Upgrade
Upgrade : websocket
Sec−WebSocket−Vers ion : 13
Sec−WebSocket−Key : BncdOQYi+SsCBz9liavXGA==

Listing 4.3: Response header accepting a WebSocket communication
HTTP/1 .1 101 Switching Protoco l s
Upgrade : Websocket
Server : Microso f t−I IS /8 .0
X−AspNet−Vers ion : 4 . 0 . 30319
Sec−WebSocket−Accept : m+No5WV18dwpWEUf5lbsai4buGo=
Connection : Upgrade
Date : Wed, 06 May 2015 11 : 49 : 37 GMT

23

4. Influences of a WBAF

Client Server

Handshake (HTTP upgrade)
connection open

Message
Message

Persistent & bi-directional connectionPersistent & bi-directional connection

Server close connection
Or client close connection

Figure 4.3: WebSocket sequence diagram.

A common scenario when describing WS is a chat application. When a user writes
a message in a chat room the message get sent to the server and with WS the
server can broadcast this message to all the user’s in the same chat room without
them having to request a message. If this was done with pure HTTP then each
user would have to continuously ask the server if there are any new messages. This
polling generates a lot more network traffic and it wouldn’t be a real time chat.

24

5
Schematic

In this chapter the engineered schematic is presented. The schematic contains a set
of test types and charts that is to be used to compare and evaluate the result of the
test types.

5.1 Environment and tools

The test types sections in this schematic describe how to implement and execute
the test type and then compare and evaluate the results. However, there are some
prerequisites that needs to be discussed before these can be done. The environment
that is recommended to use during these test types is illustrated in figure 5.1. It
is optional to put the database server on the same machine as the one hosting the
test types, however it better resembles real world use cases to put it on a standalone
machine, especially when proper scaling is to be considered. Naturally, the bench-
marks should be performed from a separate machine from the server hosting the test
types, otherwise the network latency would be disregarded. The network should be
configured with the aim to mitigate interference as much as possible, the optimal
scenario would be on a local network limited to the nodes in figure 5.1.

Figure 5.1: The environment prerequisite for executing the test types in the
schematic.

On the benchmarking client it is allowed to use any benchmarking tool of choice,
however for convenience two choices is suggested. Apache benchmark (ab) [9] and
wrk [100] both provide the required features to perform all the benchmarks in this

25

5. Schematic

schematic, except WebSockets. The requirements for the benchmarking tool is pro-
vided beneath.

R1 The benchmarking tool should be able to send HTTP GET requests.

R2 The amount of concurrent connections should be able to be set.

R3 The duration of the benchmark should be able to be set.

R4 The benchmarking tool should be able to provide the statistics for average
response time and throughput.

5.2 Concurrences

All test types in this schematic are to be benchmarked with the amount of concurrent
requests in table 5.1. Further more, the test types either have a set of variants or
variable values that it is is going to benchmarked with. This means that the amount
of times each test type will be benchmarked is; the concurrency values times the
variant or variable values. The concurrency values in the table 5.1 are those that
are recommended to use. However, as with everything else in this schematic, those
are interchangeable to values better suiting the user.

When the number of concurrent requests are equal to 1 it is called Pmax. With
only one concurrent request running, that request won’t have to share resources
with other requests, thus it represents the maximum performance for said test type.
This is used to find out which is the best possible response time for each influence
per variant or variable value. Pmax is not used when discussing throughput as a
single concurrent request doesn’t put enough load on the WBA to utilize the full
capacity of the CPU.

Table 5.1: The values of concurrences to use in the test types

Concurrent requests 1 (Pmax) 10 100

5.3 Charts

In the subsection Comparison and evaluation of each of the test types in section 5.4,
charts are going to be used to visualize results and simplify comparisons. Because
these charts will be occurring in each test type, it would be inconvenient to describe
their usage in every test type section. Therefor the common usage of each chart is
compiled in this section. Conclusions unique for each test type is presented in the
Comparison and evaluation subsection of each test type.

26

5. Schematic

5.3.1 Throughput Line Chart

The Throughput Line Chart (TLC) displays the throughput capabilities of an influ-
ence and how well the level of throughput is continued as concurrency is increased,
i.e its load scalability with regard to throughput. The chart applies the metric re-
quest per second on the y-axis and the variable of corresponding test type on the
x-axis, as illustrated in the example chart in figure 5.2. Each plot in the chart will
represent the different levels of concurrences in table 5.1 except Pmax. Finally, this
chart should be plotted for each WBAF that is being evaluated.

101 102 103 104

0.4

0.8

1.2

1.6

2 ·104

Test type variable

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 5.2: Example TLC showing throughput with regard to single test type
variable for different concurrency levels

There are some conclusions that can be drawn from the Throughput Line Chart
on its own. This chart will give an indication on how well the influence of the
WBAF scales with regard to throughput. If the plots for all concurrency levels are
federated, i.e it looks like all plots are merged, then there are no concerns on the load
scalability of the throughput. This phenomenon is illustrated in figure 5.2. However,
if the requests per second is declined as concurrency is increased then there is a load
scalability issue. In most cases where this chart is employed, all plots will decline
as the variable is increased.

5.3.2 Throughput Comparison Line Chart

The objective of the Throughput Comparison Line Chart (TCLC) is to supply a
visual comparison of the different WBAF’s from the Throughput Line Charts in a
unified chart. This chart is built from the plots of the concurrency level from each
TLC representing the expected maximum load in the WBA, as illustrated in figure
5.3.

27

5. Schematic

101 102 103 104

0.4

0.8

1.2

1.6

2 ·104

Test type variable

R
eq
ue
st
s
pe

r
se
co
nd

WBAF1 (C100)
WBAF2 (C100)

Figure 5.3: Example TCLC illustrating a comparison of the throughput with
regard to single test type variable for two WBAF’s

A comparison can now be done by defining the expected range of the test type
variable, and then examining the difference in throughput for provided WBAF’s.
In figure 5.3 this is exemplified by marking the area between 50, which is the least
expected variable value, and 150 which is the maximum expected variable value. In
this example WBAF1 (C100) provides a better throughput than WBAF2 (C100) in
the defined area.

5.3.3 Throughput Bar Chart

Much like the chart TLC the Throughput Bar Chart (TBC), figure 5.4 measure
the load scalability with regard to throughput. The difference is that each value of
the concurrency variable will plot a number of values in the chart. The number of
values that will be plotted for each concurrency load is dependent of the number of
variants that the test type will exercise. When changing the concurrency level an
additional number of values will be plotted. These new values are grouped together
with the previous values in sets of the different variants.

The conclusions that can be drawn from this chart is similar to the Throughput Line
Chart i.e if the bars height in each set are notably declining when the concurrency
increases then there are issues with the load scalability with that specific variant of
that specific influence. The height difference between the sets doesn’t say anything
from a scalability perspective but gives an indication on how the performance differs
between the different variants of the influence.

28

5. Schematic

V1 V2 V3 V4

0

200

400

600

800

1,000

60

830

650

8580

890

750

90100

850
770

80R
eq
ue
st
s
pe

r
se
co
nd

C10 C100 C1000

Figure 5.4: Example TBC showing throughput with regard to multiple variants of
a test type for different concurrency levels

5.3.4 Throughput Comparison Bar Chart

When the expected maximum load in the WBA have been determined the corre-
sponding results from the TBC’s 5.4 will be plotted in a TCBC, see figure 5.5 for
the WBAF’s that are to be compared.

V1 V2 V3 V4

0

200

400

600

800

80

830

650

8560

690

450

60R
eq
ue
st
s
pe

r
se
co
nd

WBAF1(C10) WBAF2(C10)

Figure 5.5: Example TCBC illustrating a comparison of the throughput with
regard to multiple variants test type for two WBAF’s

The conclusions that can be drawn from this chart is simply that the WBAF with
higher bars have better throughput for the variants of the exercised influence.

29

5. Schematic

5.3.5 Response time Line Chart

In the Response time Line Chart (RLC) the response time of an influence in combi-
nation with its load scalability regarding response time will be visualized. Average
latency will be applied on the y-axis and the variable of corresponding test type
on the x-axis. The plots represents the different levels of concurrences in table 5.1
including Pmax. An example RLC is illustrated in figure 5.6.

101 102 103 104

4

8

12

16

20

Route amount

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10
C100

Figure 5.6: Example RLC illustrating response time with regard to single test
type variable for different concurrency levels

Similar to the TLC chart described in 5.3.1, this chart will also give an indication
on how well the influence scales, however here with regard to response time. Un-
like throughput, it’s not feasible to achieve an absolute load scalability regarding
response time as described in section 2.1. As shown in figure 5.6 the response time
will increase as concurrency is increased.

5.3.6 Response time Comparison Line Chart

The Response time Comparison Line Chart (RCLC) aims to simplify the comparison
of the response time capabilities of an influence. This chart consists of the plots
representing the expected maximum load, i.e expected concurrency level, from each
of the RLCs, in a unified chart as illustrated in figure 5.7.

In order to do the comparison of the WBAF’s in the context of interest, the expected
range of the test type variable must be defined. In the example figure 5.7 the range
of interest is between 50 and 150 variable value units. In the defined area WBAF1
proves to supply a better response time than WBAF2.

30

5. Schematic

101 102 103 104

4

8

12

16

20

Test type variable

Av
er
ag
e
la
te
nc
y
(m

s)

WBAF1 (C100)
WBAF2 (C100)

Figure 5.7: Example RCLC illustrating comparison of the response time with
regard to test type variable for two WBAF’s

5.3.7 Response time Bar Chart

Like the RLC, 5.3.5, the Response time Bar Chart (RBC) displays the response
time of an influence in combination with its load scalability regarding response
time. Average response time will be applied on the y-axis and the variant groups
are on the x-axis. The chart will give an indication on how well the influence scales,
with regard to response time. The bars represents the average response time for
the different levels of concurrences grouped by the different variants. Figure 5.8
illustrates an example of such a chart.

V1 V2 V3 V4

101

102

103

104

1.99

1.08 1.2

2

3.04

2.06 2.15

3

4.02

3.04 3.11

4.01

Av
er
ag
e
la
te
nc
y
(m

s)

C10 C100 C1000

Figure 5.8: Example RBC showing response time with regard to multiple variants
of a test type for different concurrency levels

31

5. Schematic

5.3.8 Response time Comparison Bar Chart

The Response time Comparison Bar Chart (RCBC) compares two or more WBAFs
with regard to the response time capabilities of an influence. The expected maximum
concurrent connections are chosen as the plots from each of the RBCs. Figure 5.9,
illustrates a comparison between two WBAFs.

V1 V2 V3 V4

102

103
3.04

2.06
2.15

32.95

1.96 2

2.99

Av
er
ag
e
la
te
nc
y
(m

s)

WBAF1 WBAF2

Figure 5.9: Example RCBC comparing two WBAFs by showing response time
with regard to multiple variants of a test type

In each variant group each WBAF have one bar that can be directly compared to
the others for each type of variant.

