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ABSTRACT: The phase structure of ABJM theory with mass m deformation and non-
vanishing Fayet-Iliopoulos (FI) parameter, (, is studied through the use of localisation
on S?. The partition function of the theory then reduces to a matrix integral, which,
in the large N limit and at large sphere radius, is exactly computed by a saddle-point
approximation. When the couplings are analytically continued to real values, the phase
diagram of the model becomes immensely rich, with an infinite series of third-order phase
transitions at vanishing FI-parameter [1]. As the FI term is introduced, new effects appear.
For any given 0 < ¢ < m/2, the number of phases is finite and for { > m/2 the theory does
not have any phase transitions at all. Finally, we argue that ABJM theory with physical
couplings does not undergo phase transitions and investigate the case of U(2) x U(2) gauge
group in detail by an explicit calculation of the partition function.
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1 Introduction

In some cases, in supersymmetric gauge theories, observables with enough supersymmetry
may be computed exactly. For example, this applies to the partition function in N' = 2 four-
dimensional gauge theories on S* through the technique of localisation [2]. This allows us to
write observables with a sufficient amount of supersymmetry, such as the partition function,
in terms of matrix integrals. Even though being much simpler than the original functional
integrals, these matrix integrals still carry important information of the underlying field
theory.

Under favourable conditions, these integrals may sometimes be determined exactly,
though this often amounts to going to the large N, or planar, limit. In this limit, one
may use techniques from random matrix theory to solve these matrix integrals [3]. One
of the most interesting applications of this approach is perhaps the test it provides of
the conjectured gauge/gravity-duality: localisation and large N-techniques have provided
insights into the strong-coupling behaviour of field theories with holographic duals, thus
allowing for direct comparisons of quantities with a non-trivial dependence of the coupling
constant between the gauge- and gravity-side of the duality, with excellent agreement (for
a review, see [4]).

In recent years, the occurrence of quantum phase transitions in massive gauge theories
in the decompactification limit (where the radius of the sphere is taken to infinity), has
been found in a wide variety of supersymmetric theories. They were first found for N' = 2
four-dimensional gauge theories with massive matter [5], whose critical properties were
further investigated in [6-11], and, soon after, new examples were found in three [1, 13,
14], and five dimensions [15]. A generic type of phase transition occurs when, at specific
couplings, extra massless states appear in the spectrum and contribute to the saddle-
point. It is a resonance phenomenon, as explained in [5]. These resonance effects already
appear in theories with fundamental matter, but become much more complicated when
the theory contains adjoint matter, leading to an infinite sequence of secondary resonances
and a much richer phase structure. In four dimensions, the simplest example with massive
adjoint matter is the A/ = 2* theory, which, in the decompactification limit, exhibits an
infinite series of weak/strong quantum phase transitions as the coupling grows. Moreover,
these phase transitions accumulate at strong coupling [5-7], raising interesting questions
about how they manifest in the holographic dual theory. These were studied in detail
in [8, 10], and similar phase transitions are also found to be present when the four-sphere
is squashed [9]. Recently, it was shown that these non-trivial phases induce non-analytic
dependence of higher-rank Wilson loops on the rank parameter [12], which could in principle
have a holographic counterpart in terms of phase transitions in the effective field theory
on the dual D brane description.

This type of phase transitions were also shown to occur for low-rank gauge groups, such
as N' = 2 SU(2) gauge theory with fundamental matter [11], i.e. supersymmetric SU(2)
QCD with two massive flavours. In this case, the quantum critical point of these phase
transitions is identified with the Argyres-Douglas superconformal fixed point of the theory.
For SU(2) gauge group, the phase transition is driven by instantons (unlike the large N



case, where they are negligible), and, in the decompactification limit, the free energy log Z
including instantons can be expressed in terms of the Seiberg-Witten prepotential — a
connection that arises when a saddle-point exists [11].

Similar phase transitions occur in three-dimensional Chern-Simons theories with mas-
sive matter. For example, three-dimensional Chern-Simons theory with massive funda-
mental matter has been shown to undergo three distinct phases as the coupling runs from
zero to infinity [13]. These phase transitions have furthermore been investigated at fi-
nite NV, where the finite N partition function of U(NN) Chern-Simons theory with massive
fundamental matter was computed using the theory of Mordell integrals [14].

The theory which will be in focus in this paper is the three-dimensional ABJM theory,
which, in the massless case is an N' = 6 superconformal theory dual to type ITA string
theory on AdS; x CP3 [16]. By using localisation techniques on the field theory side,
the partition function can be computed exactly at large N [17, 18], which may then be
compared to geometric analyses on the string theory side, enabling extensive tests of the
gauge/gravity conjecture [18, 19]. The partition function can be computed exactly even
in the mass-deformed case as the path integral localises to a matrix model on S? [17, 20].
Recently, it was shown that a version of ABJM theory obtained by analytic continuation
in the couplings exhibits phase transitions [1]. This theory contains bi-fundamental matter
and the resulting phase structure arising in the decompactification limit resembles the case
of four-dimensional N = 2* theory, with an infinite number of third-order phase transitions
accumulating at strong coupling. These models corresponds to computing the partition
function in the region of parameter space where the couplings are real (and the Chern-
Simons levels are imaginary). This method, where one starts with unphysical couplings,
was successfully implemented in the past [4, 18] to compute the large N partition function
for the ABJM theory with no mass deformation. A direct, analytic calculation of the
large N partition function in ABJM theory with physical Chern-Simons levels is more
complicated and has not been carried out so far. The reason is that eigenvalues appear to
be distributed in different cuts in the complex plane with non-homogeneous N dependence
for real and imaginary parts (see e.g. a discussion in [19]).

In [1], the Fayet-Iliopoulos (FI) parameter was set to zero. The aim of this work is to
incorporate this parameter, which, as we shall see, significantly enriches the phase structure
of the theory. As the Fl-parameter approaches zero, the phase structure found herein agrees
with previous results, and furthermore serves to clarify some of the peculiar behaviour
previously seen. However for non-vanishing FI-parameter, the situation is, as mentioned,
significantly different, and the solutions to the saddle-point equations are divided into cases
depending on the precise relations between the mass-deformation parameter m and the FI-
parameter, (. The most dramatic effect is that the number of phase transitions undergone
as the coupling is increased are now finite, and for {( > m/2 there is only a trivial phase
with constant eigenvalue density in some finite region of support.

The structure of this work is as follows: in section 2, we give the matrix model rep-
resentation of the partition function for ABJ(M) theory with mass and FI deformation
parameters, and discuss some basic properties. In section 3, the analytical continuation is
introduced. In subsection 3.1, we specialise to the situation where the couplings Aj, Ao for



the two (analytically continued) gauge groups are equal and real, and in sections 4 and 5,
we determine the eigenvalue densities for the theory in the large N limit. As mentioned,
the precise form of these depend on the relations between m and (, and these different
cases are considered in sections 4 and 5. In section 6, we provide a summary of our results
for the cases of equal and real couplings, and also discuss the case of Ay # Ag; A2 > 0,
for the two different schemes of analytic continuations. In section 7, we present a general
argument, showing that physical ABJM theory does not have phase transitions. The ab-
sence of phase transitions is illustrated by considering the case with U(2) x U(2) gauge
group, where the partition function can be explicitly computed both for the analytically
continued model and for the model with physical couplings. The analytically continued
model exhibits analogous phase transitions as in the large N case. However, the physical
ABJM theory does not undergo any phase transition. One key feature that seems to make
physical ABJM theory to be non-generic is the fact that the Chern-Simons levels for the
gauge groups are equal and opposite. Finally, in section 8, we end with some concluding
remarks. Details of the calculation of section 5.4 are given in an appendix.

2 Deformed ABJ(M) theory

ABJM theory is a three-dimensional superconformal theory with maximal supersymme-
try, gauge group Ug(N) x U_g(N), and matter in the bifundamental representation. &k
denotes the Chern-Simons level of the two gauge groups respectively. In ABJ theory [21],
the situation is generalised so that the two gauge groups are allowed to have diffterent
ranks. Allowing for this small generalisation was shown to be useful when computing the
partition function of the massless theory by analytic continuation [18], as well as in the
mass-deformed case [1].

In the massless case, these theories are well-studied and their path integrals on S* are
known to localise onto constant field configurations [17, 22]. However, these results do not
rely on the theory being conformal, nor maximally supersymmetric, and thus they may be
used to examine the deformed ABJ theory as well.

In previous work, the decompactification limit of the mass-deformed ABJ theory was
considered [1], and quantum weak/strong phase transitions were shown to be present in
two analytically continued versions of the theory.

However, there is another way of introducing a scale to the problem, other than in-
troducing a mass: by introducing a Fayet-Illiopoulos deformation. This will be present in
the most general form of supersymmetric deformation, and it is this setup which will be
considered herein, with both non-vanishing mass and FI-parameter. The partition function
on S? takes the form of an eigenvalue integral in the large N-limit [17, 20], and, with the
normalisation of [18], may be written as:
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where pu;, v, represent the eigenvalues of the auxiliary fields from the vector multiplets of
the two gauge groups, m denotes the mass-deformation and ( represents the FI-parameter,
which will be taken to be real.

