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Pg. Lluis Companys 23, 08010 Barcelona, Spain
cECM Department and Institute of Cosmos Sciences, Facultat de F́ısica, Universitat de Barcelona,

Mart́ı Franquès 1, 08028 Barcelona, Spain

E-mail: louise.anderson@chalmers.se, jorge.russo@icrea.cat

Abstract: The phase structure of ABJM theory with mass m deformation and non-

vanishing Fayet-Iliopoulos (FI) parameter, ζ, is studied through the use of localisation

on S3. The partition function of the theory then reduces to a matrix integral, which,

in the large N limit and at large sphere radius, is exactly computed by a saddle-point

approximation. When the couplings are analytically continued to real values, the phase

diagram of the model becomes immensely rich, with an infinite series of third-order phase

transitions at vanishing FI-parameter [1]. As the FI term is introduced, new effects appear.

For any given 0 < ζ < m/2, the number of phases is finite and for ζ ≥ m/2 the theory does

not have any phase transitions at all. Finally, we argue that ABJM theory with physical

couplings does not undergo phase transitions and investigate the case of U(2)×U(2) gauge

group in detail by an explicit calculation of the partition function.

Keywords: Supersymmetric gauge theory, Chern-Simons Theories

ArXiv ePrint: 1502.06828

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2015)064

mailto:louise.anderson@chalmers.se
mailto:jorge.russo@icrea.cat
http://arxiv.org/abs/1502.06828
http://dx.doi.org/10.1007/JHEP05(2015)064


J
H
E
P
0
5
(
2
0
1
5
)
0
6
4

Contents

1 Introduction 2

2 Deformed ABJ(M) theory 4

3 Analytic continuation and saddle-point equations 6

3.1 The case of equal, real couplings 8

3.2 Phase transitions in Chern-Simons theory with massive adjoint matter 8

4 Equal real couplings with ζ ≥ m
2

10

5 Equal real couplings with ζ < m
2

10

5.1 Simple examples 11

5.2 General resonance structure 12

5.3 m2 < B −A 13

5.4 m2 > B −A 17

5.5 Phase transitions 18

6 Summary of the analytically continued model 20

6.1 Case λ1 = λ2 20

6.2 Case λ1 6= λ2 23

6.2.1 First analytic continuation 23

6.2.2 Second analytic continuation 25

7 Mass/FI-deformed ABJM theory does not have phase transitions 26

7.1 General case 26

7.2 Massive U(2)×U(2) ABJM 27

7.2.1 The analytically continued model with equal, real couplings 27

7.2.2 U(2)×U(2) ABJM model with physical couplings 29

8 Concluding remarks 31

A The phases for m2 > B −A 32

A.1 Case I: n =
[
A+B
2m

]
, A−ζ

m − 1
2 <

B+ζ
m − 1

2 < n 32

A.2 Case II: n =
[
A+B
2m

]
, A−ζ

m − 1
2 < n < B+ζ

m − 1
2 33

A.3 Case III: n =
[
A+B
2m

]
, n < A−ζ

m − 1
2 <

B+ζ
m − 1

2 34

A.4 Determining the interval endpoints 35

– 1 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
4

1 Introduction

In some cases, in supersymmetric gauge theories, observables with enough supersymmetry

may be computed exactly. For example, this applies to the partition function in N = 2 four-

dimensional gauge theories on S4 through the technique of localisation [2]. This allows us to

write observables with a sufficient amount of supersymmetry, such as the partition function,

in terms of matrix integrals. Even though being much simpler than the original functional

integrals, these matrix integrals still carry important information of the underlying field

theory.

Under favourable conditions, these integrals may sometimes be determined exactly,

though this often amounts to going to the large N , or planar, limit. In this limit, one

may use techniques from random matrix theory to solve these matrix integrals [3]. One

of the most interesting applications of this approach is perhaps the test it provides of

the conjectured gauge/gravity-duality: localisation and large N -techniques have provided

insights into the strong-coupling behaviour of field theories with holographic duals, thus

allowing for direct comparisons of quantities with a non-trivial dependence of the coupling

constant between the gauge- and gravity-side of the duality, with excellent agreement (for

a review, see [4]).

In recent years, the occurrence of quantum phase transitions in massive gauge theories

in the decompactification limit (where the radius of the sphere is taken to infinity), has

been found in a wide variety of supersymmetric theories. They were first found for N = 2

four-dimensional gauge theories with massive matter [5], whose critical properties were

further investigated in [6–11], and, soon after, new examples were found in three [1, 13,

14], and five dimensions [15]. A generic type of phase transition occurs when, at specific

couplings, extra massless states appear in the spectrum and contribute to the saddle-

point. It is a resonance phenomenon, as explained in [5]. These resonance effects already

appear in theories with fundamental matter, but become much more complicated when

the theory contains adjoint matter, leading to an infinite sequence of secondary resonances

and a much richer phase structure. In four dimensions, the simplest example with massive

adjoint matter is the N = 2∗ theory, which, in the decompactification limit, exhibits an

infinite series of weak/strong quantum phase transitions as the coupling grows. Moreover,

these phase transitions accumulate at strong coupling [5–7], raising interesting questions

about how they manifest in the holographic dual theory. These were studied in detail

in [8, 10], and similar phase transitions are also found to be present when the four-sphere

is squashed [9]. Recently, it was shown that these non-trivial phases induce non-analytic

dependence of higher-rank Wilson loops on the rank parameter [12], which could in principle

have a holographic counterpart in terms of phase transitions in the effective field theory

on the dual D brane description.

This type of phase transitions were also shown to occur for low-rank gauge groups, such

as N = 2 SU(2) gauge theory with fundamental matter [11], i.e. supersymmetric SU(2)

QCD with two massive flavours. In this case, the quantum critical point of these phase

transitions is identified with the Argyres-Douglas superconformal fixed point of the theory.

For SU(2) gauge group, the phase transition is driven by instantons (unlike the large N
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case, where they are negligible), and, in the decompactification limit, the free energy log Z

including instantons can be expressed in terms of the Seiberg-Witten prepotential — a

connection that arises when a saddle-point exists [11].

Similar phase transitions occur in three-dimensional Chern-Simons theories with mas-

sive matter. For example, three-dimensional Chern-Simons theory with massive funda-

mental matter has been shown to undergo three distinct phases as the coupling runs from

zero to infinity [13]. These phase transitions have furthermore been investigated at fi-

nite N , where the finite N partition function of U(N) Chern-Simons theory with massive

fundamental matter was computed using the theory of Mordell integrals [14].

The theory which will be in focus in this paper is the three-dimensional ABJM theory,

which, in the massless case is an N = 6 superconformal theory dual to type IIA string

theory on AdS4 × CP 3 [16]. By using localisation techniques on the field theory side,

the partition function can be computed exactly at large N [17, 18], which may then be

compared to geometric analyses on the string theory side, enabling extensive tests of the

gauge/gravity conjecture [18, 19]. The partition function can be computed exactly even

in the mass-deformed case as the path integral localises to a matrix model on S3 [17, 20].

Recently, it was shown that a version of ABJM theory obtained by analytic continuation

in the couplings exhibits phase transitions [1]. This theory contains bi-fundamental matter

and the resulting phase structure arising in the decompactification limit resembles the case

of four-dimensional N = 2∗ theory, with an infinite number of third-order phase transitions

accumulating at strong coupling. These models corresponds to computing the partition

function in the region of parameter space where the couplings are real (and the Chern-

Simons levels are imaginary). This method, where one starts with unphysical couplings,

was successfully implemented in the past [4, 18] to compute the large N partition function

for the ABJM theory with no mass deformation. A direct, analytic calculation of the

large N partition function in ABJM theory with physical Chern-Simons levels is more

complicated and has not been carried out so far. The reason is that eigenvalues appear to

be distributed in different cuts in the complex plane with non-homogeneous N dependence

for real and imaginary parts (see e.g. a discussion in [19]).

In [1], the Fayet-Iliopoulos (FI) parameter was set to zero. The aim of this work is to

incorporate this parameter, which, as we shall see, significantly enriches the phase structure

of the theory. As the FI-parameter approaches zero, the phase structure found herein agrees

with previous results, and furthermore serves to clarify some of the peculiar behaviour

previously seen. However for non-vanishing FI-parameter, the situation is, as mentioned,

significantly different, and the solutions to the saddle-point equations are divided into cases

depending on the precise relations between the mass-deformation parameter m and the FI-

parameter, ζ. The most dramatic effect is that the number of phase transitions undergone

as the coupling is increased are now finite, and for ζ > m/2 there is only a trivial phase

with constant eigenvalue density in some finite region of support.

The structure of this work is as follows: in section 2, we give the matrix model rep-

resentation of the partition function for ABJ(M) theory with mass and FI deformation

parameters, and discuss some basic properties. In section 3, the analytical continuation is

introduced. In subsection 3.1, we specialise to the situation where the couplings λ1, λ2 for
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the two (analytically continued) gauge groups are equal and real, and in sections 4 and 5,

we determine the eigenvalue densities for the theory in the large N limit. As mentioned,

the precise form of these depend on the relations between m and ζ, and these different

cases are considered in sections 4 and 5. In section 6, we provide a summary of our results

for the cases of equal and real couplings, and also discuss the case of λ1 6= λ2; λ1,2 > 0,

for the two different schemes of analytic continuations. In section 7, we present a general

argument showing that physical ABJM theory does not have phase transitions. The ab-

sence of phase transitions is illustrated by considering the case with U(2) × U(2) gauge

group, where the partition function can be explicitly computed both for the analytically

continued model and for the model with physical couplings. The analytically continued

model exhibits analogous phase transitions as in the large N case. However, the physical

ABJM theory does not undergo any phase transition. One key feature that seems to make

physical ABJM theory to be non-generic is the fact that the Chern-Simons levels for the

gauge groups are equal and opposite. Finally, in section 8, we end with some concluding

remarks. Details of the calculation of section 5.4 are given in an appendix.

2 Deformed ABJ(M) theory

ABJM theory is a three-dimensional superconformal theory with maximal supersymme-

try, gauge group Uk(N) × U−k(N), and matter in the bifundamental representation. k

denotes the Chern-Simons level of the two gauge groups respectively. In ABJ theory [21],

the situation is generalised so that the two gauge groups are allowed to have diffterent

ranks. Allowing for this small generalisation was shown to be useful when computing the

partition function of the massless theory by analytic continuation [18], as well as in the

mass-deformed case [1].

In the massless case, these theories are well-studied and their path integrals on S3 are

known to localise onto constant field configurations [17, 22]. However, these results do not

rely on the theory being conformal, nor maximally supersymmetric, and thus they may be

used to examine the deformed ABJ theory as well.

