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FREDRIK EINARSSON
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Abstract

Model-Driven Engineering is widely used within Software Engineering to increase
the level of abstraction and thereby increase the efficiency and maintainability of
software projects. Combining the notion of Graph Transformations with the Bulk
Synchronous Parallel (BSP); big-data problems can be solved using a model-driven
approach. However, such solutions are still in their early phases and do not provide
the required performance. This presents the performance issues with a current ap-
proach for executing Henshin transformation models on a Hadoop cluster utilizing
the BSP implementation Apache Giraph. A solution, in the form of an improved
code generator, is developed in order to address the problems. The improved ap-
proach is evaluated using a purposefully designed set of synthetic graphs, transfor-
mations rules and a real data example. The real data example is the IMDB movie
database and the evaluation is performed on a compute cluster. The results indicate
that the new solution performs better and uses less memory for the synthetic graphs
and rules with particular characteristics while it in this particular real data example
shows no significant difference.

Keywords: incremental graph pattern matching, graph transformations, bulk syn-
chronous parallel, cluster benchmark
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1
Introduction

1.1 Background

Model-Driven Engineering (MDE) is a term used within the area of Software En-
gineering. Kent [2] devised the term back in 2002 and since then numerous publi-
cations has been published on the subject. The term presses the usage of abstract
models as a central artifact within the development of software. Models evolve
together with the software and is used both for the understanding and the de-
tailed design; enabling an increased level of abstraction in order to increase the
efficiency and maintainability of software project. Model-Driven engineering also,
among other usages, enables increased automation via model transformation and
code generation.

Big data is a broad and widely used term for expressing the exponential growth of
data. The term was first coined by Doug Laney [3] and has since then exploded in
usage. An approach for tackling these large datasets is graph-based storage, analyses
and manipulations. The relevance and importance of a graph-based approach has
increased with the growth of services such as social networks (for example Facebook)
and context-aware search, as well as continuously being valuable in applications such
as product lifecycle management (PLM) and supply chain management (SCM) [1].
Such services store large amount of data in the form of graphs and as graph sizes
grow, the need for searching and manipulating these with high performance and
low resource utilization increases. To achieve high performance, parallelization of
the execution is a viable approach, but also puts extra concerns on the program-
mer.

Continuing the tradition of Model-Driven Engineering by putting the model in center
and using a graph-based approach for solving the problem of increased data volumes,
the theory of algebraic graph transformations [4] can be used. Graph transforma-
tions provide a highly abstract modelling concept in order to address the issue of
performing highly efficient, parallelized execution of manipulations on graphs, while
still preserving high expressiveness [1]. Also enabling to address the problem of
increased complexity and maintainability with the increased size of software and
data.

A technology which can be used for solving such problems is the Eclipse Modelling
Framework (EMF) [5]. EMF is a modelling framework and code generation toolbox
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1. Introduction

for building Java applications based on structured data models [6]. EMF offers a
plethora of tools related to modelling. One of those, Henshin [7], provides a toolset
and a model transformation language with formal graph transformation semantics [4]
which allows formal reasoning. Henshin further offers amalgamation transformation
units which are units especially suitable for parallel application of transformation
rules by use of one of its operators [6].

Some existing solutions utilize EMF for addressing the problem of large graphs and
the need for parallel execution with high performance, e.g. [1], [8]. In [1], Krause
et al. present their solution, which builds on Henshin. Their solution uses Hen-
shin to create high-level graph transformations with the expressiveness of algebraic
graph transformations and a code generator for generating runnable code from the
transformations to execute on a cluster. The solution addresses the problem of par-
allel execution of transformations with high performance on graphs with millions of
nodes. It also scales, horizontal and vertical. However, with growing data sizes, it is
required to add additional computation nodes. It is then also crucial to take extra
care in the efficiency and resource utilization of the algorithm which is currently a
limiting factor [1].

To address the demand of high performance on large graphs the code generator
generates code adapted for the Bulk Synchronous Parallel (BSP) abstract machine
[1]. BSP provides a bridging model for designing parallel algorithms which can be
executed on distributed computer systems [9]. By mapping graph transformations to
this model, graphs with millions of nodes can be iteratively searched and transformed
[1].

A technology which is inspired by BSP is the iterative graph processing system
Apache Giraph [10]. Apache Giraph is used by Krause et al. [1] as a target plat-
form for their code generation and is built for high scalability, used at Facebook
and adds several additional features [10]. The open source software Apache Gi-
raph builds upon the MapReduce programming model [11] implementation Apache
Hadoop [12]. Another similar BSP inspired graph processing framework is Pregel
which is developed by Google [13].

1.2 Statement of the Problem

As stated in Section 1.1, Krause et al. [1] have seen some limitations to their ap-
proach. Above a certain number of added computation nodes the execution time
does not decrease with the same rate when adding new nodes to the cluster (scale
horizontally). This can be seen in Figure 1.1 which shows their results when ex-
ecuting a benchmark on the generated code on a cluster. In the benchmark, the
dataset is constant and the number of nodes is the independent variable while the
dependent variables are the execution time and the total used node time. Looking
at the figure, when the number of nodes reach approximately 14 nodes the benefit
in shorter execution time when adding more nodes starts decreasing while the total
used node time keeps increasing.
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Figure 1.1: The figure illustrates the execution time and the total used node time
of a graph transformation rule on a millions of vertices large graph in the evaluation
performed by Krause et al [1].

As the data sizes grow further the need for fast execution time and low resource
utilization can be expected to increase. To achieve this the solution must have
better scalability properties. Therefore, there exists a need to further improve the
scalability of the solution provided by Krause et al [1]. This while still preserving
the expressiveness of a declarative high-level modelling language, which abstracts
away the basic graph operations.

1.3 Purpose of the Study

The previously described performance problems of Krause et al’s [1] implementa-
tion are hypothesized to be due to the requirements of communication bandwidth
and memory. For further details see Chapter 5. By investigating, implementing
and benchmarking a different approach for limiting the communication needs and
the memory consumption; a higher rate of performance increase when increasing
the number of computation nodes (higher horizontal scalability) could possibly be
gained. The purpose of this study is thereby to investigate and document the suit-
ability of an alternative approach. By doing so, the overall understanding of what
affects the performance of graph transformations in the Bulk Synchronous Paral-
lel model can be deepened, possibly resulting in the improvement of current ap-
proaches.

The aim of this thesis is not only to find the best overall approach, if such exists, but
also to find in which situation the solution has the highest respective lowest benefits.
To achieve this a set of synthetic data in the form of graphs and transformation rules,
which can be used as a benchmarking suite, will be created. The purpose is therefore
also to create, document and present this benchmarking suite for future usage as a
reference set for future improvements.

The study will attempt to further develop the available work in this area and there-
fore the researchers involved in the area will benefit from this thesis bringing the
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1. Introduction

state of the art forward. If the results are beneficial they will also be integrated into
the next Henshin [7] version which enables usages outside the academia. It could
then also be used for other current distributed graph applications. An example of an
application is the execution of transformations on the huge graphs of the gathered
user data in social networks.

1.4 Overview of the Results

This section aims to provide a short overview of the results of this thesis. They
consists of four main parts. A qualitative analysis of the problems of a current
solution for executing graph transformations in the Bulk Synchronous Parallel model
is conducted. A benchmark is developed in order to evaluate a new solution. The
solution is designed, implemented and presented and aims to solve some of the found
problems. Finally, a comprehensive evaluation of the new solution is conducted were
it is compared to the existing approach.

The qualitative analysis resulted in a number of problems were the problems with
utilizing Bulk Synchronous Parallel (BSP) model and the procedure of mapping
graph transformations to the BSP model are the two most important. BSP is highly
parallelized however rigid in its conceptual structure. The same type of actions are
performed for all vertices throughout the graph in the same time frame. This leads
to bottlenecks in a computation.

The mapping from graph transformations to the BSP model inherits the problems
with the BSP model without taking actions to reduce them. The algorithm consists
of a series of microsteps which iteratively builds up and passes around a set of partial
matches. These microsteps are executed for each vertex of the graph and requires
thereby the same kind of resources. The same yields for the partial matches which
are all of the same type and size in a particular superstep.

The designed and developed improved version of the code generator and mapping of
graph transformations to the BSP model takes into the found problems and develops
a version which attempts to spread out the requirements of resources throughout
the computations supersteps. It does so by decoupling the microstep from the
computations superstep and thereby spread out the microstep executed and type
and size of partial matches.

A benchmarking procedure is developed in order to evaluate the solution against
the existing one. It consist of metrics, source graphs and transformation rules. The
metrics aims to meassure how the solution performs with a focus on execution time
and memory consumption. The source graphs consists of a real data example and
synthetic graphs. The real data example aims to see how it works in a particular
real data example and the synthetic graphs aims to stress test the solution. The
transformation rules also consisted of a real data example and a set of purposefully
designed rules. These had the same purpose as the source graphs.

Lastly, an evaluation was performed on the new implementation utilizing the devel-
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oped benchmark on a compute cluster. The real data example was used to evaluate
the execution time using a number of different amounts of cluster nodes. There was
no significant difference in terms of execution speed when the two implementations
were performed. However utilizing the synthetic graphs and transformation rules
the new implementation performed significantly better in terms of both execution
time and memory usage. It was especially suitable for the case of source graphs
with a high out-degree and transformation rules with many microsteps. What these
have in-common is a high amount of partial matches generated which requires large
amount of memory and bandwidth. The new solution thereby succeeds in even out
the resource requirements and improves the performance in some cases.

1.5 Disposition of the Report

Chapter 1 has described the overall background, the problem as well as the purpose
of the report and its significance. The following parts will in order discuss the
following. Chapter 2 describes vital theoretical background as well as technology
used in the thesis. Chapter 3 goes into detail about the research method, the research
questions and the limitation and delimitation of the thesis. Chapter 4 describes
related work used both as a foundation for this thesis as well as other related work
which has similarities to this work. In Chapter 5 the previous solution is analysed
to try to find the limiting factor. In Chapter 6 the benchmarking suite created
is derived and described. Chapter 7 discusses the new solution while Chapter 8
evaluates the new solution using the benchmark. In Chapter 9 potential threats to
validity are presented. Finally Chapter 10 provides the final conclusion and provides
suggestions for future work.
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2
Foundations

This chapter describes the theoretical concept as well as the used technology. The
description is in general brief, however some parts of extra importance for the un-
derstanding of the developed solutions are presented more in-depth. The chapter
includes the following:

In Section 2.1 the Eclipse Modeling Framework is presented. In Section 2.2 the the-
ory of graph transformations is presented. Based on the beforehand description of
graph transformations and the Eclipse Modelling Framework, Section 2.3 describes
the specific semantics of Henshin. In Section 2.4 the Bulk Synchronous Parallel
model is described to later in Section 2.5 present the Bulk Synchronous Parallel im-
plementation Apache Giraph and its special characteristics and differences compared
to the standard Bulk Synchronous parallel model. Lastly, Section 2.6 describes how
the for Henshin created code generator maps the Henshin models to the Giraph
computational model.

2.1 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) [5] is an extension upon the well-known Eclipse
Java Integrated Development Environment [14]. EMF includes tools for creating,
using and maintaining Java applications built on structured data models. Features
central for this thesis includes the meta-modeling language Ecore and code genera-
tion facilities.

Ecore builds on Meta-Object Facility (MOF) and enables the creation of meta mod-
els using a graphical syntax similar to UML class diagrams. It has syntax for e.g.
specifying entities, attributes, associations, types, inheritance and multiplicity. An
example is the movies meta-model (Figure 2.1), which is used throughout this thesis.
The meta-model is used for defining model instances which stores information about
movies, persons acting in movies, and persons commonly playing in the same movies
(Couples). The meta-model has entities (e.g. Person), attributes (e.g. rank), as-
sociations (e.g. occursIn), uses inheritance ( e.g. Actress and Actor are Persons),
multiplicity (e.g. a Couple occurs in zero or one Movies) and entities and attributes
are typed.

EMF is easy to extend, and therefore a plethora of plugins have emerged. Those

7



2. Foundations

Figure 2.1: Movies meta-model. Derived from the work of Krause et al [1].

include Java Emitter Templates (JET) [15] model to text transformation language,
which is used to create the code generator (Section 2.6), and Henshin, which is
described in Section 2.3. JET enables mixing of text and Java code for iterative and
conditional generation of content of text files. The Java code can for example hold
the Ecore models and the graph transformation rules and generate executable Java
code depending on their structures.

2.2 Graph Transformations

This section provides a brief introduction to the concept of graph transformations.
Especially it explains the part needed to understand the rest of the thesis. For a
complete overview see e.g. Ehrig et al. "Fundamentals of Algebraic Graph Trans-
formation" [4].

Graph transformations provide abilities to define declarative and operational changes
of data, stored in the form of graphs, in a high-level of abstraction [1]. Declarative
relates to specifying what needs to be achieved and operational how that should be
achieved. Graph transformations can therefore be used to increase the program-
mer’s productivity by abstracting away basic graph operation (such as traversals)
and thereby provide high expressiveness.

Graph transformations can be applied on both typed and untyped target graphs,
but since Henshin (see Section 2.3) uses types for both vertices and edges, only
typed graphs are considered here. The same applies to directed and undirected
graphs where Henshin works with the former. However, these two decisions are not
limitations since they can be seen as more expressive and carrying more data than
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the opposite choice. The choice can also be used for creating the opposite choice,
e.g. edges in both direction gives bidirectional edges.

A graph transformation rule, p, consists mainly of two parts and can be formally
defined as p = (L,R), where L is called the left-hand side (LHS) and R is called the
right-hand side (RHS). To apply the rule means to find a match for the LHS in the
source graph and replace it by the RHS [4]. In order to do so vertices of the LHS
are mapped to vertices of the RHS.

According to Ehrig et al. [4] is the main practical problem how to perform the
replacement. For example, if the LHS carries more data than specified in the rule
or if a vertex in the rule is of a supertype of a vertex in the source graph it cannot
simply be replaced without causing unexpected behaviour. Recreating object can
also be inefficient for large graphs. However, in Henshin (see Section 2.3) and the
written code generator (see Section 2.6) the match in the source graph is instead
transformed to fulfill the requirements of the RHS.

Figure 2.2 provides an example of a simple graph transformation rule, where all
vertices and edges are of the same types, and the execution of it. Figure 2.2a
illustrates the rule with its LHS, located to the left, and its RHS, located to the
right, with mappings, represented with dotted lines, in-between. The LHS consists
of four vertices and three edges and the RHS of four vertices and two edges. All
vertices and edges of the RHS are mapped to vertices of the LHS. The rule thereby
represents the removal of one of the edges. Figure 2.2b represents the source graph
on which the rule is applied. The execution of the rule yields two matches. The
vertices r1, r2, r3 and r4 in the LHS of the rule matches the vertices d, a, b and c
respective g, d, e and f in the source graph. Two matches yields two rule application
and thereby two edges are removed resulting in the target graph of Figure 2.2c.

The rule of Figure 2.2 is simple; containing only the most basic features, and in-
short only describes the look of the LHS and RHS and how they map. In a real
world problem there is a need to define more complex structures. Therefore rules
are made even more expressive by adding types, constraints for the structure of the
LHS and RHS and constraints for attributes. Therefore the LHS and RHS can be
further broken down using those features.

The LHS describes under which conditions the rule should be applied. How a part
of the graph should and should not look (constraints) in order to be considered a
match. Constraints consists of application conditions which specify the required
characteristics. The requirement can be in the form of specific types and numbers
of edges connected, particular adjacent types and number vertices, specific values of
attributes or particular types of the vertices and/or edges contained. The application
conditions can be either positive or negative application conditions (PAC or NAC).
The PAC specifies what should be there and the NAC what should not. Both have
to be fulfilled for the sub-graph to be considered a match. It is here also possible
to specify if a vertex or edge should be a part of the actual match or if it is just a
condition.