By shifting the integration variables, z = yu — {, y = v + ¢, we may then move the
FI-dependence from the exponent to the denominator, and what we are left with may be
thought of as the mass-deformed case but with two different masses, m; and mo. In these
variables, the partition function becomes:

C2(N2 Ni)

dx; dy,
Zasim(2¢,m; k) = Nl'N2 /H H Y (2.2)
=1

2 951 Ti— Ty 2 ya Yb
[] sinh [1 sinh 1 (seoy)
i<j a<b 25 \ 2T "2 Ya

H Cosh w Cosh Li—Ya M2 € ’
! 2 2
i,a

@

where g = represents the coupling, and m1, mo relates to m and ( as:

my=m+2( and mo=m—2(C. (2.3)

Consider the partition function (2.1) with Ny = Ny = N. It can be written in another
form, which is useful to exhibit some symmetries. This is done by following [20], slightly
generalising their derivation for k = 1 to arbitrary k. By using the identity,
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We now make use of the Fourier transform
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for all hyperbolic cosines in the denominator, introducing new integration variables 7;, 7/.
The integrals over p;, v; then become Gaussian and can be computed explicitly, after which

one finds
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Using again the Fourier transform (2.6) and computing the integral over 7/, we finally
obtain (upon rescaling 7, — k7;)
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We stress that the derivation above only holds when the Chern-Simons levels of the
two gauge groups U(N)g, x U(N)g, are opposite, ko = —ky, which is the case in ABJM
theory (for ko # —k1, terms Ti’2, TZ-Q remain in the exponent, leading to more complicated
expressions).

The partition function (2.1) has the obvious symmetry ¢ — —(, under which my <> mso.
However, the partition function written in the form (2.8) makes manifest another symmetry,

mo <> —Mmy, (2.9)

arising after the sum over permutations. Under this symmetry, the FI- and mass-defor-
mations are exchanged. In other words, the deformed ABJM partition function (2.1) with
N1 = N> enjoys the property

Zasim(2¢, m; k) = Zasim(m, 2¢; k) . (2.10)

In particular, a Fl-deformation on the massless theory ¢ = m/2 is equivalent to a mass-
deformation m in the theory with vanishing FI-parameter,

Zaym(m, 05 k) = Zagym(0,m; k) . (2.11)

3 Analytic continuation and saddle-point equations

Following [1], we first assume independent Chern-Simons levels k; and ks for the two gauge
groups U(Np) and U(N3), and introduce two different couplings,

271 2
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and equivalently, the two ’t Hooft couplings
A1 = Nigr, A2 = Naga, (3.2)

for the different gauge groups.

Our starting point will be the representation (2.2) for the partition function. In [1],
two analytic continuations of this model to arbitrary A, Ao were considered: one where
we set ko = —k1 = k and leave Ny, Ny arbitrary, which may be thought of as an analytic
continuation in the gauge group rank. The other one may be thought of as a continuation
in the Chern-Simons level instead (and holds the rank of the two gauge groups equal). We
will mainly use the first analytic continuation (which is the one used in [4, 18] for ABJM
theory at large V). The second analytic continuation will be discussed in sections 3.2, 6.2.2
and later in section 7.2 for the special case where the gauge group is U(2) x U(2).



It is important to note that, after analytic continuation to two independent couplings
A1, Ag, the resulting partition function Z(QC, m; A1, A2) cannot be written in the form (2.8),
except in the special case Ao = —A1. In particular, for generic A1, Ao, the partition function
does not satisfy the symmetry (2.10).

The ABJM partition function (2.2) with integer k is given by a convergent integral,
therefore in principle one does not need to resort to analytic continuation to define it.
However, for integer k (thus imaginary Ao = —\;), the saddle-points lie in cuts in the
complex plane which are complicated to determine even numerically. Here we perform
analytic continuation to real, positive couplings A1, A2 because it is in this case that the
saddle-point equations can be solved explicitly in terms of closed formulas.

With the analytic continuation in the gauge group rank, we set kg = —k; = k, and the
saddle-point equations of (2.2) take the form:
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)\12 Ti — Tj A2 Z Ti — Yo + M1 Ti — Ya — M2
T; = Fl - COth 9 + m - tanh f —|— tanh f (33)
JFT

A X — A M —T;—m —x;+m
Yo = FZ 2 coth Ya — Yo + 2L Z (tanh YomTim ; ! + tanh Yo = Ti T T2 21 2) .
a 3

The ABJM theory is recovered by analytic continuation A\; — e?\, Ay — e\, where ¢
goes from 0 to 7/2.

Phase transitions typically occur in the decompactification limit, where the radius R
of the three-sphere (set to unity in previous formulas) is sent to infinity. The dependence
on the radius can be restored by rescaling m — mR, ( - (R, ©; — x; R, y; — y; R. For
the coupling, we take the same scaling used in [1, 13], where A\/R is fixed as R — oo. This
particular decompactification limit turns out to be self-consistent and the dependence on R
completely cancels from the saddle-point equations. As R — oo, the hyperbolic functions
are replaced by sign functions. Furthermore, in the large N limit, the eigenvalues x;,
Yo have continuum distributions described by unit-normalised eigenvalue densities, p(z),
py(y), and the saddle-point equations take the form

A
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where C, and C, denote the intervals on which p, and p, are supported respectively.

It will be convenient to introduce another change of variables, namely the rescaling
y — —y. By also defining p,(y) = py(—y), such a rescaling leads to equations which are
symmetric under the exchange of <+ y (and as such also p, <+ p, and the integration



regimes) together with A\; <> Ay. These equations may explicitly be written down as:
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Take C, = [—A, B] and similarly C, = [-C, D], where {A, B,C,D} € R. Differentiat-
ing (3.5) with respect to x,y respectively gives us:
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Solving these coupled functional equations is very complicated in the general case. For
simplicity, in most of our discussion, the situation of equal, real couplings will be considered.
In section 6.2, we will also treat the case of generic Aj 2 > 0 and show that it exhibits the
same qualitative features.

3.1 The case of equal, real couplings

By symmetry, it is clear from the expression of (3.6) that, for Ay = A2 = A\, the system
admits a solution with two equal densities p;, p,. The problem thus reduces to finding the
solution to one single equation for a density p(z):

1 1

p(2) = 55 — 5oz —m1) = Zp(—z +ma). (3.7)

where p(z) is supported on some interval [—A, B] along the real axis.

However, unlike the case previously considered where the FI-parameter vanishes [1],
there is no reflection symmetry around the origin of these equations, and we cannot assume
p(—z) = p(z). This complicates the situation compared to the case studied in [1]. With
no loss of generality one can take ¢ > 0 and m > 0. Then m; will always be greater than
zero whereas mo € [—00,m|.

It is clear that the solution to this equation will behave qualitatively different depending
on the sign of mo, and we may thus divide our investigation into two separate cases:

e m1 > mgy, my < 0 corresponding to ¢ > &
e my >0, mg > 0, corresponding to ¢ < 4.
These will be considered in sections 4 and 5 respectively.

3.2 Phase transitions in Chern-Simons theory with massive adjoint matter

The saddle-point equations for the second analytic continuation may be expressed in terms
of g1, g2 and N, and will in this notation differ from the equations (3.4) of the first analytic



continuation by some signs. Defining a; = Ngj, as = Ngo, these equations may be

written as:
T . 1 . .
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ABJM theory is recovered by analytically continuing oy — e“Paq, as — e~ %ay, with ¢
varying between 0 and /2.
Consider the particular case a; = as = a. We are led to a single equation:
(2) = g+ 3o~z —m) + p(— +mo) (39)
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If we further assume that m; = my = m (i.e. ( = 0), we have reflection symmetry, and the

equation becomes
1

plx) = % + %p(x —m)+ %p(x +m). (3.10)
The solutions to this equation were studied in section 4 of [1].

It is interesting to compare this equation with the saddle-point equation that arises in
a closely related system, A/ = 3 supersymmetric U(N) Chern-Simons gauge theory with
two massive adjoint multiplets. This is a precise three-dimensional analog of the N/ = 2*
theory whose critical properties were studied in [5-8, 10]. The partition function can be

constructed with the general rules given in [17], whereupon one obtains:

Z= / ﬁ o i WM (3.11)
N! 1 2m i< cosh “i_’éﬁm cosh “i_’;j_m

At large N (and in the decompactification limit), this partition function can be computed
by solving the same saddle-point equation (3.10), with @ = gN. Therefore, the results
of [1] equally apply to this case, and they can be summarized as follows: the theory has an
infinite sequence of phase transitions, where in each phase the eigenvalue density is given
by a piecewise constant function. The number of discontinuities increases whenever the
coupling crosses critical values taking the theory into a new phase. In the strong coupling
limit, @ > 1, the phase transitions accumulate and the equation becomes differential,
—m?2p” = 1/a and p(x) approaches the asymptotic form [1]

1
1 9 9 3gm?\3
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In the infinite « limit, this smooth, parabolic asymptotic density arises as the envelope
of (discontinuous) piecewise constant densities. In the case of N' = 2* theory, at strong
coupling, the eigenvalue density also reaches a smooth asymptotic form after going through
an infinite number of phase transitions, each phase described by a discontinuous density.