In previous work, the decompactification limit of the mass-deformed ABJ theory was

considered [1], and quantum weak/strong phase transitions were shown to be present in

two analytically continued versions of the theory.

However, there is another way of introducing a scale to the problem, other than in-

troducing a mass: by introducing a Fayet-Illiopoulos deformation. This will be present in

the most general form of supersymmetric deformation, and it is this setup which will be

considered herein, with both non-vanishing mass and FI-parameter. The partition function

on S3 takes the form of an eigenvalue integral in the large N -limit [17, 20], and, with the

normalisation of [18], may be written as:

ZABJM(2ζ,m; k) =
1

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
a=1

dνa
2π

(2.1)

×

∏
i<j

sinh2 µi−µj
2

∏
a<b

sinh2 νa−νb
2∏

i a
cosh µi−νa+m

2 cosh µi−νa−m
2

e
− ik

2π
ζ
(∑
i
µi+

∑
a
νa
)
+ ik

4π

(∑
i
µ2i−

∑
a
ν2a

)
,
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where µi, νa represent the eigenvalues of the auxiliary fields from the vector multiplets of

the two gauge groups, m denotes the mass-deformation and ζ represents the FI-parameter,

which will be taken to be real.

By shifting the integration variables, x ≡ µ − ζ, y ≡ ν + ζ, we may then move the

FI-dependence from the exponent to the denominator, and what we are left with may be

thought of as the mass-deformed case but with two different masses, m1 and m2. In these

variables, the partition function becomes:

ZABJM(2ζ,m; k) =
e
ζ2(N2−N1)

2g

N1!N2!

∫ N1∏
i=1

dxi
2π

N2∏
a=1

dya
2π

(2.2)

×

∏
i<j

sinh2 xi−xj
2

∏
a<b

sinh2 ya−yb
2∏

i,a
cosh xi−ya+m1

2 cosh xi−ya−m2

2

e
− 1

2g

(∑
i
x2i−

∑
a
y2a

)
,

where g = 2πi
k represents the coupling, and m1, m2 relates to m and ζ as:

m1 = m+ 2ζ and m2 = m− 2ζ . (2.3)

Consider the partition function (2.1) with N1 = N2 ≡ N . It can be written in another

form, which is useful to exhibit some symmetries. This is done by following [20], slightly

generalising their derivation for k = 1 to arbitrary k. By using the identity,∏
i<j sinh(xi − xj) sinh(yi − yj)∏

i,j cosh(xi − yj)
=
∑
ρ

(−1)ρ
∏
i

1

cosh(xi − yρ(i))
, (2.4)

where ρ runs over all permutations of {1, . . . , N}, the partition function may be written as:

ZABJM(2ζ,m; k) =
∑
ρ,ρ′

(−1)ρ+ρ
′

N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i

e−
ik
2π
ζ(µi+νi)+

ik
4π

(µ2i−ν2i )

cosh
µi−νρ(i)+m

2 cosh
µi−νρ′(i)−m

2

=
∑
ρ

(−1)ρ

N !

∫
dNµ

(2π)N
dNν

(2π)N

∏
i

e−
ik
2π
ζ(µi+νi)+

ik
4π

(µ2i−ν2i )

cosh µi−νi+m
2 cosh

µi−νρ(i)−m
2

. (2.5)

We now make use of the Fourier transform∫
dτ

eiτµ

coshπτ
=

1

cosh µ
2

, (2.6)

for all hyperbolic cosines in the denominator, introducing new integration variables τi, τ
′
i .

The integrals over µi, νi then become Gaussian and can be computed explicitly, after which

one finds

ZABJM(2ζ,m; k) =
∑
ρ

(−1)ρ

kNN !

∫
dNτdNτ ′

e−
2πi
k

∑
i τ
′
i(τi−τρ(i))+i

∑
i(τ
′
im1−τim2)∏

i cosh(πτi) cosh(πτ ′i)
. (2.7)
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Using again the Fourier transform (2.6) and computing the integral over τ ′i , we finally

obtain (upon rescaling τi → kτi)

ZABJM(2ζ,m; k) =
∑
ρ

(−1)ρ
1

N !

∫
dNτ

e−ikm2
∑
i τi∏

i cosh(kπτi) cosh
(
π(τi − τρ(i))− m1

2

) . (2.8)

We stress that the derivation above only holds when the Chern-Simons levels of the

two gauge groups U(N)k1 × U(N)k2 are opposite, k2 = −k1, which is the case in ABJM

theory (for k2 6= −k1, terms τ ′i
2, τ2i remain in the exponent, leading to more complicated

expressions).

The partition function (2.1) has the obvious symmetry ζ → −ζ, under which m1 ↔ m2.

However, the partition function written in the form (2.8) makes manifest another symmetry,

m2 ↔ −m2 , (2.9)

arising after the sum over permutations. Under this symmetry, the FI- and mass-defor-

mations are exchanged. In other words, the deformed ABJM partition function (2.1) with

N1 = N2 enjoys the property

ZABJM(2ζ,m; k) = ZABJM(m, 2ζ; k) . (2.10)

In particular, a FI-deformation on the massless theory ζ = m/2 is equivalent to a mass-

deformation m in the theory with vanishing FI-parameter,

ZABJM(m, 0; k) = ZABJM(0,m; k) . (2.11)

3 Analytic continuation and saddle-point equations

Following [1], we first assume independent Chern-Simons levels k1 and k2 for the two gauge

groups U(N1) and U(N2), and introduce two different couplings,

g1 =
2πi

k1
, g2 =

2πi

k2
, (3.1)

and equivalently, the two ’t Hooft couplings

λ1 = N1g1 , λ2 = N2g2 , (3.2)

for the different gauge groups.

Our starting point will be the representation (2.2) for the partition function. In [1],

two analytic continuations of this model to arbitrary λ1, λ2 were considered: one where

we set k2 = −k1 = k and leave N1, N2 arbitrary, which may be thought of as an analytic

continuation in the gauge group rank. The other one may be thought of as a continuation

in the Chern-Simons level instead (and holds the rank of the two gauge groups equal). We

will mainly use the first analytic continuation (which is the one used in [4, 18] for ABJM

theory at large N). The second analytic continuation will be discussed in sections 3.2, 6.2.2

and later in section 7.2 for the special case where the gauge group is U(2) ×U(2).

– 6 –
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It is important to note that, after analytic continuation to two independent couplings

λ1, λ2, the resulting partition function Ẑ(2ζ,m;λ1, λ2) cannot be written in the form (2.8),

except in the special case λ2 = −λ1. In particular, for generic λ1, λ2, the partition function

does not satisfy the symmetry (2.10).

The ABJM partition function (2.2) with integer k is given by a convergent integral,

therefore in principle one does not need to resort to analytic continuation to define it.

However, for integer k (thus imaginary λ2 = −λ1), the saddle-points lie in cuts in the

complex plane which are complicated to determine even numerically. Here we perform

analytic continuation to real, positive couplings λ1, λ2 because it is in this case that the

saddle-point equations can be solved explicitly in terms of closed formulas.

With the analytic continuation in the gauge group rank, we set k2 = −k1 = k, and the

saddle-point equations of (2.2) take the form:

xi =
λ1
N1

N1∑
j 6=i

coth
xi − xj

2
+

λ2
2N2

N2∑
a

(
tanh

xi − ya +m1

2
+ tanh

xi − ya −m2

2

)
(3.3)

ya =
λ2
N2

N2∑
b 6=a

coth
ya − yb

2
+

λ1
2N1

N1∑
i

(
tanh

ya − xi −m1

2
+ tanh

ya − xi +m2

2

)
.

The ABJM theory is recovered by analytic continuation λ1 → eiϕλ, λ2 → e−iϕλ, where ϕ

goes from 0 to π/2.

Phase transitions typically occur in the decompactification limit, where the radius R

of the three-sphere (set to unity in previous formulas) is sent to infinity. The dependence

on the radius can be restored by rescaling m → mR, ζ → ζR, xi → xiR, yi → yiR. For

the coupling, we take the same scaling used in [1, 13], where λ/R is fixed as R→∞. This

particular decompactification limit turns out to be self-consistent and the dependence on R

completely cancels from the saddle-point equations. As R → ∞, the hyperbolic functions

are replaced by sign functions. Furthermore, in the large N limit, the eigenvalues xi,

ya have continuum distributions described by unit-normalised eigenvalue densities, ρx(x),

ρy(y), and the saddle-point equations take the form

x = λ1

∫
Cx
dx′ ρx(x′) sign(x− x′) +

λ2
2

∫
Cy
dy ρy(y)

(
sign(x− y +m1) + sign(x− y −m2)

)
,

(3.4)

y = λ2

∫
Cy
dy′ ρy(y

′) sign(y − y′) +
λ1
2

∫
Cx
dx ρx(x)

(
sign(y − x−m1) + sign(y − x+m2)

)
,

where Cx and Cy denote the intervals on which ρx and ρy are supported respectively.

It will be convenient to introduce another change of variables, namely the rescaling

y → −y. By also defining ρ̂y(y) = ρy(−y), such a rescaling leads to equations which are

symmetric under the exchange of x ↔ y (and as such also ρx ↔ ρ̂y and the integration

– 7 –
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regimes) together with λ1 ↔ λ2. These equations may explicitly be written down as:

x = λ1

∫
Cx
dx′ ρx(x′) sign(x− x′) +

λ2
2

∫
Cy
dy ρ̂y(y)

(
sign(x+ y +m1) + sign(x+ y −m2)

)
,

(3.5)

y = λ2

∫
Cy
dy′ ρ̂y(y

′) sign(y − y′) +
λ1
2

∫
Cx
dx ρx(x)

(
sign(y + x+m1) + sign(y + x−m2)

)
.

Take Cx = [−A,B] and similarly Cy = [−C,D], where {A,B,C,D} ∈ R. Differentiat-

ing (3.5) with respect to x, y respectively gives us:

ρx(z) =
1

2λ1
− λ2

2λ1

(
ρ̂y(−z −m1) + ρ̂y(−z +m2)

)
, (3.6)

ρ̂y(z) =
1

2λ2
− λ1

2λ2

(
ρx(−z −m1) + ρx(−z +m2)

)
.

Solving these coupled functional equations is very complicated in the general case. For

simplicity, in most of our discussion, the situation of equal, real couplings will be considered.

In section 6.2, we will also treat the case of generic λ1,2 > 0 and show that it exhibits the

same qualitative features.

3.1 The case of equal, real couplings

By symmetry, it is clear from the expression of (3.6) that, for λ1 = λ2 = λ, the system

admits a solution with two equal densities ρx, ρ̂y. The problem thus reduces to finding the

solution to one single equation for a density ρ(z):

ρ(z) =
1

2λ
− 1

2
ρ(−z −m1)−

1

2
ρ(−z +m2) , (3.7)

where ρ(z) is supported on some interval [−A,B] along the real axis.