On the other hand, the RHS describes how a match for the LHS should look after

9



2. Foundations
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(a) The rule p = (L,R). The
LHS (to the left) and RHS (to
the right) with mappings in-
between.
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(b) The source
graph.
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(c) The target
graph

Figure 2.2: The figure illustrates a graph transformation rule p = (L,R). Figure
(a) represents the transformation rule executed on all matches in the source graph
(b) resulting in the target graph (c).
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the transformation rule is applied and thereby indirectly what should be done with
the match when it is found. It can describe the creation, deletion or alteration
of edges, vertices or attributes. Thereby graph transformation execution consists
in short of two steps. First a match is found and then the rule is applied on the
match to satisfy the RHS. The key here is that the programmer does not specify
how this should be done but only what should be done (declarative vs operational).
The engine executing the transformation or the code generator (see Section 2.6)
generating the running code needs to take care of this.

A match can be injective. In an injective match a vertex in the source graph can
only map to one vertex in the LHS. This irrespective of how many vertices in the
LHS the vertex fulfills the conditions for. If a match is not injective, the vertices
in the source graph can be mapped to several vertices of the LHS. Henshin (see
Section 2.3) defaults to injective matching and therefore the rest of the discussion
assumes injective matching.

2.3 Henshin

The Henshin project [7] is a model to model transformation language for the Eclipse
Modelling Framework (see Section 2.1). Henshin handles model instances of meta-
models specified using Ecore (see for example Figure 2.1). It supports both en-
dogenous (source and target meta-models are equal) and exogenous (source and
target meta-models differ) transformations. Since the current implementation of
the Henshin code generator for Giraph (see Section 2.6) only works with endoge-
nous transformations, exogenous transformations are not considered further.

The Henshin project has additional features apart from the core transformation lan-
guage. Such features are a graphical representation of the rules (see Figure 2.3)
and a graphical rule editor; which makes it easy to specify, discuss and maintain
transformations, a tree based editor; enabling more detailed specification, the lo-
cal transformation engine; enabling local execution of transformations on a single
machine and the code generator for Apache Giraph [10]; enabling execution of trans-
formations in a distributed environment (see Section 2.6).

The model transformation language and the semantics of Henshin is based on the
theory of graph transformations (see Section 2.2). This enables the possibility of
formal reasoning [1]. However, although it is based on the theoretical concept it
adds more features and also has some extra complications. Regarding the extra
complications, Krause [16] has for example noted that model transformation cannot
be seen as the same as graph transformations. The reason is the usage of meta-
models which can cause unexpected behaviour in terms of side-effects. For example
can an edge be removed without this being explicitly specified in the rule. The
reason is that the meta-model only allows a certain number of edges and in order to
create a new edge an old edge must be removed. However, the code generator (see
Section 2.6) has non of these side-effect and can therefore be considered pure graph
transformations.
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Figure 2.3: The graphical representation of the Henshin transformation rule Cre-
ateCouple. The rule is adopted from the work of Krause et al [1].

The language supports both the declarative rules and the operational units as ex-
plained in Section 2.2. Declarative rules shows what needs to be achieved without
specifying how and in what order. Operational rules gives the ability to specify
order of operations and rules.

Declarative transformation rules are in Henshin specified using the keyword Rule.
Figure 2.3 shows the graphical representation for a rule called CreateCouple. Apart
from specifying the structure of vertices and edges, a rule can also be extended with
stereotypes and provide conditions for the attribute values [6]. These stereotypes can
be seen in Figure 2.3 enclosed by « and ». Stereotypes make up the PAC (positive
application condition) and NAC (negative application condition), as explained in
Section 2.2, as well as the LHS (left-hand side) graph and RHS (right-hand side)
graph of the transformation rule. Stereotypes, which can be placed on both edges
and vertices, can be used to specify the preservation, creation or deletion of nodes
(see e.g. «create*» and «preserve*» in Figure 2.3). When they are used for specifying
the application conditions they can be either require or forbid. Require specifies that
a certain vertex or edge should exist however it is not a part of the final match.
Forbid tells the execution engine that a match cannot have a certain edge or vertex
connected to it. These stereotypes can also be combined using boolean operators to
create more complex application conditions.

In Figure 2.3 stereotypes (create and require) can be seen for both edges and vertices.
The two vertices of type Person, annotated with «preserve*», indicates that they
should be a part of the LHS and also a part of the final match while the two vertices
annotated with «require*» annotates that they should be a part of LHS however
not a part of the final match. The difference is that a final match should be unique
independent on how many times the rest of the LHS is matched. For example, two
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vertices of type Person, satisfying the requirements of the LHS, should only result
in one rule application irrespective of the number of times they satisfy the rest of
the requirement. The RHS, on the other hand, includes one extra vertex and two
extra edges which is annotated with «create*».

For enabling maximum parallel execution a rule can also consist of on or many
multirules. A multirule is by default executed on every found match instead of the
default behaviour which is on the first match found. The rule in Figure 2.3 contains
one single multirule with all the vertices and edges included. This is shown via
the asterisk in the stereotypes (e.g. «create*»). More advanced structures can be
created using the multirules, however there is currently no graphical syntax for this
and the Giraph code generator (see Section 2.6) has no support for more than one
multirule. In that case the multirule needs to contain all vertices and edges.

Henshin’s operational transformation units are on the other hand used for opera-
tionally defining control-flows [6]. An Operational unit contains one or many other
rules and units. An operational unit can be either a sequential unit; for defining order
of application, an iterative unit; for defining fixed number of iterations, a looped unit;
for applying the rule until it is no longer applicable, an unit for non-deterministic
execution, an unit for prioritized execution or an unit for defining conditional ex-
ecution. Figure 2.4 shows the graphical syntax for an operational transformation
unit of type sequential unit, called AddCouples, which contains two other rules.
The CreateCouple rule (see Figure 2.3) and another rule called CreateOccurrence is
contained in the sequential unit and should be executed in order.

Figure 2.4: A sequential transformation unit called AddCouples. The unit is
adopted from the work of Krause et al [1].

2.4 Bulk Synchronous Parallel

To understand the solution and the possible reasons for the performance issues of
the current distributed implementation of Henshin it is important to understand
the underlying computation model. Because the code generator (see Section 2.6)
created by Krause et el [1], which this thesis aims to improve, outputs code to be
executed using Apache Giraph, which is inspired by the Bulk Synchronous Parallel
(BSP) computation model, the BSP model needs to be understood.

BSP was introduced by Valiant [9] as an aid for developing parallel algorithms. It
is currently also an approach for efficiently processing large-scale graph data as can
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be seen in for example the Giraph project (see Section 2.5). The approach is used
for designing highly parallelized algorithms.

When designing the algorithms a specific scheme must be followed. The scheme
consists of a series of supersteps where computations are performed locally with
only local knowledge at each vertex in the graph. The scheme is illustrated by
Figure 2.5. In the picture time passes downwards and each vertical silo represents a
vertex. At the first superstep all the vertices are active. Each superstep consists of a
computation phase and a communication phase which are organized in the following
four steps:

1. Master Computation - The master node initializes the superstep by performing a
single computation. The step can be used for bookkeeping and coordination of the
computations performed in the vertices.

2. Vertex Computation - The active vertices perform local computations in parallel.
Only local information is available during this step. During this step the vertex can
modify the state of itself or outgoing edges as well as mutate the topology. Incoming
messages from the previous step are available during the computation.

3. Communication - During vertex computations the vertex can send messages
to other vertices (adjacent or by ID). The messages are received during the next
superstep. Vertices can also be requested to be inactive for the next step.

4. Barrier synchronization - The local computations and the communication must
be finished for every vertex before the next superstep can start. This is achieved
via barrier synchronization. If it exists active vertices after this step, the execution
is restarted with Step 1, otherwise it is concluded.

1. Master Computation

2. Vertex Computations

Master 
Node

Vertices

3. Communication

3. Barrier synchronization

Figure 2.5: The figure provides an illustration of the BSP model.
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2.5 Apache Giraph

Apache Giraph [10] is an open-source software for iterative batch processing of
graphs. It is built to be highly scalable and follows in general the Bulk Synchronous
Parallel computational model presented in Section 2.4. The Giraph project is highly
modular, utilizing a large set of separately maintained projects such as the Apache
project Zookeeper for orchestrating the distributed environment, log4j for maintain-
able logging and most importantly Hadoop as the distributed computation plat-
form [17].

Giraph runs as an only-mapping Hadoop MapReduce job. The input graph is par-
titioned in a number of partitions. These partitions are distributed to a number of
workers. One worker runs as a Hadoop mapper and can therefore be seen as a sep-
arate compute node. A physical node can contain one or many workers. A worker
performs independent calculations apart from the message passing in-between each
superstep and outputs a separate output partition in the end of the job. The par-
titioning is automatically handled and is not controlled by the BSP algorithm im-
plementer. However the number of workers, partitions, compute threads per worker
and amount of memory can be adjusted. This is however difficult to optimize and
therefore set as a constant in the evaluation performed in this thesis.

In general a Giraph computation follows the four steps of the BSP model (see Sec-
tion 2.4), however it adds some extra functionality which are useful in the devel-
opment of the code generator (see Section 2.6) as well as in the evaluation (see
Chapter 8) of it. In order to later being able to describe and discuss the code gen-
erator, the core functions and structure of a Giraph computation is discussed here.
In order to do so the AddCouples unit in Figure 2.4 is used as an example.

A basic algorithm is in Giraph created by extending a Computation class, in this
case the BasicComputation class. Listing 2.1 provides an example from the class
AddCouples. Also note that the computation is supplied with four more type pa-
rameters. These are in order: the type of the id of the vertex, the datatype of the
vertex data, datatype of the edge data and the message data type. In this particular
example they are of type (VertexID), ByteWritable, ByteWritable and Match. How
these are used in the specific case is discussed in Section 2.6.

Listing 2.1: The class header of a Giraph computation generated from AddCouples.
public class AddCouples extends BasicComputation<VertexId , ByteWritable ,

ByteWritable , Match> {

When extending a computation a set of methods becomes available and can be
further extended. Step 2 (Vertex Computation) of the BSP model (see Figure 2.5)
is executed for every vertex of the graph. This is achieved by extending the compute
method (see Listing 2.2) and the underlying software ensures that the snippet is
executed for every vertex at every superstep. In order to perform the calculation
the method has two input parameters: The current vertex and a list of incoming
messages. The vertex has the type parameters id type, vertex data type, edge data
type and incoming messages type. These types are equal to the ones in the class
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header (see Listing 2.1). In the compute method messages can be registered for
sending. The message passing is the third step of the BSP algorithm and is here
performed seamlessly in the background after a message is registered.

Listing 2.2: The compute method header of AddCouples.
@Override
public void compute ( Vertex<VertexId , ByteWritable , ByteWritable> vertex , I t e r ab l e

<Match> matches ) throws IOException {

Giraph also adds methods which are guaranteed to run before and after each com-
putation. Connected to the BSP model these can be seen as step 1.5 and 2.5. These
methods are the preSuperstep method and postSuperstep method and is executed one
time per partition. Listing 2.3 illustrates the preSuperstep method header.

Listing 2.3: The preSuperstep method header.
@Override
public void preSuperstep ( ) {

The pre- and post- methods provide partition global bookkeeping but Giraph also
has computation global bookkeeping. This is achieved by the usage of the Mas-
terCompute class and global aggregators. The aggregator information is shared
between the vertices and the master calculation. Changes to this information are
available for other vertices after each superstep. The MasterCompute can be used
for orchestrating a computation by providing certain values to the aggregators which
are later used at partition level. Listing 2.4 provides a MasterCompute class and its
methods compute and initialize, which are used in the graph transformation algo-
rithm. Compute is executed one time per superstep at a master worker and initialize
is executed one time per Giraph computation. The compute method maps to the
first step of the BSP model.

Listing 2.4: The MasterCompute class and some core method headers.
public stat ic class MasterCompute extends DefaultMasterCompute {

@Override
public void compute ( ) {
@Override
public void i n i t i a l i z e ( ) throws In s tant i a t i onExcept i on , I l l e g a lAc c e s sExc ep t i on

{

2.6 Code Generation from Henshin to Giraph

Krause et al. [1] have created and evaluated a code generator where the concept of
graph transformations (see Section 2.2), using Henshin (see section 2.3), is mapped
to the Bulk Synchronous Parallel model (see Section 2.4), using Apache Giraph (see
Section 2.5). This section is dedicated for describing this mapping, the generation of
code and the characteristics of the generated code. Their solution has been further
developed and integrated into Henshin project since then. Therefore the current
Henshin solution is used as a base-point, not the original implementation presented
by Krause et al [1].
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As explained in Section 2.2, a graph transformation rule application consists of a
graph pattern matching phase and a rule application (modification) phase. Using
the CreateCouple Henshin transformation rule, illustrated by Figure 2.3 on page 12,
as an example, the pattern matching phase constitutes finding the the four vertices
making up the LHS with their described edges, marked with «require*» and «pre-
serve*». The application phase consists of applying the rule on the final match
consisting of the two vertices marked «preserve*». Applying the rule constitutes
adding the Couple vertex and its two edges.

The current implementation of the code generator has some limitations in compar-
ison to the local Henshin interpreter. A rule needs to have exactly one multirule
and all the vertices of the LHS need to be contained in it. This is because of the
distributed iterative approach enabled by the BSP and to provide the possibility of
maximum parallelization at the modelling stage [1]. Further, no attribute conditions
can be specified. This is because the current data format only has the possibility to
specify the type of the vertex, and no other vertex data, for usage in the computa-
tion.

For achieving maximum parallelization Krause et al. [1] used an iterative parallel
approach to search the graph for the matches. Since the BSP model (see Section 2.4)
consists of a series of supersteps, executed at each vertex, where only local infor-
mation is available there was a need to iteratively build up the match via local
calculations and then send partial matches to neighbours. In the following steps the
partial matches are extended or deleted to finally apply the rule to the final set of
matches. This is done in parallel throughout the whole graph and thereby a lot of
these partial matches are passed around.

A (partial) match needs to store information for being able to locate the vertices after
the final set of matches is created. The match also should require a minimal amount
of memory because of the great amounts of them. Therefore the match consists
of a stream of variable length VertexIds, where VertexId is a unique identifier for
each vertex. The vertex id data-type is specified in the Computation class header
(see Listing 2.1). The order of the ids in the stream represents a position in the
LHS of the Henshin rule. The match also needs to store information specific to
the match. For example, it is possible to segment the graph, then the segment
number of the match is stored in the match. Using the CreateCouple and its LHS
(represented by Figure 2.6) the partial match will at most consist of four vertices
and look like segmentNumber :[p1, m1, m2, p2 ], which also represent the order in
which the vertices are found.

In order to search the graph and build up a set of matches, a search plan must first
be generated. The search plan consists of a series of local steps, microsteps, which
are performed as separate supersteps of the BSP model. In order to divide the search
plan in separate microsteps the Henshin engine analyses the LHS of the rule and
outputs a list of steps. These steps constitutes local checks to be performed at each
vertex and what to do with the (partial) matches. The search plan is then supplied
as an input to the code generator which generates executable code for Giraph. The
search plan then consists of a series of if -blocks which are executed depending on the
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m1:Movie m2:Movie

p1:Person p2:Person

playsInplaysInplaysInplaysIn

Figure 2.6: A Henshin rule where the LHS and the RHS are equal. The rule
illustrates the appearance of a smallest possible target graph where a match for the
CreateCouple rule can be found.

number of the current superstep. Listing 2.5 shows this for the rule CreateCouple
which consists of seven microsteps.