In this case, the asymptotic density has the Wigner’s semicircle shape, a property that has
been matched with the holographic prediction [23, 24].

In conclusion, N/ = 3 supersymmetric Chern-Simons gauge theory with two massive
adjoint multiplets has large N phase transitions, with a behaviour that shares similar
features as its four-dimensional relative, N = 2* theory.

4 Equal real couplings with ¢ >

Let us now move back to the problem of ABJM theory analytically continued in the gauge
group rank in the special case of equal and real couplings for the two gauge groups, as
described by equation (3.7). Furthermore, let us specialise to the case of ¢ > 7, corre-
sponding to m; > 0, whereas mg < 0.

Let us first consider two limiting cases, namely ( — 0 and { — oo. In the first one
of these, the situation reduces to the one considered in [1], and equation (3.7) becomes
symmetrical under reflection through the origin, implying A = B. As { goes to infinity,
equation (3.7) reduces to p(z) = 55, since the two shifted terms will vanish as their argu-
ments will lie outside the region of support for p. Knowing the eigenvalue density, the two
interval endpoints may be obtained from the integral equation (3.5) with = B, together
with the normalisation condition. From these, we find A = 0, B = 2\ for ( — oco. It is
then natural to assume that B > A at intermediate values (this is also confirmed by the
numerical solution).

With this assumption, together with the condition m; > —mso > 0, the integral equa-
tion (3.5) with 2 = B gives

B=2\ Y(>

m
5 - (4.1)
It can then be shown that the other interval endpoint will always lie in the origin, i.e.
A=0.

This gives us an eigenvalue density as

p(z) = % Vz € [0,2]. (4.2)

Therefore, there are no phase transitions in this regime where ¢ > 5.

In conclusion, turning on a Fl-parameter ¢ > 3 implies a theory free from phase
transitions. In particular, the masslesss theory with only FI deformation does not have

phase transitions.

5 Equal real couplings with ¢ <

As the Fl-parameter decreases below m/2, however, the situation becomes more compli-
cated: msy changes sign, becoming strictly positive. When ¢ = 0, one has m; = mg, which
is precisely the case discussed in [1]. As previously mentioned, the saddle-point equa-
tion (3.7) then has reflection symmetry, which gives us that A = B, i.e., the eigenvalue
density is supported on the interval [—B, B]. On the other hand, as shown above, for all

~10 -



¢ > %, the leftmost interval endpoint lies at the origin. As ¢ increases from 0 to %, the
leftmost interval endpoint, —A, thus moves from —B to the origin.
Precisely how this happens will depend on the coupling. We will start by considering

an example, after which we proceed to the general solution.

5.1 Simple examples

Consider once again the saddle-point equation (3.7). To start with, assume that m; and mq
are sufficiently large so that the points —z—my and mgo—z lie outside of the interval [— A, B]
(i.e. small {), where the eigenvalue density has support. This requires, in particular, that
mg > 2B and mq > 2A. In this case the saddle-point equation reduces to

1
o) = 55 (5.1)
Normalisation then gives the condition A + B = 2A. The final condition arises from the
integral equation, giving A = B, hence A = B = \. This solution exists for a coupling
where the conditions mo > 2B and m; > 24 are satisfied, i.e. 0 < A < 52, since ma < my.
For a larger A, the second shifted term begins to contribute in some interval, and the
solution must therefore experience a discontinuous change.

In general, transitions occur when one of the two shifted terms, p(—z +ms) or p(—z —
m1), are turned on. This happens when a new resonance point, reaches the interior of
[—A, B]. Then, —z + mg or —z —mj coincide with —A or B. In terms of the variable —z,
the resonance points are points located at a distance ms or mq from the endpoints of the
interval. Physically, the phase transitions occur because beyond some critical couplings,
extra massless particles (of masses proportional to | — z + mg| or to | — z — mq]) begin to
contribute to the partition function.

To proceed, we may consider the situation where my > 2A, which ensures that the
first one of the shifted terms vanishes. The saddle-point equation (3.7) then reduces to

p(2) = g5 — golma = 2), (5.2)

where we assume that p(z) is supported on the interval [—A, B], for some 0 < A < B. The
resonance point of the leftmost interval endpoint, — A, is then given by:

ar=m9g+ A. (5.3)
Similarly, the resonance of the interval endpoint B is given by
bl =m9 — B, (54)

but these two points will simultaneously lie inside the interior of the interval [—A, B] only in
one limiting case. The extremal case to have a resonance originating from —A corresponds
to this resonance point coinciding with B, giving us a condition on ms as mo = B — A.
When this condition is fulfilled, the resonance originating from B will be by = —A.

Thus, for me < B — A, there will only be one resonance originating from the leftmost
endpoint — A, and for 2B > mgy > B — A, there will be one resonance originating from the
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rightmost endpoint B. [As discussed above, for mg > 2B, there are no resonance points
inside the interval, and the solution is thus given by (5.1).]
In the case of B — A < ms < 2B, we instead have:

(z)—{;’\ z € [-A,my — B
p - 1 9
3x % €[m2— B, B
whereas in the case 0 < my < B — A, we find:
(2) = 3 z€[-Amo+ A
p Z) - 1 .
5x 2 € [ma2+ A, B]

Normalisation together with the integral equations allows us to fix both interval end-
points in terms of msg, A and the complete expression for the eigenvalue density in the case
where m1 > 2A is then given by:

1
55 2 €=\, 2mg — 3\
p(z) = 21)‘ €l e ] ™ oa< ma (5.5)
3x 2 € [2ma — 3A, 3\ — my] 2
and
1
I € |—mg,2
plz) =~ [mm 2ma] (5.6)
ox 2 € [2ma, 2)]

As seen in figure 1, both of these cases agree well with numerics, and there is a phase
transition at the point mg = A, as expected.

Having determined A and B, we can now check the region of validity of the solution.
For the solution (5.5), the condition m; > 2A gives the additional constraint A < mq/2.
For the solution (5.6), m1 > 2A requires 2¢ > m/3. In the complete phase diagram shown
in figure 3, the uniform eigenvalue density (5.1) is the density in the shaded region below
the lowest blue line. The solution (5.5) represents the eigenvalue density in the triangular
region above this blue line, having the green (A = m;/2) and black (A = my) lines as the
other sides. Finally, the solution (5.6) is the eigenvalue density in the region above this
black line, limited by the purple lines 2¢ = m/3 and 2¢ = m.

5.2 General resonance structure

In the general case, we will have resonance points originating from both interval endpoints,
which may conveniently be expressed in the tables below. Table 1 contains all resonances
originating from the leftmost interval endpoint, —A, whereas table 2 contains the reso-
nances from the other endpoint, B.

In total, the resonance points may be written as:

agk,—1 = A —mq —2m(ks — 1)
asgg, = —A+2k,m

bog,—1 = ma — B+ 2m(ky — 1) (57)
bok, = B — 2kym '

a=mo+ A,
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Figure 1. Numerical solutions for large m; with my > 0. Here, ¢ € {0.9,0.7,0.5,0.35,0.3,0.1} 3.

where kq, ky € {1,2,3,...}. From these expressions for the resonance points, it is clear
that @ and b; cannot both lie in the interior of the interval at the same time. Rather, the
condition that a lies in [—A, B] is equivalent to my < B — A, whereas the condition that by
lies inside the interval is equivalent to my > B — A (i.e. exactly the condition separating the
two non-trivial phases in the simple example considered in section 5.1), and we again have
two separate cases to consider. We discuss these cases in the order of increasing difficulty;
thus starting with the first one.

5.3 m2<B—A

In this case there are no resonances from the rightmost endpoint B. The only resonance
points are then given by the agy,, agr,—1, together with a.

Here it is convenient to first use the integral equation (3.5) to determine B. This
calculation is straightforward, since the argument of the sign-functions are strictly positive
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z —z—my Mo — 2
—A A—my A+mo
A+ mo (—A—2m) —A
A—my —A —A+2m
—A+2m A—-2m—my A—my
A—2m —mq —A+2m —A+4m
—A+4m A—4dm—mq | A—2m —my

Table 1. Table of resonance points originating from the leftmost interval endpoint, — A, where the
first row gives the “first order” resonances, the second row the “second-order” etc. Normal-sized
terms denote “new resonances”, whereas the smaller ones coincide with previous resonance points.
The small one within round brackets lies outside the interval of support of the density.

z —z—m mo — 2
B (=B —mq) mq — B
me — B B —2m B
B —2m mo — B —B 4+ 2m + mo
—B+2m +mo B —4m B —2m
B —4m —B+2m+mgo | —B +4m + mo

Table 2. Table of resonance points originating from the rightmost interval endpoint, B (same
conventions as table 1).

in the integration regime. Normalisation then forces all integrals to unity, and one finds:

r<B, —=1 by norm. B>—y,m1>0, -+=1 by norm.