5.4 Test types

The test types are derived from the WBAF influences from chapter 4. This does
not mean that these are the only influences that are relevant to test, rather that
these are the most popular and most used in development according to the influence
study.

For each test type a description is supplied that explains the test type in running
text, some test types requires a longer description in order to resolve any ambiguity,
and some test types are rather straight forward which requires a lesser description.
In addition to the description, the test types also include a set of requirements. In
some cases these requirements are on a rather low implementation level to ensure
that the implementation is carried out as intended. Very small implementation
changes can have huge impact on performance, e.g reading a file for every request
instead of preloading it into memory during application startup.

Furthermore the test types also contain a variables or variants section. A test that is
using variables is running the exact same test but with different values for something

32

5. Schematic

that has an impact on its performance. Each test type supplies a recommendation
for the values to benchmark the test type with. These recommendation values are
on a logarithmic scale for all test types in order to test a wider spectrum. Some
values may not be applicable to a real use case, i.e an application with 10k routes.
However, by displaying the difference on such a large scale it becomes more apparent
that this variable actually have an impact on performance, the TCLC and RCLCs is
later used to delimit the result to an actual use case. The test types that are using
variants on the other hand are completely different tests, but in the context of the
same influence. Variants can be different use cases within an influence, i.e the O*M
test type, or it can be different methods to conduct said influence altogether, i.e the
JSON Web Token test type. Like the variables, these variants are recommendations
and if any of them don’t fit the context or any variant is found missing, simply add
or remove said variant.

A running text describing how the benchmarking should be performed when the
implementation is finished can be found in the execution paragraph of the test type.
This should be very convenient for all test types if the requirements have been
followed correctly.

Lastly, each test type contains a comparison and evaluation paragraph. Here it is
described which charts to use to visualize and evaluate the results. In section 5.3
more details is given on how to interpret the results and which conclusions can be
drawn from each chart.

5.4.1 Request Routing

The WBAF stores routes with pointers to its corresponding functions to execute.
The process of looking this function up for a provided route is essentially all the
work the Request routing influence will do upon a request. The number of employed
routes in the WBA will have an influence on how fast the request routing will do
this lookup. In order to benchmark this influence, a routing schema with completely
unique routes will be employed, with the amount of unique routes being the variable
for this test type.

The creation of the routes will be done programatically during the WBA startup
time, uuid version four will be used to create these routes to ensure that they are
unique [33]. Adding the route that will be requested during this test type will be
done halfway through adding the filler routes. The reason for this is that if the look
up process loops through the collection of routes without any shuffling, it will either
always find the route on the first iteration, because it was added prior to the filler
routes, or it will find it on the last iteration because it was added after the filler
routes. By adding it halfway through it is ensured that the WBAF’s employing this
look up algorithm won’t get any unfair advantage or disadvantage.

Requirements

R1 The WBA should be able to run with an integer option.

33

5. Schematic

R2 During application startup, a set of filler routes should be created. The amount
of routes is derived from the option in R1.

R3 The format of the filler routes URI should be /request-routing/, followed by
a version 4 uuid [33], followed by a parameter and ended with another version 4
uuid. An example of such an URI is /request-routing/f66453fe-f04c-4ab7-
a288-34ffd0d90eb3/9999/248ded9e-1ac6-41d2-9496-b6b03e448f14.

R4 Each URI fromR3 should be combined with a GET, POST, PUT and DELETE
method token to create a route.

R5 Four specific routes with the URI /request-routing/Hello/:parameter/World
and with the method tokens in R4 should be created. These routes are to be
added after half of the filler routes in R2 have been added, as illustrated in
figure 5.10.

R6 The response of all routes should be an empty 200 OK message.

Figure 5.10: Illustration of when to add the routes in R5.

Variables
The variable to be used in the benchmarks is the amount of routes employed in the
WBAF, and the different values can be seen in table 5.2. The variables are on a
logarithmic scale to test a broader spectrum.

Table 5.2: The values of variables to use in request routing benchmark

Route amount 10 100 1000 10000

Execution
Perform the benchmarking for each combination of the values in table 5.2 and the
concurrences in table 5.1 on the GET route in R5 for each WBAF.

34

5. Schematic

Comparison and evaluation
After having performed the experiments for all combinations, the results are going
to be plotted in four chart types. The x-axis in these charts are going to be on a
logarithmic scale due to the values of the variable used in this test type. Start with
plotting the TLCs for all WBAF’s as described in section 5.3.1. In addition to the
conclusions mentioned in the section 5.3.1, another can be drawn by analyzing the
differential quotient of the plots. If all plots in one chart is declining, like in figure
5.2, then the route lookup growth rate is dependent on the the route amount. A
scenario where this isn’t the case is if the WBAF employs a hash table for storing
routes.

After having plotted and analyzed the TLCs plot the TCLC as described in section
5.3.2. The range of interest is represented as the expected route amount employed
in the application in this test type. Comparing the request routing influence of the
WBAFs should then be a convenient task by simply analyzing the marked area of
interest.

Having evaluated the throughput and load scalability regarding that aspect, evalu-
ating response time and the ability of the WBAF to sustain an acceptable response
time as concurrency increases now remains to complete the evaluation of the influ-
ence request routing. Consequently, the next chart that will be plotted is the RLC,
instructions is to be found in section 5.3.5. In contrast to the TLCs, if the plots see
an increase in this chart as opposed to a decline, then the route lookup growth rate
is dependent on the the route amount.

Finally a RCLC will be plotted in order to make the response time comparison of
the influence of each WBAF more convenient, instructions are described in section
5.3.6.

5.4.2 Serialization

The influence serialization is a key feature when it comes to exchanging data between
the server and the client. To test the WBAF performance in serializing data this
test will, for each request, serialize predefined data and then deserialize the data.
The amount of data that needs to be serialized will determine how much time
the serialize task will take, consequently data size influences serialization and will
therefor be the variable in this test type. The data that will be serialized will be
read from predefined files. This will be done during application startup and stored
in memory, consequently no file system I/O will affect the test results. Finally, a 200
OK message will be sent as a response. The response should be empty to minimize
work not related to test.

Requirements

R1 A file for each value in table 5.3 should be created.

R2 Each file in R1 should be filled with corresponding size of data.

35

5. Schematic

R3 The format of the data in R2 should be in chosen media type, e.g XML, JSON
or CSV.

R4 The data in R2 should not be prettified [18].

R5 The data in R2 should have a spread usage of the data types Array, Object,
Null, Boolean, Integer, Float and String.

R6 The files in R1 should have an equal amount of data types described in R5.

R7 The WBA should during application startup read the files in R1 and store
those strings in a key value store, where the key is its corresponding filename.

R8 A GET route with the URI /serialization/:size should be created.

R9 The route in R8 should match its parameter :size to the key value store in
R7, and serialize that string to an in memory object, and deserialize it back
to a string afterwards.

R10 The response of the route in R8 should be an empty 200 OK message.

Variables
Kilobytes of serialized data in the format of use is the variable to be used in this
test type. The different values are also here on a logarithmic scale in order to test
a wider spectrum. The values can be found in 5.3.

Table 5.3: The values of variables to use in request routing benchmark

Data size (kB) 10 100 1000 10000

Execution
Perform the benchmarking on the route in R8, where the parameter represents a
value of the file size variable in table 5.3, for each combination of variable values
and concurrences in table 5.1.

Comparison and evaluation After having performed the experiments for all
combinations, the results are going to be plotted in the same chart types as in
the request routing test type, TLC, TCLC, RLC and RCLCs. Like in the request
routing test type, these charts should apply a logarithmically scaled x-axis to cope
with the file size values.

In the charts related to throughput the request per second should decline as the file
size grows, as the file size growth increases the amount of work that needs to be
done per request. Similarly the response time will increase with an increased file
size.

36

5. Schematic

5.4.3 O*M

The WBAF influence O*M described in section 4.4 abstracts the functionality that
is used to interact with a database. The actions that will be performed in order
to exercises this influence is a variable number of concurrent create, find one, find
all and update operations on a relational database. The delete operation will not
be tested due to it’s complexity and similarities to the other operations. The test
needs to be run four times on each concurrency level, one run for each type of
operation.

The database will be initialized at start up with the same schema and data for
each test. Whether the database is of a relational, e.g MySQL or MSSQL, or non-
relational type, e.g MongoDB or CouchDB, doesn’t matter for this test. In order to
not get favourable results in the comparison the database in use should be same for
the different WBAFs.

Requirements

R1 A predefined schema for data entries for the chosen database shall exist.

R2 An initialization procedure that empties and fills the the database from re-
quirement R1 with the correct amount of data entries shall be executed at
application start up.

R3 The id’s of the data entries from R2 shall be indexed into an array during
application start up.

R4 Four different routes routes shall be added to the WBA, one route for each of
the following operations, create, find one, find all and update.

R5 The route that receives the create request shall add a predefined data entry
through the O*M to the database.

R6 The route that receives the find one request shall select a random id from the
array of id’s and use the O*M to fetch the data entry that corresponds to that
id.

R7 The route that receives the find all request shall use the O*M to retrieve all
the data entries from the database.

R8 The route that receives the update request shall select a random id from the
array of id’s and use the O*M to update some fields in the data entry that
corresponds to the selected id.

R9 The response of all routes shall be an empty 200 OK message.

Variants
The O*M variants that will be benchmarked are different query types, these can be
found in table 5.4.

37

5. Schematic

Table 5.4: The variants in the O*M benchmark

Query type Create Find one Find all Update

Execution
Perform the benchmark for each combination of the variants in table 5.4 and the
concurrency level in table 5.1. The variant executed is dependent on which URI
that the benchmark is run on in accordance to requirement R4. To avoid the need
of resetting the database between the tests, execute the create operation variant
last.

Comparison and evaluation When all combinations of the test type have been
executed the results shall be plotted in the charts; TBC 5.3.3, TCBC 5.3.4, RBC
5.3.7 and RCBC 5.3.8. The chart variants are the same as displayed in the Variants
table 5.4 in this section.

5.4.4 Template Engine

As mentioned in section 4.3, a template engine uses two ingredients to create an
HTML page, data and templates. Thorough research about template engine func-
tionality and existing benchmarks [94, 97] have unveiled that escaping strings, loop-
ing through collections and including partial views provide an honest understanding
about the performance of a template engine. These influences will all be performed
once per object instance in the test data, therefor the data length will determine the
workload of this test type, i.e the data length is the variable of this test type.

In order to test the template engine performance of a WBAF, a route will be setup
that renders an HTML string from the templates and the data. Both the templates
and the data will be cached in run time memory, as reading from file system would
take a long time and would skew the results. The parameter for said route will
determine the number of objects that should be included in the data, i.e the data
length.