Listing 2.5: The structure of the matching code generated.
protected void matchCreateCouple ( Vertex<VertexId , ByteWritable , ByteWritable>

vertex , I t e r ab l e <Match> matches , int segment , int microstep ) throws IOException
{

i f ( microstep == 0) { . . .
} else i f ( microstep == 1) { . . .
} else i f ( microstep == 2) { . . .
} else i f ( microstep == 3) { . . .
} else i f ( microstep == 4) { . . .
} else i f ( microstep == 5) { . . .
} else i f ( microstep == 6) { . . .
}

}

Since the microstep of the search plan is equal to the current superstep of the overall
computation the same microstep is executed for every vertex of the graph. Figure 2.7
illustrated this behaviour for the executing of the 6 microsteps of the CreateCouple
rule on the source graph in Figure 2.6 on page 18. The microstep executed for the
different vertices, represented by vertical arrows, are equal to the superstep of the
overall computation. With this behaviour it is extra important with the content of
the microsteps which are described below.

The search plan is built up using a series of actions. These actions have the function
to iteratively search the graph and build up the match. Often one of these actions are
performed per microstep, however they can also be combined. In Subsection 2.6.1
these steps are in depth described using an example. Here follows an introduction:
Local condition checks are executed in order to determine vertex type, edge type
and number of outgoing edges. A partial match can be either created, extended,
deleted, forwarded without action or two matches can be merged. When extending
or merging match(es) the match is checked for injectivity (uniqueness of vertices).
In the end of most steps the match is also sent to a vertex by using the id as an
address. In last microstep the match is stripped, checked for uniqueness and the
rule is applied. Stripping the match refers to removing vertices not supposed to be
a part of the final match.
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Figure 2.7: The relation between the current superstep and the current microstep
for a rule application.

2.6.1 Matching CreateCouple

This subsection aims to exemplify and in-depth go through the search plan and gen-
erated matching code for the Rule CreateCouple. Figure 2.8 illustrates the matching
phase of the execution of the rule on the source graph in Figure 2.6. While the exe-
cution of the rule finds two matches and creates several partial matches Figure 2.8
only illustrates the checks resulting in one of these final matches.

In the first microstep (annotated with 0) the local conditions are checked. The
partial match is created and sent to m1 by p1. In microstep 1 local conditions are
checked and the partial match is extended and sent back to p1. At p1 microstep
2 is executed by sending the partial match to m2. In microstep 3 local conditions
are checked, the partial match is extended and sent to m1. Next microstep, 4, is
a combination of two actions. At m1 the partial match is sent to itself while the
second Person is search for by performing local condition checks at p2, creates a new
partial match and sends the result to m1. In microstep 5 the two partial matches
are merged to be sent to p2. In microstep 6 p2 local conditions are compared with
the content of the match in order to make sure it has an outgoing edge to m2. In
the the last microstep the match is stripped, checked for uniqueness and if all checks
succeed the rule is applied to the final match.

The code was generated for the rule CreateCouple and was executed on the simple
graph (Figure 2.6) in order to further clarify the execution and provide a complete
picture of it. The result is summarized by Figure 2.1. The column to the far left
lists the supersteps of the algorithm. Within such a step a series of matches can be
created (third column), extended (fourth column), merged (fifth column), forwarded
(sixth column) or the rule can be applied (seventh column). If nothing is done
with the match it is deleted (eighth column). The match is sent to the vertex ids
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Figure 2.8: Illustrates the order of which the vertices and edges are are found for
the rule CreateCouple.

in in the column marked Sends to. The last column summarizes the number of
(partial) matches within the superstep. As can be seen, the characteristics of all the
matches (if found) are the same for every vertex except for superstep 4 where two
kinds of matches are created. In the last line, the rule is applied after the match is
stripped.

Superstep Vertex Create Extend Merge Forward Apply Delete Send to Matches

0 p2 [p2] m1,m2

p1 [p1] m1,m2 2

1 m2 [p2,m2] p2

m2 [p1,m2] p1

m1 [p2,m1] p2

m1 [p1,m1] p1 4

2 p2 [p2,m2] m1,m2

p2 [p2,m1] m1,m2

p1 [p1,m1] m1,m2

p1 [p1,m2] m1,m2 4

3 m1 [p2,m2,m1]

m2 [p2,m2,m2]

m1 [p2,m1,m1]

m2 [p2,m1,m2] m1

m1 [p1,m1,m1]

m2 [p1,m1,m2] m1

m1 [p1,m2,m1]

m2 [p1,m2,m2] 2

4 p2 [p2] m1,m2

p1 [p1] m1,m2

m1 [p2,m1,m2] m1

m1 [p1,m1,m2] m1 4

5 m1 [p2,m1,m2,p1] p1

m1 [p1,m1,m2,p2] p2

m2 [p1]

m2 [p2] 2

6 p2 [p1, p2]

p1 [p2, p1] 2

Table 2.1: Clarifies the execution of the rule CreateCouple.

The following text will go even further into the different steps by examining the
generated code for CreateCouple.
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Listing 2.6 shows the code generated for microstep 0. The code is executed for
every vertex in the graph independent of type. The objective is to investigate if the
current vertex fulfils the requirements of vertex p1 (see Figure 2.6). Therefore it is
first checked whether the vertex is of the required type or subclasses of it (line 1)
and the required number of outgoing edges (line 2). If that is fulfilled a new partial
match is created with the ID of the current vertex appended to it (line 5). This
match is then sent to each adjacent vertex connected with an edge of the correct
type (playsIn). In order to remove duplicate receivers a HashSet is used (lines 7-12).
After this step the partial matches existing contains one vertex each.

Listing 2.6: Microstep 0 of CreateCouple.
1 boolean ok = vertex . getValue ( ) . get ( ) == TYPE_PERSON | | ver tex . getValue ( ) . get ( ) ==

TYPE_ACTOR | | ver tex . getValue ( ) . get ( ) == TYPE_ACTRESS;
2 ok = ok && vertex . getNumEdges ( ) >= 2 ;
3 ok = ok && (SEGMENT_COUNT == 1 | | getSegment ( ver tex . ge t Id ( ) ) == segment ) ;
4 i f ( ok ) {
5 Match match = new Match ( segment ) . append ( ver tex . ge t Id ( ) ) ;
6 matchCount++;
7 Set<VertexId> ta r g e t s = new HashSet<VertexId >() ;
8 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) ) {
9 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .

getTargetVertexId ( ) ) ) {
10 sendMessage ( edge . getTargetVertexId ( ) , match ) ;
11 }
12 }
13 }

Listing 2.7 shows the code generated for microstep 1. This step is executed in order
to find Movie m1. Therefore the type is first checked (line 1). If the type is correct
the set of incoming matches, containing p1 s, is extended and sent back to p1 (lines
3-10). The isInjective methods checks whether a vertex is contained twice in the
match. If a vertex is contained more than once (not injective) the match is discarded.
After this step the partial matches now contain two vertices each.

Listing 2.7: Microstep 1 of CreateCouple.
1 boolean ok = vertex . getValue ( ) . get ( ) == TYPE_MOVIE;
2 i f ( ok ) {
3 for (Match match : matches ) {
4 match = match . append ( ver tex . ge t Id ( ) ) ;
5 i f ( ! match . i s I n j e c t i v e ( ) ) {
6 continue ;
7 }
8 matchCount++;
9 sendMessage (match . getVertexId (0 ) , match ) ;

10 }
11 }

Listing 2.8 shows the code generated for microstep 2. The previous step only sent
messages to vertices of type Person, therefore no type checking needs to be per-
formed. The current vertex is not added because it is already contained in the
match. Each received match is instead directly sent to adjacent Movies connected
via a playsIn edge in order to find m2, only removing duplicate receivers.

Listing 2.8: Microstep 2 of CreateCouple.
1 for (Match match : matches ) {
2 matchCount++;
3 Set<VertexId> ta r g e t s = new HashSet<VertexId >() ;
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4 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) ) {
5 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .

getTargetVertexId ( ) ) ) {
6 sendMessage ( edge . getTargetVertexId ( ) , match ) ;
7 }
8 }
9 }

Listing 2.9 shows the code generated for microstep 3. First, the type is checked
(line 1). If the type requirement is fulfilled the incoming matches are extended with
the current vertex’s id. If the extended match is not injective it is discarded (lines
5-7). This is especially important here because all those previously stored as m1
are receiving the partial match containing itself. Because the LHS pattern of the
rule is regular and the mirror of it gives the same pattern it is discarded if the id of
m1 is less than the current one (lines 8-10). This to remove mirrored matches but
duplicate matches. In the end of the step (line 12) the match is sent back to p1 now
containing three vertices.

Listing 2.9: Microstep 3 of CreateCouple.
1 boolean ok = vertex . getValue ( ) . get ( ) == TYPE_MOVIE;
2 i f ( ok ) {
3 for (Match match : matches ) {
4 match = match . append ( ver tex . ge t Id ( ) ) ;
5 i f ( ! match . i s I n j e c t i v e ( ) ) {
6 continue ;
7 }
8 i f ( ver tex . ge t Id ( ) . compareTo (match . getVertexId (1 ) ) < 0) {
9 continue ;

10 }
11 matchCount++;
12 sendMessage (match . getVertexId (1 ) , match ) ;
13 }
14 }

Listing 2.10 shows the code generated for microstep 4. This microstep is not de-
pendent on the incoming matches. The incoming matches are instead sent back to
the same vertex to be handled in the next microstep (lines 13-19). This will only
happen for the vertices of type Movie. However, the step serves to find the Person
p2. Because p2 is not connected via any incoming edge from the rest of the LHS
the step needs to be executed for every vertex of the graph. Therefore, the type is
checked and the number of outgoing edges (lines 1-2). In lines 3-12 a new match
is created, consisting of only this vertex and sent to all adjacent vertices connected
via playsIn edge, only removing duplicate receivers. The receivers will be of type
Movie. After this step it exists two types of partial matches. One containing only
one vertex (p2 ) and one containing three vertices (p1, m1 and m2 ). The reason for
having to create two matches is that their is no path from p1 to p2 or from p2 to
p1.

Listing 2.10: Microstep 4 of CreateCouple.
1 boolean ok = vertex . getValue ( ) . get ( ) == TYPE_PERSON | | ver tex . getValue ( ) . get ( ) ==

TYPE_ACTOR | | ver tex . getValue ( ) . get ( ) == TYPE_ACTRESS;
2 ok = ok && vertex . getNumEdges ( ) >= 2 ;
3 i f ( ok ) {
4 Match match = new Match ( segment ) . append ( ver tex . ge t Id ( ) ) ;
5 matchCount++;
6 Set<VertexId> ta r g e t s = new HashSet<VertexId >() ;
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7 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) ) {
8 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .

getTargetVertexId ( ) ) ) {
9 sendMessage ( edge . getTargetVertexId ( ) , match ) ;

10 }
11 }
12 }
13 for (Match match : matches ) {
14 VertexId id = match . getVertexId (1 ) ;
15 i f ( ver tex . ge t Id ( ) . equa l s ( id ) ) {
16 matchCount++;
17 sendMessage ( id , match ) ;
18 }
19 }

Listing 2.11 shows the code generated for microstep 5. This step is executed for
every vertex, however only vertices of type Movie will receive any messages and
therefore perform any actions. The purpose of the step is to join the two different
kinds of matches now existing. In lines 3-10 they are added to two different buckets
depending on what type of match they are. Either they contain three ids or one.
In lines 11-20 all the combinations of matches from the two buckets are merged
together, checked for injectivity and sent to p2. All the matches now are of size
four.

Listing 2.11: Microstep 5 of CreateCouple.
1 List<Match> matches1 = new ArrayList<Match>() ;
2 List<Match> matches2 = new ArrayList<Match>() ;
3 VertexId id = vertex . ge t Id ( ) ;
4 for (Match match : matches ) {
5 i f ( id . equa l s (match . getVertexId (1 ) ) ) {
6 matches1 . add (match . copy ( ) ) ;
7 } else {
8 matches2 . add (match . copy ( ) ) ;
9 }

10 }
11 for (Match m1 : matches1 ) {
12 for (Match m2 : matches2 ) {
13 Match match = m1. append (m2) ;
14 i f ( ! match . i s I n j e c t i v e ( ) ) {
15 continue ;
16 }
17 matchCount++;
18 sendMessage (match . getVertexId (3 ) , match ) ;
19 }
20 }

The objective of microstep 6, which is shown in Listing 2.12, is to check that Person
p2 has an edge to the vertex registered as Movie m2. This is done via iterating
over all the incoming matches (line 1) the outgoing edges (line 3) and removing
duplicates. For each outgoing edge of type playsIn pointing at a unique vertex, the
Movies are removed from the match and the rule is applied on the match (line 10).
The if -statement will always be true because in this example no segmentation is
used. If segmentation is used, the vertex forwards the message for the rule to be
applied when the rule is executed for the last segment. The reason for removing
the two Movies from the match before creating the final set of matches is because
they in the rule are marked with «require*» and should therefore not be considered
a part of the final match (see Section 2.3).

Listing 2.12: Microstep 6 of CreateCouple.
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1 for (Match match : matches ) {
2 VertexId t a r g e t Id = match . getVertexId (2 ) ;
3 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) ) {
4 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && edge . getTargetVertexId ( )

. equa l s ( t a r g e t I d ) ) {
5 match = match . remove (2 ) ;
6 match = match . remove (1 ) ;
7 i f ( f ina lMatches . add (match ) ) {
8 matchCount++;
9 i f ( segment == SEGMENT_COUNT − 1) {

10 applyCreateCouple ( vertex , match , appCount++) ;
11 } else {
12 sendMessage ( ver tex . ge t Id ( ) , match ) ;
13 }
14 }
15 break ;
16 }
17 }
18 }

The manipulation of the graph, for example performed by the method applyCreate-
Couple in Listing 2.12, is by Krause et al. [1] considered less performance intensive
than the matching phase and is therefore not considered further here. However the
application of the rule only takes one superstep and is thereby included in the last
superstep of the matching.

The example provided above may be seen as simple, however the code generator must
handle arbitrary rules and is therefore rather complex. It must also handle different
kinds of operational unit. For example the sequential unit of Figure 2.4 must be
correctly scheduled. Conceptually this is done via letting theMasterCompute, which
corresponds to step 1 of the BSP model (see Section 2.4), schedule the different rules
and make the information about current rule and microstep available for the rest of
the Giraph partitions.

Listing 2.4 on page 16 presented the MasterCompute class and its methods com-
pute and initialize. These methods are used to schedule the rule and unit exe-
cution. Listing 2.13 lists the code executed when initialize is called. Initialize
is called one time per calculation and sets up four aggregators. These aggrega-
tors are available from all workers in the computation. Most interesting is the
AGGREGATOR_APPLICATION_STACK which holds a stack over the last
applied rule or unit.

Listing 2.13: The code in initialize method.
1 r e g i s t e rAgg r ega t o r (AGGREGATOR_MATCHES, LongSumAggregator . class ) ;
2 r e g i s t e rAgg r ega t o r (AGGREGATOR_RULE_APPLICATIONS, LongSumAggregator . class ) ;
3 r e g i s t e rP e r s i s t e n tAgg r e g a t o r (AGGREGATOR_NODE_GENERATION, LongSumAggregator .

class ) ;
4 r e g i s t e rP e r s i s t e n tAgg r e g a t o r (AGGREGATOR_APPLICATION_STACK,

Appl i cat ionStackAggregator . class ) ;

Listing 2.4 shows the content of the compute method which is responsible for schedul-
ing. This code is executed in the beginning of every superstep (step 1 of the BSP
model). If this is the first superstep of the calculation a new stack is created and
the first rule or unit to be executed is appended to the stack (lines 3-4). If it is not
the first superstep the current stack is received from the aggregator. In both cases
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nextRuleStep is called for further scheduling (lines 5 and 8) and the current stack is
saved using the aggregator (line 10).

Listing 2.14: The code in compute method.
1 Appl i cat ionStack stack ;
2 i f ( getSupers tep ( ) == 0) {
3 s tack = new Appl i cat ionStack ( ) ;
4 s tack = stack . append (UNIT_ADD_COUPLES, 0 , 0) ;
5 s tack = nextRuleStep ( stack , ruleApps ) ;
6 } else {
7 s tack = getAggregatedValue (AGGREGATOR_APPLICATION_STACK) ;
8 s tack = nextRuleStep ( stack , ruleApps ) ;
9 }

10 setAggregatedValue (AGGREGATOR_APPLICATION_STACK, stack ) ;

Listing 2.15 shows the method nextRuleStep. The current unit (can also be a rule),
segment and stack are popped from the stack (lines 4-7). Depending on the content
of unit different methods are called for scheduling the individual rules. In the end
of the nextRuleStep method it is returned if the current stack holds a declarative
rule (lines 21-29).