However, unlike the case previously considered where the FI-parameter vanishes [1],

there is no reflection symmetry around the origin of these equations, and we cannot assume

ρ(−z) = ρ(z). This complicates the situation compared to the case studied in [1]. With

no loss of generality one can take ζ > 0 and m > 0. Then m1 will always be greater than

zero whereas m2 ∈ [−∞,m].

It is clear that the solution to this equation will behave qualitatively different depending

on the sign of m2, and we may thus divide our investigation into two separate cases:

• m1 > m2, m2 ≤ 0 corresponding to ζ ≥ m
2

• m1 > 0, m2 > 0, corresponding to ζ < m
2 .

These will be considered in sections 4 and 5 respectively.

3.2 Phase transitions in Chern-Simons theory with massive adjoint matter

The saddle-point equations for the second analytic continuation may be expressed in terms

of g1, g2 and N , and will in this notation differ from the equations (3.4) of the first analytic

– 8 –
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continuation by some signs. Defining α1 = Ng1, α2 = Ng2, these equations may be

written as:

x

α1
=

∫
Cx
dx′ ρx(x′) sign(x− x′)− 1

2

∫
Cy
dy ρy(y)

(
sign(x− y +m1) + sign(x− y −m2)

)
(3.8)

y

α2
=

∫
Cy
dy′ ρy(y

′) sign(y − y′)− 1

2

∫
Cx
dx ρx(x)

(
sign(y − x−m1) + sign(y − x+m2)

)
.

ABJM theory is recovered by analytically continuing α1 → eiϕα1, α2 → e−iϕα1, with ϕ

varying between 0 and π/2.

Consider the particular case α1 = α2 ≡ α. We are led to a single equation:

ρ(x) =
1

2α
+

1

2
ρ(−x−m1) +

1

2
ρ(−x+m2) . (3.9)

If we further assume that m1 = m2 ≡ m (i.e. ζ = 0), we have reflection symmetry, and the

equation becomes

ρ(x) =
1

2α
+

1

2
ρ(x−m) +

1

2
ρ(x+m) . (3.10)

The solutions to this equation were studied in section 4 of [1].

It is interesting to compare this equation with the saddle-point equation that arises in

a closely related system, N = 3 supersymmetric U(N) Chern-Simons gauge theory with

two massive adjoint multiplets. This is a precise three-dimensional analog of the N = 2∗

theory whose critical properties were studied in [5–8, 10]. The partition function can be

constructed with the general rules given in [17], whereupon one obtains:

Z =
1

N !

∫ N∏
i=1

dµi
2π

∏
i<j

sinh2 µi−µj
2

cosh
µi−µj+m

2 cosh
µi−µj−m

2

e
− 1

2g

∑
i
µ2i
. (3.11)

At large N (and in the decompactification limit), this partition function can be computed

by solving the same saddle-point equation (3.10), with α = gN . Therefore, the results

of [1] equally apply to this case, and they can be summarized as follows: the theory has an

infinite sequence of phase transitions, where in each phase the eigenvalue density is given

by a piecewise constant function. The number of discontinuities increases whenever the

coupling crosses critical values taking the theory into a new phase. In the strong coupling

limit, α � 1, the phase transitions accumulate and the equation becomes differential,

−m2ρ′′ = 1/α and ρ(x) approaches the asymptotic form [1]

ρ∞(x) =
1

2gm2
(µ20 − µ2) , µ0 =

(
3gm2

2

)1
3

. (3.12)

In the infinite α limit, this smooth, parabolic asymptotic density arises as the envelope

of (discontinuous) piecewise constant densities. In the case of N = 2∗ theory, at strong

coupling, the eigenvalue density also reaches a smooth asymptotic form after going through

an infinite number of phase transitions, each phase described by a discontinuous density.
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In this case, the asymptotic density has the Wigner’s semicircle shape, a property that has

been matched with the holographic prediction [23, 24].

In conclusion, N = 3 supersymmetric Chern-Simons gauge theory with two massive

adjoint multiplets has large N phase transitions, with a behaviour that shares similar

features as its four-dimensional relative, N = 2∗ theory.

4 Equal real couplings with ζ ≥ m
2

Let us now move back to the problem of ABJM theory analytically continued in the gauge

group rank in the special case of equal and real couplings for the two gauge groups, as

described by equation (3.7). Furthermore, let us specialise to the case of ζ ≥ m
2 , corre-

sponding to m1 > 0, whereas m2 ≤ 0.

Let us first consider two limiting cases, namely ζ → 0 and ζ → ∞. In the first one

of these, the situation reduces to the one considered in [1], and equation (3.7) becomes

symmetrical under reflection through the origin, implying A = B. As ζ goes to infinity,

equation (3.7) reduces to ρ(z) = 1
2λ , since the two shifted terms will vanish as their argu-

ments will lie outside the region of support for ρ. Knowing the eigenvalue density, the two

interval endpoints may be obtained from the integral equation (3.5) with x = B, together

with the normalisation condition. From these, we find A = 0, B = 2λ for ζ → ∞. It is

then natural to assume that B ≥ A at intermediate values (this is also confirmed by the

numerical solution).

With this assumption, together with the condition m1 > −m2 > 0, the integral equa-

tion (3.5) with x = B gives

B = 2λ ∀ζ ≥ m

2
. (4.1)

It can then be shown that the other interval endpoint will always lie in the origin, i.e.

A = 0.

This gives us an eigenvalue density as

ρ(z) =
1

2λ
∀z ∈ [0, 2λ] . (4.2)

Therefore, there are no phase transitions in this regime where ζ ≥ m
2 .

In conclusion, turning on a FI-parameter ζ ≥ m
2 implies a theory free from phase

transitions. In particular, the masslesss theory with only FI deformation does not have

phase transitions.

5 Equal real couplings with ζ < m
2

As the FI-parameter decreases below m/2, however, the situation becomes more compli-

cated: m2 changes sign, becoming strictly positive. When ζ = 0, one has m1 = m2, which

is precisely the case discussed in [1]. As previously mentioned, the saddle-point equa-

tion (3.7) then has reflection symmetry, which gives us that A = B, i.e., the eigenvalue

density is supported on the interval [−B,B]. On the other hand, as shown above, for all
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ζ ≥ m
2 , the leftmost interval endpoint lies at the origin. As ζ increases from 0 to m

2 , the

leftmost interval endpoint, −A, thus moves from −B to the origin.

Precisely how this happens will depend on the coupling. We will start by considering

an example, after which we proceed to the general solution.

5.1 Simple examples

Consider once again the saddle-point equation (3.7). To start with, assume that m1 and m2

are sufficiently large so that the points −z−m1 and m2−z lie outside of the interval [−A,B]

(i.e. small ζ), where the eigenvalue density has support. This requires, in particular, that

m2 > 2B and m1 > 2A. In this case the saddle-point equation reduces to

ρ(z) =
1

2λ
. (5.1)

Normalisation then gives the condition A + B = 2λ. The final condition arises from the

integral equation, giving A = B, hence A = B = λ. This solution exists for a coupling

where the conditions m2 > 2B and m1 > 2A are satisfied, i.e. 0 < λ < m2
2 , since m2 < m1.

For a larger λ, the second shifted term begins to contribute in some interval, and the

solution must therefore experience a discontinuous change.

In general, transitions occur when one of the two shifted terms, ρ(−z+m2) or ρ(−z−
m1), are turned on. This happens when a new resonance point, reaches the interior of

[−A,B]. Then, −z +m2 or −z −m1 coincide with −A or B. In terms of the variable −z,

the resonance points are points located at a distance m2 or m1 from the endpoints of the

interval. Physically, the phase transitions occur because beyond some critical couplings,

extra massless particles (of masses proportional to | − z +m2| or to | − z −m1|) begin to

contribute to the partition function.

To proceed, we may consider the situation where m1 > 2A, which ensures that the

first one of the shifted terms vanishes. The saddle-point equation (3.7) then reduces to

ρ(z) =
1

2λ
− 1

2
ρ(m2 − z) , (5.2)

where we assume that ρ(z) is supported on the interval [−A,B], for some 0 < A < B. The

resonance point of the leftmost interval endpoint, −A, is then given by:

a1 = m2 +A . (5.3)

Similarly, the resonance of the interval endpoint B is given by

b1 = m2 −B , (5.4)

but these two points will simultaneously lie inside the interior of the interval [−A,B] only in

one limiting case. The extremal case to have a resonance originating from −A corresponds

to this resonance point coinciding with B, giving us a condition on m2 as m2 = B − A.

When this condition is fulfilled, the resonance originating from B will be b1 = −A.

Thus, for m2 < B −A, there will only be one resonance originating from the leftmost

endpoint −A, and for 2B > m2 > B −A, there will be one resonance originating from the
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rightmost endpoint B. [As discussed above, for m2 > 2B, there are no resonance points

inside the interval, and the solution is thus given by (5.1).]

In the case of B −A < m2 < 2B, we instead have:

ρ(z) =

{
1
2λ z ∈ [−A,m2 −B]
1
3λ z ∈ [m2 −B,B]

,

whereas in the case 0 < m2 < B −A, we find:

ρ(z) =

{
1
3λ z ∈ [−A,m2 +A]
1
2λ z ∈ [m2 +A,B]

.

Normalisation together with the integral equations allows us to fix both interval end-

points in terms of m2, λ and the complete expression for the eigenvalue density in the case

where m1 > 2A is then given by:

ρ(z) =

{
1
2λ z ∈ [−λ, 2m2 − 3λ]
1
3λ z ∈ [2m2 − 3λ, 3λ−m2]

m2

2
< λ < m2 (5.5)

and

ρ(z) =

{
1
3λ z ∈ [−m2, 2m2]
1
2λ z ∈ [2m2, 2λ]

λ > m2 . (5.6)

As seen in figure 1, both of these cases agree well with numerics, and there is a phase

transition at the point m2 = λ, as expected.

Having determined A and B, we can now check the region of validity of the solution.

For the solution (5.5), the condition m1 > 2A gives the additional constraint λ < m1/2.

For the solution (5.6), m1 > 2A requires 2ζ > m/3. In the complete phase diagram shown

in figure 3, the uniform eigenvalue density (5.1) is the density in the shaded region below

the lowest blue line. The solution (5.5) represents the eigenvalue density in the triangular

region above this blue line, having the green (λ = m1/2) and black (λ = m2) lines as the

other sides. Finally, the solution (5.6) is the eigenvalue density in the region above this

black line, limited by the purple lines 2ζ = m/3 and 2ζ = m.