B Y B
B = )\/ da’ p(x') sign(B — 2') + 2/ dy p(y) sign(B + y + mq) (5.8)
—_A —A

ma<B—A, =1 by norm.

A (B )
+ 2/Adyp(y) sign(B +y — ma)

— 2\,

in the case where moy < B — A.

The interval [—A, B] will as always be divided into parts by the interior resonance
points, which in this case are given by the points a, asg,, ask,—1, where k, is limited by the
condition that agy, 1 lies within the interval. This implies k, < % + % Let the highest
integer which fulfils this be denoted by n, such that

n = {AT;C + ﬂ . (5.9)

This means that n will be the integer number of times 2m fits in [—A,a], that is, in
2(A —¢) +m. (The number of even resonances will hence be equal to n.) Define also A to
be given by:

A=2A-()+m—2nm. (5.10)
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Figure 2. Resonance points originating from the interval endpoint —A (shown in blue), where
pink represents a, and the purple points are the odd resonance points whereas the magenta ones
are the even ones. Below these are the same points under the maps z =+ —z —mj and z = mg — 2
respectively. The density is as such divided into a piecewise constant density, made up out of two
sets: the density on the regions going from odd-even resonance points (p, ), and the density on
the regions going from the even to odd ones, denoted by p;°.

The total of 2n + 1 resonances dividing the interval will be ordered as a > ag, >
ap > Gg(p—1) > a3 > -+ > agp—1 > —A. Just as in the cases previously considered, the
eigenvalue density will be piecewise constant, and we may define different constants on the
different patches of the interval, such that:

Py in the regions between an even resonance point and an odd one
p(2) = { py~¢ in the regions between an odd resonance point and an even one , (5.11)
% between a and B

as illustrated in figure 2. In total, there will be n p°~¢ and n + 1 p®~°’s. Furthermore, the
saddle-point equation (3.7) for these two different sets of constants decouple, and we are
left with:

20, Oy TS = Vk € [1,n + 1] (5.12)

20k CH P T P = Vk € [1,n],

Sl =] =

where the boundary conditions are given by p{™° = pg~ ¢ = 0.
These may be solved by a polynomial Ansatz in k, where one finds the general solution
to be a linear function in k. The constant terms are then forced to vanish by the boundary
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conditions, giving the two sets of linear terms as:

€—0 k o—e k

Ve B S s (5.13)

The normalisation condition on the eigenvalue density may be written in terms of p;°,
Py ¢, such that:

n+1 n ~
§ : e—o 2 : o—e a
k=1 k=1

Together with the definition of A, this allows us to solve for A and A in terms of m, ¢ and
n, and we find:

A=m@2n+1) - 2((2n(n+2) + 1), (5.15)
A = (2n+3)(m —2¢(1 +2n)),

with B = 2.

Having this expression for A, we may find the critical point at which the value of n
A—(¢
m
we find the following condition on 2¢:

shifts. At the very site where n = %, that is, we enter the region with a specific n,

- m
S 2n+1°

2¢ (5.16)
However, it is interesting to notice that this is independent of the coupling, and so tran-
sitions between different phases of this kind, with only resonance points originating from
the leftmost interval endpoint, — A, will only occur with shifts in ¢/m.

Next, consider phase transitions into a phase where the resonance points from B starts
to move inside the interval. For fixed values of m, ( (and such also n), the condition that
these resonances will remain on the outside of the interval corresponds to m —2( < B — A,
which in terms of the coupling may be written as:

(n+1)(m—2¢{(n+1)) <A. (5.17)

Therefore, as A decreases, we leave this regime and enter the next one, where resonances
appear from both endpoints.

The general eigenvalue density in this case, for an FI-parameter in ¢ < %3 and coupling
satisfying equation (5.17), will be given by:

@iy V% € lasgo1) aomomypa] k€ [Ln+1]
P(Z) = m Vz € [aQ(n_k)_,_l,an] ke [Ln] , (5.18)
2% Vz € [a,2)]

where ag and a_1 should be interpreted as —A and & respectively, and n is defined by
equation (5.9).
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5.4 TI‘L2>B—A

This situation is more complicated. Although @ now lies outside the interval, there are
now interior resonance points originating from the rightmost interval endpoint B as well.
The complete set of resonances in this case is given by the expressions in equation (5.7),

namely:
a2k, —1 = A— mi1 — 2m(k:a - 1) Y0 < ka < % + % (5 19)
agk, = —A + 2k,m V0 < k, < ALB '
bgkb_lzmg—B—l-Qm(kb—l) V0<kb<%+%
bok, = B — 2kym VO < ky, < 48
where kg, ky € 1,2,... and the upper limits comes from requiring the resonances to lie
inside the interval of support of the eigenvalue density [—A, B].
When mg > B — A, it is easy to see that
A+B A-¢ 1 B+(¢ 1
- Z 5.20
om "~ m + 25 "m + 2’ (5.20)

and both k,, kp are then limited by A;TB' We again define n as the integer part of this

n:[A;f], (5.21)

number,

such that aoy, bo, denotes the final even resonances. However, in some cases, the following
odd resonances may lie within the interval [—A, B] as well. This gives rise to three different
cases that are examined in appendix A in detail. These are:

. C’ase](n:[ﬂ],ﬂ—%<ﬁ—%<n):

2m m m
2n+1
A=) -2 5.22
n+1 ¢n ( )
2n +1
B=2X 2
] + 2¢n
o Case IT (n=[428], 46— L << BEC ),
2n+1
A=) -2 5.23
n+1 ¢n ( )
2n + 3

B=— 2 1 A
m+2¢(n+1) + e

o Case Il (n= [AB] n < AC 1 o BEC 1,
2n + 3
A=-m-—2 1)+ A 5.24
m—2¢(n+1)+ —— (5.24)
2n+3
B=- 2 1 A
m+2¢(n+1) + |



5.5 Phase transitions

The condition me > B — A also manifests differently in the three different cases. In cases [
and III, this turns out to be completely independent of the coupling, whereas this is not
the situation in case II. However, this is to be expected since the second situation is quite
similar to the situation with resonances only from the interval endpoint —A, considered in
section 5.3. The condition found upon the coupling in case II is precisely

A<t M=n+)(m-2¢(n+1), (5.25)

which is precisely opposite to the condition (5.17) in section 5.3. Thus, as the coupling
decreases for a fixed m, ( and, therefore, n, eventually, the inequality is saturated in (5.25),
the resonances from B move inside the interval and a phase transition occurs, leading to
case II of this section.

The conditions for the two other cases considered in this section are

m

Case I: C < m (526)
m
IIT: _
Case C< 3@+ 3)

In this situation, where ¢ < %, and ma > B — A, there are clearly phase transitions.
This is expected, since they do appear in the situation with vanishing FI-parameter. How-
ever, there are different kinds of phase transitions: both in between the three different
cases (described in detail in sections A.1-A.3), within the same value of n, and one where
the value of n changes.

Let us start with some fixed value of n, such as n = [AJF—B], and let us consider the

2m

case where n is larger than % — % Then, as the coupling increases, so does % — %
(growing linearly with coupling) for some fixed n. At some point this will surpass this n,
and a phase transition occurs that will take us to case Il above. This will happen for the

coupling;: .
T = 5(” +1)(m —2¢), (5.27)

which in the case of vanishing Fl-parameter simply corresponds to the situation where
another factor of m fits inside the interval.

From there onwards, as the coupling grows further, so will the factor % — % (also
growing linearly with A), and at the point

1
N = 5(" +1)(m +2¢), (5.28)

another phase transition occurs, taking us into case III. It is worth noticing that this phase

transition does not occur in the case of vanishing FI-parameter, but rather coincides with

the one between case I and II, simply because the second case, where n € [% —1 B l] ,

never occurs for ¢ = 0, since this interval then is empty.

A+B
2m

has grown to the point that the integer part of it changes, and that n increases with one.

The final phase transition then occurs as one goes from case III back to case I,
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A+B __ :
t 5> =n+ 1, occurring at

m(n+1)(n+ 2)
2n+3 '
This corresponds to the result obtained in [1] for the transition from m fitting a total of
2n + 1 times inside the interval [—A, A] to m fitting a total of 2n + 2 times, for ¢ = 0.
(Again, in this special case, this corresponds to another multiple of m fitting inside the

This happens at the poin

s = (5.29)

interval.)
In order to determine the order of these phase transitions, we need to study the analytic

properties of the free energy,
1
F=- InZ 5.30
RN\ N, 0 (5-30)

at the critical values of the coupling. It turns out that both the first- and second-order

derivative of F' are continuous, whereas the third-order derivative is not. Let us denote
by AF the difference between the subcritical and supercritical free energy in each phase
transition. For the phase transitions occurring between the case with only resonances from
—A, for some given n, (presented in section 5.3) to case II with this same n presented
above, occurring at A2 = (n+1)(m — 2¢(n + 1)), we find:

ONAF|, 4 = 03

(5.31)
2

(n+1)*(m —2¢(n+ 1))2

Note that the apparent singularity at m = 2{(n + 1) is outside the region where these

solutions apply, m/(2n + 3) < 2¢ < m/(2n + 1).
Similarly, at the critical points between the cases I, IT and III above (described by

05

equations (5.27)—(5.29)), we once again find a discontinuity at the third derivative, whereas
all lower derivatives are continuous:

32
3
8AAF\A£<nH11(n> " (n+1)3(m — 20)2 (552
32
3 J—
8AAF}A£1<nHHI(n> T (n+1)3(m+20)2
2(2n + 3)°

83AF n)—I(n - —
\ ‘Aém )= 1(n+1) mQ(n—l- 1)4(n—l—2)4

Therefore, just as in the case with vanishing FI-parameter, these phase transitions are all
of third order.