Listing 2.15: The method nextRuleStep
1 private Appl i cat ionStack nextRuleStep (
2 Appl i cat ionStack stack , long ruleApps ) {
3 while ( s tack . ge tS tackS i z e ( ) > 0) {
4 int uni t = stack . getLastUnit ( ) ;
5 int segment = stack . getLastSegment ( ) ;
6 int microstep = stack . getLastMicrostep ( ) ;
7 s tack = stack . removeLast ( ) ;
8 switch ( un i t ) {
9 case UNIT_ADD_COUPLES:

10 s tack = processAddCouples ( stack , microstep ) ;
11 break ;
12 case RULE_CREATE_COUPLE:
13 s tack = processCreateCouple ( stack , segment , microstep , ruleApps ) ;
14 break ;
15 case RULE_CREATE_OCCURRENCE:
16 s tack = processCreateOccurrence ( stack , segment , microstep , ruleApps ) ;
17 break ;
18 default :
19 throw new RuntimeException ( "Unknown␣ uni t ␣ " + uni t ) ;
20 }
21 i f ( s tack . ge tS tackS i z e ( ) > 0) {
22 uni t = stack . getLastUnit ( ) ;
23 i f ( un i t == RULE_CREATE_COUPLE | |
24 uni t == RULE_CREATE_OCCURRENCE) {
25 break ;
26 }
27 }
28 }
29 return s tack ;
30 }

The three methods called process* behaves differently depending on if it is a rule
or a unit. For a rule it is simply counting up the microstep until all microsteps of
that rule are executed to then repeat for every segment of the graph. For a unit it
behaves differently for different kinds of units. However the new implementation do
not affect these methods and therefore they are not described in detail.

Listing 2.3 presented the preSuperstep method. The method is working as a bridging
coordination between the MasterCompute and the rule application at each vertex in
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the graph. It is executed one time per partition and makes information about rule,
microstep and segment locally available.
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Method

3.1 The Design Methods and Procedures

The research will be conducted in the form of design science and follow the framework
with the seven principles presented by Hevner et al. [18]. The rest of this section
presents the seven principles and how this research addresses them. The research
will attempt to answer the in Section 3.2 presented research questions.

The first guideline, "Design as an Artifact" [18], will be approached by the produc-
tion of a viable instantiation artifact. The instantiation will be in the form of a
software tool which aims to improve the by Krause et al. [1] already constructed
tool with respect to trying to give a positive answer to research question RQ2. The
software tool will be based on the technology presented in Chapter 2. The design
also has to take into consideration the basic rules of parallel computing, the ACID
(Atomic, Consistent, Isolated and Durable) properties.

To address the second guideline, "Problem relevance" [18], the work will develop a
solution which is aimed to solve the relevant business problem stated in Chapter 1.
The solution will attempt to answer the for the guideline relevant research question,
RQ1.

Further, guideline 3, "Design evaluation" [18], will be fulfilled by the rigorous demon-
stration of the instantiation’s utility, quality and efficacy using purposefully designed
artificial benchmarks in the form of synthetic graphs. Dynamic analysis (the arti-
ficial benchmarks) will evaluate for the dynamic qualities asked for by research
questions RQ2 and RQ3.

Also a real data set will be used. The choice for the real data set is the one used
by Krause et al. [1]. The IMDB movie database. Then the solution will be possible
to more easily evaluate in relation to the already available results. It will also be
beneficial to use a real data set to evaluate the benefit the instantiation has on real
data.

On the other hand, the set of artificial benchmarks will be purposefully designed
for use to evaluate on which cases the solution performs better and on which cases
(e.g. sparse vs dense graphs) it will have worse performance. Thus for aiming to
respond to RQ3. It will also be possible to relate the different solutions to each
other and possibly come up with a hybrid solution. For more information about
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the benchmarks see Chapter 6 and for more information about the evaluation see
Chapter 8.

The fourth guideline, "Research Contribution" [18], is going to be achieved by making
the contribution clear and verifiable in the area of the design instantiation (graph
transformations and the BSP model) and the design foundation by aiming to improve
and extend the available knowledge.

By applying rigorous methods for the construction of the instantiation and when
designing the methods for evaluation the fifth guideline, "Research rigor", shall be
taken into consideration. The steps undertaken shall be explicitly validated, using
the above described evaluation plan, and purposefully described.

Guideline 6, "Design as search process" [18], is going to be expressed in the way
of conducting the research. The research will be conducted in an iterative manner
using the generate/test cycle presented by Hevner et al. [18]. During the generate
phase the research question RQ1 will be attempted to answered and during the
test cycle research question RQ2 and RQ3 will be answered utilizing the described
evaluation approaches. The result will serve as feedback for the next cycle.

The last guideline, "Communication of research" [18], is going to be followed by
apart from describing the solution in a technical manner for practitioners and re-
searcher within the technology also describe the solution with business aim. This
will according to Hevner et al. [18] enable behaviour science to research the use of
the instantiation within an organization.

3.2 Research Questions

Using the in Section 3.1 described method, the following research questions will be
addressed:

RQ1: How can the performance and memory consumption of the current
approach be improved?

For each alternative answering RQ1:

RQ2: Are the performance and memory consumption improved by the
alternative solution?

RQ3: Which properties of the source graph and the graph transformation
rule is the alternative suitable for?

3.3 Limitations and Delimitations

The concepts of the underlying solution will not be limited to the technical envi-
ronment (EMF, Henshin and Giraph), however it will not be evaluated using other
technical platforms. This is enabled by focusing on the theoretical concepts of
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Bulk Synchronous Parallel and graph transformations. The reason for not evaluat-
ing using other platforms is because the implementation is time consuming. Also
the evaluation (or benchmarking) is heavy on resources and requires substantial
time.

29



3. Method

30



4
Review of the Literature

4.1 Foundation

Arendt et al. [6] describes Henshin which is a part of the Eclipse Modelling Frame-
work (EMF). The features of Henshin is in depth presented using the case of model
refactoring and meta-model evolution. As Henshin is used as the graph transforma-
tion language and plugin in this thesis, their paper has been essential in order to
understand, develop and use it. They also provide a more general theory oriented-
presentation than the available documentation.

Krause et al. [1] use graph transformation rules and units as a high level modelling
language containing operational and declarative features. To be able to apply the
language on large scale graphs, a mapping to the Bulk Synchronous Parallel model
is introduced. The approach is highly distributed and parallelized. The solution is
evaluated with a large dataset using a large cluster. The tools used are the Henshin
modelling tool and the Apache Giraph framework on top of Hadoop. This paper
lays the foundation for the knowledge this thesis will build on as well as suggesting
the future research which this thesis will conduct.

Guo at al [19] has performed a benchmark of different graph processing platforms of
which Giraph is one of them. Although this thesis is not intended to compare differ-
ent platforms but rather different ways of implementing algorithms within the same
platform many ideas can be borrowed. For example, dataset diversity is identified
together with platform and algorithm diversity. Here the notion of dataset diver-
sity and algorithm diversity can be used in the for this thesis created benchmark
suite.

On the other hand although their paper describes performance benchmarks on the
Giraph platform with a variation of algorithms and data-sets their benchmark results
cannot be used as a foundation for this work. This because they use real data with
rather unclear characteristics and a set of algorithms with the main variation points
of the number of iterations and the amount of processing. From their results it is
therefore unclear how a data-set with certain characteristics will perform as well as
how a certain change to the algorithm will impact performance.

Guo et al. [19] further identify raw performance, resource utilization and scalability
to be evaluated. Those measurements provide inspiration for what is going to be
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measured in the evaluation. Their paper also provides valuable insights related to
the underlying computation platform, Hadoop. Their study shows that YARN,
which is a modern implementation of MapReduce, would have better performance
than MapReduce while running graph processing algorithms directly on it. Since
Hadoop (with MapReduce) is the base for Giraph it would be interesting to see if
a switch to YARN would provide a significant improvement. However it is out of
scope of this work but is suggested for future work.

4.2 Related Work

Izso et al. [8] have identified a problem with the scalability of current Model-driven
engineering (MDE) tools. They have also identified solutions in other fields, al-
though those solutions create more complex and low-level queries. To address the
problem of scalable MDE tools while preserving high abstraction they adapt tech-
niques for incremental graph search. The techniques are known from the project
EMF-IncQuery[20] and adapted for a distributed cloud infrastructure. The solution
is claimed to be highly scalable. The paper provides another approach for doing the
study suggested. Although the authors claim the solution to be horizontal scalable,
to work on very large models and efficiently handle complex queries it is unclear how
it scales for rules with a high amount of partial matches as in the example handled
by Krause et al. [1] and which this thesis builds on.

Bergmann et al. [21] present an incremental pattern matching technique for graph
transformations. The approach stores all matches as a cache which is updated
upon model changes. The approach sacrifices model manipulation performance and
memory consumption for faster pattern queries. Possibilities for parallelization are
also discussed. The paper can offer ideas regarding performance versus memory
usage and similar considerations. However large scale graphs distributed over a
cluster is not considered and it also uses a high amount of memory.

In another article Bergmann el al [22] describes the evaluation of incremental pat-
tern matching for graph transformations using a benchmark. The approach has
similar characteristics as the one presented in [21]. A cache for all the matches is
maintained while the model evolves. This approach sacrifices flexibility and memory
consumption in comparison to the solution provided in this thesis. It also requires
the model to be constant in memory and not in the form of a batch computation
as the one provided in this work. The paper also illustrated the benefits of their
solution in similar manner as supplied in this thesis.
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Qualitative Analysis on
Performance Issues

In order to answer research question RQ1 (see Chapter 3) there is a need to im-
plement alternative solutions and evaluate them. This chapter aims to present the
initial analyses which led to the decision to implement and evaluate the alternative
solution. The foundations presented in Chapter 2 are used as a base-point for the
analysis.

The problems could depend on many factors. However, in order to discuss and
also be able to evaluate the discussion is limited to the following: First, possible
problems with the usage of the BSP model is discussed in Section 5.1. Secondly,
potential problems with the mapping of graph transformations to the BSP model is
discussed in Section 5.2. Section 5.3 provides discussion of what happens when the
cluster, which executes the computation, is scaled out. And lastly, possible issues
with the current generated code is discussed is discussed in Section 5.4.

5.1 Bulk Synchronous Parallel

As illustrated by Figure 2.5 on page 14, the Bulk Synchronous Parallel model (see
Section 2.4) is massively parallel. Thereby, algorithms implementing it have the
opportunity to take full advantage of the parallelism. The parallelism in combination
with the simplicity is the main advantages of the model. However, the simple and
rigid structure with all vertices computing (Step 2 - Vertex Computation) at the
same time and all vertices sending messages (Step 3 - Vertex Communication) at
the same time can cause bottlenecks.

The cause of the bottlenecks is the concentration of particular resource require-
ments to certain points in time. The resource requirements of particular interest are
memory, CPU time and bandwidth. Further, the fourth step (Synchronization) re-
quires all vertices to be done computing and sending messages before continuing the
computation which makes the computation time dependent on the slowest vertex
computation and compute node which can leave resources not fully utilized while
waiting for synchronization.

In the vertex computation phase, vertices compute, create local variables and store
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incoming and outgoing messages. Therefore the speed of the phase is dependent on
the main resources; the usage of CPU time and memory. The phase can be expected
to require an amount of memory which is dependent on the number of active vertices
in a superstep, their usage of local variables and their storage of messages. CPU time
used will be dependent on the number of nodes, the number of incoming messages
to process and how complex the calculation is. The most limited resource will most
likely determine the time.

In the next phase, vertex communication phase, the required bandwidth is expected
to be dependent on the number of messages sent in each superstep and the size of
them. Reducing the amount of messages therefore result in improvement of both
bandwidth usage and memory usage. The reason is that the vertices communicate
via message passing locally, at thread and worker level, resulting in memory con-
sumption. They also communicate between nodes which is resulting in the usage
of the network bandwidth. Therefore, one should generally try to minimize the
resource requirements or use the one with less constraints on, e.g. memory versus
CPU time. Another possibility is to distribute the requirements across supersteps
in order to even out the different requirements.

5.2 Mapping Graph Transformations to BSP

The mapping of graph transformations (see Section 2.2) to the BSP model and the
code generator (see Section 2.6) fully utilizes the parallelism in the BSP model.
It is therefore sensible to the in Section 5.1 presented shortcomings of the general
BSP model. However, the solution also has possible problems specific for the algo-
rithm.

Matches are iteratively searched for and built up to lastly apply the rule to all
matches in parallel. However, as presented in Section 2.6 and as illustrated by Fig-
ure 2.7 on page 19 the number of the microstep executed equals the number of the
overall superstep. This implies that every vertex of the graph is attempting to exe-
cute the same snippet of code at the same point. Therefore all vertices are according
to the discussion about potential problems with the BSP model (see Section 5.1)
having approximately equal amount and and type of resource requirement at the
same superstep. And this continues for every superstep in the computation.

All vertices also follow the same iterative search plan (see Listing 2.5 on page 2.5).
This means that the vertices also create the same type, amount and sizes of partial
matches across the graph. In step 3 of the BSP algorithm (see Section 2.4) all the
messages are sent concurrently. Recap Table 2.1 on page 20 and imagine what will
happen if the source graph is made considerably larger. For example, superstep 5
will then have to handle an even larger amounts of incoming messages while others
like superstep 0 will create large amounts of small matches. This will have different
impacts for different microsteps.

To further illustrate this, the rule CreateCouple (see Figure 2.3 on page 12) was
executed on a million of vertices large graph using 24 compute nodes (see Chapter 6
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Figure 5.1: The figure shows the execution time per superstep for the rule Create-
Couple averaged over three executions on 24 nodes.

for more detailed configuration). The amount of used time per superstep was gath-
ered. Figure 5.1 provides a column chart for the execution. Three executions were
run and the average is used here. It is rather clear that microstep 5 and 6 require
considerable more time than the rest. However, there are also large differences when
superstep 2 and 3 are compared to the rest of the supersteps.

The result in the figure is also reasonable if we study the microsteps in more depth
by looking at the code (see Listings 2.6-2.12 on page 21 to 23). See for example
microstep 2 (Listing 2.8 on page 21), which simply passes the received matches
forward, compared to microstep 5 (see Listing 2.11 on page 23), which copies the two
matches into two lists, performs a join of two entries in the two lists and checks the
result for injectivity. The forward-step requires small amount of both memory and
CPU time for the computation while the join-step has much heavier requirements on
both. For example the microstep 5 quickly doubles the memory used for the partial
matches. And the second loop, which used the matches, has a quadratic complexity.
Now also taking into consideration executing this on millions of vertices large graphs
this might lead to considerable amounts of garbage collection work and compute
requirements within step 2 of the BSP superstep leading to slow computations for
the most performance intensive microsteps which is confirmed by the figure.

Microstep 6, which according to Figure 5.1 also takes considerable time, is also
interesting to study. However, the step contains no actions which look to be perfor-
mance intensive apart from applying the rule on the matches (see Listing 2.12 on
page 23). Applying a rule on a match leaves little or no room for improvements for
the Giraph-user and is therefore not further considered.

Another problem with the mapping to the BSP model is the lack of parallelization
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in the iterative matching build up. If the LHS consists of several, from each other
unreachable, vertices the matching takes more supersteps than what is actually
needed using a slightly different approach. See for example the LHS of CreateCouple
which has two vertices of type Person unreachable from each other. This results
is that a new match is created in microstep 4 (see Listing 2.11) while the already
created one is passed forward without action. If further parallelization of this could
be achieved; the result would be a shorter execution in terms of supersteps.