Requirements

R1 The data should be an array of objects.

R2 The objects in R1 should have two string properties.

R3 One property of the objects in R2 should be a randomized string not requiring
escaping. Example: "Lorem ipsum dolor sit amet".

R4 One property of the objects in R2 should be a randomized string requiring
escaping. Example "<p>Lorem ipsum</p> dolor sit <p>amet</p>"

R5 There should be a partial template which should render both properties in R2
within <p> tags as illustrated in figure 5.11.

38

5. Schematic

R6 There should be a main template which should include the <html> and <body>
tags as illustrated in figure 5.11.

R7 The main template should render the partial in R5 for each object in R1 as
illustrated in figure 5.11.

R8 All templates should be precompiled if possible.

R9 A GET route with the URI /template-engine/:dataLength should be cre-
ated.

R10 The route in R9 should use the template engine to render the HTML with
the data in R1 and templates in R6 and R5.

R11 Caching the rendered HTML is prohibited.

Figure 5.11: Illustration of how the two templates in the test type should be
constructed.

Variables
The length of the data array that is to be combined with the templates to render
the HTML is the variable to be used in these benchmarks. Aligned with previous
variable usages, these values are also on a logarithmic scale and can be found in
table 5.5.

Table 5.5: The values of variables to use in template engine benchmark

Data length 10 100 1000 10000

Execution
Perform the benchmarking on the route in R9, where the parameter represents a
value of the data length variable in table 5.5, for each combination of variable values
and concurrences in table 5.1.

Comparison and evaluation For comparison and evaluation the TLC, TCLC,
RLC and RCLCs will be plotted with logarithmically scaled x-axis to cope with the

39

5. Schematic

data length values. In this test type there are no real use to identify an variable
range in the TCLC and RCLCs to mark the area between them. The reason for this
is that the variable, data length, is not conveniently translated into something that
can be expected from the WBA that is to be built. Naturally, as data length grows
the throughput will decline and vice verse for response time.

5.4.5 JSON Web Token

JWT combines, as described in section 4.7, a payload, a secret or private key and
a JWA to sign a token. Naturally, the security differs depending on which JWA is
chosen, with the trade off of performance. In the table 4.4 that is from the JWT
specification from IETF, an implementation requirement level is specified for each
JWA. Meaning that HS256 and none will be included in all JWT implementations,
and RS256 and ES256 in a majority. Therefor these four JWA’s act as standard
variants in this test type, however removing or adding JWA’s of choice is encour-
aged.

In this test type a token will be signed and verified according to a specific JWA. The
creation and reading the keys from files will naturally be done prior to the request
execution to avoid non JWT related work to be benchmarked.

In cryptographic functions the key length is an important security parameter. Aca-
demic and private organizations provide recommendations and mathematical for-
mulas to calculate the minimum key size requirement for a specific year. BlueKrypt
is an organization that have compiled these papers and publications [12] on the In-
ternet, which present the minimum key size for all publications for a specific input
year. In table 5.6 the relevant columns for the keys used in this type is presented
with the input year of 2015. Both HS256 and ES256 have hard requirements that a
256 bit key should be used, however these columns are also included in table 5.6 to
illustrate that these JWA’s satisfies recommended securities for 2015. The RSA key
for RS256 have no hard requirement on size, therefor the maximum value for any
method is going to be used to ensure proper security, which is 2048 bits. If chosen
to include other JWA’s than the standard ones described in this test type, be sure
to do research about the required key size, as it will influence the outcome of the
benchmarks.

Table 5.6: By BlueKrypt, calculated key sizes in bits safe for use in 2015 by using
methods from different publications.

Method RSA Elliptic Curve HMAC
Lenstra / Verheul [3] 1613 154 163
Lenstra Updated [2] 1245 156 156
ECRYPT II [21] 1248 160 160

NIST [67] 2048 200 200
ANSSI [6] 2048 200 200
BSI [13] 1976 224 224

40

5. Schematic

As mentioned earlier HS256 have a hard requirement on key length. The reason
is that if a key is shorter than its block size, in bits, then it is padded with a non
randomized character, usually zeroes until block size is reached. If the key is too long
then its cut off, the length of the hash output is still the block size [34]. Therefore
the secret key will be 256 bits long as HS256 is using the SHA-256 cryptographic
hash function. The string will also be randomized in order to achieve complexity
of the string, which ensures its quality. The ES256 JWA uses a P-256 curve, which
with the same analogy as HS256 has a requirement on a 256 bits string [35].

Requirements

R1 The secret key should be a randomized 256 bits long string.

R2 The private RSA key should be a 2048 bits long .pem file.

R3 The public RSA key should be a .pem file derived from the private key in R2.

R4 The private elliptic curve key should be a 256 bits long .pem file with a P-256
curve.

R5 The public elliptic curve key should be a .pem file derived from the private
key in R4.

R6 The common payload for all algorithms should be a string with the value "John
Doe".

R7 The .pem files in R2, R3, R4 and R5 should be read from the file system
during application startup in UTF8 encoding.

R8 A GET route with the URI /jwt/hs256/ should be created.

R9 The route in R8 should sign a token with the secret key in R1 and the payload
in R6 using the HS256 JWA.

R10 The route in R8 should verify the signed token in R9 with the secret key in
R1.

R11 A GET route with the URI /jwt/rs256/ should be created.

R12 The route in R11 should sign a token with the private key in R2 and the
payload in R6 using the RS256 JWA.

R13 The route in R11 should verify the signed token in R12 with the public key
in R3.

R14 A GET route with the URI /jwt/es256/ should be created.

R15 The route in R14 should sign a token with the private key in R4 and the
payload in R6 using the ES256 JWA.

R16 The route in R14 should verify the signed token in R15 with the public key
in R5.

R17 A GET route with the URI /jwt/none/ should be created.

41

5. Schematic

R18 The route in R17 should sign a token with the payload in R6 but without
any key using the none JWA.

R19 The route in R17 should verify the signed token in R18 without using any
key.

R20 The response of all routes shall be an empty 200 OK message.

Variants
The different JWA’s are the variants to benchmark this test type with, the ones
supplied in table 5.7 is recommended by IETF and is thus used as default in this
schematic.

Table 5.7: The variants in the JSON Web Token test type

JWA HS256 RS256 ES256 none

Execution
Perform the benchmark for each combination of the variants in table 5.7 and the
concurrency level in table 5.1, where each route represent a different variant.

Comparison and evaluation
Comparison and evaluation will be done by plotting the TBC, TCBC, RBC and
RCBCs. The comparison should be convenient after having done this, especially
if the JWA of choice is known beforehand. Verifying a token is something that
will be done for every request to a protected resource for a WBA, therefor the
responsiveness of this influence are of utmost importance. Limiting the routes to
only verifying the tokens, and doing the signing in application startup, could be
done to measure verifying only.

5.4.6 Cache client

The WBAF influence that can affect the users perceived feeling about the WBA’s
performance the most is the cache described in section 4.5. To test this influence
the WBAF’s performance to access and retrieve data from a cache provider will be
measured.

The cache will be initialized at start up with the data that will be used in the test.
In order to not get skewed results in the comparison the cache provider in use should
be same for the different WBAF’s.

Requirements

R1 The cache provider used should be an external cache that stores the data
outside of the WBA’s memory.

42

5. Schematic

R2 An initialization procedure that empties and fills the cache from requirement
R1 with the data entries shall be executed at application startup.

R3 A route with an integer parameter that routes to a function that retrieves data
from the cache shall exist.

R4 The route that receives the cache request shall retrieve a variable representing
the number of cache entries the WBA shall fetch from the external cache.

R5 The data that is retrieved from the cache shall be made as a single get oper-
ation. Batch operations are not allowed due to that this test objective is to
exercise the connection to the cache provider.

R6 The response of the route R3 shall be an empty 200 OK message.

Variables
The variable to be used in this test type is the number of data entries that shall be
fetched from the external cache provider. How many request that shall be performed
is listed in table 5.8.

Table 5.8: The number of data entries that shall be fetched from the external cache
in Cache benchmark

Number of get’s 10 100 1000

Execution
Perform the benchmark for each combination of the variable in table 5.8 and the
concurrency level in table 5.1. The variable executed is the parameter on the route
in requirement R3.

Comparison and evaluation
After having performed the experiments for all combinations, the results are to be
plotted in the charts TLC, TCLC, RLC and RCLC. If the variables in the table
5.8 are used, then the x-axis should be logarithmically scaled to enhance the visibil-
ity.

In the charts related to throughput the request per second should decline as the
number of gets increases, because the amount of requests that the WBA performs
on the cache provider per request increases as well. Similarly the response time will
increase with a growth in number of gets.

5.4.7 Websockets

WebSockets enable bi-directional communication as described in section 4.8. In this
test type connections will first be established via handshaking, and then messages
will be sent to the WBA. The length of these messages will act as the variable in

43

5. Schematic

this test type. The work that is to be done by the WBA for each incoming message
from the benchmarking tool is simply to echo said message.

In order to perform the benchmarks in this test type, a tool with WebSocket testing
functionality is required. The tools mentioned in 5.1 is not sufficient for this task,
therefor a tool called Thor [74] is recommended. However, any tool that meet the
requirements for benchmarking this test type is naturally allowed.

Requirements

R1 The WBA should be able to receive and establish a WebSocket connection
with a client.

R2 The WBA should be able to receive a UTF8 message on the opened connection
in R1.

R3 Upon receiving a message in R2, the same message should be sent back to the
sender, i.e the benchmarking tool.

Variables
The length of the messages to be sent to the WBA by the benchmarking tool is the
variable in this test type, and these values can be found in table 5.9.

Table 5.9: The length of each message to be sent by the benchmarking tool.

Message length 10 100 1000 10000

Execution
Perform the benchmarking on the index route with the WS protocol for each com-
bination of message length and concurrences in table 5.1.

Comparison and evaluation
Plot the TLC, TCLC, RLC and RCLCs for comparison and evaluation with a log-
arithmically scaled x-axis to cope with the message length values. Try to identify a
variable range that is expected in the WBA that is to be built, and use that in the
TCLC and RCLCs.

5.4.8 Authentication

After an extensive research about the authentication influence, it became apparent
that this influence is redundant to benchmark. The reason for this is that a vast
majority of the work in this influence is done by a third party vendor, i.e Facebook,
Google or an internal LDAP server. Combined with the fact that all test types
includes the request routing influence, the actual work left for this influence that is
done on the client (WBA) side is considered insignificant.

44

6
Express.js vs .NET MVC

The most plausible use of the engineered schematic in this thesis is to compare a
set of WBAF’s with building a specific application in mind. However, this running
example will take a different approach and compare two WBAF’s without a specific
application in mind. The basis of this comparison will instead be to evaluate a new
technology on the market in an actual real world use case. Furthermore, this chapter
will also act as a complement to the schematic to supply a better understanding
about its usage.