5.2 General resonance structure

In the general case, we will have resonance points originating from both interval endpoints,

which may conveniently be expressed in the tables below. Table 1 contains all resonances

originating from the leftmost interval endpoint, −A, whereas table 2 contains the reso-

nances from the other endpoint, B.

In total, the resonance points may be written as:{
a2ka−1 = A−m1 − 2m(ka − 1)

a2ka = −A+ 2kam{
b2kb−1 = m2 −B + 2m(kb − 1)

b2kb = B − 2kbm
(5.7)

ã = m2 +A ,
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Figure 1. Numerical solutions for large m1 with m2 > 0. Here, ζ ∈ {0.9, 0.7, 0.5, 0.35, 0.3, 0.1}m2 .

where ka, kb ∈ {1, 2, 3, . . . }. From these expressions for the resonance points, it is clear

that ã and b1 cannot both lie in the interior of the interval at the same time. Rather, the

condition that ã lies in [−A,B] is equivalent to m2 < B−A, whereas the condition that b1
lies inside the interval is equivalent to m2 > B−A (i.e. exactly the condition separating the

two non-trivial phases in the simple example considered in section 5.1), and we again have

two separate cases to consider. We discuss these cases in the order of increasing difficulty;

thus starting with the first one.

5.3 m2 < B −A

In this case there are no resonances from the rightmost endpoint B. The only resonance

points are then given by the a2ka , a2ka−1, together with ã.

Here it is convenient to first use the integral equation (3.5) to determine B. This

calculation is straightforward, since the argument of the sign-functions are strictly positive
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z −z −m1 m2 − z
−A A−m1 A+m2

A+m2 (−A− 2m) −A
A−m1 −A −A+ 2m

−A+ 2m A− 2m−m1 A−m1

A− 2m−m1 −A+ 2m −A+ 4m

−A+ 4m A− 4m−m1 A− 2m−m1

Table 1. Table of resonance points originating from the leftmost interval endpoint, −A, where the

first row gives the “first order” resonances, the second row the “second-order” etc. Normal-sized

terms denote “new resonances”, whereas the smaller ones coincide with previous resonance points.

The small one within round brackets lies outside the interval of support of the density.

z −z −m1 m2 − z
B (−B −m1) m2 −B

m2 −B B − 2m B

B − 2m m2 −B −B + 2m+m2

−B + 2m+m2 B − 4m B − 2m

B − 4m −B + 2m+m2 −B + 4m+m2

Table 2. Table of resonance points originating from the rightmost interval endpoint, B (same

conventions as table 1).

in the integration regime. Normalisation then forces all integrals to unity, and one finds:

B = λ

x<B,→=1 by norm.︷ ︸︸ ︷∫ B

−A
dx′ ρ(x′) sign(B − x′) +

λ

2

B>−y,m1>0,→=1 by norm.︷ ︸︸ ︷∫ B

−A
dy ρ(y) sign(B + y +m1) (5.8)

+

m2<B−A,→1 by norm.︷ ︸︸ ︷
λ

2

∫ B

−A
dy ρ(y) sign(B + y −m2)

= 2λ ,

in the case where m2 < B −A.

The interval [−A,B] will as always be divided into parts by the interior resonance

points, which in this case are given by the points ã, a2ka , a2ka−1, where ka is limited by the

condition that a2ka−1 lies within the interval. This implies ka ≤ A−ζ
m + 1

2 . Let the highest

integer which fulfils this be denoted by n, such that

n =

[
A− ζ
m

+
1

2

]
. (5.9)

This means that n will be the integer number of times 2m fits in [−A, ã], that is, in

2(A− ζ) +m. (The number of even resonances will hence be equal to n.) Define also ∆ to

be given by:

∆ = 2(A− ζ) +m− 2nm . (5.10)
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Figure 2. Resonance points originating from the interval endpoint −A (shown in blue), where

pink represents ã, and the purple points are the odd resonance points whereas the magenta ones

are the even ones. Below these are the same points under the maps z → −z −m1 and z → m2 − z
respectively. The density is as such divided into a piecewise constant density, made up out of two

sets: the density on the regions going from odd-even resonance points (ρo−ek ), and the density on

the regions going from the even to odd ones, denoted by ρe−ok .

The total of 2n + 1 resonances dividing the interval will be ordered as ã > a2n >

a1 > a2(n−1) > a3 > · · · > a2n−1 > −A. Just as in the cases previously considered, the

eigenvalue density will be piecewise constant, and we may define different constants on the

different patches of the interval, such that:

ρ(z) =


ρe−ok in the regions between an even resonance point and an odd one

ρo−ek in the regions between an odd resonance point and an even one
1
2λ between ã and B

, (5.11)

as illustrated in figure 2. In total, there will be n ρo−e and n+ 1 ρe−o’s. Furthermore, the

saddle-point equation (3.7) for these two different sets of constants decouple, and we are

left with:

2ρe−ok + ρe−on+1−k + ρe−on+2−k =
1

λ
∀k ∈ [1, n+ 1] (5.12)

2ρo−ek + ρo−en−k + ρo−en+1−k =
1

λ
∀k ∈ [1, n] ,

where the boundary conditions are given by ρe−o0 = ρo−e0 = 0.

These may be solved by a polynomial Ansatz in k, where one finds the general solution

to be a linear function in k. The constant terms are then forced to vanish by the boundary
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conditions, giving the two sets of linear terms as:

ρe−ok =
k

λ(3 + 2n)
ρo−ek =

k

λ(1 + 2n)
. (5.13)

The normalisation condition on the eigenvalue density may be written in terms of ρe−ok ,

ρo−ek , such that:

1 = ∆

n+1∑
k=1

ρe−ok + (2m−∆)

n∑
k=1

ρo−ek − ã

2λ
+ 1 . (5.14)

Together with the definition of ∆, this allows us to solve for A and ∆ in terms of m, ζ and

n, and we find:

A = m(2n+ 1)− 2ζ
(
2n(n+ 2) + 1

)
, (5.15)

∆ = (2n+ 3)
(
m− 2ζ(1 + 2n)

)
,

with B = 2λ.

Having this expression for A, we may find the critical point at which the value of n

shifts. At the very site where n = A−ζ
m − 1

2 , that is, we enter the region with a specific n,

we find the following condition on 2ζ:

2ζ =
m

2n+ 1
. (5.16)

However, it is interesting to notice that this is independent of the coupling, and so tran-

sitions between different phases of this kind, with only resonance points originating from

the leftmost interval endpoint, −A, will only occur with shifts in ζ/m.

Next, consider phase transitions into a phase where the resonance points from B starts

to move inside the interval. For fixed values of m, ζ (and such also n), the condition that

these resonances will remain on the outside of the interval corresponds to m− 2ζ < B−A,

which in terms of the coupling may be written as:

(n+ 1)
(
m− 2ζ(n+ 1)

)
< λ . (5.17)

Therefore, as λ decreases, we leave this regime and enter the next one, where resonances

appear from both endpoints.

The general eigenvalue density in this case, for an FI-parameter in ζ < m
2 and coupling

satisfying equation (5.17), will be given by:

ρ(z) =


k

λ(3+2n) ∀z ∈ [a2(k−1), a2(n−k)+1] k ∈ [1, n+ 1]

k
λ(1+2n) ∀z ∈ [a2(n−k)+1, a2k] k ∈ [1, n]

1
2λ ∀z ∈ [ã, 2λ]

, (5.18)

where a0 and a−1 should be interpreted as −A and ã respectively, and n is defined by

equation (5.9).
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5.4 m2 > B −A

This situation is more complicated. Although ã now lies outside the interval, there are

now interior resonance points originating from the rightmost interval endpoint B as well.

The complete set of resonances in this case is given by the expressions in equation (5.7),

namely: {
a2ka−1 = A−m1 − 2m(ka − 1) ∀0 < ka <

A−ζ
m + 1

2

a2ka = −A+ 2kam ∀0 < ka <
A+B
2m

(5.19)

{
b2kb−1 = m2 −B + 2m(kb − 1) ∀0 < kb <

B+ζ
m + 1

2

b2kb = B − 2kbm ∀0 < kb <
A+B
2m

where ka, kb ∈ 1, 2, . . . and the upper limits comes from requiring the resonances to lie

inside the interval of support of the eigenvalue density [−A,B].

When m2 > B −A, it is easy to see that

A+B

2m
<
A− ζ
m

+
1

2
<
B + ζ

m
+

1

2
, (5.20)

and both ka, kb are then limited by A+B
2m . We again define n as the integer part of this

number,

n =

[
A+B

2m

]
, (5.21)

such that a2n, b2n denotes the final even resonances. However, in some cases, the following

odd resonances may lie within the interval [−A,B] as well. This gives rise to three different

cases that are examined in appendix A in detail. These are:

• Case I (n =
[
A+B
2m

]
, A−ζ

m − 1
2 <

B+ζ
m − 1

2 < n):

A = λ
2n+ 1

n+ 1
− 2ζn (5.22)

B = λ
2n+ 1

n+ 1
+ 2ζn

• Case II (n =
[
A+B
2m

]
, A−ζ

m − 1
2 < n < B+ζ

m − 1
2):

A = λ
2n+ 1

n+ 1
− 2ζn (5.23)

B = −m+ 2ζ(n+ 1) + λ
2n+ 3

n+ 1

• Case III (n =
[
A+B
2m

]
, n < A−ζ

m − 1
2 <

B+ζ
m − 1

2):

A = −m− 2ζ(n+ 1) + λ
2n+ 3

n+ 1
(5.24)

B = −m+ 2ζ(n+ 1) + λ
2n+ 3

n+ 1
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5.5 Phase transitions

The condition m2 > B−A also manifests differently in the three different cases. In cases I

and III, this turns out to be completely independent of the coupling, whereas this is not

the situation in case II . However, this is to be expected since the second situation is quite

similar to the situation with resonances only from the interval endpoint −A, considered in

section 5.3. The condition found upon the coupling in case II is precisely

λ ≤ λAc , λAc ≡ (n+ 1)
(
m− 2ζ(n+ 1)

)
, (5.25)

which is precisely opposite to the condition (5.17) in section 5.3. Thus, as the coupling

decreases for a fixed m, ζ and, therefore, n, eventually, the inequality is saturated in (5.25),

the resonances from B move inside the interval and a phase transition occurs, leading to

case II of this section.

The conditions for the two other cases considered in this section are

Case I : ζ <
m

2(n+ 1)
(5.26)

Case III : ζ <
m

2(2n+ 3)

In this situation, where ζ < m
2 , and m2 > B − A, there are clearly phase transitions.