Further, many messages are sent to only in the next step being quickly deleted.
This because the matches fail a simple check like the check for injectivity. This
irrespective of that the information required to delete it already was available in
the previous step. In Table 2.1 on page 20 an example of this is provided between
superstep two and three were for example the match [p1,m2 ] is sent to m2 only
to be deleted. However, this is another downside with using the BSP model and
cannot be solved for most cases. Vertices only have local information available. The
current vertex only knows the ID of the receiving vertex. This happen because the
BSP itself build on the idea that vertices should only have local information.

5.3 Horizontal Scaling

As shown in Figure 1.1 on page 3 the improvement when adding more compute
nodes (scale out) starts decreasing drastically at a certain number of nodes. When
the number of nodes used for a Giraph (see Section 2.5) computation is increased
the source graph will be partitioned in even more partitions. This according to the
above discussion about resource requirements (see Section 5.1) would result in faster
execution because of the extra memory and cores made available via the extra node.
However, more partitions also results in considerable more (partial) matches sent
across nodes, which will consume network bandwidth. Assuming that the bandwidth
is constant when adding more nodes this can cause a bottleneck. Therefore a possible
path forward is to reduce the sizes and amounts of (partial) matches passed around
at particular steps. Another is to control the partitioning.

When combining the discussion about more partitions and the, in Section 5.2, dis-
cussion about different resource requirements for different microsteps it is possible
that the peaks are made even higher and therefore causes the bad scaling. To
investigate if this is the problem the benchmarking suite of Chapter 6 is created
with the goal of sending as much messages as possible. However, since Figure 5.1
shows that microstep 2 takes little time in comparison to the two last steps it seems
unreasonable that this is a main concern.

5.4 Issues with the Current Generated Code

This section describes the specific implementation issues found with the code gen-
erated for Giraph. It involves rather more details than previous sections. Subsec-
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tion 5.4.1 provides a discussion about the choice of the data type for a match and
how that might affect performance. Subsection 5.4.2 discusses more scattered issues
about the code.

5.4.1 The Match

The previous sections of this chapter have pointed out that the messages sent are
important and therefore they are here further discussed with a focus on the im-
plementation of the data type. In Section 2.6, the format for storing the partial
matches, the Match, was presented. In short it consists of a stream with variable
sized id’s of the vertices. Since the id’s themselves are variable sized and they are
stored in a stream the match requires as little memory as possible. This makes the
messages light to pass around and this is beneficial because of the great numbers of
them required for large graphs.

However, making the match as small as possible sacrificed CPU time for reducing
the amount of memory and bandwidth used. Usually simple operations such as
getting the nth element are no longer in the magnitude of O(1) in complexity. This
because of the size of the vertices are unequal and therefore the n-1 first vertex
ids needs to be checked for their length in order to access number n. This can for
example be seen inside two nested loops in the performance intensive fifth microstep
of the CreateCouple (see Listing 2.11 line 18 on page 23). Further, this also affects
other operations such as remove and isInjective.

Another downside with the minimal matches is when checking for injectivity. In-
jectivity needs to be checked whenever a new id of a Vertex is added to the match
and involves checking for duplicates. This is performed via creating objects for all
VertexIds in the match, and adding them to a HashSet to find duplicates. Since the
match cannot contain duplicates the natural choice would have been making it a set
or an ordered set to also maintain the order. Since the current approach needs to
create several temporary used object, apart from the already stored match, it also
uses significant memory during the computation. However, the algorithm uses the
position in the match for further identification of the position of vertices within the
rule. This means that an alternative solution has to store the order in some other
way.

5.4.2 Other Issues

As can be seen throughout the for the rule CreateCouple generated code, many
objects are created throughout the code. Many of them are created unduly. For
example. In microstep 5 (see Listing 2.11 on page 23) some matches are appended
to each other only to be deleted due to the injectivity check. In microstep 6 (see
Listing 2.12 on page 23) two consecutive nodes are deleted in separate operations
were the sub-result is of no interest. Further, other operations as for example the
injective check creates objects for all vertex ids to simply delete them.
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It is apparent considering the discussion in Section 5.2 that improvements of mi-
crostep 5 and 6 have the most impact on the overall computation. Since it is hard
to find improvements of microstep 6 according to the previous discussion microstep
5 are given the most attention. Both memory usage and CPU time looks to be
heavy. If one can improve that either by reducing the need for copying matches, the
number of laps in the nested loop or the content of the loop; the large improvements
could possibly be gained.
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Benchmarking Methods and

Procedures

This chapter aims to define and present the procedure used for the evaluation pre-
sented in Chapter 8. Firstly, Section 6.1 aims to present the variation sources and
constants, while Section 6.2 presents the metrics used. In Chapter 3, the idea of cre-
ating a benchmark suite containing synthetic graphs with the purpose of comparing
the different implementations was presented. In Section 6.3, the synthetic graphs
are presented and derived using the notion of graph metrics as presented by Berge
[23]. The section also contains information about a real data example used. Finally,
Section 6.4 presents the graph transformation rules to execute on the source graphs
presented.

6.1 Variation Sources and Constants

Guo et al. [19] have identified three sources of variation for a benchmark. These
are platform, algorithm and dataset diversity. Platform in this case will be Java,
Giraph and Hadoop. Since the goal is not to optimize the platform it is set constant.
Algorithm is the variation point which is going to be optimized and therefore set
as the independent variable. In order to do so a set of datasets needs to be created
and used as another independent variable.

The first constant is the platform. To measure the performance of the actual code
generated and not random events related to hardware and software environment
extra considerations were placed on the hardware and software configuration. Since
purpose of this thesis is to improve the performance of the code-generator which
generates Java code for Giraph to run on Hadoop this thesis must also use the same
platform. Therefore the versions: Java 1.7.0_79, Giraph version 1.1.0 and Hadoop
version 0.20.203 was used. The Henshin version used as a base-point is the head
revision at 2015-02-20. Rest of the software and hardware environment was provided
by the Glenn cluster at Chalmers University of Technology in Gothenburg, Sweden.
The machines in the cluster are based on AMD Opteron 6220 with a total of 16 cores
per machine, clocked at 3 GHz, and 32GB RAM per node. The communication is
handled via Infiband based on the Mellanox ConnectX-2 QDR Infiniband 40 Gbps
HCA’s.
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There are also specific configurations of Giraph which are fixed over the experiments.
The number of Giraph workers are equal to the amount of cluster nodes utilized for
a computation. The number of threads used per worker is 16. In this case this
means 16 threads per node. The number of partitions the source graph is divided
in is equal to the number of threads per machine times the total number of workers.
This means one partition per thread. The number of threads used to write and
read the data is one. Finally, the amount of memory used per node equals 28 GB if
nothing else is mentioned.

However, there are potential problems with the cluster setup. The first problem is
that other jobs are executed concurrently on other nodes. These jobs also cause net-
work traffic which can cause variations in the available network bandwidth. Lastly,
the allocation of nodes are not controlled. One job can get two adjacent nodes
and and another job can get two nodes far apart which impact the communication
capability between the nodes.

The first variation source for this benchmark is the set of the synthetic graphs and
real data example to use as source graphs for the graph transformation executions.
Since the thesis aims to investigate which factors are limiting the performance in
order to answer research question RQ1 (see Section 3.2) and what properties of the
source graph the alternative implementation is especially suitable for in order to
answer research question RQ3, the notion of graph metrics was used to derive the
graphs. In order to provide an exhaustive set of synthetic benchmarks the notion
of graph metrics is used for the creation of a complete set of synthetic graphs for
benchmarking purpose. The basic idea is that the different synthetic graphs should
have high respective low values of the different metrics. This will enable the testing
of edge cases and help to see in what cases a certain implementation performs better
or worse as well as ultimately finding out the core problem. More information about
this is provided in Section 6.3.

The second variation source is the alternative implementations of the code genera-
tor. These are presented in great detail in Chapter 7. In order to try the different
implementations, transformation rules needs to be created in order to generate code
from. These rules need to be complete; contain all the actions presented in Sec-
tion 2.6. They also needs to be designed in order to answer research question RQ3.
Section 6.4 describes them in greater detail.

6.2 Metrics

In order to evaluate the performance of the different algorithms and thereby answer
research question RQ2 (see Chapter 3) a definition of what constitutes superior
performance must be made. To do so the performance aspects of interest are first
identified. The metrics are then designed to measure the aspects. The metrics are
presented in detail using the ISO 15939 [24] method. The following paragraphs will
introduce the metrics via linking and explaining the need for the metric and present
name, unit, formal definition and method of collection in tabular form.
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Table 6.1: Metric 1.

Name: Execution time as a function of number of nodes.
Unit: ms

Formal definition: f(n)
where n is the number of nodes

Method of collection: Time outputted from a Giraph job.

Table 6.2: Metric 2.

Name: Total used node time.
Unit: ms

Formal definition: f(n) ∗ n
where n is number of nodes

Method of collection: Time outputted from a Giraph job.

Guo et al. [19] identified for the purpose of their evaluation four performance aspects
of interest. Of these, three have been used for deriving the aspects used in this this
work. These are processing speed, memory consumption and scalability. They also
identified overhead. However, that is not chosen since it is mainly dependent on the
platform and the aim is not to compare platforms as in their evaluation.

The initial indicator of the performance problems was time as a function of number
of nodes (see Chapter 1). The data was provided by Krause et al. [1] in their
evaluation and presented in Figure 1.1. Since they used time as a function of number
of nodes and total used node time it is natural to select those. This because the
results should be easy to compare and relate to previous result, but also that they
provide suitable metrics. Time as a function of number of nodes can also be called
scalability and the overall purpose of this thesis (see Section 1.3) was to improve the
horizontal scalability. Further, adding nodes should reduce time used however not
increase the time used per node significantly. When comparing these measures the
scalability can be evaluated. Table 6.1 and 6.2 provide detailed information about
the metrics.

As indicated by the problem analysis (see Chapter 5) memory consumption and
network bandwidth can possibly be the limiting factors and therefore they need to
be measured. However, the cluster used for the evaluation do not allow exclusive
execution rights. Other jobs are executed in the mean time on other nodes and
therefore causes network traffic. Therefore, network bandwidth is not measured
because the metric would be too unreliable.

However, memory usage is measured in order to find out if the alternative solu-
tions uses less or more memory in comparison to the old solution. While memory
consumption is of less importance as an end result (because a whole node is allo-
cated for each job) it is of importance as an identifier in order to find the source
of the problem. Bergmann et al. [21] for example describes the need for sacrificing
memory consumption for increased execution speed. It is measured using a series of
executions of a transformation rule on a pseudo-distributed (1 node) cluster. In this
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Table 6.3: Metric 3.

Name: Memory test
Unit: MB

Formal definition: t = g(m)
where t is time and m is memory

Method of collection: Binary search to find the least
amount of memory resulting in successful execution.

particular case the memory is not constant anymore, as was explained in Section 6.1,
but the rest of the platform still is constant. The memory is instead reduced grad-
ually until the execution fails or a predefined time-limit is triggered. The reason for
the time-limit is that the time used for the execution will increase significantly when
the memory limit is approaching. This because of garbage collection. There is also
a usage limit for the cluster and executing long jobs will quickly drain this project
of resources. Table 6.3 provides detailed information about the metric.

6.3 Source Graphs

The evaluation is performed using a set of synthetic graphs, designed for the specific
purpose of the evaluation, and a real data example as source graphs. This section
aims to present these. The synthetic graphs are derived using graph metrics to
achieve a comprehensive set.

The real data example is borrowed from the work of Krause et al [1]. It is a part
of the IMDb movie database dated July, 26th 2013. The data adheres to the meta-
model illustrated by Figure 2.1 and contains 924 054 movies, 1 777 656 actors and
980 396 actresses. The source data contains no couples since they should later be
created (see Section 6.4).

The synthetic graphs are derived using graph metrics. It exists two types of graph
metrics: local and global metrics, where the latter is of the most importance here
since the whole graph needs to be considered to control overall memory and pro-
cessing power usage. Local variations can be disregarded. Global graph metrics can
be simple metrics such as the number of vertices and the number of edges, but also
more complex ones. Because this is a first attempt to optimize for different graph
characteristics an overweight of simple metrics has been chosen and is dealt to be
sufficient at this stage. Further, only graphs which are fully connected are consid-
ered. Otherwise they are considered as separate graphs. The following metrics is
chosen:

• VertexCount - The number of vertices.

• EdgeCount - The number of edges.

• Degree - The number of edges per vertex on average.
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Above, the VertexCount and EdgeCount are simple measures of size while Degree
tells more about the structure of the graph. The basic idea is of course that the total
number of vertices and edges has a linear effect on the execution time, but more
importantly are the other measures. The Edge- and VertexCount can also be called
tightness. Degree is a measure of the number of in- and outgoing edges. If the value
is high the graph is said to be highly connected and if it is low it is sparse.

Recall the matching algorithm presented in Section 2.6. The algorithm iteratively
builds up the match at the vertices by checking local connections and sending partial
messages to neighboring vertices. Therefore, executing the algorithm on a more
highly connected graph more messages will be sent. More memory is then consumed
for a more highly connected graph. For example a graph which looks like a line,
with one or two edges per vertex, would be an extreme example. Another would be
a graph with one central vertex and all existing edges are from this node to other
vertices.

Kuo et al. [25] has collected and used a set of simple graphs which for example
Rauzy [26] also uses in an evaluation. The set of graphs are presented in Figure
6.1. The graphs were not created for big data and are therefore not suitable for
scaling and includes graphs that would not make sense in such a case. However, it
worked as a source of inspiration for the development of the synthetic graphs used
for this thesis. Graphs with different properties may perform differently well with
different transformation algorithms. Especially graphs (27) and (28) in the picture,
which are similar to the graphs used in this thesis, inspired.

Figure 6.2 illustrates the designed graphs. They constitute two types of graphs with
two points of variation each. First, Sub-figure 6.2b illustrates the Net. This graph
is a regularly formed grid with edges only in one direction. The edges points from
lower left corner upwards and to the right. The other form of graph, as illustrated
by Sub-figure 6.2d, is the rope which is a regularly formed structure with every
vertex having exactly one edge (except the last one) to the next vertex. The points
of variation are the sizes (millions of vertices) and bidirectional edges or not. Sub-
figure 6.2a and 6.2c illustrates the bidirectional alternatives. Since bidirectional
edges is not a function of Henshin (see Section 2.3) this is created with edges in
both directions. These graphs are simple, however they provide enough variation.
The number of vertices can be varied, the number of edges as well so as the degree
which is either one or two in the unidirectional case or 3 or 4 in the bidirectional.
Thus, the number of edges are doubled in the bidirectional cases. The point is that
when the number of edges increase more partial matches (see Section 2.6) will be
sent and this will result in a higher memory usage .

These graphs have similar structure and therefore share a common meta-model. The
meta-model is presented in Figure 6.3. This meta-model consists of two different
kinds of vertices, a VertexContainer and a Vertex. The VertexContainer is supposed
to be one per graph and has the purpose of being a parent to all vertices via the
composition association named vertices. A vertex of the type Vertex has four types
of edges to other vertices. They are named east, west, north and south These are used
for easier generation of the graphs compared to having only one type of edges.
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Figure 6.1: A collection of synthetic graphs created by Rauzy [26].

However, before executing the evaluation the type of all the edges are substituted
to north. This because the matching code performs type checking (see Section 2.6)
and therefore do not send messages to all adjacent vertices. This is prevented by
having all edges of the same type. Thereby the partial matches will now be sent
to all neighbours and the partial matches will increase with the number of edges as
was the intent with increasing degree.

6.3.1 Generating Synthetic Graphs

Using the meta-model presented in Figure 6.3, the graphs were generated using Hen-
shin declarative rules and operational units (see Section 2.3) using the local paral-
lelized Henshin interpreter. Figure 6.6 to 6.17 illustrates the rules and units used for

44



6. Benchmarking Methods and Procedures

(a) Bidirectional
net of size 3x3.