6.1 Use case

The comparison of the two frameworks in this use case, Express.js and .NET MVC,
are of interest and have been requested by two organzations. Both of these organi-
zations employ the .NET MVC framework in production environment as of today,
but with the industry of web development evolving in a rapid pace, the ability to
stay ahead and evaluate new technology are of utmost importance. Express.js is the
most popular WBAF for Node.js, with Node.js being the new player on the market
and the platform of interest to the aforementioned organizations. The first release
of Node.js was published in 2009, and five years later Node.js is the third most
popular project on GitHub [90]. Several large scale enterprises have been adopting
Node.js as their runtime environment for web applications, both for fresh devel-
opment projects and as substitute for solutions in use [69]. Naturally this draws
interest to organizations within the industry, but its performance regarding load
scalability and response time needs to be evaluated before an adoption can be con-
sidered. Express.js is a micro WBAF, consequently extensions as packages will have
to be used in order to perform the test types in the schematic. Each package chosen
is always the most popular package for the task in each test type.

.NET MVC is the latest framework that have been used for building applications
within these two organizations. It’s developed by Microsoft and is based on their
.NET platform [53]. This framework is of the fullstack kind and therefor most of
the test types can be performed without additional packages, in the few cases in
which this is required the same principle as Express.js have been applied, i.e the
most popular packages is used.

45

6. Express.js vs .NET MVC

Because this running example will act as a complement to the schematic, the require-
ments demanded from the organizations have been limited in order to not deviate
from the standard usage of the schematic. Consequently there will be no conflicts
of interest and these rather generic results can be used not only by both of the
organizations, but also for a broader audience reading this thesis. The concurrency
levels that have been chosen for these benchmarks is, beyond Pmax, C10 and C100.
In charts where concurrency is to be limited to one value, i.e TCLC, C10 was chosen
as it best resembles the scope of use in both organizations. Further specification is
supplied per test type in this chapter.

6.2 Specifications

The test types were run with the environment setup described in section 5.1. The
benchmarking client was a MacBook Air 2013 with a 1.7GHz Intel quad core i7
processor and 8GB RAM with a memory speed of 1600MHz running OS X 10.2,
and the tool used for benchmarking was wrk [100]. The server hosting the test
types was running 64-bit Windows 8.1 with a 2.4GHz Intel dual core i5 processor
with hyperthreading enabled, the memory capacity was 8GB with a memory speed
of 1066 MHz and the SATA hard drive have a spindle speed of 5400rpm. The web
server used for hosting the .NET MVC test types was IIS 8.0, and the Express.js
test types was hosted using the Node.js v.0.12.2 built in web server. The database
server was hosting MySQL 5.6.24 on Windows 7 with a 3.3GHz Intel quad core i5
processor, 8GB RAM with a memory speed of 1333MHz and a SATA6 Gbit/s hard
drive with spindle speed of 7200rpm. All devices were interconnected with a router
and wires supporting 1000BASE-T Ethernet connection [103].

6.3 Test types

All Express.js test types were implemented using clustering [68] to utilize all the cores
on the machine. No extra work was required for the .NET MVC implementations to
utilize all the cores. During the benchmarks the Resource monitor program attached
to Windows 8.1 was used to verify that all cores were utilized to the fullest. The
source code for all test types can be found on GitHub [45], any non trivial task will
be further described in each test type section.

All test types in the schematic was benchmarked with the concurrency levels, vari-
ants and variables recommended by the schematic. Each combination of influence,
concurrency and variant or variable were run over three rounds, where the mean of
these rounds acts as the result for said combination. Furthermore, each round was
benchmarked for 60 seconds and a non included warm up benchmark for 10 sec-
onds was performed prior to each combination in order to allow lazy-initialization
to execute and just-in-time compilation to run. The total combinations of influence,
concurrency and variant or variable for all test type resulted in an amount of 75

46

6. Express.js vs .NET MVC

combinations. As these were all run three times for two frameworks, combined with
the warm up time, effective benchmarking time resulted in close to eight hours.

The results for each round were manually documented in an excel document from
the output of wrk in the terminal. When a request from wrk exceeded 2000 ms,
a timeout error was thrown as a response. This mostly only occurred when using
a concurrency level of 100 combined with a high variable value, i.e serializing 10
000 kB of JSON data. However, when these timeout errors appeared the average
response time results became skewed, consequently these results were left out of the
charts. This is why some plots aren’t completed in the response time charts. The
results for throughput wasn’t skewed by these errors, thus they aren’t affected.

6.3.1 Request Routing

With request routing being an influence which requires a very low amount of work
on its first variable value, i.e 10 routes, this benchmark will give an indication about
the best possible throughput and response times possible for each WBAF. Naturally
another influence that requires a low amount of work may surpass the request routing
results due to network and operating system inconsistencies.

Looking at the plots for both 10 and 100 concurrent requests in figures 6.1 and 6.2
shows that Express.js have a throughput advantage of 1200-1000=200 requests per
seconds when employed with 10 routes. Similarly, by looking at the plots which
gives the best response time values for both WBAF’s, i.e Pmax, in figures 6.3 and
6.4 it can be seen that Express.js has a 7-4=3 ms base response time advantage.
This means that when both these WBAF’s are employed with only a few amount
of routes Express.js can handle 200 more requests per second. Additionally when
experiencing a load of only one concurrent request, i.e Pmax, Express.js handles
each request averagely 3 ms faster than .NET MVC.

In .NET MVC the small throughput increase with the route increase in figure 6.1 is
likely due to a small inconsistency in the network or os. It can also be seen that the
number of routes won’t affect the performance before 1000 routes is employed in the
WBA. The Express.js results in figure 6.2 suggest that its route lookup growth rate
isn’t dependent on the amount of routes employed in the WBA, as the requests per
second never declines as the amount of employed routes in the WBA is increased.
This means that Express.js scales better with the number of routes employed.

The area of interest, which is marked as grey in figures 6.5 and 6.6, was defined
between 50 and 250 routes, this combined with the concurrency level of interest
10, gives Express.js the upper hand in throughput which can be seen in figure 6.5.
However, figure 6.6 suggests that .NET MVC provide a better average latency in
the same area.

47

6. Express.js vs .NET MVC

101 102 103 104

300

600

900

1,200

1,500

Routes

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.1: Request routing
.NET TLC

101 102 103 104

300

600

900

1,200

1,500

Routes

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.2: Request routing Ex-
press.js TLC

101 102 103 104

40

80

120

160

200

Route amount

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10
C100

Figure 6.3: Request routing
.NET RLC

101 102 103 104

40

80

120

160

200

Route amount

Av
er
ag
e
la
te
nc
y
(m

s)
Pmax
C10
C100

Figure 6.4: Request routing Ex-
press.js RLC

101 102 103 104

300

600

900

1,200

1,500

Routes

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10)
Express.js (C10)

Figure 6.5: Request routing
C10 TCLC

101 102 103 104

6

12

18

24

30

Route amount

Av
er
ag
e
la
te
nc
y
(m

s)

.NET MVC (C10)
Express.js (C10)

Figure 6.6: Request routing
C10 RCLC

48

6. Express.js vs .NET MVC

6.3.2 Serialization

For the serialization test type JSON was used as the format in which to serialize and
deserialize the data. Unlike request routing, the performance in the serialization test
type declined as the variable, i.e data size, was increased for both WBAF’s. This is
obvious as more data means more work, whereas in request routing it was dependent
on the the route lookup algorithm. Figures 6.7 to 6.10 supports this statement as
a massive decline in throughput and increase in respone time can be seen for each
tenfold increase in data size for both WBAF’s.

As illustrated in figures 6.9 and 6.10, when benchmarking with 10 concurrent re-
quests timeout errors started to appear at 10 000 kB data size for both WBAF’s,
and when benchmarking with 100 concurrent requests they started to appear at
1000 kB data size already. As described in section 6.3 these results are skewed, thus
the plots are cutoff. These two charts show that serializing data takes longer time
for .NET MVC than Express.js. When looking at the plots which loads the WBA
with one request at a time, i.e Pmax, it can be seen that Express.js serializes and
deserialize 1000 kB data 110/40=2.75 times faster than .NET MVC. These results
were somewhat expected and a theory to why this huge difference could be that
Javascript objects are more lightweight than the .NET MVC objects. Meaning that
when deserializing the string describing the objects, the parser will instantiate many
objects, and if this process is faster in Javascript then the results will reflect that
advantage.

10 and 100 kB delimits the area of interest for this test type, where the results in
figures 6.11 and 6.12 suggest a clear advantage for Express.js in both throughput
and response time.

101 102 103 104

300

600

900

1,200

1,500

Data size (kB)

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.7: Serialization .NET
MVC TLC

101 102 103 104

300

600

900

1,200

1,500

Data size (kB)

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.8: Serialization Ex-
press.js TLC

49

6. Express.js vs .NET MVC

101 102 103 104

120

240

360

480

600

Data size (kB)

Av
er
ag
e
la
te
nc
y
(m

s)
Pmax
C10
C100

Figure 6.9: Serialization .NET
MVC RLC

101 102 103 104

120

240

360

480

600

Data size (kB)

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10
C100

Figure 6.10: Serialization Ex-
press.js RLC

101 102 103 104

300

600

900

1,200

1,500

Data size (kB)

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10)
Express.js (C10)

Figure 6.11: Serialization C10
TCLC

101 102 103 104

60

120

180

240

300

Data size (kB)

Av
er
ag
e
la
te
nc
y
(m

s)
.NET MVC (C10)
Express.js (C10)

Figure 6.12: Serialization C10
RCLC

6.3.3 O*M

The O*M test type is the only test type that uses a three tier architecture, all
other test types are limited to the client and one server. A MySql instance were
used on the database server. The O*M packages used for this test type were Entity
Framework [58] for .NET MVC and Sequelize [87] for Express.js.

In this test type four variants are being benchmarked instead of a changing variable,
thus the bar charts are used to fit this purpose. These results are very interesting
in several aspects, e.g for .NET MVC in figure 6.14 the throughput of the Find one,
Update and Create variants is far less for C10 than for C100. A theory to why
this occurs could be because .NET is using a threaded programming paradigm in
combination with the communication being synchronous. In .NET MVC a thread
is created for each request that it receives, and the thread is disposed after the
response have been sent for that request, thus 10 threads are the maximum number
of threads used for C10. In all test types not using an external process, i.e this one

50

6. Express.js vs .NET MVC

and cache, follows the rule; if the number of concurrent requests are more than the
number of cores in the CPU, then the full capacity of the CPU is used and thus the
throughput results are aligned for the different concurrences. However, in O*M the
communication is performed to the database, and because that communication is
synchronous, each thread will be slept when performing a query and won’t awake
before a result is received from the database. This means that it is possible that so
many threads are put to sleep so that the number of threads in work are less than
the number of cores in the CPU, meaning that the full capacity of the CPU isn’t
used. This phenomena is illustratated in figure 6.13, where only three out of the
eight threads are awake. If a quad core processor is used in this case, one core is
not doing anything. When the concurrency is increased to 100 instead of 10, that
possibility becomes far less and the CPU capacity is better employed. The reason
to why this isn’t so apparent in the Find All variant is that the large result set needs
to be parsed to objects, which requires the threads to be alive for a longer duration,
thus mitigating the possibility of the number of awake threads falling below the
number of cores in the CPU.