This is expected, since they do appear in the situation with vanishing FI-parameter. How-

ever, there are different kinds of phase transitions: both in between the three different

cases (described in detail in sections A.1–A.3), within the same value of n, and one where

the value of n changes.

Let us start with some fixed value of n, such as n =
[
A+B
2m

]
, and let us consider the

case where n is larger than B+ζ
m − 1

2 . Then, as the coupling increases, so does B+ζ
m − 1

2

(growing linearly with coupling) for some fixed n. At some point this will surpass this n,

and a phase transition occurs that will take us to case II above. This will happen for the

coupling:

λcI→II =
1

2
(n+ 1)(m− 2ζ) , (5.27)

which in the case of vanishing FI-parameter simply corresponds to the situation where

another factor of m fits inside the interval.

From there onwards, as the coupling grows further, so will the factor A−ζ
m − 1

2 (also

growing linearly with λ), and at the point

λcII→III =
1

2
(n+ 1)(m+ 2ζ) , (5.28)

another phase transition occurs, taking us into case III . It is worth noticing that this phase

transition does not occur in the case of vanishing FI-parameter, but rather coincides with

the one between case I and II, simply because the second case, where n ∈
[A−ζ
m −

1
2 ,

B+ζ
m −

1
2

]
,

never occurs for ζ = 0, since this interval then is empty.

The final phase transition then occurs as one goes from case III back to case I, A+B
2m

has grown to the point that the integer part of it changes, and that n increases with one.
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This happens at the point A+B
2m = n+ 1, occurring at

λcIII→I =
m(n+ 1)(n+ 2)

2n+ 3
. (5.29)

This corresponds to the result obtained in [1] for the transition from m fitting a total of

2n + 1 times inside the interval [−A,A] to m fitting a total of 2n + 2 times, for ζ = 0.

(Again, in this special case, this corresponds to another multiple of m fitting inside the

interval.)

In order to determine the order of these phase transitions, we need to study the analytic

properties of the free energy,

F = − 1

RN1N2
lnZ , (5.30)

at the critical values of the coupling. It turns out that both the first- and second-order

derivative of F are continuous, whereas the third-order derivative is not. Let us denote

by ∆F the difference between the subcritical and supercritical free energy in each phase

transition. For the phase transitions occurring between the case with only resonances from

−A, for some given n, (presented in section 5.3) to case II with this same n presented

above, occurring at λAc = (n+ 1)
(
m− 2ζ(n+ 1)

)
, we find:

∂λ∆F
∣∣
λAc

= ∂2λ∆F
∣∣
λAc

= 0 , (5.31)

∂3λ∆F
∣∣
λAc

=
2

(n+ 1)4
(
m− 2ζ(n+ 1)

)2 .
Note that the apparent singularity at m = 2ζ(n + 1) is outside the region where these

solutions apply, m/(2n+ 3) < 2ζ < m/(2n+ 1).

Similarly, at the critical points between the cases I, II and III above (described by

equations (5.27)–(5.29)), we once again find a discontinuity at the third derivative, whereas

all lower derivatives are continuous:

∂3λ∆F
∣∣
λ
I (n)→II (n)
c

=
32

(n+ 1)3(m− 2ζ)2
(5.32)

∂3λ∆F
∣∣
λ
II (n)→III (n)
c

=
32

(n+ 1)3(m+ 2ζ)2

∂3λ∆F
∣∣
λ
III (n)→I (n+1)
c

= − 2(2n+ 3)5

m2(n+ 1)4(n+ 2)4
.

Therefore, just as in the case with vanishing FI-parameter, these phase transitions are all

of third order.

Finally, one may also look at transitions between solutions (5.18) of section 5.3 with

different n, as the FI parameter ζ is increased along lines of constant λ. The solution (5.6)

represents the case n = 0 and is valid in the region 2ζ > m/3, λ > m2. The case n = 1

can be readily found from the general formulas of section 5.3. We obtain

ρ(z) =



1
5λ z ∈ [−A, a1]
1
3λ z ∈ [a1, a2]
2
5λ z ∈ [a2, m2 +A]
1
2λ z ∈ [m2 +A, 2λ]

λ > 2m− 8ζ ,
m

5
< 2ζ <

m

3
, (5.33)
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with

A = 3m− 14ζ , a1 = 2m− 16ζ , a2 = 14ζ −m. (5.34)

In crossing the line 2ζ = m/3 from lower to higher values of ζ, the solution changes

from (5.33) to (5.6) (in figure 3, this corresponds to crossing the purple line at 2ζ = m/3

that begins at an hexa-critical point). The discontinuity in the free energy shows up in

the third derivative with respect to ζ. Again, for convenience we first compute ∂λF which

has a simple local expression, given by −〈z2〉/λ2. We find that first and second order ζ

derivatives are continuous, whereas

∂3ζ (∆∂λF )
∣∣
2ζ=m

3
=

432

λ3
. (5.35)

More generally, for the transition from the n− 1→ n solutions (5.18) we find

∂3ζ (∆∂λF )
∣∣
2ζ= m

2n+1
=

16(2n+ 1)3

λ3
. (5.36)

Thus the quantum phase transitions between these phases are also of the third order.

6 Summary of the analytically continued model

6.1 Case λ1 = λ2

We have herein seen that the phase structure found in [1] is significantly enriched when

the theory is deformed by a FI-parameter, ζ. The saddle-point equations then loose the

reflection symmetry present at ζ = 0, and the behavior in the decompactification limit is

highly dependent on the value of this new parameter. As ζ → 0, we recover the results

of [1].

For an FI-parameter large enough, ζ ≥ m
2 , the theory is free from phase transitions.

However, for |ζ| < m
2 , phase transitions appear. The precise appearance of the eigenvalue

density and the position of the phase transitions in phase space depend on λ and ζ in

relation to m.

To illustrate this dependence, one may consider a phase diagram with the dimensionless

axes λ/m and 2ζ/m (figure 3). Phase transitions then occur on certain critical lines in

this phase space. There are no phase transitions in the region where the FI-parameter

satisfies ζ ≥ m
2 , and so there is no use to show the phase diagram further than 2ζ/m = 1.

For 2ζ/m < 1, the only phase with no resonances is the constant eigenvalue density (5.1),

occurring in the shaded region of figure 3. At the purple dots, there are six coexisting

phases: they are hexa-critical points.

It is worth noting that the phase transitions between cases I, II and III only occur in

a specific order (see figure 4). The number of phase transitions undergoing as the coupling

λ runs from 0 to infinity depends on the value of 2ζ/m, and the maximal nmax that will

occur is given by the largest n fulfilling λcIII→I (n) < λAc (n), which, by using equations (5.25)

and (5.29), implies:

nmax =

[
m

4ζ
− 1

2

]
. (6.1)
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Figure 3. Phase diagram of the analytically continued model. Black critical lines separate phases of

case II (below) from phases with only resonances from −A (above). The shaded region corresponds

to the constant eigenvalue density (5.1). Crossing the blue, green and red lines corresponds to

phase transitions from cases with resonances from both endpoints, I → II , II → III and III → I

(where n increases by one), described in section 5.4. The purple dots are hexa-critical points. The

purple (vertical) lines separate phases described in section 5.3 differing in one unit in the value

of n, representing solutions with 2n + 1 resonances from the leftmost interval endpoint. At the

orange triangles the eigenvalue density has been computed numerically and compared to theory

(see figure 5).

Figure 4. Sequences of phase transitions in the theory at constant ζ. As λ grows, the cycle

continues until the value of nmax where, for given m, ζ, one has λII→Ac (nmax) < λII→III
c (nmax),

after which the cycle ends.

The number of phases is then given by 3(nmax + 1), It approaches infinity as 2ζ/m → 0.

This is to be expected in order to match the ζ = 0 case [1]. However, for any non-vanishing

FI-parameter, there is only a finite number of phase transitions in the theory (and no phase

transition for 2ζ ≥ m).

The grey, vertical line in figure 3 at 2ζ/m = 0.22 illustrates an example on the phase

structure of the model, and how to read the diagram. For 2ζ/m = 0.22, one has nmax = 1

by (6.1), hence 6 different phases along the grey line. Starting at the bottom of the diagram,

we are in the trivial phase (case I with n = 0). As the coupling grows we moves upwards

– 21 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
4

λ/m 0.22 0.5 0.63 0.73 0.96 1.2

n [0.22] = 0 [0.61] = 0 [0.89] = 0 [1.095] = 1 [1.53] = 1 [1.85] = 1

Phase I n=0 II n=0 III n=0 I n=1 II n=1 (only A-resonances)n=1

Table 3. Sequence of transitions and corresponding n =
[
A+B
2m

]
in cases I –III and n =

[
A−ζ
m − 1

2

]
in the phase with only resonances from one endpoint.

along the grey line until we cross the first blue line. This corresponds to a phase transition

into case II with n = 0. After crossing the green line, we enter III with still n = 0, and

when crossing the red line, we move back into case I, but now with n = 1. Crossing the

next blue line takes us to case II, n = 1. However, instead of crossing another green (and

thereafter red) line, we rather cross a black line. Beyond this point, all resonances from the

rightmost interval endpoint move outside the interval of support of the eigenvalue density,

and we thus get into the phase described in section 5.3 with n = 1, having resonances only

from the leftmost interval endpoint −A.

As the coupling grows further, no new resonance points enter the interval, and the

system never leaves this phase. The orange horisontal lines in figure 3, together with the

orange triangles, represents points at which numerical calculations have been made in order

to compare with theoretical calculations. The eigenvalue density for the six phases present

for values of m, ζ such that 2ζ/m = 0.22 are presented in figure 5, and we find an excellent

agreement with our theoretically derived densities in sections 5.3, 5.4 and appendix A. The

smoothness of the curves visible in figure 5 has to do with finite-size effects.

As a check, using equations (5.22)–(5.24), we may compute the values of n in these dif-

ferent phases, and these results are summarised in table 3. The results follow the expected

pattern, where n changes in going from case III to case I.

The results of section 5.4 (and appendix A) explain some of the peculiar properties of

this model in the special case of ζ = 0: as resonances from both the left- and right interval

endpoints appear in the interior of the interval, the interval is divided into four qualitatively

different regimes: two in between resonances originating from the same interval endpoint,

and two in between resonances originating from different interval endpoints. As the FI-

parameter goes to zero, these regimes become pairwise indistinguishable from one another

due to the presence of reflection symmetry. The different origins of these regimes are indeed

visible in the eigenvalue density, as “odd” and “even” patches of the eigenvalue density

behave significantly different from one another; in addition, the critical couplings at which

phase transitions occur are different for “odd” and “even” phases (where mass parameter m

fits inside the interval an even- or an odd number of times). This is all explained here by the

fact that these regimes actually originate from different sets resonances; some originating

from the leftmost endpoint, and some from the rightmost endpoint of the interval. In this

way, the general solution with ζ 6= 0 explains a phenomenon which appears to have no

deep reason in the case of vanishing FI-parameter.