Finally, one may also look at transitions between solutions (5.18) of section 5.3 with
different n, as the FI parameter ( is increased along lines of constant A. The solution (5.6)
represents the case n = 0 and is valid in the region 2¢ > m/3, A > mg. The case n = 1
can be readily found from the general formulas of section 5.3. We obtain

ﬁ [ A al]
= [a ] m m
p(z) = 3; A>2m—8(, — <2< —, (5.33)
5 € [ag, ma + A] 5 3
& 2 €[ma+ A, 2)]
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with
A =3m — 14, a; =2m — 16¢, as =14 —m. (5.34)

In crossing the line 2¢ = m/3 from lower to higher values of ¢, the solution changes
from (5.33) to (5.6) (in figure 3, this corresponds to crossing the purple line at 2¢ = m/3
that begins at an hexa-critical point). The discontinuity in the free energy shows up in
the third derivative with respect to {. Again, for convenience we first compute 9y F which
has a simple local expression, given by —(22)/A2. We find that first and second order ¢
derivatives are continuous, whereas

432
3
aC(AaAF)bC:% =5 (5.35)
More generally, for the transition from the n — 1 — n solutions (5.18) we find
16(2n +1)3
3 _
8§(A8,\F)}2<:2$r1 =0 (5.36)

Thus the quantum phase transitions between these phases are also of the third order.

6 Summary of the analytically continued model

6.1 Case \{ = )\

We have herein seen that the phase structure found in [1] is significantly enriched when
the theory is deformed by a Fl-parameter, (. The saddle-point equations then loose the
reflection symmetry present at ( = 0, and the behavior in the decompactification limit is
highly dependent on the value of this new parameter. As { — 0, we recover the results
of [1].

For an Fl-parameter large enough, ¢ > %, the theory is free from phase transitions.
However, for |(| < %, phase transitions appear. The precise appearance of the eigenvalue
density and the position of the phase transitions in phase space depend on A and ( in
relation to m.

To illustrate this dependence, one may consider a phase diagram with the dimensionless
axes A\/m and 2¢/m (figure 3). Phase transitions then occur on certain critical lines in
this phase space. There are no phase transitions in the region where the FI-parameter
satisfies ¢ > %, and so there is no use to show the phase diagram further than 2¢/m = 1.
For 2¢/m < 1, the only phase with no resonances is the constant eigenvalue density (5.1),
occurring in the shaded region of figure 3. At the purple dots, there are six coexisting
phases: they are hexa-critical points.

It is worth noting that the phase transitions between cases I, II and III only occur in
a specific order (see figure 4). The number of phase transitions undergoing as the coupling
A runs from 0 to infinity depends on the value of 2¢/m, and the maximal n™** that will
occur is given by the largest n fulfilling \$;; ., ;(n) < A4(n), which, by using equations (5.25)
and (5.29), implies:

m 1

e 2] o
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Figure 3. Phase diagram of the analytically continued model. Black critical lines separate phases of
case I (below) from phases with only resonances from —A (above). The shaded region corresponds
to the constant eigenvalue density (5.1). Crossing the blue, green and red lines corresponds to
phase transitions from cases with resonances from both endpoints, I — II, I — III and IIl — [
(where n increases by one), described in section 5.4. The purple dots are hexa-critical points. The
purple (vertical) lines separate phases described in section 5.3 differing in one unit in the value
of n, representing solutions with 2n + 1 resonances from the leftmost interval endpoint. At the
orange triangles the eigenvalue density has been computed numerically and compared to theory
(see figure 5).

Case /
(\
7
Q
Case /Il Case I/
Only
resonances
from -A

Figure 4. Sequences of phase transitions in the theory at constant (. As A\ grows, the cycle
continues until the value of n™® where, for given m, ¢, one has \Z =4 (pmax) < \H=HI (pmax)
after which the cycle ends.

The number of phases is then given by 3(n™®* 4 1), It approaches infinity as 2¢/m — 0.
This is to be expected in order to match the ¢ = 0 case [1]. However, for any non-vanishing
Fl-parameter, there is only a finite number of phase transitions in the theory (and no phase
transition for 2¢ > m).

The grey, vertical line in figure 3 at 2¢/m = 0.22 illustrates an example on the phase
structure of the model, and how to read the diagram. For 2¢/m = 0.22, one has n™®* =1
by (6.1), hence 6 different phases along the grey line. Starting at the bottom of the diagram,
we are in the trivial phase (case I with n = 0). As the coupling grows we moves upwards
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A/m 0.22 0.5 0.63 0.73 0.96 1.2
n [0.22] =0 | [0.61]=0 | [0.89] =0 | [1.095] =1 | [1.53] =1 | [1.85] =1
Phase | I,,—o II,,—o 11, I,—1 II,—1 (only A-resonances),—1

Table 3. Sequence of transitions and corresponding n = [%} in cases I-III and n = [% -
in the phase with only resonances from one endpoint.

]

N|—=

along the grey line until we cross the first blue line. This corresponds to a phase transition
into case II with n = 0. After crossing the green line, we enter III with still n = 0, and
when crossing the red line, we move back into case I, but now with n = 1. Crossing the
next blue line takes us to case II, n = 1. However, instead of crossing another green (and
thereafter red) line, we rather cross a black line. Beyond this point, all resonances from the
rightmost interval endpoint move outside the interval of support of the eigenvalue density,
and we thus get into the phase described in section 5.3 with n = 1, having resonances only
from the leftmost interval endpoint —A.

As the coupling grows further, no new resonance points enter the interval, and the
system never leaves this phase. The orange horisontal lines in figure 3, together with the
orange triangles, represents points at which numerical calculations have been made in order
to compare with theoretical calculations. The eigenvalue density for the six phases present
for values of m, ¢ such that 2¢/m = 0.22 are presented in figure 5, and we find an excellent
agreement with our theoretically derived densities in sections 5.3, 5.4 and appendix A. The
smoothness of the curves visible in figure 5 has to do with finite-size effects.

As a check, using equations (5.22)—(5.24), we may compute the values of n in these dif-
ferent phases, and these results are summarised in table 3. The results follow the expected
pattern, where n changes in going from case III to case I.

The results of section 5.4 (and appendix A) explain some of the peculiar properties of
this model in the special case of ( = 0: as resonances from both the left- and right interval
endpoints appear in the interior of the interval, the interval is divided into four qualitatively
different regimes: two in between resonances originating from the same interval endpoint,
and two in between resonances originating from different interval endpoints. As the FI-
parameter goes to zero, these regimes become pairwise indistinguishable from one another
due to the presence of reflection symmetry. The different origins of these regimes are indeed
visible in the eigenvalue density, as “odd” and “even” patches of the eigenvalue density
behave significantly different from one another; in addition, the critical couplings at which
phase transitions occur are different for “odd” and “even” phases (where mass parameter m
fits inside the interval an even- or an odd number of times). This is all explained here by the
fact that these regimes actually originate from different sets resonances; some originating
from the leftmost endpoint, and some from the rightmost endpoint of the interval. In this
way, the general solution with ¢ # 0 explains a phenomenon which appears to have no
deep reason in the case of vanishing FI-parameter.

Furthermore, one may note that the green and blue lines in figure 3 coincide when
¢ = 0. Here, the only phase transitions occurring are the ones between the cases I and III.
This is required to agree with previous results for ¢ = 0 [1].
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Figure 5. Eigenvalue densities determined numerically for the six phases present with 2¢/m = 0.22
and A\/m € {0.22,0.5,0.62,0.73,0.96, 1.2}, compared with eigenvalue density determined analyti-
cally, for the cases I,,—q, II,,—0, IIl—0, In=1, II,—1, Apn=1 (grey lines). [The smooth edges of the
eigenvalue density are due to the finite radius R used in the calculations. Here, mR = 50. For
higher mR the numeric is unstable.]

6.2 Case A\ # Ao

6.2.1 First analytic continuation

It is interesting to ask what happens in the case when the couplings are different. We
assume A1, Ao are real (as discussed, for general complex values of A1, A2 the saddle-point
equations become complicated to solve, even numerically). Then we have to compute the
partition function in the convergence region where Ao > 0. We further assume, with no
loss of generality, Ay > Ao.
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First, let us consider the limit of very large Fl-parameter. In the case of ( — oo, both
shifted terms of the saddle-point equations (3.6) vanish, and we are left simply with
1 . 1
Pz = T)q ) Py = 27>\2 .