Figure 6.13: Illustrating a case of not utilizing full CPU capacity in the O*M test
type as only three threads are awake.

Express.js uses an event driven programming paradigm with asynchronous com-
munication, which according to the results in figure 6.15 seem to provide better
throughput for lower concurrences when a database server is used. Note that in the
Express.js chart for throughput, i.e figure 6.15, the results are more even between
the concurrences.

Another interesting point can be seen in figure 6.18, where .NET MVC provide
better throughput than Express.js for the Find All variant. The initial theory was
that Express.js would provide better throughput in this variant too, as Express.js
advantage for instantiating objects have been clarified in the serialization test type.
One reasonable explanation to why this isn’t the case is that Sequelize, the O*M
plugin used for Express.js, is doing something inefficient and is thus visible for larger
data sets.

Furthermore, when comparing the response time in figure 6.19, Express.js has the

51

6. Express.js vs .NET MVC

advantage over .NET MVC in all variants, including Find all. Another interesting
point is why .NET MVC takes so long to do updates compared to Express.js. The
high throughput and low response time for update in Express.js negate any theory
that the MySql database would be a bottleneck. One would think that the update
results for .NET MVC would be more similar to the Create variant, as in the results
for Express.js.

Find one Find all Update Create

200

400

600

800

1,000

608

397

139 172

1,025

494

238

416

R
eq
ue

st
s
pe

r
se
co
nd

C10 C100

Figure 6.14: O*M .NET MVC
TBC

Find one Find all Update Create
200

400

600

800

1,000

1,200
1,226

298
381 385

1,250

330
439 429

R
eq
ue

st
s
pe

r
se
co
nd

C10 C100

Figure 6.15: O*M Express.js
TBC

Find one Find all Update Create

0

100

200

300

400

9.9 14.5
45.3 5326.7

64.1

143

62
97

204

430

244

Av
er
ag
e
la
te
nc
y
(m

s)

C1 (Pmax) C10 C100

Figure 6.16: O*M .NET MVC
RBC

Find one Find all Update Create

0

100

200

300

6.35 10.05
42 3620 40 31 32

79

307

241 240

Av
er
ag
e
la
te
nc
y
(m

s)

C1 (Pmax) C10 C100

Figure 6.17: O*M Express.js
RBC

52

6. Express.js vs .NET MVC

Find one Find all Update Create
0

500

1,000

608

397

139 172

1,226

298
381 385

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10) Express.js (C10)

Figure 6.18: O*M C10 TCBC

Find one Find all Update Create

50

100

150

26.7

64.1

143

62

20
40

31 32Av
er
ag
e
la
te
nc
y
(m

s)

.NET MVC (C10) Express.js (C10)

Figure 6.19: O*M C10 RCBC

6.3.4 Template engine

The charts suggest that this influence behave very similar for both WBAF’s, with
the initial throughput being higher for Express.js as expected due to its higher
base throughput. In figure 6.24 it can be seen that the plots intersect at data length
around 100. Furthermore, both the charts for throughput and response time suggest
that rendering HTML pages is an heavy task. Both .NET MVC and Express.js see
their throughput halved for a variable value of 10, compared to the same variable
value in request routing.

The response time charts, i.e figures 6.22 and 6.23, have seen an indentation to
their plots to better visualize the C100 plot, which is a single dot as higher data
length values yielded timeout errors during the benchmarks. Both WBAF’s behave
almost identically when concurrency is increased, however the charts suggest that
Express.js scales better with load.

Defining an area of interest for the TCLC and RCLCs was skipped in this test type
as recommended from the Comparison and Evaluation paragraph in section 5.4.4.
It doesn’t matter to much as Express.js will outperform .NET MVC for all data
length values, more so when less rendering is required.

53

6. Express.js vs .NET MVC

101 102 103 104

140

280

420

560

700

Data length

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.20: Template engine
.NET MVC TLC

101 102 103 104

140

280

420

560

700

Data length

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.21: Template engine
Express.js TLC

101 102 103 104

50

100

150

200

250

Data length

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10
C100

Figure 6.22: Template engine
.NET MVC RLC

101 102 103 104

50

100

150

200

250

Data length

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10
C100

Figure 6.23: Template engine
Express.js RLC

101 102 103 104

140

280

420

560

700

Data length

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10)
Express.js (C10)

Figure 6.24: Template engine
C10 TCLC

101 102 103 104

30

60

90

120

150

Data length

Av
er
ag
e
la
te
nc
y
(m

s)

.NET MVC (C10)
Express.js (C10)

Figure 6.25: Template engine
C10 RCLC

54

6. Express.js vs .NET MVC

6.3.5 JSON Web Token

From the source code for this test type [45] it can be seen that some keys are being
read from .pem files. How to generate these files from only the description in section
5.4.5 can be a non trivial task, therefor the commands on how to do it in openssl
[75] have been provided. The recommended variants and their corresponding key
sizes from section 5.4.5 in the schematic was used.

RSA private:
$ openssl genrsa -out private.pem 2048
RSA public:
$ openssl rsa -in private.pem -out public.pem -outform PEM -pubout
EC private:
$ openssl ecparam -out privateec.pem -name prime256v1 -genkey
EC public:
$ openssl req -new -key privateec.pem -x509 -nodes -out cert.pem

All charts suggest that encrypting and decrypting with the HS256 and none JWA’s
is very fast for both WBAF’s, as both the throughput and response time results are
close to the ones for request routing with 10 routes. However, for the RS256 and
ES256 JWA’s the performance starts to drop, which is expected as these techniques
require more work due to the private/public key architecture. The results in the
figures 6.30 and 6.31 suggest that .NET MVC have a huge advantage when it comes
to decrypting and encrypting with the RS256 algorithm, and Express.js have an
advantage when using ES256. These results are somewhat unexpected, one would
expect that the performance would decline with roughly the same portion. A pos-
sible explanation might be that these two aren’t the best possible implementations
of said JWA, i.e the ones made by the package authors.

HS256 RS256 ES256 none
200

400

600

800

1,000
907

512

308

885
931

547

286

859

R
eq
ue

st
s
pe

r
se
co
nd

C10 C100

Figure 6.26: JSON Web Token
.NET MVC TBC

HS256 RS256 ES256 none
0

500

1,000

1,249

149

514

1,2521,265

135

511

1,267

R
eq
ue

st
s
pe

r
se
co
nd

C10 C100

Figure 6.27: JSON Web Token
Express.js TBC

55

6. Express.js vs .NET MVC

HS256 RS256 ES256 none

0

100

200

300

400

6 8.7 11.2 716 20 33.7 13

80

161

370

82

Av
er
ag

e
la
te
nc

y
(m

s)

C1 (P max) C10 C100

Figure 6.28: JSON Web Token
.NET MVC RBC

HS256 RS256 ES256 none

0

200

400

600

4.7 18.5 7.7 5.619.5
68.3

21.7 17.8
79.5

578

189

78

Av
er
ag

e
la
te
nc

y
(m

s)

C1 (P max) C10 C100

Figure 6.29: JSON Web Token
Express.js RBC

HS256 RS256 ES256 none
0

500

1,000 907

512

308

885

1,249

149

514

1,252

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10) Express.js (C10)

Figure 6.30: JSON Web Token
C10 TCBC

HS256 RS256 ES256 none

20

40

60

16
20

33.7

13
19.5

68.3

21.7
17.8Av

er
ag
e
la
te
nc
y
(m

s)

.NET MVC (C10) Express.js (C10)

Figure 6.31: JSON Web Token
C10 RCBC

6.3.6 Cache

Like O*M, cache relies on a third party, in this benchmark Redis [81] was used
as a cache server. The redis instance was deployed on the same computer as the
one hosting the cache test type. In the results in figure 6.32 a result appeared
that haven’t been seen before, the throughput declined as concurrency increased.
The initial theory was that the cache server was the reason for this, however the
results for Express.js in figure 6.33 negate that theory by showing aligned plots for
the concurrency levels 10 and 100. The enormous difference in the results between
the two WBAFs in this test type, which can be seen in figures 6.36 and 6.37, is
because Express.js is communicating with the Redis server asynchronously, and this
functionality wasn’t provided in the most popular Redis client package for .NET
MVC. This means that .NET MVC must wait for every request to be completed
before it can start the next one, and Express.js can do all simultaneously. .NET

56

6. Express.js vs .NET MVC

MVC would experience this poor performance for all the O*M variants as well if
the number of times they would be performed would be increased. This however
doesn’t explain why the drop in throughput for the concurrency level 100 compared
to 10, which is an unexpected result.

10 and 150 are the number of entries to be fechted that delimits the area of interest
for this test type. The charts in figures 6.36 and 6.37 show a huge advantage for
Express.js in these benchmarks for the defined area of interest, which as mentioned is
due to the asynchronous I/O employed by Express.js. However, the charts suggests
that this advantage is limited and that .NET MVC will eventually catch up to
Express.js, and figure 6.37 shows that for response time it will eventually pass,
i.e after 1000 GET’s per request. If one looks at the derivative difference of the
Express.js plot between 10 to 100 GET’s and 100 to 1000 GET’s, one can see that
the effectiveness of the asynchronous communication starts to wear off. There could
be a problem with Redis being loaded with that many GET’s simultaneously. The
.NET MVC plot is rising very linear through 10 to 1000 GET’s, which is due to the
communication being synchronous.