Furthermore, one may note that the green and blue lines in figure 3 coincide when

ζ = 0. Here, the only phase transitions occurring are the ones between the cases I and III .

This is required to agree with previous results for ζ = 0 [1].
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Figure 5. Eigenvalue densities determined numerically for the six phases present with 2ζ/m = 0.22

and λ/m ∈ {0.22, 0.5, 0.62, 0.73, 0.96, 1.2}, compared with eigenvalue density determined analyti-

cally, for the cases I n=0, II n=0, III n=0, I n=1, II n=1, An=1 (grey lines). [The smooth edges of the

eigenvalue density are due to the finite radius R used in the calculations. Here, mR = 50. For

higher mR the numeric is unstable.]

6.2 Case λ1 6= λ2

6.2.1 First analytic continuation

It is interesting to ask what happens in the case when the couplings are different. We

assume λ1, λ2 are real (as discussed, for general complex values of λ1, λ2 the saddle-point

equations become complicated to solve, even numerically). Then we have to compute the

partition function in the convergence region where λ1,2 > 0. We further assume, with no

loss of generality, λ1 > λ2.
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First, let us consider the limit of very large FI-parameter. In the case of ζ →∞, both

shifted terms of the saddle-point equations (3.6) vanish, and we are left simply with

ρx =
1

2λ1
, ρ̂y =

1

2λ2
. (6.2)

Using the integral equations (3.5) with x = B, y = D, together with the normalisation

conditions for the densities, one finds the interval endpoints to be given by:

B = D = λ1 + λ2 (6.3)

A = −C = λ1 − λ2

Consider what happens when the FI-parameter decreases. Then there are two points where

the above solution (6.2) may cease to be valid:

• A resonance point moves inside the region of support for the eigenvalue density. The

first point to do this is the one originating from the leftmost interval endpoint of the

other interval. That is, A −m2 (or C −m2) moves inside the interval [−C,D] (or

equivalently [−A,B]).

• The sign-functions change inside the integration regime in (3.5).

Given the solution in the case ζ → ∞, we find that the first one of these situations

occur precisely when m2 ≤ 0 and, just as in the case with equal couplings, there will be a

phase transition in the theory as soon as ζ ≤ m
2 .

As for the second possible point of failure for the solution (6.2) for large ζ, one may

easily show that the sign-functions will not change signs inside the integration regimes

until ζ ≤ m
2 − λ2, ζ ≤ m

2 − λ1, which for positive couplings always happen after the

phase transition originating from resonance points entering the intervals. This shows that

the theory with ζ ≥ m
2 does not have phase transitions, generalizing the result found in

section 4 to the case of arbitrary λ1, λ2 > 0.

We now derive the solution in this new phase, where ζ decreases just below m
2 . Assume

ζ = m
2 − u, for some u, satisfying 0 < u < m

2 (together with some other conditions which

will shortly be specified). Then one finds

m1 = 2m− 2u (> 0) (6.4)

m2 = 2u .

(It is here worth noting that both terms shifted by m1 in the saddle-point equations (3.5)

will vanish, at least for small u, since we know A = −C in the limiting case of u = 0.)

We wish to consider a situation where the resonance point from the leftmost interval

endpoint of one interval lies in the interior of the other one (i.e. A+m2 < D, C+m2 < B),

which gives us the additional conditions on u mentioned above. This is equivalent to saying

that the resonance points originating from the rightmost endpoints of the intervals will lie

outside the region of support for the densities. As long as these conditions are satisfied,

the integral equations may once more be used straight away to obtain

B = D = λ1 + λ2 , (6.5)

just as in the case of ζ ≥ m
2 .
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The intervals [−A,B], [−C,D] will then be divided into two parts each, and using a

piecewise constant Ansatz for the eigenvalue density on these patches, together with the

normalisation condition, one obtains:

ρx(z) =

{
1

3λ1
∀z ∈ [−λ1 + λ2 − 2u , −λ1 + λ2 + 4u]

1
2λ1

∀z ∈ [−λ1 + λ2 + 4u , λ1 + λ2]

ρ̂y(z) =

{
1

3λ2
∀z ∈ [−λ2 + λ1 − 2u , −λ2 + λ1 + 4u]

1
2λ2

∀z ∈ [−λ2 + λ1 + 4u , λ1 + λ2]
.

Thus, as the FI-parameter decreases just below m
2 , a phase transition occurs, even

though λ1 6= λ2. Additional phase transitions are undergone as resonance points continue

moving inside- or outside of the region of support of the eigenvalue densities. The quali-

tative behaviour of the theory is therefore similar to the λ1 = λ2 case studied in previous

sections.

6.2.2 Second analytic continuation

Consider for simplicity m1 = m2 ≡ m, i.e. ζ = 0. The saddle-point equations (3.8) imply

the following functional equations:

ρx(x) =
1

2α1
+

1

2
ρy(x+m) +

1

2
ρy(x−m) , (6.6)

ρy(y) =
1

2α2
+

1

2
ρx(x+m) +

1

2
ρx(x−m) . (6.7)

The trivial solution is

ρx(x) =
1

2α1
, x ∈ (−α1, α1)

ρy(y) =
1

2α2
, y ∈ (−α2, α2) (6.8)

and holds provided α1 + α2 < m.

When α1 + α2 > m, the solution has two patches:

ρx(x) =

{
1

2α1
x ∈ [0, a]

2
3α1

+ 1
3α2

x ∈ [a,A]
,

ρy(y) =

{
1

2α2
y ∈ [0, b]

2
3α2

+ 1
3α1

y ∈ [b, B]
, (6.9)

a = m−B =
α1(2m− α2)

2α1 + α2
, B =

α2(α1 +m)

2α1 + α2
, (6.10)

b = m−A =
α2(2m− α1)

α1 + 2α2
, A =

α1(α2 +m)

α1 + 2α2
, (6.11)

where we only exhibited the region x > 0, since in this ζ = 0 case the density has reflection

symmetry.
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Thus there is a phase transition for generic α1, α2 > 0. Note that the solution requires

α1, α2 to be positive, as the eigenvalue densities must be positive. The free energy can be

computed from the formulas

∂α1F =
1

2α2
1

〈x2〉 , ∂α2F =
1

2α2
2

〈y2〉 . (6.12)

One can check that the resulting expressions satisfy the integrability condition ∂α1∂α2F =

∂α2∂α1F . For the phase with uniform density (6.8), we find

Fi =
1

12
(α1 + α2) . (6.13)

For the phase (6.9)

Fii =
−6(α1 + α2)m

2 − 3α1α2m+ α1α2(α1 + α2) + 2m3

12(2α1 + α2)(α1 + 2α2)
. (6.14)

It follows that the first and second derivative are continuous at the transition point

α1 + α2 = m, whereas the third derivative has a jump:

∂3α1
∆F

∣∣
α2=m−α1

=
1

(2m− α1)(m+ α1)
, ∆F ≡ Fi − Fii . (6.15)

Therefore the transition is, as in the first analytic continuation, third order. It occurs for

generic, positive values of α1, α2 at α1 + α2 = m. Note that this phase transition is not

meaningful in the ABJM case: it occurs when α1 + α2 > m, which is never the case in

ABJM where α1 + α2 = 0.

7 Mass/FI-deformed ABJM theory does not have phase transitions

In previous sections we solved the mass-deformed ABJM model with a non-vanishing FI

term at large N , with the couplings analytically continued into the complex plane. This

is a standard approach in studying the large N behaviour in Chern-Simons theories (see,

e.g., [4, 18, 25, 26]). We have found a rich structure of phase transitions, but an important

question is whether the ABJM model with physical couplings and masses exhibits phase

transitions as the coupling is varied. For the mass-deformed models, analytic continuation

back to physical couplings is not straightforward, due to the existence of poles originating

from the hyperbolic functions in the partition function. Clearly, it would be more desirable

to have a direct solution of the large N ABJM model with the original parameters, with

k1 = −k2 integers. Solving the saddle-point equations in this case turns out to be very

complicated, because eigenvalues seem to be distributed in cuts in the complex plane, with

non-uniform N dependence. In this section we will argue that physical ABJM theory

deformed by arbitrary mass and FI terms is free from phase transitions.

7.1 General case

We start with (2.2), with m ≤ 2ζ. In section 6.2.1 we have shown that this theory does

not have phase transitions for generic λ1, λ2, real and positive. Therefore the free energy
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is a smooth function of the couplings λ1, λ2, indicating that there should not be phase

transitions after λ1,2 → e±iϕλ1,2 analytic continuation back to the physical ABJM model

when m ≤ 2ζ. But the partition function of the ABJM model ZABJM(2ζ,m) (with N1 =

N2) has the symmetry (2.10). The symmetry holds for any N , in particular, in the planar

limit N →∞ with fixed k/N . If for given ζ and m, ZABJM(2ζ,m) is a smooth function of

k/N , then so is ZABJM(m, 2ζ). This indicates that there should be no phase transitions in

ABJM neither in the opposite regime when m > 2ζ.

7.2 Massive U(2)×U(2) ABJM

We now consider a case where the partition function can be computed exactly, namely the

N = 2 case, i.e. U(2)×U(2) ABJM deformed by mass and FI terms. We will first consider

the analytically continued model with real, equal couplings, particularised at N = 2. This

corresponds to the second analytic continuation in the Chern-Simons levels, defined in

section 3.2 and further studied in section 6.2.2 (now the first analytic continuation cannot

be used because the ranks of the two gauge groups are fixed from the beginning). We will

show that, in the same decompactification limit, the model also exhibits phase transitions

of the same nature as the large N model. Then we will discuss the U(2)×U(2) ABJM with

physical coupling and parameter deformations, and show that there is no phase transition

in this case.

7.2.1 The analytically continued model with equal, real couplings

Consider the gauge group U(2)×U(2), and analytic continuation in the Chern-Simon levels

to equal, real couplings. The partition function (2.1) takes the form

Z =
1

4

∫
d2µ

(2π)2
d2ν

(2π)2
sinh2 R

2 (µ1 − µ2) sinh2 R
2 (ν1 − ν2) e−

R2

2g

∑
i(µ

2
i+ν

2
i )∏2

i,j=1 cosh
(
R
2 (µi − νj +m)

)
cosh

(
R
2 (µi − νj −m)

) (7.1)

where the R-dependence has been restored. In this subsection, for simplicity we set the

FI-parameter to zero, since this case already illustrates the main point. This is the analog

of the models with α1 = α2 studied at large N in section 4 of [1], and briefly reviewed in

section 3.2. They have similar phase transitions as the λ1 = λ2 models obtained by the

analytic continuation in the gauge group ranks, discussed in detail in sections 4, 5, 6.