Using the integral equations (3.5) with x = B, y = D, together with the normalisation

(6.2)

conditions for the densities, one finds the interval endpoints to be given by:

B=D=X+\ (6.3)
A=—C=X\—X

Consider what happens when the FI-parameter decreases. Then there are two points where
the above solution (6.2) may cease to be valid:

e A resonance point moves inside the region of support for the eigenvalue density. The
first point to do this is the one originating from the leftmost interval endpoint of the
other interval. That is, A — mgy (or C' — mg) moves inside the interval [-C, D] (or
equivalently [—A, B]).

e The sign-functions change inside the integration regime in (3.5).

Given the solution in the case {( — oo, we find that the first one of these situations
occur precisely when my < 0 and, just as in the case with equal couplings, there will be a
phase transition in the theory as soon as ¢ < .

As for the second possible point of failure for the solution (6.2) for large ¢, one may
easily show that the sign-functions will not change signs inside the integration regimes
until ¢ < 3 — Ao, ¢ < % — Ag, which for positive couplings always happen after the
phase transition originating from resonance points entering the intervals. This shows that
the theory with ¢ > % does not have phase transitions, generalizing the result found in
section 4 to the case of arbitrary Ay, Ao > 0.

We now derive the solution in this new phase, where ¢ decreases just below 5. Assume
¢ =3 — u, for some u, satisfying 0 < u < 7§ (together with some other conditions which

2
will shortly be specified). Then one finds

mi1 = 2m — 2u (> 0) (6.4)
mo = 2u.

(It is here worth noting that both terms shifted by m; in the saddle-point equations (3.5)
will vanish, at least for small u, since we know A = —C' in the limiting case of u = 0.)

We wish to consider a situation where the resonance point from the leftmost interval
endpoint of one interval lies in the interior of the other one (i.e. A+mgo < D, C+my < B),
which gives us the additional conditions on u© mentioned above. This is equivalent to saying
that the resonance points originating from the rightmost endpoints of the intervals will lie
outside the region of support for the densities. As long as these conditions are satisfied,
the integral equations may once more be used straight away to obtain

B=D=X\+ X\, (65)

just as in the case of ¢ > .
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The intervals [—A, B], [-C, D] will then be divided into two parts each, and using a
piecewise constant Ansatz for the eigenvalue density on these patches, together with the

normalisation condition, one obtains:

ﬁ Vz € [=A1+ A2 — 2u, —A1 + A2 + 4u]
i Vz € [—)\1+)\2+4u, /\1+)\2]

ﬁy(z): i Vz € [—)\2+)\1—2u, —)\2+)\1+4u].
g V2 € [Aa+ A +du, A+ A

Thus, as the Fl-parameter decreases just below 7, a phase transition occurs, even

though A1 # A2. Additional phase transitions are undergone as resonance points continue
moving inside- or outside of the region of support of the eigenvalue densities. The quali-
tative behaviour of the theory is therefore similar to the A\; = Ao case studied in previous

sections.

6.2.2 Second analytic continuation

Consider for simplicity m; = mg = m, i.e. ( = 0. The saddle-point equations (3.8) imply
the following functional equations:

1 1 1
pa(T) = 2y T oPy(@+m) + 5py(z —m), (6.6)
1 1 1
py(y) = 209 + 5/?95(96 +m) + ipx(l’ —m). (6.7)
The trivial solution is
(2) = o € ( )
Pz\T) = 201’ T o1, 01
1
py(y) = 205 y € (—az,a2) (6.8)

and holds provided aq + as < m.
When o7 + ag > m, the solution has two patches:

1
5o x €10,qa]
pz(x) = {221 1 ’

E‘f‘% ZL'E[CL,A]
1
- €[0,b
=17 velU (6.9)
Y 2 1
a=m—p=2m=0a) g oaotm) (6.10)
2001 4+ ap 201 + an
2 —
bem_ Az 2@mo) o ailaetm) (6.11)
a1 + 200 a1 + 2ap

where we only exhibited the region « > 0, since in this ( = 0 case the density has reflection

Symmetry.
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Thus there is a phase transition for generic a1, as > 0. Note that the solution requires
a1, ao to be positive, as the eigenvalue densities must be positive. The free energy can be
computed from the formulas

1
Za%

1

8a1F - ng

(@), OnF (y?) . (6.12)
One can check that the resulting expressions satisfy the integrability condition Oy, 0n, F =
Oy 0a, F'. For the phase with uniform density (6.8), we find

F a4+ ). (6.13)

For the phase (6.9)

—6(a1 + ag)m? — 3araem + anan(ar + o) + 2m?
12(2a1 + a2) (a1 + 202) '

F; = (6.14)
It follows that the first and second derivative are continuous at the transition point
a1 + ag = m, whereas the third derivative has a jump:

95 AF| = ! ., AF=F —F;. (6.15)

ez=m=—air  (2m —aq)(m+ ay)

Therefore the transition is, as in the first analytic continuation, third order. It occurs for
generic, positive values of ay, as at a; + as = m. Note that this phase transition is not
meaningful in the ABJM case: it occurs when «y + as > m, which is never the case in
ABJM where ay + ag = 0.

7 Mass/FI-deformed ABJM theory does not have phase transitions

In previous sections we solved the mass-deformed ABJM model with a non-vanishing FI
term at large IV, with the couplings analytically continued into the complex plane. This
is a standard approach in studying the large N behaviour in Chern-Simons theories (see,
e.g., [4, 18, 25, 26]). We have found a rich structure of phase transitions, but an important
question is whether the ABJM model with physical couplings and masses exhibits phase
transitions as the coupling is varied. For the mass-deformed models, analytic continuation
back to physical couplings is not straightforward, due to the existence of poles originating
from the hyperbolic functions in the partition function. Clearly, it would be more desirable
to have a direct solution of the large N ABJM model with the original parameters, with
k1 = —ko integers. Solving the saddle-point equations in this case turns out to be very
complicated, because eigenvalues seem to be distributed in cuts in the complex plane, with
non-uniform N dependence. In this section we will argue that physical ABJM theory
deformed by arbitrary mass and FI terms is free from phase transitions.

7.1 General case

We start with (2.2), with m < 2¢. In section 6.2.1 we have shown that this theory does
not have phase transitions for generic A1, Ao, real and positive. Therefore the free energy
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is a smooth function of the couplings A1, Ao, indicating that there should not be phase
transitions after A\j o — eii“’/\l,g analytic continuation back to the physical ABJM model
when m < 2¢. But the partition function of the ABJM model Zap(2¢,m) (with Ny =
N3) has the symmetry (2.10). The symmetry holds for any NV, in particular, in the planar
limit N — oo with fixed k/N. If for given ¢ and m, Zapym(2¢, m) is a smooth function of
k/N, then so is Zapym(m, 2¢). This indicates that there should be no phase transitions in
ABJM neither in the opposite regime when m > 2(.

7.2 Massive U(2) x U(2) ABJM

We now consider a case where the partition function can be computed exactly, namely the
N =2 case, i.e. U(2) x U(2) ABJM deformed by mass and FI terms. We will first consider
the analytically continued model with real, equal couplings, particularised at N = 2. This
corresponds to the second analytic continuation in the Chern-Simons levels, defined in
section 3.2 and further studied in section 6.2.2 (now the first analytic continuation cannot
be used because the ranks of the two gauge groups are fixed from the beginning). We will
show that, in the same decompactification limit, the model also exhibits phase transitions
of the same nature as the large N model. Then we will discuss the U(2) x U(2) ABJM with
physical coupling and parameter deformations, and show that there is no phase transition
in this case.

7.2.1 The analytically continued model with equal, real couplings

Consider the gauge group U(2) x U(2), and analytic continuation in the Chern-Simon levels
to equal, real couplings. The partition function (2.1) takes the form

2
1 / Pp d?v sinh? £(uy — po) sinh? £ (g — vy) e~ 25 L)
(

7 == 7.1
27)2 (2m)? H?,j:l cosh (& (p; — vj +m)) cosh (& (p; — v; — m)) (7.1)

4

where the R-dependence has been restored. In this subsection, for simplicity we set the
FI-parameter to zero, since this case already illustrates the main point. This is the analog
of the models with a1 = a9 studied at large N in section 4 of [1], and briefly reviewed in
section 3.2. They have similar phase transitions as the A\; = A9 models obtained by the
analytic continuation in the gauge group ranks, discussed in detail in sections 4, 5, 6.

Although phase transitions in matrix models typically arise at large IV, this type of
phase transitions due to the contribution of extra massless multiplets at certain couplings
have also shown up in some finite N examples [11, 14]. The reason is that the contribution
of an extra massless multiplet produces a singular behaviour at any IV, even when N = 2.
We now wish to see if the present model also has phase transitions.