101 102 103 104

60

120

180

240

300

Number of GET’s

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.32: Cache .NET MVC
TLC

101 102 103 104

300

600

900

1,200

1,500

Number of GET’s

R
eq
ue
st
s
pe

r
se
co
nd

C10
C100

Figure 6.33: Cache Express.js
TLC

57

6. Express.js vs .NET MVC

101 102 103 104

50

100

150

200

250

Number of GET’s

Av
er
ag
e
la
te
nc
y
(m

s)
Pmax
C10

Figure 6.34: Cache .NET MVC
RLC

101 102 103 104

50

100

150

200

250

Number of GET’s

Av
er
ag
e
la
te
nc
y
(m

s)

Pmax
C10

Figure 6.35: Cache Express.js
RLC

101 102 103 104

300

600

900

1,200

1,500

Number of GET’s

R
eq
ue
st
s
pe

r
se
co
nd

.NET MVC (C10)
Express.js (C10)

Figure 6.36: C10 TCLC

101 102 103 104

60

120

180

240

300

Number of GET’s

Av
er
ag
e
la
te
nc
y
(m

s)
.NET MVC (C10)
Express.js (C10)

Figure 6.37: C10 RCLC

6.3.7 Websockets

Although an extensive amount of hours was spent on the issue, the .NET MVC
websockets test type was unable to be successfully implemented to work with any
benchmarking tool. The error appeared only when using a benchmarking tool,
though the implementation worked fine when testing with a Chrome plugin called
Simple Websocket Client. The implementation were successfully implemented in
Express.js, and those benchmarks were successfully run. However, seeing as the
schematic is to be used for comparisons means that the standalone Express.js results
wouldn’t give any value. Therefor it has been decided to not visualize these in charts
as it would only confuse the reader.

58

7
Evaluation

Both a schematic and an example scenario have been provided in this thesis. The
example scenario is implemented in such a way that it could and should be used
as a complement to the schematic. This means that the environment and the im-
plemented code may seem a bit simplistic and not as close to a real use case as
one might have wanted. However, this is done by design. The implemented code
was done as a general as possible to include all type of use of the schematic. The
environment was set up on a local area network with only one router instead of
the more realistic scenario including more routers over wider areas. This was done
to get more control of the external factors which in the end results in clear and
deterministic measured results from the tests.

In the example scenario the comparison is made between .NET MVC and Express.js.
This might seem skewed because .NET MVC is classified as a fullstack framework
while Express.js is a micro framework. When comparing WBAF’s of different types
the more lightweight framework needs not only to relay on itself but also on the
packages that is needed to complement for the missing functionality that a heavier
framework provides. While this might seem unfair the idea behind doing this is that
while a comparison between frameworks of the same type would be easier and more
straight forward the meaning of the example scenario is to be an aid and to show
what and how it is possible to use the schematic. Another difference between .NET
MVC and Express.js is that they use different communication paradigms for the
I/O test types i.e. O*M and Cache, .NET MVC uses a synchronous communication
and Express.js uses asynchronous communication. The result of this is that the
asynchronous implementation will yield better result for all test types were this is
utilized which means that Express.js will have a big advantage. However, to keep
the simplicity and readability of the code and to follow the scenario guideline of
using the most popular package when the need of an external package is needed the
choice to give Express.js this advantages was accepted. Also, the actual measured
results of the example scenario is not made to be a benchmark for the schematic
and is therefore irrelevant for the result of this thesis.

During the execution of the example schematic it soon became evident that running
all tests with the different concurrency level and variables would take a great deal of
time. Not counting the time it takes to set up the test environment, develop the code
for the test types and analyzing the results it would take approximately 7,5 hours
to run the tests for one minute three consecutive times. This raises the question if

59

7. Evaluation

the execution of the tests could be streamlined in some efficient way. Even if it isn’t
in the scope of this thesis, some kind of automation of the testing procedure would
be desirable to minimize the manually labour that needs to be performed to read
and analyze the data.

On GitHub [45] the source code for the example scenario is provided. The source
code is not meant to be seen as a perfect implementation of the test types but
rather an aid to show how an implementation can look like. It is also a way to
have transparency throughout the thesis so that each step can be back traced and
reproduced by the users of the schematic.

7.1 Threats to Validity

To mitigate threats to the validity of this thesis one goal was that the resulting
schema shall be able to be completely backed traced and a clear motivation and
description should be given for the choices that were made in the different steps of
constructing the schematic. However, it’s impossible to remove all threats and here
follows some of the threats that were identified.

Internal The steps to derive an influence was done in a process constructed by
the authors thus the resulting influences does not have a scientific foundation and
could be irrelevant.

When the test types were developed a research was conducted to see what variables
effected the performance. Some variable can have, unintentionally, been disregarded
that could have effect on the result and overrides the influence of the test type in
question.

External The test environment is a Microsoft environment which is the same
company that delivers the .NET platform. This could benefited one of the example
WBAF more than the other. The test tool used could have performed it’s operations
in a way that does not represent desired behaviour.

The schematic is validated and exemplified by the same persons that wrote the
description of the schematic. This may lead to the possibility of having to vague
descriptions and motives for one or more of the test types because of missing infor-
mation that is tacit knowledge for the authors.

Construct The implemented code in the example scenario is written in as per-
forming way as possible at the time. However, senior developers in the example
platforms can most likely implement the same functionality in an even more per-
forming way.

60

8
Conclusion

In the web context, many identifications and expressions are characterised by some
ambiguity in the terminology, the ambiguities comprise distinction issues between
terms, and terms that are used for to many purposes. Therefor a terminology section
was conducted to enable further discussion without repeatedly having to explain and
define the context of use for each term. These terminologies have helped immensely
during the course of this thesis, not only through making it easier to write, but also
in conversation.

The first research question was; what influences the scalability and responsiveness
of a WBAF? This is answered in chapter 4, because there is no definition or limit
on how much functionality should be included in a WBAF, as it is up to the author
of each WBAF to decide what to include, the task to define everything that affects
its performance becomes an unfeasible one. Instead a study was conducted in order
to define the most popular influences of a WBAF, and these results are marked
as bold in table 4.3. The only influence found that after further inspection was
decided not to be included as a test type in the schematic was authentication, as it
became apparent that this test type would basically only benchmark a third party
source.

The second research question was; how to compare scalability and responsiveness
of WBAF’s? The answer to this question is to, after having identified what affects
the scalability and responsiveness of a WBAF, engineer metrics and methods to
comprehend the expected results. Then perform isolated microbenchmarks on said
influences in a homogeneous environment. All of these steps are described chapter
5 and exemplified in chapter 6, thus these two chapters together answers the second
research question thoroughly.

Chapter 6 verifies that the produced schematic works for its intended purpose, i.e
comparing WBAF’s. A user will gain more knowledge about the scalability and
responsiveness in the WBAF’s benchmarked after having used the schematic. The
plotted results in the form of charts made it easy to get an overview of the comparison
on a per test type level. However, the schematic do lack a way of declaring a winner
on both a per test type, and on a per WBAF level.

The running example was successfully implemented, additionally the results was
prestented and discussed for all test types except websocket. The reason for this was
that errors were thrown in the .NET MVC websocket test type during benchmarks,

61

8. Conclusion

the results for the Express.js was left out as it became redundant without any
comparison.

After having done the running example, it became apparent that the schematic is
not limited to testing WBAF’s, even if that was the original intention. A third
test suite could have been added, and this test suite could also been Express.js for
instance, but with different packages chosen for the test types, or with a different
operating system. Because of the extendability of the schematic, any block out of
the technology stack can be swapped and a new benchmark can be run.

8.1 Future work

The schematic needs to be tested and further developed in close contact with po-
tential users. As mentioned in section 7.1, the schematic as is might be hard to use
as it has only been used by its authors. Therefor a case study could be performed
in order to see if users are capable of developing the test types for new WBAF’s
and different languages. From this case study pros and cons could be gathered and
translated into requirements that would improve the schematic.

The schematic itself is easily extensible, thus adding more test types could and
should be done to suit a broader audience. The left out influences in table 4.3 would
be a good start, as these are the next most fitting influences according to influence
partial study.

Manually performing the benchmarks and registering the results was a cumbersome
task, which for two WBAF’s took eight hours of benchmarking time, i.e approx-
imately two days for two people, to complete. Therefor this process should be
automated, which would spare developer time.

The test types should also be made public, a GitHub repository might suffice as
Techempowered did. The reason behind this is that it mitigates the risk of a test
type being wrongly implemented if more people collaborate with their experiences.
Additionally it saves developing time as each test type won’t have to be totally
developed from scratch for each user. Any configuration or modification could be
done locally to the source code.

For the test types more variants or variables could be added. An example could be
to add Delete to the O*M test type, or add data length to the cache test type. The
latter would require a new chart type as a third dimension is introduced.

As mentioned the schematic do lack a way of declaring a winner on a per test type
and WBAF level. The intention behind leaving this out was to keep it open for
each user to evaluate the results in their own context, as every user would weight
the result of each test type differently. This could however be implemented in the
method that would declare the winner, i.e a set of weighing parameters for each
test type in combination with some formula that outputs a score. It would be very
convenient to present business people if they had something this easy to grasp, e.g

62

8. Conclusion

"WBAF 1 scored 87 and WBAF 2 scored 62 with the company’s internal weighing
parameters, therefor WBAF 1 have been chosen for the next investment".

The ultimate vision for the schematic is to build it as a software, a program that
would integrate the benchmarking tool, result export and methods for declaring
a winner. Visualizing the results could be done in any business intelligence tool,
therefor implementing this would be wasteful. A benchmark would be set up from a
configuration file with different routes and parameters that would be mapped to the
different test types and variable/variant values, and different ports could be used
for different WBAF’s.

63

8. Conclusion

64

Bibliography

[1] A. Bondi. Characteristics of Scalability and Their Impact on Performance.
AT&T Labs, New Jersey, 1994.

[2] A. K. Lenstra. Key Lengths - Contribution to The Handbook of Information
Security. Citibank, N.A., and Technische Universiteit Eindhoven 2002. [2015-
05-19].

[3] A. K. Lenstra, E. R. Verheul Selecting Cryptographic Key Sizes. J. Cryptology
(2001) 14: 255–293, DOI: 10.1007/s00145-001-0009-4. 2001. [2015-05-19].

[4] A. Mesbah, A. van Deursen. Migrating Multi-page Web Applications to Single-
page AJAX Interfaces. IEEE, Amsterdam, 2007.

[5] A. R. Hevner, S. T. March, J. Park. Design Research in Information Systems
Research. MIS Quarterly, 28, 1, 75-105. 2004.

[6] Agence nationale de la sécurité des systèmes d’information. Référentiel Général
de Sécurité. http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
2014. [2015-05-19].

[7] AngularJs. AngularJS — Superheroic JavaScript MVW Framework. https:
//angularjs.org/. 2015. [2015-03-11].

[8] Apache. Welcome! - The Apache HTTP Server Project. http://httpd.
apache.org/. 2015. [2015-03-11].

[9] Apache. ab - Apache HTTP server benchmarking tool. http://httpd.apache.
org/docs/2.2/programs/ab.html. 2015. [2015-05-19].

[10] B. Hauer. What is Gemini?. https://groups.google.com/forum/#!topic/
framework-benchmarks/p3PbUTg-Ibk. 2013. [2015-04-01].

[11] BestGems. Total Download Ranking. http://bestgems.org/total. 2015.
[2015-04-01].