Although phase transitions in matrix models typically arise at large N , this type of

phase transitions due to the contribution of extra massless multiplets at certain couplings

have also shown up in some finite N examples [11, 14]. The reason is that the contribution

of an extra massless multiplet produces a singular behaviour at any N , even when N = 2.

We now wish to see if the present model also has phase transitions.

The non-analytic behaviour arises upon taking a suitable decompactification limit R→
∞, where the integral defining the partition function is dominated by large expectation

values µi, νi. In this limit, the hyperbolic cosine functions in the denominator get replaced

by the non-analytic functions 1
2 exp |µi − νj ±m|, which produce non-analytic behaviour

when the coupling is such that µi − νj at the saddle-point hit ±m. We therefore assume
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the same scaling we used in the large N case:

g ≡ λR , (7.2)

R→∞ , λ fixed . (7.3)

For large R, Z may be written as:

Z = 4

∫
d2µ

(2π)2
d2ν

(2π)2
eR
[
|µ1−µ2|+|ν1−ν2|− 1

2

∑2
i,j=1(|µi−νj−m|+|µi−νj+m|)−

1
2λ

∑
i(µ

2
i+ν

2
i )
]

(7.4)

and the integral is dominated by a saddle-point. The saddle-point equations are

1

λ
µ1 = sign(µ1 − µ2)−

1

2

2∑
j=1

[
sign(µ1 − νj −m) + sign(µ1 − νj +m)

]
(7.5)

1

λ
µ2 = − sign(µ1 − µ2)−

1

2

2∑
j=1

[
sign(µ2 − νj −m) + sign(µ2 − νj +m)

]
(7.6)

1

λ
ν1 = sign(ν1 − ν2)−

1

2

2∑
j=1

[
sign(ν1 − µj −m) + sign(ν1 − µj +m)

]
(7.7)

1

λ
ν2 = − sign(ν1 − ν2)−

1

2

2∑
j=1

[
sign(ν2 − µj −m) + sign(ν2 − µj +m)

]
(7.8)

We can assume with no loss of generality µ1 > µ2 and ν1 > ν2. If the eigenvalues are

sufficiently small, their difference will be less than m. Then the sign functions containing

m in the argument cancel out and we find the solution

µ1 = λ , µ2 = −λ , ν1 = λ , ν2 = −λ . (7.9)

Thus this solution holds for1

λ <
m

2
. (7.10)

When λ > m
2 , the solution will change, because the difference of eigenvalues can overcome

m and in this case the sign functions will contribute. In this λ > m
2 regime, the absolute

minimum of the action is given by

µ1 = ν1 =
m

2
, µ2 = ν2 = −m

2
. (7.11)

In this case the arguments of some sign functions vanish. The action is not differentiable

at this point and the minimum must be found by inspection.

Therefore the theory contains two phases. The free energy F = − 1
R lnZ in each phase

is given by the action evaluated at the minimum of the potential. We find

F =

{
4m− 2λ λ < m

2

2m+ m2

2λ λ ≥ m
2

1For two independent couplings λ1, λ2, the solution is µ1 = −µ2 = λ1, ν1 = −ν2 = λ2, with λ1+λ2 < m,

which is the N = 2 analog of the solution (6.8).
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This implies a discontinuity in the second derivative

∆F
∣∣
λ=m

2
= ∂λ∆F

∣∣
λ=m

2
= 0 , ∂2λ∆F

∣∣
λ=m

2
= − 8

m
. (7.12)

Therefore, we conclude that the analytically continued U(2)×U(2) mass-deformed ABJM

model presents phase transitions.

7.2.2 U(2)×U(2) ABJM model with physical couplings

The partition function of the U(2)×U(2) ABJM deformed by mass and a FI term computed

by localisation is given (see (2.1) with N = 2)

Z =
1

4

∫
d2µ

(2π)2
d2ν

(2π)2
sinh2 µ1−µ2

2 sinh2 ν1−ν2
2∏2

i,j=1 cosh
(µi−νj+m

2

)
cosh

(µi−νj−m
2

) e ik4π ∑
i(µ

2
i−ν2i )−

ik
2π
ζ(
∑
i µi+

∑
i νa)

(7.13)

Using (2.8) for N = 2, the partition function can be written in the following form

Z =
1

2
(Z1 − Z2) , (7.14)

with

Z1 =

∫
dτ1dτ2

e−ikm2(τ1+τ2)

cosh(πkτ1) cosh(πkτ2) cosh2
(
m1
2

) , (7.15)

and

Z2 =

∫
dτ1dτ2

e−ikm2(τ1+τ2)

cosh(πkτ1) cosh(πkτ2) cosh
(
π(τ1 − τ2)− m1

2 )
)

cosh
(
π(τ1 − τ2) + m1

2 )
) ,

(7.16)

m1 ≡ m+ 2ζ , m2 ≡ m− 2ζ . (7.17)

It is important to note that the derivation that leads to this form of the partition function

holds if and only if the Chern-Simons levels of both gauge groups in U(2)k1 × U(2)k2 are

opposite, i.e. k2 = −k1.
The first integral can be computed by using the Fourier integral (2.6). We get

Z1 =
1

k2 cosh2
(
m1
2

)
cosh2

(
m2
2

) . (7.18)

Next, consider the calculation of Z2. Note that we have reduced the original four integrals

to only two integrals τ1 and τ2. The integral (7.16) can be carried out by defining variables

u = τ1 + τ2, v = τ1 − τ2. Then the integral over u is a Fourier transform than can be

computed explicitly:∫
du

e−ikm2u

cosh πk
2 (u+ v) cosh πk

2 (u− v)
=

2 sin(km2v)

k sinh(πkv) sinhm2
. (7.19)

Hence

Z2 =
2

k sinhm2

∫
dv

sin(km2v)

sinh(πkv) cosh
(
πv − m1

2

)
cosh

(
πv + m1

2

) . (7.20)
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Restoring the R dependence, and rescaling v → Rv, we have

Z2 =
2λR2

sinh(m2R)

∫
dv

sin(m2vR/λ)

sinh(πv/λ) cosh
(
R(πv − m1

2 )
)

cosh
(
R(πv + m1

2 )
) (7.21)

where we defined λ = 1/(kR) = fixed. At large R, this integral is not dominated by

a saddle-point; nevertheless, it can be computed exactly. For R → ∞, the product of

the hyperbolic cosines in the denominator becomes proportional to a step-function with

support in the interval
(
− m1

2π ,
m1
2π

)
. The sin(πv/λ) in the denominator can be replaced

by πv/λ (as can be seen e.g. by a change of integration variable v → x/R). The resulting

integral can be carried out explicitly, with the result

Z2 =
32

πk2
e−R(|m1|+|m2|) Si

(
k

2π
|m1m2|R2

)
, (7.22)

where Si(z) is the Sine integral function. Combining with Z1 at large R, we finally obtain

Z =
8

k2
e−R(|m1|+|m2|)

(
1− 2

π
Si

(
k

2π
|m1m2|R2

))

≈ 32

k3|m1m2|R2
e−R(|m1|+|m2|) cos

(
k

2π
|m1m2|R2

)
, (7.23)

where we have used the asymptotic expansion of the Sine integral function.

Thus we have evaluated the U(2)k × U(2)−k ABJM partition function with both

mass and FI-parameter deformations in the large R limit. In particular, this shows that

F = − 1
R lnZ is an analytic function of the coupling k (or λ). Therefore, for physical

couplings, the model does not exhibit phase transitions. More generally, since the Sine

integral function is an entire function in the whole complex plane, the theory does not

have phase transition in any region of the k-complex plane. Thus, phase transitions seem

to be absent in U(2) × U(2) ABJM theory, where the Chern-Simons levels of the gauge

group are opposite integers.

Remark. The partition function (7.23) has zeroes, which, at large R, are located at

km1m2R
2 =

m1m2R

λ
≈ π2(2n+ 1) , n ∈ Z (7.24)

These are Lee-Yang singularities.2 It is easy to see that the partition function has zeroes

also at finite R. It would be interesting to get further insights on their physical meaning.

They appear to be resonances occurring at special values of mR, perhaps associated with

Kaluza-Klein excitations in S3. They seem to arise by virtue of the fact that: a) Chern-

Simons theory has imaginary coupling g = 2πi/k; b) the theory has mass/FI deformation;

c) the theory is on a compact space. As a small check, one can see that the partition

function of other Chern-Simons theories with massive matter also exhibit similar zeroes.

In particular, for U(2) Chern-Simons theory with fundamental matter one finds [14]

Z
U(2)
(k=2) =

8π2e2mR
(
e
im2R2

2π − 1
)(
e
im2R2

2π + i
)

(e2mR − 1)2
, (7.25)

2We thank K. Zarembo for this remark.

– 30 –



J
H
E
P
0
5
(
2
0
1
5
)
0
6
4

which, indeed, has an infinite number of zeroes at m2R2 = π2n, m2R2 = π2(4n − 1),

n = 1, 2, . . .

8 Concluding remarks

In the first part of this paper we have studied the general solution to functional equations

of the form

ρ(z) =
1

2λ
− 1

2
ρ(−z −m1)−

1

2
ρ(−z +m2) , (8.1)

where ρ(z) is a unit-normalised density supported on some interval [−A,B] along the real

axis. We have shown that this equation describes the large N limit of the mass- and FI-

deformed ABJ partition function Z(λ1, λ2) with couplings λ1 = 2πiN1/k, λ2 = 2πiN2/k

analytically continued to the complex plane, in the particular region where λ1 = λ2 ∈ R.

The study herein generalises the discussion of [1], corresponding to the case m1 = m2 in

this notation, and this generalisation turns out to be highly non-trivial since it amounts

to giving up the reflection symmetry around the origin which drastically simplified the

analysis in the special case of m1 = m2.

Unlike the case of vanishing FI-parameter, for ζ 6= 0 the theory exhibits a finite number

of phases as the coupling is increased from 0 to infinity. The structure of these phases is

summarised in section 6 and in the complete phase diagram given in figure 3. One result

obtained here of particular interest is that the FI deformation alone, while it introduces a

mass scale, does not generate phase transitions. Furthermore, in section 6, we have also

considered the cases of generic (real and positive) couplings λ1, λ2, as well as the case of

analytic continuation in the Chern-Simons levels instead, and showed that the qualitative

picture is similar to the equal coupling case of previous sections.