(b) Unidirectional
net of size 3x3.

(c) Bidirectional rope of
size 4.

(d) Unidirectional rope of
size 4.

Figure 6.2: The structure of the synthetic graphs generated. A regular grid struc-
ture ((a) and (a)) and a line structure ((c) and (d)). Both bidirectional or unidirec-
tional.

Figure 6.3: The meta model of the synthetic graphs.

the generation. The figures are accompaniment with in depth descriptions. However
in order to create an overview the overall procedures are first presented.

Figure 6.4 illustrates the overall procedure for generating a three vertices large rope
graph. Sub-figure 6.4a shows the initial source graph, Sub-figure 6.4b the result
after extending the graph using the rule and lastly, Sub-figure 6.4c shows the result
after making the edges bidirectional.

To generate the net graph involves more steps. Figure 6.4 illustrates the procedure
of creating a 3 times 3 vertices large net graph. Sub-figure 6.5a shows the initial
source graph, Sub-figure 6.5b illustrates the result of extending it north-direction.
Sub-Figure 6.5c how it concurrently grows east and Sub-Figure 6.5d how it is filled.
Sub-Figure 6.5e and 6.5f how it is made bidirectional by creating west and south
edges.

Figure 6.6 illustrates the sequential unit CreateRope. The units has one argument
which is the size n of the rope which should be created. The unit has one sub-rule
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(a) (b) (c)

Figure 6.4: An illustration of the creation of a rope. (a) shows the initial source
graph, (b)) the result after executing NorthIterated(3) and ((b) the optional step of
making it bidirectional by executing South.

(a) (b) (c)

(d) (e) (f)

Figure 6.5: An illustration of the creation of a net. (a) shows the initial source
graph, (b)) extending it north-direction. (c) how it concurrently grows east and (d)
how it is filled. (e) and (f) shows how edges are made bidirectional.
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which is supplied with the argument n when called.

Figure 6.6: Henshin units to create a rope.

Figure 6.7 illustrates the iterative unit NorthIterated. The unit takes one argument
n. The unit iterates n times; every time calling a rule called North. The annotation
[n-1] refers to the mapping from the the argument of CreateRope to this rule. The
argument should be one less because it is executed on a graph which already has
one vertex.

Figure 6.7: The Henshin iterated unit NorthIterated.

North is the last unit in the call stack for creating a rope and is illustrated by Fig-
ure 6.8. The rule has three vertices of which two are located in the LHS and three in
the RHS. A match is found when a vertex of type Vertex has no edge of type north
to another vertex of type Vertex. When a match is found a north edge is created
to a new vertex of type Vertex. The annotation @VertexContainer is a method of
specifying that all edges should be connected to the same VertexContainer. There-
fore an edge of type vertices is created to all new nodes from the VertexContainer
already connected to the existing vertices. If this rule is called multiple times a
rope-like structure will emerge.

Figure 6.8: The Henshin rule North.
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The result from the rule CreateRope (see Figure 6.6) is used in order to to create a
bidirectional rope. Figure 6.9 illustrates the sequential rule CreateBidirectionalRope
which does this. The rule takes an argument. Again, the length of the rope. First
CreateRope is called supplied with the argument in order to create a rope. Then
South is called in order to make it bidirectional.

Figure 6.9: Henshin unit CreateBidirectionalRope.

Figure 6.10 illustrates the declarative rule South. The rule illustrates the concept of
multirules as presented in Section 2.2. It consists of a single multirule containing two
vertices and three edges. The pattern to search for, the LHS, consists of two vertices
of type Vertex. These should be connected with an edge of type north (marked with
«north*») but not connected in the other direction of an edge of type south (marked
with «forbid*»). On all matches found a new edge of type south is created.

Figure 6.10: Henshin rule South.

The procedure of creating a net is more complex. Figure 6.11 illustrates the top-
level Henshin sequential unit CreateNet used for generating the unidirectional net.
It is a sequential unit which calls NorthIterated (see Figure 6.7), EastIterated and
FillIterated. These are further presented below.

Figure 6.11: The Henshin unit used to generate the net graph.

When NorthIterated has been called the graph has the structure of a unidirectional
rope. On this structure the rule EastIterated called. The rule is illustrated by
Figure 6.12. EastIterated is an iterated unit which calls the rule East multiple
times.
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Figure 6.12: Henshin unit EastIterated.

The rule East is illustrated by Figure 6.13. The rule has the purpose of creating an
east edge and connecting it to a new vertex for every vertex of type Vertex which
do not already have such. This is achieved by a multirule containing the negative
application condition marked with «forbid*» containing an edge and a vertex. The
VertexContainer, which is not a part of the multirule, is here explicitly connected
to the new vertex created. When executing this rule n times strings of size n will
emerge in east-direction as was illustrated by Figure 6.5c.

Figure 6.13: Henshin rule East.

In order to knit these strings and create a complete net, FillIterated is called. Fig-
ure 6.14 illustrates the iterated unit FillIterated. It calls Fill n times. Figure 6.5d
illustrates this.

Figure 6.14: Henshin units FillIterated.

Fill is the final rule used to create the unidirectional net. It is illustrated by Fig-
ure 6.15. The rule consists of a single multirule which contains four vertices. These
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vertices, of type Vertex, are connect like an open regularly formed quadrangle. The
edges consist of two parallel east edges and an edge of type north. The purpose of
the rule is to create the fourth edge in every such quadrangle (fill it). These is done
via the NAC marked with «forbid*» and the edge to be create which is marked with
«create*». When this rule is called several times inside the iterated unit it fills the
net from west to east until the rule is no longer applicable.

Figure 6.15: Henshin rule Fill.

The last structure, the bidirectional net, is created using the sequential unit Create-
BidirectionalNet which is illustrated by Figure 6.16. The rule takes one argument
which is the length of one of the sides of the net n. The net will be of the size n
times n. First it calls CreateNet in order to create a unidirectional net. Then the
rule South (see Figure 6.10) is called in order to create a reverse direction edge for
every north edge. Lastly, West is called to in order to create the same for every edge
of type east. Figure 6.17 illustrates the rule West.

Figure 6.16: Henshin unit used to generate the bidirectional net graphs.

Even though the concept is simple the time required for creation of the graphs using
the above rules is in the magnitude of days when generating structures consisting of
millions of nodes. Therefore, it can be easily realized that graphs of this magnitude
must be handled in a cluster instead of on a single machine. When the graphs were
created they were converted into the required format of the code generated for the
Henshin Giraph algorithm.
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Figure 6.17: Henshin rule West.

6.4 Graph Transformation Rules

Two kinds of rules are used to execute on the in Section 6.3 presented source graphs.
For the real data examples the previously described rule AddCouples is used. Fig-
ure 6.18 summarizes the rule and its sub-rules CreateCouple and CreateOccurrences.
For the synthetic graphs has a rule been developed which is described below.

Figure 6.18: The Henshin rule AddCouples.

The rule to execute on the synthetic source graphs are developed to complement the
AddCouples rule and show on additional weaknesses and strengths of the algorithm.
The graphical appearance of the rules are presented in Figure 6.19. The rules are
called ForRopeX where X determines the size of the number of vertices in its LHS.
X in this case has been selected to be 1, 3 and 9.
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Figure 6.19: The Henshin rules ForRope1, ForRope3 and ForRope9.

The reason for selecting such simple rules that they should have many matches and
illustrate what happens when match sizes grows. Therefore, they have three different
sizes. This for generating different amount and sizes of the partial matches and
thereby have higher requirements of memory and communication bandwidth. When
the rules are executed on the source graphs matches will be iteratively built up.
Executing it on the rope graphs will have approximately the same number of partial
matches seen over multiple microsteps. While executing it on the net will generate
possible problems with increasing number of matches over the microsteps.

To further explain this concept look at a vertex of type Vertex in the middle of a net.
The vertex will send messages to all adjacent vertices. The next steps will do the
same. And then again the same, apart from removing injective matches. This will
go on in the number of microsteps the rule has. The number of microsteps are the
same as the number of vertices in the rule. This will lead to the number of partial
matches growing exponentially and hence also the memory consumption.

If the partial matches removed due to injectivity checks are disregarded it is possible
to derive a simple formula to describe the growth of the partial matches per vertex
of the graph. The average degree of the graph is denoted d and the number of the
current microstep in the ForRopeX -rule is denoted s. If the resulting number of
partial matches is denoted m the formula will look like: m = ds. The formula is
not exact however suites as an upper bound. It for example do not describe what
happens at the edges of the graph were vertices have a lower degree.

The microsteps in the ForRopeX -rules will be similar to each other and also have
no rule to apply, only match. The real data example provides a full fledged example
as presented in Section 2.6. This combination will enable edge case testing as well
as normal execution.

To make the set of transformation rules to apply further more comprehensive a
second type of rule were developed. The rule is the ForNetX -rule which is illustrated
by Figure 6.20. The Figure gives Three sizes which are denoted ForNet1, ForNet3

52



6. Benchmarking Methods and Procedures

and ForNet9. The number indicate how many vertices marked with «require*»
resides in-between the vertices marked «preserve*».

The main reason behind the creation of these rules is that they provide a high
amount of partial matches. However, they should also have a small amount of final
matches.

The rules take an amount of microsteps which is equal to the number of vertices in
the transformation rule plus 1. In the first microstep the vertex in the lower left
corner is checked and thereafter the execution iteratively matches all vertices on the
left until it finds the vertex to preserve in the upper right corner. After this the
partial matches are sent back to the vertex in the lower right corner to iteratively
try to find the path on the right hand side of the figure. The sending back is the
reason for the extra microstep. Finally the nodes in the PAC are removed and the
set of the final matches is created.
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Figure 6.20: The Henshin rules ForNet1, ForNet3 and ForNet9.
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Implementation

This chapter aims to present and describe the matching algorithms generated using
the new implementation of the code generator. The new implementation are com-
pared with the original implementation (see Section 2.6) using a running example.
The running example is a declarative Henshin rule which is is executed on a small
target graph. The rule CreateCouple (Figure 2.3) is used and the detailed descrip-
tion of it provided in Section 2.6 is used as a base-point for the discussion. It is the
first sub-rule of the AddCouples (see Figure 6.18) sequential operational unit which
resides in the benchmarking suite (Chapter 6).

The solution was created in order to mitigate the problems with the same resource
requirements for every vertex in each superstep of the BSP model as was discussed
in Section 5.2. Recap Figure 2.7 which illustrates that every vertex executes the
same microstep in the same superstep. Therefore, the new solution tries to break
this symmetry by decoupling the microstep from the superstep and thereby spread
out the resource requirements.

To manage this, the iterative matching procedure for the vertices is started in a
number of different stages depending on the vertex’s id. When the vertex has started
calculating, the microstep will be tied to the partial match and no longer to the
overall calculation. Figure 7.1 illustrates this concept when executed using the
CreateCouples rule and the minimal source graph in Figure 2.6. The concept can
be resembled with a staircase of size n. In the figure n is equal to three.

The main disadvantage of this solution is that this increases the number of super-
steps by the number of extra stairs, which in the illustration (see Figure 7.1) is
two. However, these steps are going to require considerably less time. Therefore,
the spread-out of the resource requirements is assumed to result in on average less
resources used over the supersteps and thereby speed up the overall algorithm in en-
vironments with sparse resources. This will then possibly lead to a net benefit.

In order to make this possible the data type used for storing the partial matches
needed to be changed. In Section 2.6 the previous match structure was discussed.
The previous data type had no information about in which microstep the match was
created. A microstep simply assumed that the correct type of match was received.
In order to be able to have multiple different microsteps executing at the same
time, possibly for the same vertex, a match-specific microstep needed to be stored
in each match. Therefore, the preamble of the match was extended to also store the
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Figure 7.1: The figure illustrates the concept of a staircase in the start-up phase
of the algorithm. In the picture three stairs exists.

microstep for the match.

The downside of storing the microstep in every match it result in 1 byte larger partial
matches. The match already stores 4 bytes for storing the segments and the amount
of bytes used for storing a variably sized integer for every vertex in the match.
Therefore, this single byte can be neglected. The match will now conceptually look
like this: segmentNumber,microstep:[vertex1,vertex2,vertex3...].

In order to easily describe the execution behaviour of the alternative solution a
simple graph containing the least amount of matches possible is used as a target
graph for the execution of the transformation. The graph contains four vertices, two
of each type, and four edges, each of the same type. It is illustrated by the Henshin
rule in Figure 2.6 on page 18. The rule to execute is the CreateCouple in Figure 2.3
on page 2.3.

Table 7.1 illustrates the execution in the same manner as was done in Section 2.6.
The difference here is the notation x : [a, b...] where x here is the match-specific next
microstep to be executed on the match. Three stairs was used when executing the
example and as can be seen matches with two different microsteps exists in some
supersteps, e.g. microstep 2 and microstep 4 in superstep 3. The reason for only
two is that there are only two Persons in the source graph. What also can be noted
from the table is that the rule is not applied until the last superstep in order to
preserve the correctness of the graph transformation. If that was not done more or
less matches should have been found for some rules.

As also can be noted from Table 7.1, superstep 7 is the only superstep performing
a merge (join) of multiple matches. It was realized that the join with the current
search-plan had to have all partial matches for that particular microstep available
in order to correctly function. To realize this all vertices had to accumulate all the
matches and wait for all stairs to reach microstep 5. This is the explanation for all
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Superstep Vertex Create Extend Merge Forward Apply Delete Send to Matches

0 p2 1:[p2] m1,m2 1

1 m2 2:[p2,m2] p2

m1 2:[p2,m1] p2 2

2 p1 1:[p1] m1,m2

p2 3:[p2,m2] m1,m2

p2 3:[p2,m1] m1,m2 3

3 m1 2:[p1,m1] p1

m2 2:[p1,m2] p1

p1 4:[] p1

p2 4:[] p2

m1 4:[] m1

m2 4:[] m2

m1 4:[p2,m2,m1]

m2 4:[p2,m2,m2]

m1 4:[p2,m1,m1]

m2 4:[p2,m1,m2] m1 3

4 p1 5:[p1] m1,m2

p1 3:[p1,m2] m1,m2

p1 3:[p1,m1] m1,m2

m1 5:[]

m2 5:[]

p2 5:[p2] m1,m2

m1 5:[p2,m1,m2] m1 5

5 m1 5:[p1] m1

m2 5:[p1] m2

m1 5:[p2] m1

m2 5:[p2] m2

m1 5:[p2,m1,m2] m1

m1 4:[p1,m2,m1]

m2 4:[p1,m2,m2]

m1 4:[p1,m1,m1]

m2 4:[p1,m1,m2] m1 6

6 m1 5:[p1,m1,m2] m1

m1 5:[p1] m1

m2 5:[p1] m2

m1 5:[p2] m1

m2 5:[p2] m2

m1 5:[p2,m1,m2] m1 6

7 m1 6:[p1,m1,m2,p2] p2

m1 6:[p2,m1,m2,p1] p1

m2 5:[p1]

m2 5:[p2] 2

8 p1 7:[p2,p1]

p1 7:[p1,p2] 2

Table 7.1: An execution example of CreateCouple using the alternative implemen-
tation.

matches being of microstep 5 in superstep 6 as can be seen in the table.

The accumulation of matches due to the join-step and the delaying of the rule
application until the last superstep results in in-total more partial matches than the
previous solution. However, these partial matches are sent from the sending vertex
to itself. This is most likely less expensive than sending to another node and might
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therefore not have such a large impact.

The code for the matching algorithm has some major differences. Firstly, in order to
provide the stepwise start-up the initial if -clause checks whether this vertex should
start or not. Secondly, the microstep is now match-specific instead of being equal to
the overall superstep which is achieved by storing it in the match. Lastly, in order to
join different branches in the left hand side with directed edges (see Figure 2.3) the
whole algorithm needs to be synchronized by waiting for all steps to arrive before
joining.