[12] BlueKrypt. Cryptographic Key Length Recommendation. http://www.
keylength.com/en/compare/. 2015. [2015-05-19].

[13] Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und
Eisenbahnen. Bekanntmachung zur elektronischen Signatur nach dem Sig-
naturgesetz und der Signaturverordnung. http://www.bundesnetzagentur.
de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/

65

http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
https://angularjs.org/
https://angularjs.org/
http://httpd.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
https://groups.google.com/forum/#!topic/framework-benchmarks/p3PbUTg-Ibk
https://groups.google.com/forum/#!topic/framework-benchmarks/p3PbUTg-Ibk
http://bestgems.org/total
http://www.keylength.com/en/compare/
http://www.keylength.com/en/compare/
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1

Bibliography

Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
2014. [2015-05-19].

[14] C. Bauer, G. King Hibernate in Actio. Manning Publications Co. Greenwich,
USA. ISBN: 1932394-15-X 2004.

[15] C. Click The Art of (Java) Benchmarking. http://www.azulsystems.com/
events/javaone_2009/session/2009_J1_Benchmark.pdf. 2009. [2015-03-27]

[16] C. U. Smith, L.G. Williams. Performance solutions: a practical guide to creating
responsive, scalable software. Boston, MA, Addision Wesley, 2002.

[17] ComputerHope. Computer Hope’s free computer help. http://www.
computerhope.com/. 2015. [2015-03-11].

[18] Curious Concept. JSON Formatter & Validator. http://jsonformatter.
curiousconcept.com/#about. 2015. [2015-05-19].

[19] D. Esposito. ASP.NET MVC Controllers and Conven-
tions. https://www.simple-talk.com/dotnet/asp.net/asp.
net-mvc-controllers-and-conventions/. 2012. [2015-03-03].

[20] Django. The web framework for perfectionists with deadlines. https://www.
djangoproject.com/. 2015. [2015-05-19].

[21] ECRYPT II. ECRYPT II Yearly Report on Algorithms and Keysizes. ICT-2007-
216676, Katholieke Universiteit Leuven (KUL) 2012. [2015-05-19].

[22] ExpressJs. Express - Node.js web application framework. http://expressjs.
com/. 2015. [2015-03-11].

[23] Flask. Welcome | Flask (A Python Microframework). http://flask.pocoo.
org/. 2015. [2015-03-24].

[24] Foldoc. FOLDOC - Computing Dictionary. http://foldoc.org/. 2015. [2015-
03-11].

[25] G. Heiser The Dos and Don’ts of Benchmarking. http://haifux.org/
lectures/311/BM_crimes.pdf. 2013. [2015-03-31]

[26] G. Linden. Make data useful. http://glinden.blogspot.se/2006/11/
marissa-mayer-at-web-20.html.2006. [2015-03-09]

[27] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis,
et al. Best Practises for Scientific Computing. PLoS Biol 12(1): e1001745.
doi:10.1371/journal.pbio.1001745, 2014.

[28] GitHub. Build software better, together. https://github.com/. 2015. [2015-
05-19].

[29] Hibernate. Hibernate ORM. http://hibernate.org/orm/. 2015. [2015-03-23]

[30] Hot Frameworks. Find your new favorite web framework. http://
hotframeworks.com/. 2015. [2015-05-19].

66

http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/QES/Veroeffentlichungen/Algorithmen/2014Algorithmenkatalog.pdf?__blob=publicationFile&v=1
http://www.azulsystems.com/events/javaone_2009/session/2009_J1_Benchmark.pdf
http://www.azulsystems.com/events/javaone_2009/session/2009_J1_Benchmark.pdf
http://www.computerhope.com/
http://www.computerhope.com/
http://jsonformatter.curiousconcept.com/#about
http://jsonformatter.curiousconcept.com/#about
https://www.simple-talk.com/dotnet/asp.net/asp.net-mvc-controllers-and-conventions/
https://www.simple-talk.com/dotnet/asp.net/asp.net-mvc-controllers-and-conventions/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://expressjs.com/
http://expressjs.com/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://foldoc.org/
http://haifux.org/lectures/311/BM_crimes.pdf
http://haifux.org/lectures/311/BM_crimes.pdf
http://glinden.blogspot.se/2006/11/marissa-mayer-at-web-20.html. 2006
http://glinden.blogspot.se/2006/11/marissa-mayer-at-web-20.html. 2006
https://github.com/
http://hibernate.org/orm/
http://hotframeworks.com/
http://hotframeworks.com/

Bibliography

[31] Hot Frameworks. Frequently Asked Questions. http://hotframeworks.com/
faq. 2015. [2015-05-19].

[32] I. Z. Schlueter. Node.js Digs Dirt - about Data-Intensive Real-
Time Applications. http://video.nextconf.eu/video/1914374/
nodejs-digs-dirt-about.2011. [2015-03-20].

[33] IETF. A Universally Unique IDentifier (UUID) URN Namespace. http://
tools.ietf.org/html/rfc4122. 2005. [2015-05-19].

[34] IETF. HMAC: Keyed-Hashing for Message Authentication. http://tools.
ietf.org/html/rfc2104 1997. [2015-05-19].

[35] IETF. Elliptic Curve DSA for DNSSEC. https://tools.ietf.org/html/
draft-ietf-dnsext-ecdsa-07 2012. [2015-05-19].

[36] IETF. Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/
html/rfc2616. 1999. [2015-03-24].

[37] IETF. RSASSA-PSS. http://tools.ietf.org/html/rfc3447#section-8.1.
2003. [2015-03-24].

[38] J. Bixby. Latency 101: What is latency and why is it such a
big deal?. http://www.webperformancetoday.com/2012/04/02/
latency-101-what-is-latency-and-why-is-it-such-a-big-deal/. 2012.
[2015-03-09].

[39] J. Bornholt How Not to Measure Computer System Performance. https:
//homes.cs.washington.edu/~bornholt/post/performance-evaluation.
html. 2014. [2015-03-27]

[40] J. Harrell. Node.js at PayPal. https://www.paypal-engineering.com/2013/
11/22/node-js-at-paypal/. 2013. [2015-05-15].

[41] J. Knupp. What is a Web Framework?. http://www.jeffknupp.com/blog/
2014/03/03/what-is-a-web-framework/. 2014. [2015-03-02].

[42] K. Peffers, T. Tuunanen, M. Rothenberger, S. Chatterjee. A Design Science Re-
search Methodology for Information Systems Research. Journal of Management
Information Systems, vol. 24, no. 3, pp. 45-77. 2007.

[43] L. Bass, P. Clements, R. Kazman. Software architecture in practice second edi-
tion. Addision Wesley, 2003.

[44] M. B. Jones. JSON Web Algorithms (JWA). http://tools.ietf.org/id/
draft-ietf-jose-json-web-algorithms-08.html. 2012. [2015-05-19].

[45] M. Dosé, H. Lilja. Source code to the example scenario. https://github.com/
mathiasdose/master-thesis/tree/master 2015. [2015-05-28].

[46] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R. Stafford Patterns
of Enterprise Application Architecture. Pearson Education, Inc. Boston, USA.
ISBN: 0-321-12742-0 2002.

67

http://hotframeworks.com/faq
http://hotframeworks.com/faq
http://video.nextconf.eu/video/1914374/nodejs-digs-dirt-about. 2011
http://video.nextconf.eu/video/1914374/nodejs-digs-dirt-about. 2011
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/draft-ietf-dnsext-ecdsa-07
https://tools.ietf.org/html/draft-ietf-dnsext-ecdsa-07
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3447#section-8.1
http://www.webperformancetoday.com/2012/04/02/latency-101-what-is-latency-and-why-is-it-such-a-big-deal/
http://www.webperformancetoday.com/2012/04/02/latency-101-what-is-latency-and-why-is-it-such-a-big-deal/
https://homes.cs.washington.edu/~bornholt/post/performance-evaluation.html
https://homes.cs.washington.edu/~bornholt/post/performance-evaluation.html
https://homes.cs.washington.edu/~bornholt/post/performance-evaluation.html
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://www.jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/
http://www.jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/
http://tools.ietf.org/id/draft-ietf-jose-json-web-algorithms-08.html
http://tools.ietf.org/id/draft-ietf-jose-json-web-algorithms-08.html
https://github.com/mathiasdose/master-thesis/tree/master
https://github.com/mathiasdose/master-thesis/tree/master

Bibliography

[47] M. Koziarski. Request per second. http://www.therailsway.com/2009/1/6/
requests-per-second/. 2009. [2015-03-31].

[48] M. Rouse. What is authentication?. http://searchsecurity.techtarget.
com/definition/authentication. 2015. [2015-05-19].

[49] M. Woodside, G. Franks, D. C. Petriu. The Future of Software Performance
Engineering. Washington, DC, USA, IEEE Computer Society, 2007.

[50] Mathias Benchmarking Spray. http://spray.io/blog/
2013-05-24-benchmarking-spray/. 2013. [2015-03-31].

[51] Maven. Maven - Welcome to Apache Maven. https://maven.apache.org/
2015. [2015-04-01].

[52] Memcached. About Memcached. http://memcached.org/about. 2015. [2015-
05-05].

[53] Microsoft. ASP.NET. http://www.asp.net/mvc. 2015. [2015-05-19].

[54] Microsoft. Visual C#. https://msdn.microsoft.com/en-us/library/
kx37x362.aspx. 2015. [2015-03-20]

[55] Microsoft. Overview of the .NET Framework. https://msdn.microsoft.com/
en-us/library/zw4w595w.aspx. 2015. [2015-03-11].

[56] Microsoft. ASP.NET MVC | The ASP.NET Site. http://www.asp.net/mvc.
2015. [2015-03-20]

[57] Microsoft. Home : The Official Microsoft IIS Site. http://www.iis.net/.
2015. [2015-03-11].

[58] Microsoft. Entity Framework. https://msdn.microsoft.com/en-us/data/
ef.aspx. 2015. [2015-03-24].

[59] Mongo DB. NOSQL DATABASES EXPLAINED. http://www.mongodb.com/
nosql-explained. 2015. [2015-05-01].

[60] Mono. Documentation | Mono. http://www.mono-project.com/docs/. 2015.
[2015-03-11].

[61] MSDN. Cache Clients and Local Cache. https://msdn.microsoft.com/
en-us/library/ee790983(v=azure.10).aspx. 2015. [2015-04-21]

[62] MSDN. ASP.NET Caching. https://msdn.microsoft.com/en-us/library/
xsbfdd8c(v=vs.140).aspx. 2015. [2015-04-21]

[63] MSDN. ASP.NET MVC OUTPUT CACHING WITH WINDOWS
APPFABRIC CACHE. http://www.devtrends.co.uk/blog/asp.
net-mvc-output-caching-with-windows-appfabric-cache. 2015. [2015-04-
21]

[64] MVNRepository. Top Projects. http://mvnrepository.com/popular 2015.
[2015-04-01].