The non-analytic behaviour arises upon taking a suitable decompactification limit R —
00, where the integral defining the partition function is dominated by large expectation
values ;, v;. In this limit, the hyperbolic cosine functions in the denominator get replaced
by the non-analytic functions %exp |ni — vj &£ m|, which produce non-analytic behaviour
when the coupling is such that p; — v; at the saddle-point hit =m. We therefore assume
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the same scaling we used in the large N case:

9= AR,
R — o0, A fixed .

For large R, Z may be written as:

2 2
7 — 4/ (;l ,L)L2 (;Z I;Q eR[|#1—#2\+|V1—V2|—% 37 jm1 (Ipi—vj—m|+|pi—vj+m|)— 55 Zi(uf‘i'”?)} (7.4)
s ™

and the integral is dominated by a saddle-point. The saddle-point equations are

2
1 1
THL=E sign(pu — —5 Z; sign(p1 — v; —m) + sign(u1 — vj +m)] (7.5)
j=
1 1¢
TH2 = sign(puy — p2) — 3 Z [sign(po — v; — m) + sign(pg — v; + m)] (7.6)
j=1
1 1
= sign(vy — 1) —5 ; sign(vn — p; —m) +sign(vy — pj + m)] (7.7)
1 1L
NI sign(vy — 1) Z sign(ve — pj —m) + sign(va — pj +m)] (7.8)
j=1

We can assume with no loss of generality pu; > po and vy > ve. If the eigenvalues are
sufficiently small, their difference will be less than m. Then the sign functions containing
m in the argument cancel out and we find the solution

Mlz)\; [LQ:—/\, V1:/\, VQZ—)\. (79)

Thus this solution holds for!
m
A< 5 - (7.10)
When A > 7, the solution will change, because the difference of eigenvalues can overcome
m and in this case the sign functions will contribute. In this A > % regime, the absolute

minimum of the action is given by

m m

/L1:I/1:5, Ho =V = ——. (711)

In this case the arguments of some sign functions vanish. The action is not differentiable
at this point and the minimum must be found by inspection.

Therefore the theory contains two phases. The free energy F' = —+ ln Z in each phase
is given by the action evaluated at the minimum of the potential. We ﬁnd

{4m—2)\ )<
F = -,
2m+ﬁ )\>

SERSE

For two independent couplings A1, A2, the solution is 1 = —p2 = A1, v1 = —v2 = A2, with A1 + X2 < m,
which is the N = 2 analog of the solution (6.8).

~ 98 —



This implies a discontinuity in the second derivative

8
AF‘,\:% - aAAFL\:% =0, 8,2\AF‘,\:% = (7.12)

Therefore, we conclude that the analytically continued U(2) x U(2) mass-deformed ABJM
model presents phase transitions.
7.2.2 U(2) x U(2) ABJM model with physical couplings

The partition function of the U(2) x U(2) ABJM deformed by mass and a FI term computed
by localisation is given (see (2.1) with N = 2)

12— 19—
7 1/ du d*v sinh u.12u'2 sinh u12V2v | ot Yi(u =) =45 (3 mit X va)
4.) (2m)? (2m)* [7,_, cosh (M=) cosh (H—4—")
(7.13)
Using (2.8) for N = 2, the partition function can be written in the following form
1
Z = 5(21 — Z3), (7.14)
with
e*ik‘mz(‘r1+7’2) 7
Z1 = [ dndr , .15
! / e cosh(rkr ) cosh(mks) cosh? () (7.15)
and
e—ikmg(T1+T2)
Z - d d )
2 / e cosh(mk7) cosh(mkTs) cosh (7T(7'1 —T9) — %)) cosh (7r(T1 —T9) + %))
(7.16)
mp =m+2¢, mo =m —2(. (7.17)

It is important to note that the derivation that leads to this form of the partition function
holds if and only if the Chern-Simons levels of both gauge groups in U(2)y, x U(2), are
opposite, i.e. ko = —kj.

The first integral can be computed by using the Fourier integral (2.6). We get

1

B k2 cosh? (%) cosh? (%) )

Zy (7.18)
Next, consider the calculation of Z5. Note that we have reduced the original four integrals
to only two integrals 7; and 79. The integral (7.16) can be carried out by defining variables
u = 71 + T, v = 71 — . Then the integral over u is a Fourier transform than can be
computed explicitly:

—ikmou 2 sin(k
/ du — - _ _ 2sin(bmzv) (7.19)
cosh T (u + v) cosh T (u —v)  ksinh(mkv)sinhmy
Hence ) -
Zy= " / dv— sin(kmzv) : (7.20)
k sinh mg sinh(mkv) cosh (mv — %) cosh (mv + 2t)
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Restoring the R dependence, and rescaling v — Rv, we have
2)\R? /d sin(mavR/\)
= v
2 sinh(maR) sinh(mv/A) cosh (R(mv — %)) cosh (R(mv + %))
where we defined A = 1/(kR) = fixed. At large R, this integral is not dominated by
a saddle-point; nevertheless, it can be computed exactly. For R — oo, the product of

(7.21)

the hyperbolic cosines in the denominator becomes proportional to a step-function with

support in the interval ( — o2, %) The sin(7v/\) in the denominator can be replaced
by mv/\ (as can be seen e.g. by a change of integration variable v — z/R). The resulting

integral can be carried out explicitly, with the result
32 k
Z2 = —F e—R(|m1|+\m2|) Si —|m1m2|R2 s (7.22)
k2 27

where Si(z) is the Sine integral function. Combining with Z; at large R, we finally obtain

_ 8 R(maltman [ _ 2 ([ F >
Z—er 1 7rSl 27T|mlmg|R

N 32
- k3\m1m2\R2
where we have used the asymptotic expansion of the Sine integral function.
Thus we have evaluated the U(2); x U(2)_r ABJM partition function with both
mass and Fl-parameter deformations in the large R limit. In particular, this shows that

k
e Rlmal+Ima)) (g <2|m1m2|32> , (7.23)
s

F = —%an is an analytic function of the coupling k (or A). Therefore, for physical
couplings, the model does not exhibit phase transitions. More generally, since the Sine
integral function is an entire function in the whole complex plane, the theory does not
have phase transition in any region of the k-complex plane. Thus, phase transitions seem
to be absent in U(2) x U(2) ABJM theory, where the Chern-Simons levels of the gauge
group are opposite integers.

Remark. The partition function (7.23) has zeroes, which, at large R, are located at

kmimsR2 = mlmeR ~r22n+1), neZ (7.24)

These are Lee-Yang singularities.? It is easy to see that the partition function has zeroes
also at finite R. It would be interesting to get further insights on their physical meaning.
They appear to be resonances occurring at special values of mR, perhaps associated with
Kaluza-Klein excitations in S®. They seem to arise by virtue of the fact that: a) Chern-
Simons theory has imaginary coupling g = 27i/k; b) the theory has mass/FI deformation;
c) the theory is on a compact space. As a small check, one can see that the partition
function of other Chern-Simons theories with massive matter also exhibit similar zeroes.
In particular, for U(2) Chern-Simons theory with fundamental matter one finds [14]

im2R2 im2R2
S ) (1)
(k=2) — (e2mR —1)2 ’

Z

(7.25)

2We thank K. Zarembo for this remark.
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which, indeed, has an infinite number of zeroes at m?R? = n%n, m?R? = 72(4n — 1),
n=12...

8 Concluding remarks

In the first part of this paper we have studied the general solution to functional equations

of the form
1 1 1

p(2) = oy = gp(=z —ma) = op(—z +ma), (8.1)

where p(z) is a unit-normalised density supported on some interval [—A, B] along the real
axis. We have shown that this equation describes the large N limit of the mass- and FI-
deformed ABJ partition function Z (A1, A2) with couplings Ay = 27Ny /k, Ao = 27iNa/k
analytically continued to the complex plane, in the particular region where \; = Ay € R.
The study herein generalises the discussion of [1], corresponding to the case m; = mgy in
this notation, and this generalisation turns out to be highly non-trivial since it amounts
to giving up the reflection symmetry around the origin which drastically simplified the
analysis in the special case of mi = msy.

Unlike the case of vanishing FI-parameter, for ¢ # 0 the theory exhibits a finite number
of phases as the coupling is increased from 0 to infinity. The structure of these phases is
summarised in section 6 and in the complete phase diagram given in figure 3. One result
obtained here of particular interest is that the FI deformation alone, while it introduces a
mass scale, does not generate phase transitions. Furthermore, in section 6, we have also
considered the cases of generic (real and positive) couplings A1, A2, as well as the case of
analytic continuation in the Chern-Simons levels instead, and showed that the qualitative
picture is similar to the equal coupling case of previous sections.

An important question concerns the implications of these results for the physical ABJM
theory, where the couplings are opposite (\; = —\2) and purely imaginary. We have pre-
sented an argument showing that there are no phase transitions in this case. The argument
relies on the symmetry of the original ABJM partition function under exchange of FI- and
mass-deformations, along with the fact, derived in section 6.2.1, that the analytically con-
tinued theory is free from phase transitions when ¢ > m/2. To further clarify this issue,
we have computed the partition function for the gauge group U(2) x U(2) exactly. While
the theory has phase transitions of the same nature as the large N model in a region of
parameter space (in particular, at equal real, couplings), there are nevertheless no phase
transitions in the physical ABJM case, where the Chern-Simons levels are k and —k.