The first microstep of the code generated using CreateCouple is the only step which
is dependent on the overall microstep in combination with the id of the vertex. List-
ing 7.1 lists the code for microstep 0 (compare Listing 2.6). The code is surrounded
with an if -clause. The purpose of it is to start approximately 1/n of the total
amount of vertices at each superstep. n is stored in the constant STAIR_COUNT.
The method getPart on the first line divides the vertices in n disjoint steps. Lines
6 and 7 are also changed where now the microstep is stored in the match. After
leaving a microstep it should have the number of the next microstep in the match
which is assured by line 7. In Table 7.1 this microstep is executed for p2 in superstep
0 and for p1 in superstep 2.

Listing 7.1: Microstep 0.
1 i f ( microstep < STAIR_COUNT && getPart ( ver tex . ge t Id ( ) ) == microstep ) {
2 ok = vertex . getValue ( ) . get ( ) == TYPE_PERSON | | ver tex . getValue ( ) . get ( ) ==

TYPE_ACTOR | | ver tex . getValue ( ) . get ( ) == TYPE_ACTRESS;
3 ok = ok && vertex . getNumEdges ( ) >= 2 ;
4 ok = ok && (SEGMENT_COUNT == 1 | | getSegment ( ver tex . ge t Id ( ) ) == segment ) ;
5 i f ( ok ) {
6 Match match = new Match ( segment , 0) . append ( ver tex . ge t Id ( ) ) ;
7 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
8 t a r g e t s = new HashSet<>() ;
9 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) )

10 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .
getTargetVertexId ( ) ) )

11 sendMessage ( edge . getTargetVertexId ( ) , match ) ;
12 }
13 }

Listing 7.2 shows the overall structure of the iterative matching procedure for the
rest of the microsteps. Comparing to Listing 2.5 the structure now consists of a
loop on the top level iterating over all the matches and then checking the microstep
of the current match to perform the correct actions. The following listings will go
through the rest of the iterative matching procedure and point out differences.

Listing 7.2: Overall matching structure.
I t e r a t o r <Match> matches I t e ra to r = matches . i t e r a t o r ( ) ;
Match match = null ;
while ( matches I t e ra to r . hasNext ( ) ) {

match = matches I t e ra to r . next ( ) ;
switch ( ( int )match . getMicrostep ( ) ) {

case 1 : . . .
break ;

case 2 : . . .
break ;

case 3 : . . .
break ;

case 4 : . . .
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break ;
case 5 : . . .

break ;
case 6 : . . .

break ;
default : . . .
}

}

Listing 7.3 provides the code for microstep 1. The difference compared to the old
implementation is only that iteration is not performed over the matches and line 6
which increases the microstep stored in the match. In Table 7.1 this step is executed
in superstep 1 and 3.

Listing 7.3: Microstep 1.
1 ok = vertex . getValue ( ) . get ( ) == TYPE_MOVIE;
2 i f ( ok ) {
3 match = match . append ( ver tex . ge t Id ( ) ) ;
4 i f ( ! match . i s I n j e c t i v e ( ) )
5 break ;
6 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
7 sendMessage (match . getVertexId (0 ) , match ) ;
8 }

The next microstep, number 2, is not particularly different either. The microstep is
shown in Listing 7.4. The only difference, apart from not iterating over the matches,
is that it increases the microstep stored in the match. In Table 7.1 the microstep
is executed when for example p1 forwards a partial match to m1 and to m2 in
superstep 4.

Listing 7.4: Microstep 2.
1 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
2 t a r g e t s = new HashSet<>() ;
3 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) )
4 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .

getTargetVertexId ( ) ) )
5 sendMessage ( edge . getTargetVertexId ( ) , match ) ;

Listing 7.5 presents microstep 3 which has some differences to the original implemen-
tation. However, as the next microstep creates a new match and not simply extends
the incoming matches this step also has a separate if -clause which sends an empty
message to be picked up in the next microstep. This because now the microstep is
not executed if it is not needed. Listing 7.6 lists this extra step. Microstep 3 is also
different by not iterating over the matches and by increasing the microstep stored
in the match (line 8). In Table 7.1 this step is executed in order to create empty
matches in superstep 3. In this superstep matches are also extended and deleted in
the execution of the microstep.

Listing 7.5: Microstep 3.
1 ok = vertex . getValue ( ) . get ( ) == TYPE_MOVIE;
2 i f ( ok ) {
3 match = match . append ( ver tex . ge t Id ( ) ) ;
4 i f ( ! match . i s I n j e c t i v e ( ) )
5 break ;
6 i f ( ver tex . ge t Id ( ) . compareTo (match . getVertexId (1 ) ) < 0)
7 break ;
8 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
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9 sendMessage (match . getVertexId (1 ) , match ) ;
10 }

Listing 7.6: Microstep 1.
1 i f ( microstep == 3)
2 sendMessage ( ver tex . ge t Id ( ) , new Match ( segment , 4) ) ;

Microstep 4, which is presented in Listing 7.7, is the reason for the extra step which
sends an empty match. However, some vertices receive real partial matches from
previous microstep. These are of type Person. Lines 1-5 makes the vertex send them
to itself to be handled in the next microstep. However, the second part of the code
should check for Persons fulfilling the conditions of the second Person in the rule.
This is done as in the original implementation (see Listing 2.11), however three lines
are added and one changed. In order to only execute this for the empty match and
not multiple times if also other matches are received line 9-10 checks and breaks if
the match is not empty. Line 11 and 12 are changed and new in order to incorporate
the microstep number in the match. In Table 7.1, two new matches is created and
to one match is forwarded in superstep 4 while executing this microstep.

Listing 7.7: Microstep 4.
1 id = match . getVertexId (1 ) ;
2 i f ( ver tex . ge t Id ( ) . equa l s ( id ) ) {
3 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
4 sendMessage ( id , match ) ;
5 }
6 ok = vertex . getValue ( ) . get ( ) == TYPE_PERSON | | ver tex . getValue ( ) . get ( ) ==

TYPE_ACTOR | | ver tex . getValue ( ) . get ( ) == TYPE_ACTRESS;
7 ok = ok && vertex . getNumEdges ( ) >= 2 ;
8 i f ( ok ) {
9 i f ( ! ( match . getMatchSize ( ) == 0) )

10 break ;
11 match = new Match ( segment , 4) . append ( ver tex . ge t Id ( ) ) ;
12 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
13 t a r g e t s = new HashSet<>() ;
14 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) )
15 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && ta r g e t s . add ( edge .

getTargetVertexId ( ) ) )
16 sendMessage ( edge . getTargetVertexId ( ) , match ) ;
17 }

Listing 7.8 lists microstep 5. Recall that this step is a join and that it takes the
most time as presented in Section 5.2. In order to properly join all the matches the
microstep needs to wait for all matches reaching this microstep. This is done in lines
1-4 which checks if the partial matches created in the last stair has arrived here yet.
If they have not the match is sent to itself and the microstep is halted to be taken
up next superstep. When all matches are of microstep 5 the rest of the microstep is
executed. Apart from the storage of the increase of the microstep number the rest
of the step functions the same as the original implementation.

This step is the reason for multiple matches of the same microstep across supersteps
Table 7.1. In superstep 5 the microstep is executed for the first time. Here four
matches are accumulated. The next step also send the matches of microstep 5 to it-
self. In superstep 7 the joining is finally performed which creates two matches.

Listing 7.8: Microstep 5.
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1 i f ( microstep < 5 + STAIR_COUNT − 1) {
2 sendMessage ( ver tex . ge t Id ( ) , match ) ;
3 break ;
4 }
5 id = vertex . ge t Id ( ) ;
6 i f ( id . equa l s (match . getVertexId (1 ) ) )
7 matches1 . add (match . copy ( ) ) ;
8 else
9 matches2 . add (match . copy ( ) ) ;

10 i f ( matches I t e ra to r . hasNext ( ) )
11 break ;
12 for (Match m1 : matches1 )
13 for (Match m2 : matches2 ) {
14 match = m1. append (m2) ;
15 i f ( ! match . i s I n j e c t i v e ( ) ) {
16 continue ;
17 }
18 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
19 sendMessage (match . getVertexId (3 ) , match ) ;
20 }

The last microstep, number 6, is presented in Listing 7.9. As previously states
all vertices needs to wait until the matching procedure is finished for all stairs.
Therefore, line 7 has an extra check which ensures this. However, in this specific
case this check is not needed since the previous step was a join-step which required
synchronization. In Table 7.1, this can be seen in superstep 8 which removes the
PACs from the match and applies the rule on the final set of matches.

Listing 7.9: Microstep 6.
1 t a r g e t Id = match . getVertexId (2 ) ;
2 for (Edge<VertexId , ByteWritable> edge : ver tex . getEdges ( ) )
3 i f ( edge . getValue ( ) . get ( ) == TYPE_PERSON_PLAYS_IN && edge . getTargetVertexId ( ) .

equa l s ( t a r g e t I d ) ) {
4 match = match . remove (2 ) . remove (1 ) ;
5 i f ( f ina lMatches . add (match ) ) {
6 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
7 i f ( segment == SEGMENT_COUNT − 1 && microstep == 6 + STAIR_COUNT − 1 ) {
8 applyCreateCouple ( vertex , match , appCount++) ;
9 } else {

10 sendMessage ( ver tex . ge t Id ( ) , match ) ;
11 }
12 }
13 break ;
14 }

Listing 7.10 lists the code in the default block of Listing 7.2. This code also has
the function to make sure that the rule is applied only when all vertices are in the
last microstep. However, it also has the function to filter out duplicate matches
from the set of final matches. This is done via using the same hash set as in the last
microstep. Line 1 does this. Again, this is not needed in this particular case because
of the join and should have been optimized in the rewritten code generator.

Listing 7.10: Code executed while waiting for all microsteps to finish the matching
procedure.

1 i f ( f ina lMatches . add (match ) )
2 match = match . s e tMic ros t ep ( (byte ) (match . getMicrostep ( ) + 1) ) ;
3 i f ( segment == SEGMENT_COUNT − 1 && microstep == 6 + STAIR_COUNT − 1 )
4 applyCreateCouple ( vertex , match , appCount++) ;
5 else
6 sendMessage ( ver tex . ge t Id ( ) , match ) ;
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The static and dynamic semantics of the rules and units in the implemented alter-
native are equivalent to the non-parallel (non-BSP) local and the original version of
the Henshin transformation interpreters. This is ensured using the currently avail-
able test suite consisting of 18 non-trivial transformation rules as well as comparing
the output from the transformations in the benchmarking suite (Chapter 6).

Recall that the idea behind the solution presented was to even out the resource
requirements across the supersteps by not executing the same microstep for every
vertex of the graph. However, this did not fully work for the particular example
of CreateCouple (see Figure 2.3). The reason for this is the need for a join of
partial matches which was created by two from each other unreachable vertices.
This created a need for synchronizing the execution of all the different stairs. This
forced all the stairs to again execute the same microstep at the same time which
possibly causes the problems which were discussed in Section 5.2. It also causes
some extra complications in the form of extra partial matches.

However, in the supersteps before the synchronization is performed it is reasonable
that the resource requirements are spread out across the supersteps. Also if an
iterative matching procedure of a rule do not contain a join-step the result may be
spread out across the superstep and thereby cause an overall performance increase.
See for example the rules in Figure 6.19 on page 6.19 and Figure 6.20 on page 6.20
which do not map to any joins.

Also it is reasonable that the net benefit of applying this approach is dependent on
how many microsteps it takes to apply the rule. If the rule has too few microsteps
the fixed costs of using this approach is possibly not payed off. If also the number
of partial matches is exponentially increasing, as was pointed out in Section 6.4, it
is possibly that the net benefit is even higher.
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Evaluation

Chapter 6 presented the benchmarking suite. This chapter aims to present and
discuss the results from using it. Executable code for Giraph was generated using the
original implementation of the code generator, as presented in Section 2.6, and the
new implementation of the code generator, as described in Chapter 7. The evaluation
thereby aims to compare the two groups by: Firstly, in Section 8.1 the results from
evaluating using a real graph and rule example are presented. This in order to relate
to the results by Krause et al [1]. Secondly, in Section 8.2 more comprehensive results
from evaluating using the synthetic graphs and rules are presented. The number of
stairs used for the new implementation is 3 throughout the evaluation.

8.1 Real Data

Executable code was generated for the Henshin unit AddCouples (see Figure 6.18
on page 51) utilizing the two implementations of the code generator. The code was
executed on the cluster with the configuration presented in Section 6.4. The real
data example presented in Section 6.3, the IMDb movies database, was used as
the source graph. The number of compute nodes in the cluster was varied. Three
executions per number of nodes were performed for each of the two groups. In total
60 executions were performed. Metric 1 (see Figure 6.1 on page 6.1) and Metric 2
(see Figure 6.2 on page 6.2) were then used on the complete sample. Section 8.1.1
presents and analyses the results from Metric 1 and Section 8.1.2 presents and
analyses the results from Metric 2.

Interesting is that the author did not manage to get any of the two algorithms
working on the Glenn cluster for less than 14 nodes. Less was tried, however the
job was either killed by generous time limit or due to memory issues. This is an
interesting contrast in comparison to the evaluation by Krause et al. [1] who did
execute the same unit, on the same data, on the same cluster and using less nodes
than 14. Possibly this is an effect of changed software stack on the cluster, however
this cannot be verified. Therefore, the number of nodes used are 14-32, skipping the
odd numbers.
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Figure 8.1: Metric 1 utilized on the execution of the two groups, Staircase and
Original, of the unit AddCouples and varying the number of cluster nodes.

8.1.1 Metric 1

Figure 8.1 illustrates the results from the first metric. The mean value of the execu-
tion time for the three executions are presented for each number of cluster nodes. It
is hard to see any apparent differences in total. However, the new implementation,
marked Staircase, seems to perform worse for the lowest amount of nodes.

The mean values and standard deviations for the groups were µS = 836 s and
sS = 618 s for the staircase implementation and µO = 737 s and sO = 405 ms for
the original implementation. The overall mean difference and the sample standard
deviation of the difference were µD = 99 s respective sD = 323 s.

Since the data is paired and a normal distribution cannot be assumed, a non-
parametric paired Wilcoxon signed-rank test [27] was calculated in order to find
out if there is a significant difference in their median values. The effect size was
calculated using the Vargha and Delaney’s Â12 method [28]. The statistical tests
were performed using R [29] and the package effsize [30] for calculating the effect
size. The test was two-tailed and the null and alternative hypothesis are listed
immediately below.

H0 : md = 0
H1 : md 6= 0

The results were p = 0.1706 and Â12 = 0.47. Using an α-level of 0.05 there is no
significant difference. Therefore, the null hypothesis cannot be rejected. We cannot
see a significant difference in computation time between the two groups.

The reason for no improvements in the performance in this case is likely to be the
shortcoming of the current solution. As stated in Chapter 7 the solution has some
problems when the search-plan consists of join-steps. When join-steps exists there
is a need for synchronizing all the stairs of the algorithm. This means that the
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resource requirements cannot be fully distributed over the supersteps. But this real
data example constitutes a special case and this is not likely to be seen in many
other examples.

8.1.2 Metric 2

Figure 8.2 illustrates the results from the second metric (see Figure 6.2 on page 6.2).
The metric measures the total used node time, i.e. the execution time for the
computation multiplied by the number of nodes utilized. Utilizing the metric, it is
hard to see any apparent differences. It may be possible that the original version
uses the resources more efficiently for a high number (30-32) of nodes which may
explain why they perform rather equal when utilizing Metric 1 (see Figure 8.1).
However, the sample size is to small to perform detailed testing for a particular
number of nodes. Tests are instead performed for the whole sample.

The mean values and sample standard deviations for the groups were µS = 16776 s
and sS = 7448 s for the staircase implementation and µO = 15101 s and sO = 4459
s for the original implementation. The mean difference and the standard deviation
of the difference were µD = 1676 s and sD = 6104 ms.