68

http://www.therailsway.com/2009/1/6/requests-per-second/
http://www.therailsway.com/2009/1/6/requests-per-second/
http://searchsecurity.techtarget.com/definition/authentication
http://searchsecurity.techtarget.com/definition/authentication
http://spray.io/blog/2013-05-24-benchmarking-spray/
http://spray.io/blog/2013-05-24-benchmarking-spray/
https://maven.apache.org/
http://memcached.org/about
http://www.asp.net/mvc
https://msdn.microsoft.com/en-us/library/kx37x362.aspx
https://msdn.microsoft.com/en-us/library/kx37x362.aspx
https://msdn.microsoft.com/en-us/library/zw4w595w.aspx
https://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://www.asp.net/mvc
http://www.iis.net/
https://msdn.microsoft.com/en-us/data/ef.aspx
https://msdn.microsoft.com/en-us/data/ef.aspx
http://www.mongodb.com/nosql-explained
http://www.mongodb.com/nosql-explained
http://www.mono-project.com/docs/
https://msdn.microsoft.com/en-us/library/ee790983(v=azure.10).aspx
https://msdn.microsoft.com/en-us/library/ee790983(v=azure.10).aspx
https://msdn.microsoft.com/en-us/library/xsbfdd8c(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/xsbfdd8c(v=vs.140).aspx
http://www.devtrends.co.uk/blog/asp.net-mvc-output-caching-with-windows-appfabric-cache
http://www.devtrends.co.uk/blog/asp.net-mvc-output-caching-with-windows-appfabric-cache
http://mvnrepository.com/popular

Bibliography

[65] Nginx. Nginx. http://nginx.org/en/. 2015. [2015-03-11]

[66] NHibernate. NHibernate: Home. http://nhibernate.info/. 2015. [2015-03-
24].

[67] NIST. KEY MANAGEMENT. http://csrc.nist.gov/groups/ST/toolkit/
key_management.html 2015. [2015-05-19].

[68] NodeJS. Node.js v0.12.3 Manual & Documentation. https://nodejs.org/
api/cluster.html. 2015. [2015-05-19].

[69] NodeJS. Node.js in Industry. https://nodejs.org/industry/. 2015. [2015-
05-19].

[70] NPM. npm. https://www.npmjs.com/. 2015. [2015-04-01].

[71] NPM. Most Starred Packages. https://www.npmjs.com/browse/star. 2015.
[2015-04-01].

[72] NuGet. NuGet Gallery | Home. https://www.nuget.org/. 2015. [2015-04-01].

[73] NuGet. NuGet Gallery | Package Download Statistics. https://www.nuget.
org/stats/packages. 2015. [2015-04-01].

[74] Observe.it. Thor - The WebSocket god of thunder. https://github.com/
observing/thor. 2013. [2015-05-19].

[75] OpenSSL. OpenSSL Project. https://www.openssl.org/. 2015. [2015-05-28]

[76] Packagist. The PHP package archivist. https://packagist.org/. 2015. [2015-
04-01].

[77] Packagist. Popular Packages. https://packagist.org/explore/popular.
2015. [2015-04-01].

[78] Python. PyPI - Python. https://pypi.python.org/pypi. 2015. [2015-04-01].

[79] PyPI Ranking. Find famous Python modules and authors. http://
pypi-ranking.info/alltime. 2015. [2015-04-01].

[80] Redis. Using Redis as an LRU cache. http://redis.io/topics/lru-cache.
2015. [2015-04-21]

[81] Redis. Introduction to Redis. http://redis.io/topics/introduction. 2015.
[2015-05-05].

[82] Ruby on Rails. Web development that doesn’t hurt. http://rubyonrails.org/.
2015. [2015-05-19].

[83] RubyGems. RubyGems.org | your community gem host. https://rubygems.
org/gems. 2015. [2015-04-01].

[84] S. McCullough, Breaking The Monolith: Using Node.js to Rewrite Groupon’s
Front-End by Sean McCullough. http://vimeo.com/97666093. 2015. [2015-05-
27].

69

http://nginx.org/en/
http://nhibernate.info/
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
https://nodejs.org/api/cluster.html
https://nodejs.org/api/cluster.html
https://nodejs.org/industry/
https://www.npmjs.com/
https://www.npmjs.com/browse/star
https://www.nuget.org/
https://www.nuget.org/stats/packages
https://www.nuget.org/stats/packages
https://github.com/observing/thor
https://github.com/observing/thor
https://www.openssl.org/
https://packagist.org/
https://packagist.org/explore/popular
https://pypi.python.org/pypi
http://pypi-ranking.info/alltime
http://pypi-ranking.info/alltime
http://redis.io/topics/lru-cache
http://redis.io/topics/introduction
http://rubyonrails.org/
https://rubygems.org/gems
https://rubygems.org/gems
http://vimeo.com/97666093

Bibliography

[85] S. Silbert Samsung reportedly not alone in cheating An-
droid benchmarks. http://www.engadget.com/2013/10/02/
samsung-reportedly-not-alone-in-cheating-android-benchmarks/.
2013. [2015-03-31].

[86] Sails.js. The web framework of your dreams. http://sailsjs.org/#!/. 2015.
[2015-05-19].

[87] Sequelize.js. A promise-based ORM for Node.js and io.js. http://docs.
sequelizejs.com/en/latest/. 2015. [2015-05-28].

[88] Spring. Let’s build a better Enterprise. https://spring.io/. 2015. [2015-05-
19].

[89] Stack Exchange. Stack Overflow. http://stackoverflow.com/. 2015. [2015-
05-19].

[90] StrongLoop. Node.js is Enterprise Ready. https://strongloop.com/node-js/
nodejs-infographic/. 2015. [2015-05-19].

[91] Symfony. Symfony is a set of reusable PHP components. https://symfony.
com/. 2015. [2015-05-19].

[92] T. C. Chieu, A. Mohindra, A. A. Karve, A. Segal. Dynamic Scaling of Web
Applications in a Virtualized Cloud Computing Environment e-Business Engi-
neering, 2009. ICEBE ’09. IEEE International Conference on, 281-286, 2009.

[93] T. Fisher. Cryptographic Hash Function. http://pcsupport.about.com/od/
termsc/g/cryptographic-hash-function.htm. 2015. [2015-05-19].

[94] TechEmpower. Web Framework Benchmarks. https://www.techempower.
com/benchmarks/. 2015. [2015-05-19].

[95] Techopedia. Serialization. http://www.techopedia.com/definition/867/
serialization-net. 2015. [2015-04-08].

[96] U.S. Department of Commerce. Digital Signature Standard (DSS). Informa-
tion Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg 2013. [2015-05-19].

[97] V. Baryshev. template-benchmark. https://github.com/baryshev/
template-benchmark. 2013. [2015-05-19].

[98] V. Beal. What is authentication?, Webopedia. http://www.webopedia.com/
TERM/A/authentication.html. 2015. [2015-05-19].

[99] W. Ali, S. Shamsuddin, A. Ismail A Survey of Web Caching and Prefetching.
Universiti Teknologi Malaysia, Johor 2011.

[100] W. Glozer. Modern HTTP benchmarking tool. https://github.com/wg/wrk.
2015. [2015-05-19].

[101] W. Koffel. Choosing A Web Framework. http://www.clearlytech.com/
2013/12/01/choosing-web-framework/. 2013. [2015-03-03].

70

http://www.engadget.com/2013/10/02/samsung-reportedly-not-alone-in-cheating-android-benchmarks/
http://www.engadget.com/2013/10/02/samsung-reportedly-not-alone-in-cheating-android-benchmarks/
http://sailsjs.org/#!/
http://docs.sequelizejs.com/en/latest/
http://docs.sequelizejs.com/en/latest/
https://spring.io/
http://stackoverflow.com/
https://strongloop.com/node-js/nodejs-infographic/
https://strongloop.com/node-js/nodejs-infographic/
https://symfony.com/
https://symfony.com/
http://pcsupport.about.com/od/termsc/g/cryptographic-hash-function.htm
http://pcsupport.about.com/od/termsc/g/cryptographic-hash-function.htm
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/
http://www.techopedia.com/definition/867/serialization-net
http://www.techopedia.com/definition/867/serialization-net
https://github.com/baryshev/template-benchmark
https://github.com/baryshev/template-benchmark
http://www.webopedia.com/TERM/A/authentication.html
http://www.webopedia.com/TERM/A/authentication.html
https://github.com/wg/wrk
http://www.clearlytech.com/2013/12/01/choosing-web-framework/
http://www.clearlytech.com/2013/12/01/choosing-web-framework/

Bibliography

[102] w3.org. Token Based Authentication – Implementation Demonstration.
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/
token_based_authentication/. 2015. [2015-05-19].

[103] Webopedia. 1000Base-T (IEEE 802.3ab). http://www.webopedia.com/
TERM/1/1000BaseT.html. 2015. [2015-05-19].

[104] Webopedia. Webopedia: Online Tech Dictionary for IT Professionals. http:
//www.webopedia.com/. 2015. [2015-03-11].

[105] WhatIs. Webopedia: Online Tech Dictionary for IT Professionals. http://
whatis.techtarget.com/. 2015. [2015-03-11].

[106] X. Gan Software Performance Testing. Univesity of Helsinki, Finland 2006.

71

http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
http://www.webopedia.com/TERM/1/1000BaseT.html
http://www.webopedia.com/TERM/1/1000BaseT.html
http://www.webopedia.com/
http://www.webopedia.com/
http://whatis.techtarget.com/
http://whatis.techtarget.com/

Bibliography

72

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Purpose of study

	Foundation
	Performance in web applications
	Web backend application framework
	Benchmarks
	Micro- vs Macrobenchmark
	Techempower
	PayPal

	Research Method
	Design Science Research Methodology
	Identifying influences of a WBAF
	Constructing the Schematic
	Evaluating the Schematic

	Influences of a WBAF
	Request routing
	Serialization
	Template Engine
	O*M
	ORM

	Cache client
	Authentication
	JSON Web Token
	WebSocket

	Schematic
	Environment and tools
	Concurrences
	Charts
	Throughput Line Chart
	Throughput Comparison Line Chart
	Throughput Bar Chart
	Throughput Comparison Bar Chart
	Response time Line Chart
	Response time Comparison Line Chart
	Response time Bar Chart
	Response time Comparison Bar Chart

	Test types
	Request Routing
	Serialization
	O*M
	Template Engine
	JSON Web Token
	Cache client
	Websockets
	Authentication

	Express.js vs .NET MVC
	Use case
	Specifications
	Test types
	Request Routing
	Serialization
	O*M
	Template engine
	JSON Web Token
	Cache
	Websockets

	Evaluation
	Threats to Validity

	Conclusion
	Future work

	Bibliography