The U(2); x U(2)_j example explains why the U(N); x U(N)_ ABJM model should
be free from phase transitions. It would be interesting to get further insights on the whole
picture and on the analytic structure of the mass/FI-deformed ABJM partition function.
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A The phases for my > B — A

In section 5.4 we found that, when my > B — A, even and odd resonances can get into the
interval [—A, B] of support of the density in three different ways:

e (lase I. Both points as,+1 and bay, 41 lie outside the interval, which is equivalent to

A-¢ 1 B+(¢ 1
—_— e ——= — = . Al
m 2< m 2<n ( )

e (ase II. The point ag,+1 lies outside the interval, but by, lies inside the interval,

corresponding to
A— 1 B+(¢ 1
—_— = N A2
m 2 =S m 2 (A.2)

e (Case III. Both ag,4+1 and bo, 41 lie inside the interval, that is,

A— 1 B 1
_A=C 1 _B+c_

- 5 - (A.3)

D |

In what follows we examine each case separately.

Al Casel:n=[48] A€ 1B 1y

2m m m
In this case, the ordering of the resonance points in the interior of the interval will be
given by:

—A <bgy < by < agp—1 <ag < by <bz <agp_1)—1 < - < (A.4)
< Aop—9 < by < bgp_1 < a1 < agp, < B,

which is illustrated in figure 6. With a piecewise constant Ansatz for the density on

the form:
a/Bk Vz € [a2k)b2(n k) ] ke [O,TL]
Vz € |byn b kell,
p(z) = Bk 2 € [bant1-k), b2k—1] [ n]’ (A5)
Bay Yz € [ba—1,a9(n—t)+1] Kk € [1,n]
Qg Vz € [ag(n—r)+1> A2k ke [1,n]

with —A = ag, B = by, the saddle-point equation (3.7) for af, Bk, fak, oy takes the form:

206+ Bon i+ foni k=5 k€ 0,n] (A.6)
20k + Bnt1-k + Bnya—k = % ke l,n]
2Bay + aBn—k + afnyi1—k = % ke [1,n]
20 + Qg + Q1 = % ke[l,n],

with the boundary conditions £,11 = ag = Ban+1 = Bag = 0. The decoupled equations,
for «, 3, are straightforward to solve, and from the two remaining coupled equations, one
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Figure 6. Resonance points originating from the interval endpoint —A and B (which are shown
in blue). Resonances originating from —A are shown in magenta (even, asx), and purple (odd
resonances, asg—1). OSimilarly, resonances originating from the rightmost interval endpoint, B,
are shown in yellow (even, bog) and red (odd, beg—1). These resonances exist for all k < %.
Furthermore, the resonances under the maps z — —z —my and z — mo — 2 are shown underneath.

finds that the general solution for Say is a linear function in k. Enforcing the boundary
conditions, both integration constants vanish, completely specifying Say, and thus also
afi. Altogether, one then finds the eigenvalue density as:

afy = % Vz € [agk,bg(n k) ] ke [0,77,]

p(z) _ Br = )\1(%55) Vz € [bQ(n—f—l k)s bog— 1] ke [1,71] (A?)
Bai =0 VZE[ka 1, 42(n— k)—i—] kE[l,n]’
akZﬁ Vz € [ag(n—t)+15 Q2] k€ [1,n]

which simplifies to the solution found previously in [1] for the case of a vanishing FI-
parameter.

A.2 Casell: n= [AQ"'TBL % 2 <n< B+C %

In this case, the point bg,4+1 lies inside the interval [—A, B], but the point ag,+1 does not.
The ordering of the interior resonance points in this case will be as in the previous, but
with odd- and even b-resonances interchanged, that is:

—A<b <by, <agm_1<as < by < b2(n—1) < a2(n—1)—1 <0 K (AS)
< Qop—9 < bop_1 < by < a1 < ag, < bgn_H < B.
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Again, the density will be given by a piecewise constant one, which, using the notations
abr, Br, Bayg, ai are governed by the following equations:

1
200k + Bk + Bani1—k = X k € [0,n] (A.9)
1
2Bk + Bn—1—k + Bn—k = X k€ [0,n]
1
280, + aBy—p + afBpp1-k = " ke [1,n]
1
20 + Oy + Oy = Y ke [l,n],
together with the boundary conditions
Qg = 571 == BO[(_) == ﬂanJrl =0. (A]_O)
This gives us the eigenvalue density as
afy, = % Vz € [agk, bagt1] k € [0,n]
Bk = A(éfgn) Vz € [bagt1, ba(n—p)] k € [0,n]
p(z) = . (A.11)
Bag =0 V2 € [by(n—it1)s G2(n—k)+1) Kk € [1,7]
ap = ﬁ Vz € [ag(n—k)+1, 2] ke [1,n]

A3 CaseIII:n:[%],n<ﬂ 2<B+< 1

m 2

In this case, both ag,4+1 and bay,q will lie in the interior of the interval, and the ordering
amongst the interior resonance points will be as in the second case, but with interchanged
ordering amongst the a;’s. Furthermore, since the point as,+1 now enters the interior of
the interval, this will be the leftmost resonance point, and not b; as in the previous case.
The ordering may be seen in figure 7.

Once more, we write down a piecewise constant Ansatz for the density, the only change
from the previous case is the numbering and precise appearance on the boundary conditions
for oy, Br, aBk, Bag. Let our Ansatz be:

ag Vz € [agk, agn-ry+1] Kk €[0,n]
Vz € |ag(n— ,b k € |0,
p(z) = { P V7 € iy, b 0,m]. (A.12)
Bk V2 € [bagt1, Dagn—r)) k € [0,n]
Boar, Yz € [byny1—k), a24] k€ [1,n]
Then, the saddle-point equation (3.7) takes the form:
1
200 + Oy + Qpy1k = X k € [0,n] (A.13)
1
200y + Bap— + Bani1k = X k € [0,n]
1
28k + Brn—1-k + Bn—k = X k € 0,n]
1
2/8ak‘ + aﬁnfk + a/BTH*l*k - X ke [17 n] )
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Figure 7. Resonance points originating from the interval endpoint —A and B (which are shown
in blue). Resonances originating from —A are shown in magenta (even, asx), and purple (odd

resonances, asg—1). OSimilarly, resonances originating from the rightmost interval endpoint, B,
are shown in yellow (even, bog) and red (odd, bog+1). These resonances exist for all k < %.

Furthermore, the resonances under the maps z — —z —my and z — mo — z are shown underneath.

with
Qont1 = B-1 = Bag = Bany1 =0. (A.14)

Hence, in general, the eigenvalue density in this case is given by:

n+l—Fk

Ak = \@B+2n) Vz € [agk, Gz(n—k)+1] k € [0,n]

p(z) = B = 35 Vz € [ag(n—t)11:b2k+1] Kk € [0,n] ’ (A15)
B = % Vz € [bagy1, Dagn—r)] k€ [0,n]
Bag =0 V2 € [bapni1-k)» a24] ke [1,n]

which indeed reduces to the solution previously found for vanishing FI-parameter as B — A
and ¢ — 0.

A.4 Determining the interval endpoints

Once more, the rightmost interval endpoint may be determined from the integral equa-
tion (3.5), where the two first integrals are simply determined from the normalisation
condition. However, the third one is not. The sign-function in that integral will take the
value one for y > mo — B = by, whereas it will take the value —1 for y < mo — B = by, and

B = ;<3— / : dy ply) + /b ’ dyp<y>) . (A.16)

1

so we find B as:
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These integrals will depend on the ordering on the resonance points and thus will take
different values in the different cases. Define the distances between one a and one b-
resonance point as ab, the distance between two a-resonances as a, and between two b-
resonances as b. The integral may then be divided as:

A
B = 2(3—abZa6k—aZak—bZBk+abZa6k+aZak+bZBk> . (A7)
<by <by <by >by >by >by
Inserting the expressions for the eigenvalue densities, one then finds:

n2_>\1—aZak—bZﬁk—i—aZakerZ,Bk). (A18)

<by <by >by >by

A

Furthermore, the normalisation condition on the eigenvalue density will give us another
condition on the interval endpoints. In the context of ab, a and b, this takes the form:

ab2a5k+a2ak+625k =1
k k k
& (A.19)

n+1
ab— +a§k:ak+b§k:ﬁk:1.

Together, the equations (A.18) and (A.19) gives us two relations between the interval
endpoints and the parameters m, ( and A, and these may be used to determine the interval

endpoints in terms of these quantities.

These expressions depend on the precise appearance of the eigenvalue densities, as
well as on the ordering of the resonance points around b;. Therefore they will give rise
to different results for the interval endpoints in the three cases. Inserting the appropriate
limits in the sum, and the corresponding number of points to the left/right of b1, one finds
the interval endpoints described in (5.22)—(5.24).
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