Wilcoxon signed-rank test test was calculated for the sample containing all execu-
tions with the two groups. Vargha and Delaney’s method for effect size was also
calculated. The null and alternative hypothesis are:

H0 : md = 0
H1 : md 6= 0

The statistical testing resulted in p = 0.1579 and the effect size Â12 = 0.46. The
effect was thereby negligible and the null hypothesis cannot be rejected at a α = 0.05
level of significance. It cannot be proved that there is significant difference in their
mean values.

8.2 Synthetic Graphs

Evaluation was also performed by using synthetic source graphs and transforma-
tion rules. Executable code for the synthetic transformation rules (see Section 6.4)
was generated utilizing the two alternative implementations of the code generator.
The transformation rules used are the ForRopeX -rules (see Figure 6.19 on page 52)
and the ForNetX -rules (see Figure 6.20 on page 54). Each rule has three different
sizes.

The source graphs used are the rope- and net-graphs presented in Section 6.3. Both
the graph-types have bidirectional and unidirectional alternatives. The graphs were
generated using the procedure described in Section 6.3.1. This resulted in net- and
rope-graphs in the sizes 1.44, 1.69, 1.96 and 2.25 million vertices.
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Figure 8.2: Execution of AddCouples using the two implementations taking Metric
2.

Two types of evaluation were performed. The first is presented in Section 8.2.1 and
aims to meassure the execution time for different combinations of graphs and rules.
The second is presented in Section 8.2.2 and aims to meassure and compare the
memory usage of the two implementations by utilizing Metric 3 (see Figure 6.3 on
page 42).

8.2.1 Execution Time

The initial idea was to execute all the different alternatives of the rules and graphs.
However, because of the limited availability of the cluster that could not be achieved.
The cluster usage is limited to 5000 core-hours a month. Since the machines have
16 CPU cores; one hour of execution for one single node equals 16 core-hours.
Therefore, a subset of the rules and graphs had to be chosen in order to still preserve
the key idea behind the evaluation as was presented in Chapter 6 and attain a
sufficiently large sample in order to prove statistical difference.

Most importantly was the variation of the out-degree of the vertices and the size
of the rules. Therefore, the size, counted in vertices, of the source graphs was set
constant to 2.25 million vertices and only the net-graphs were used as source graphs.
The degree was varied by using the same data-set in either the bidirectional or the
unidirectional version. This resulted in an on average out-degree of 2 or 4 for the
vertices in the source graphs. The number of rules were also minimized. Only the
ForRopeX -rules (see Figure 6.19) were executed. However, this enabled variation of
the size of the rules in three different sizes.

With the purpose of finding on optimal trade-off between being able to execute a
sufficient number of trial executions and using as many nodes in the cluster as pos-
sible test trials were executed. During these trial executions it was impossible to get
a result from the ForRope9 -rule using up to 32 cluster nodes with the bidirectional
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Figure 8.3: Results from execution of ForRope1 and ForRope3 on 2.25 million
vertices large nets using 8 cluster nodes

net as the source graph for any of the implementations. The computation failed due
to memory issues. Utilizing 16 cluster nodes and the unidirectional net, resulted
in an execution time of 90 minutes for the staircase-solution and 170 minutes
for the original solution which did not suit for multiple executions. This because
one execution, which takes approximately 3 hours and utilizes 16 nodes results in a
core-hours-consumption of 768 core-hours. That is simply too high. However, some
executions were run using the spare resources after the rest of the evaluation was
performed. These are reported on last in this section.

In order to be able to execute all rules together with all the graphs; only the For-
Rope1 and ForRope3 were used for the experiment. 8 nodes were selected as it was
the lowest amount of nodes which could calculate a solution for all the combinations
and utilized moderate time. 30 trial execution were performed for each of the 4 com-
binations for both groups. The resulting mean values are illustrated for comparison
purpose in Figure 8.3.

From the figure it is apparent that when executing the large rule on the bidirectional
source graph the staircase-alternative utilizes less time. The trial executions of
the even larger graph transformation rule using 16 nodes further indicate that the
difference might be even larger when larger transformation rules are executed. The
reason for this might be the exponential growth of partial matches as was discussed
in Section 6.4 and that the new solution succeeds in evening out the resource usage
over the supersteps.

Figure 8.4 presents a box-plot were the execution time for the two groups are com-
pared. The interquartile range is considerably smaller for the two groups while the
median is approximately the same. The overall mean values and standard deviation
of all 120 trials from each group were:

µO = 165 s and sO = 139 s
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Figure 8.4: A box-plot of the sample containing the 240 executions on the synthetic
graphs.

µS = 134 s and sS = 56 s

A one-tailed paired Wilcoxon signed-rank test was calculated for the sample con-
taining all executions with the two groups. The reason for using the non-parametric
test is that a normal distribution cannot be assumed and the reason for using the
paired version is that the data are paired. Vargha and Delaney’s method for effect
size was also calculated. Each of the tests were performed with the below null and
alternative hypothesis.

H0 : mO ≤ mS
H1 : mO > mS

The complete set of data was tested. It resulted in a level of significance of p =
0.002273 and an effect size of Â12 = 0.50. The null hypothesis can thereby be
rejected. The old solution in fact has a significant longer execution time than the
new at an α = 0.05 level of significance.

Figure 8.4 presents box-plots for the four combinations. Figure 8.5a and Figure 8.5b
presents box-plots for ForRope1 respective ForRope3 and in Figure 8.5c and Fig-
ure 8.5d are box-plots for the unidirectional respective bidirectional nets presented.
The interquartile ranges are smaller for the new implementation except for the uni-
directional net. This also yields for the midhinge.

The statistical tests were also performed with the different rule sizes and different
source graph sizes as constants. This because it was likely that graphs with different
out-degree and rules with different number of vertices would perform differently. The
new solution was also designed to handle large rules and source graphs with high
out-degree more efficiently. The results are presented in Table 8.1. The results
indicate a significant improvement for the new implementation, at α = 0.05 level
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Figure 8.5: Box-plots for the four different combinations of synthetic graphs and
rules.
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Constant ForRope1 ForRope3 Unidirectional net Bidirectional net
p-value 0.3884 9.078e-05 0.9715 8.706e-076

effect size 0.51 0.56 0.38 0.63

Table 8.1: Effect size and p-value calculated for different rule and graph sizes.

of significance, for the bidirectional net and the larger rule. However, there is no
significant improvement for the small rule and the unidirectional net. The effect
sizes are small.

The results are interesting though they clearly shows the effect of what happens
when the number of partial matches grows. Both for the larger rule and the source
graph with the higher out-degree the number of partial matches are considerably
higher and grows considerably faster between the microsteps in the iterative match-
ing procedure. It appears that the new solution has succeeded in even out the
number of partial matches over the supersteps and thereby managed to decrease the
resource consumption. Either memory consumption or bandwidth usage has been
decreased. For further discussion see the previously presented qualitative analyses
in Chapter 5.

On the other hand, the new implementation has increased fixed costs in terms of
larger partial matches and longer execution counted in the number of supersteps. It
might be possible that this do not pay off for either small rules are for sparse source
graphs which are the cases in rule ForRope1 and the unidirectional net.

Since the trend seems to be very clear that transformations rules with a larger
number of nodes have a higher performance when executed using the new algorithm
six new computations were made. This time using the rule ForRope9, 16 cluster
nodes and executing 3 times per implementation. The mean values were µO = 9619
s and µS = 5419 and the standard deviations s = 705 s and s = 381 s. A one-tailed
Wilcoxon signed rank test reported a level of significance of p = 0.05. The effect size
was Â12 = 1 which is large. The new implementation in fact perform even better
for large transformation rules.

8.2.2 Memory Usage

In Chapter 7 it was discussed that the new solution might require less memory. A
memory test was therefore performed in order to validate the hypothesis. Metric 3
(see Figure 6.3 on page 42) was utilized on the execution of the code generated from
the rule ForRope3 (see Figure 6.19 on page 52) and the four sizes of the unidirectional
net (1.44, 1.69, 1.96 and 2.25 million vertices) was used as source graphs. Code was
generated utilizing the two versions of the code generator.

The evaluation was performed using 2 cluster nodes. The aim was to find a small in-
terval with a lower and upper bound. The lower bound indicates the highest amount
of memory tested which resulted in a failed computation. The upper bound indicates
the lowest amount of memory tested which resulted in a successful computation. To

70



8. Evaluation

1038
1238 1425 1609

1425
1688

1950
2220

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1,44 1,69 1,96 2,25
M

em
o

ry
  (

M
B

)

Vertices (million)

Required memory compared

Staircase Original

Figure 8.6: Memory consumption for the two implementations compared.

reach this value two values were selected. One which was presumably resulting in
a successful execution and one which was presumably not. The computation was
then started for the two amounts of memory and the results were checked. A one
hour time limit was set for the execution. Binary search was then used to narrow
down the interval until it was sufficiently small. The test was performed for the four
graph sizes for the two implementations.

The results from the memory tests are presented in Figure 8.6 and Figure 8.7.
Figure 8.6 compares the upper bounds for the two implementations when the number
of vertices in the graph is increased. The memory required is significant lower for
the staircase implementation. It also appears to grow slower when the number of
vertices are increased. Figure 8.7a presents the lower and upper bound for the
original implementation and Figure 8.7b presents the lower and upper bound for
the staircase implementation.

From the data it is apparent that the new solution can deliver a successful job with
much less memory than the old solution. It can therefore be concluded that it
succeeded in even out the peak of memory usage which is a result from the iterative
search plan. However, the test is only conducted for a certain type of rule and on a
certain type of graph.
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Figure 8.7: Working amount and the closest tested amount of memory resulting
in a failure for the two versions.
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9
Threats to the Validity

As may be expected, this study incorporated a number of threats to the validity.
They are sorted according to Wohlin et al [31].

9.1 Conclusion Validity

Threats to the conclusion validity are according to Wohlin et al. [31] threats to draw
correct conclusions about the outcome of the experiment and the relation between
the two groups. The conclusion validity are further divided in several groups. Of
these groups the experiment suffer from "low statical power", "random irrelevances in
the experimental design" and "fishing and the error rate" which are further described
below.

In the evaluation using the real data example small samples were used. The reason
for this was a lack of available resources for the project. Nevertheless, it is a threat
to the validity in the form of "low statistical power" [31].

"Random irrelevancies in the experimental design" [31] is also a threat to the conclu-
sion validity of this work. When executing the Giraph computations on the cluster
other jobs are executed from other users on other machines in the cluster. These
jobs cause noise in the form of network traffic which is a possible error source of the
experiment. However when evaluating using the synthetic graphs and rules a high
number of executions were run in order to mitigate this validity threat.

In the evaluation multiple comparison were performed. Wohlin et al. [31] described
this as "fishing and the error rate". This implies that this work might suffer from
the multiple comparisons problem. The problem of multiple comparisons refers to
that there is a greater possibility that at least one of the null-hypotheses are falsely
rejected when performing multiple statistical test [32].

9.2 External Validity

External validity threats deal with conditions which limits the generalizabilty of the
the experiment outside the actual setting [31]. Can it for example be generalized to
industrial settings?
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There might be an interaction between setting and treatment. The solution was
evaluated on a traditional traditional high-performance compute cluster. Such a
system is not optimal and designed for Hadoop computations. This might not either
be the setting of choice within the industry. For example special software had to be
used in order to launch the Hadoop computation on the cluster and the interaction
between other concurrent jobs might have an impact on the results.

Further, only the BSP implementation Giraph was used for the experiment. It
is possible that the results might not generalize to other frameworks for iterative
distributed Graph processing. Also, Henshin was used as the language to define
graph transformations. It might be possible that other software tools which are
more widely used within the industry have an impact. However the author cannot
predict such a case.

Further the evaluation is performed with very specific rules. One of them them is of
the special case were joins are present and the other only has edges and vertices of a
single type. Therefore it is unclear whether the results generalize to arbitrary rules.
However, the sizes has been changed in order to mitigate these validity threats. Both
real data and synthetic examples are also used.

9.3 Internal Validity

Threats to internal validity are circumstances which affect the researchers ability to
draw correct conclusions about the causality of the experiment [31]. In this setting
the evaluation procedure was developed after the problems of the current approach
was studied. This can possibly have impacted the design of the experiment in such a
way that it focuses too much on the problems of the previous approach and therefore
not considers its benefits. However, attempts for mitigating this threat involves the
real data example.
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Conclusions and Future Work

10.1 Conclusions

Model-Driven Engineering is widely used within Software Engineering to increase
the level of abstraction and thereby increase the efficiency and maintainability of
software project. Combining the notion of Graph Transformations with the Bulk
Synchronous Parallel; big data problems can be solved using a model-driven ap-
proach. However such solutions are still in their early days and sometimes perform
poorly.

This thesis attempted to improve the performance of an algorithm created for map-
ping and executing graph transformations in the Bulk Synchronous Parallel model.
The problems with the current approach were investigated, an alternative solution
was designed and implemented, a set of comprehensive benchmarks were developed
and the results were evaluated. By doing that, three research questions were at-
tempted to be answered.

RQ1: How can the performance and memory consumption of the current
approach be improved?

By studying and qualitatively accessing the current approach possible problems
could be found. These problems were then used in order to design and implement
a new solution which aimed to solve the found problems. The new solution built
on the idea that the resource requirements of the current solution is not evenly
distributed over the computations supersteps. Therefore, a new solution was de-
veloped to distribute the resource requirements more evenly over the computations
supersteps.

RQ2: Are the performance and memory consumption improved by the
alternative solution?

In order to actually find out if the solution was successful it was evaluated using a
benchmark. The benchmark consisted of source graphs, transformation rules and
metrics. Using a real data example no significant differences were found however the
new solution performed on average worse than the original for the sample data set.
Using purposefully developed synthetic graphs and rules the new solution on the
other hand performed significantly better when evaluating using two source graphs
with different out-degree.
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The peak memory usage on the other hand was significantly decreases for the new
solution. The value also appears to grow slower when the size of the source graph
is increased.

RQ3: Which properties of the source graph and the graph transformation
rule is the alternative suitable for?

In order to investigate if the new approach and the original approach performed vary-
ing well for graphs with different kinds of properties the benchmark was developed
with this in mind. Therefore, it consisted of real data examples and purposefully
developed artificial ones. The results indicate that the new solution might have bet-
ter performance than the original approach for graph transformation rules executed
on source graphs which creates a high amount of partial matches. This is further
supported by the the memory tests performed which shows that the new solution
can perform computations in environments with significantly less memory.

From the results it is clear that the new solution works better for a certain type
of synthetic graphs and synthetic rules. However it is unsure how it works in real
data examples. The small evaluation performed using real data did not prove any
statistical difference. Overall the new solution did not manage to increase the per-
formance of the current approach in the real data example. A possibly reason for
this is the extra overhead caused by it and the failure to manage to handle graphs
with vertices not reachable from other vertices, so called joins.

10.2 Future work

This study provided a comprehensive set of benchmarks and a qualitative analyses
of the problems with the current approach. All possible problems found are not inte-
grated in the attempt to a solution. Not either all benchmarks are used to evaluate
it. Therefore a future study on this subject might use this work as a foundation for
further attempts to increase the performance of graph transformations in the Bulk
Synchronous Parallel model.

The provided solution is not either completely evaluated for all its characteristics.
For example the network usage has not been evaluated because the available envi-
ronment did not allow that fully. Not either has an optimal amount of stairs been
investigated.

Further developing the implemented solution is also a path forward. A hybrid solu-
tion could for example be developed which utilizes metrics prior to generating the
code in order to find the most suitable implementation to use. Such metrics could
evaluate the transformation rule properties and characteristics in the source graph.
In order to develop such metrics this work can advantageously be used.

Lastly the usage of Bulk Synchronous parallel model as the platform for Graph
transformations might not be perfectly suitable for the problem. Other models of
computing should also be evaluated. Guo et al. [19] have for evaluated different
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graph transformation platforms. Possibly another platform might be more suit-
able.
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