An important question concerns the implications of these results for the physical ABJM

theory, where the couplings are opposite (λ1 = −λ2) and purely imaginary. We have pre-

sented an argument showing that there are no phase transitions in this case. The argument

relies on the symmetry of the original ABJM partition function under exchange of FI- and

mass-deformations, along with the fact, derived in section 6.2.1, that the analytically con-

tinued theory is free from phase transitions when ζ > m/2. To further clarify this issue,

we have computed the partition function for the gauge group U(2) × U(2) exactly. While

the theory has phase transitions of the same nature as the large N model in a region of

parameter space (in particular, at equal real, couplings), there are nevertheless no phase

transitions in the physical ABJM case, where the Chern-Simons levels are k and −k.

The U(2)k ×U(2)−k example explains why the U(N)k ×U(N)−k ABJM model should

be free from phase transitions. It would be interesting to get further insights on the whole

picture and on the analytic structure of the mass/FI-deformed ABJM partition function.
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A The phases for m2 > B −A

In section 5.4 we found that, when m2 > B −A, even and odd resonances can get into the

interval [−A,B] of support of the density in three different ways:

• Case I . Both points a2n+1 and b2n+1 lie outside the interval, which is equivalent to

A− ζ
m

− 1

2
<
B + ζ

m
− 1

2
< n . (A.1)

• Case II . The point a2n+1 lies outside the interval, but b2n+1 lies inside the interval,

corresponding to
A− ζ
m

− 1

2
< n <

B + ζ

m
− 1

2
. (A.2)

• Case III . Both a2n+1 and b2n+1 lie inside the interval, that is,

n <
A− ζ
m

− 1

2
<
B + ζ

m
− 1

2
. (A.3)

In what follows we examine each case separately.

A.1 Case I: n =
[
A+B
2m

]
, A−ζ

m − 1
2 <

B+ζ
m − 1

2 < n

In this case, the ordering of the resonance points in the interior of the interval will be

given by:

−A < b2n < b1 < a2n−1 < a2 < b2(n−1) < b3 < a2(n−1)−1 < · · · < (A.4)

< a2n−2 < b2 < b2n−1 < a1 < a2n < B ,

which is illustrated in figure 6. With a piecewise constant Ansatz for the density on

the form:

ρ(z) =


αβk ∀z ∈ [a2k, b2(n−k)] k ∈ [0, n]

βk ∀z ∈ [b2(n+1−k), b2k−1] k ∈ [1, n]

βαk ∀z ∈ [b2k−1, a2(n−k)+1] k ∈ [1, n]

αk ∀z ∈ [a2(n−k)+1, a2k] k ∈ [1, n]

, (A.5)

with −A = a0, B = b0, the saddle-point equation (3.7) for αβk, βk, βαk, αk takes the form:

2αβk + βαn−k + βαn+1−k =
1

λ
k ∈ [0, n] (A.6)

2βk + βn+1−k + βn+2−k =
1

λ
k ∈ [1, n]

2βαk + αβn−k + αβn+1−k =
1

λ
k ∈ [1, n]

2αk + αn−k + αn+1−k =
1

λ
k ∈ [1, n] ,

with the boundary conditions βn+1 = α0 = βαn+1 = βα0 = 0. The decoupled equations,

for α, β, are straightforward to solve, and from the two remaining coupled equations, one
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Figure 6. Resonance points originating from the interval endpoint −A and B (which are shown

in blue). Resonances originating from −A are shown in magenta (even, a2k), and purple (odd

resonances, a2k−1). Similarly, resonances originating from the rightmost interval endpoint, B,

are shown in yellow (even, b2k) and red (odd, b2k−1). These resonances exist for all k ≤ B+A
2m .

Furthermore, the resonances under the maps z → −z−m1 and z → m2− z are shown underneath.

finds that the general solution for βαk is a linear function in k. Enforcing the boundary

conditions, both integration constants vanish, completely specifying βαk, and thus also

αβk. Altogether, one then finds the eigenvalue density as:

ρ(z) =


αβk = 1

2λ ∀z ∈ [a2k, b2(n−k)] k ∈ [0, n]

βk = 1+n−k
λ(1+2n) ∀z ∈ [b2(n+1−k), b2k−1] k ∈ [1, n]

βαk = 0 ∀z ∈ [b2k−1, a2(n−k)+1] k ∈ [1, n]

αk = k
λ(1+2n) ∀z ∈ [a2(n−k)+1, a2k] k ∈ [1, n]

, (A.7)

which simplifies to the solution found previously in [1] for the case of a vanishing FI-

parameter.

A.2 Case II: n =
[
A+B
2m

]
, A−ζ

m − 1
2 < n < B+ζ

m − 1
2

In this case, the point b2n+1 lies inside the interval [−A,B], but the point a2n+1 does not.

The ordering of the interior resonance points in this case will be as in the previous, but

with odd- and even b-resonances interchanged, that is:

−A < b1 < b2n < a2n−1 < a2 < b3 < b2(n−1) < a2(n−1)−1 < · · · < (A.8)

< a2n−2 < b2n−1 < b2 < a1 < a2n < b2n+1 < B .
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Again, the density will be given by a piecewise constant one, which, using the notations

αβk, βk, βαk, αk are governed by the following equations:

2αβk + βαn−k + βαn+1−k =
1

λ
k ∈ [0, n] (A.9)

2βk + βn−1−k + βn−k =
1

λ
k ∈ [0, n]

2βαk + αβn−k + αβn+1−k =
1

λ
k ∈ [1, n]

2αk + αn−k + αn+1−k =
1

λ
k ∈ [1, n] ,

together with the boundary conditions

α0 = β−1 = βα0 = βαn+1 = 0 . (A.10)

This gives us the eigenvalue density as

ρ(z) =


αβk = 1

2λ ∀z ∈ [a2k, b2k+1] k ∈ [0, n]

βk = 1+k
λ(3+2n) ∀z ∈ [b2k+1, b2(n−k)] k ∈ [0, n]

βαk = 0 ∀z ∈ [b2(n−k+1), a2(n−k)+1] k ∈ [1, n]

αk = k
λ(1+2n) ∀z ∈ [a2(n−k)+1, a2k] k ∈ [1, n]

. (A.11)

A.3 Case III: n =
[
A+B
2m

]
, n < A−ζ

m − 1
2 <

B+ζ
m − 1

2

In this case, both a2n+1 and b2n+1 will lie in the interior of the interval, and the ordering

amongst the interior resonance points will be as in the second case, but with interchanged

ordering amongst the ak’s. Furthermore, since the point a2n+1 now enters the interior of

the interval, this will be the leftmost resonance point, and not b1 as in the previous case.

The ordering may be seen in figure 7.

Once more, we write down a piecewise constant Ansatz for the density, the only change

from the previous case is the numbering and precise appearance on the boundary conditions

for αk, βk, αβk, βαk. Let our Ansatz be:

ρ(z) =


αk ∀z ∈ [a2k, a2(n−k)+1] k ∈ [0, n]

αβk ∀z ∈ [a2(n−k)+1, b2k+1] k ∈ [0, n]

βk ∀z ∈ [b2k+1, b2(n−k)] k ∈ [0, n]

βαk ∀z ∈ [b2(n+1−k), a2k] k ∈ [1, n]

. (A.12)

Then, the saddle-point equation (3.7) takes the form:

2αk + αn−k + αn+1−k =
1

λ
k ∈ [0, n] (A.13)

2αβk + βαn−k + βαn+1−k =
1

λ
k ∈ [0, n]

2βk + βn−1−k + βn−k =
1

λ
k ∈ [0, n]

2βαk + αβn−k + αβn+1−k =
1

λ
k ∈ [1, n] ,
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Figure 7. Resonance points originating from the interval endpoint −A and B (which are shown

in blue). Resonances originating from −A are shown in magenta (even, a2k), and purple (odd

resonances, a2k−1). Similarly, resonances originating from the rightmost interval endpoint, B,

are shown in yellow (even, b2k) and red (odd, b2k+1). These resonances exist for all k ≤ A+B
2m .

Furthermore, the resonances under the maps z → −z−m1 and z → m2− z are shown underneath.

with

α2n+1 = β−1 = βα0 = βαn+1 = 0 . (A.14)

Hence, in general, the eigenvalue density in this case is given by:

ρ(z) =


αk = n+1−k

λ(3+2n) ∀z ∈ [a2k, a2(n−k)+1] k ∈ [0, n]

αβk = 1
2λ ∀z ∈ [a2(n−k)+1, b2k+1] k ∈ [0, n]

βk = k+1
λ(3+2n) ∀z ∈ [b2k+1, b2(n−k)] k ∈ [0, n]

βαk = 0 ∀z ∈ [b2(n+1−k), a2k] k ∈ [1, n]

, (A.15)

which indeed reduces to the solution previously found for vanishing FI-parameter as B → A

and ζ → 0.

A.4 Determining the interval endpoints

Once more, the rightmost interval endpoint may be determined from the integral equa-

tion (3.5), where the two first integrals are simply determined from the normalisation

condition. However, the third one is not. The sign-function in that integral will take the

value one for y > m2−B = b1, whereas it will take the value −1 for y < m2−B = b1, and

so we find B as:

B =
λ

2

(
3−

∫ b1

−A
dy ρ(y) +

∫ B

b1

dy ρ(y)

)
. (A.16)
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These integrals will depend on the ordering on the resonance points and thus will take

different values in the different cases. Define the distances between one a and one b-

resonance point as ab, the distance between two a-resonances as a, and between two b-

resonances as b. The integral may then be divided as:

B =
λ

2

(
3− ab

∑
<b1

αβk − a
∑
<b1

αk − b
∑
<b1

βk + ab
∑
>b1

αβk + a
∑
>b1

αk + b
∑
>b1

βk

)
. (A.17)

Inserting the expressions for the eigenvalue densities, one then finds:

B =
λ

2

(
3 + ab

n− 1

2λ
− a

∑
<b1

αk − b
∑
<b1

βk + a
∑
>b1

αk + b
∑
>b1

βk

)
. (A.18)

Furthermore, the normalisation condition on the eigenvalue density will give us another

condition on the interval endpoints. In the context of ab, a and b, this takes the form:

ab
∑
k

αβk + a
∑
k

αk + b
∑
k

βk = 1

⇔ (A.19)

ab
n+ 1

2λ
+ a

∑
k

αk + b
∑
k

βk = 1 .

Together, the equations (A.18) and (A.19) gives us two relations between the interval

endpoints and the parameters m, ζ and λ, and these may be used to determine the interval

endpoints in terms of these quantities.

These expressions depend on the precise appearance of the eigenvalue densities, as

well as on the ordering of the resonance points around b1. Therefore they will give rise

to different results for the interval endpoints in the three cases. Inserting the appropriate

limits in the sum, and the corresponding number of points to the left/right of b1, one finds

the interval endpoints described in (5.22)–(5.24).
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