CHALMERS

Exploring the Elixir Ecosystem
Testing, Benchmarking and Profiling

Degree project report in Computer Engineering

SEBASTHIAN KARLSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2015

DEGREE PROJECT REPORT

Exploring the Elixir Ecosystem
Testing, Benchmarking and Profiling

SEBASTHIAN KARLSSON

Department of Computer Science and Engineering
Division of Computer Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2015

Exploring the Elixir Ecosystem
Testing, Benchmarking and Profiling
SEBASTHIAN KARLSSON

© SEBASTHIAN KARLSSON, 2015

Examiner: Lars Svensson

Department of Computer Science and Engineering
Division of Computer Engineering

Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Author warrants that he/she is the author to the Work,
and warrants that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Department of Computer Science and Engineering
Goteborg, Sweden 2015

Exploring the Elixir Ecosystem
Testing, Benchmarking and Profiling

SEBASTHIAN KARLSSON
Department of Computer Science and Engineering, Chalmers University of Technology

Degree project report

ABSTRACT

The success of a new programming language is to a large extent determined by the quality of
its ecosystem. Among the most important parts of any given ecosystem are tools for testing,
benchmarking and profiling code. This paper explores the tools available for Elixir, a new
language targeting the Erlang virtual machine. A hands-on approach is used, by using these
tools to develop and incrementally improve a fast Fourier transform algorithm. The final goal
is a fast Fourier transform implementation fast enough for a real-time vocoder. Between the
first and the last iteration a ten-fold increase in speed is achieved. While it is still not fast
enough for a real-time vocoder, it demonstrates the utility of the development tools available
in the Elixir ecosystem.

Keywords: Elixir, Erlang, Testing, Benchmarking, Profiling, FF'T

i

PREFACE

Working on this degree project has been an interesting journey. It has been rough at times,
but also very rewarding. I still need to work on my technical writing skills, but I think this
report turned out acceptable in the end.

Hopefully, Elixir (along with Erlang) will continue to grow and gain popularity.

Anyway, acknowledgments. Thanks to Lars Svensson, for his straightforward criticism and
insightful comments, and also for asking questions that caught me completely off guard. It
was a humbling experience. Thanks also to my advisor, Roger Johansson, for letting me do
my own thing. Finally, many thanks to Sakib Sistek, who provided the inspiration necessary
for starting this project.

1il

iv

ABBREVIATIONS

BEAM Bogdan/Bjorn’s Erlang Abstract Machine. The main implementation of the Er-
lang virtual machine.

BIF Built-In Function
CPU Central Processing Unit

DFT Discrete Fourier Transform
DSL Domain-Specific Language
FFT Fast Fourier Transform
FP Functional Programming

HiPE High Performance Erlang. Native code compiler for Erlang.

(0]0) Object-oriented Programming

PRNG Pseudo-Random Number Generator

TCP Transport Control Protocol

ULP Unit of Least Precision / Unit in the Last Place

vi

CONTENTS

Abstract

Preface

Abbreviations

Contents

iii

<

2.

1 Introduction

1.1 Background
1.2 Goals . . .
1.3 Restrictions

2 Technical Background

2.1 Functional Programming
2.1.1 TImportant Concepts
2.2 Erlango
2.2.1 Language Features
2.3 ELxiro
2.3.1 Mixand Hex
232 ExUnit oL
2.3.3 CONCurrency o v v v v it
2.3.4 HiPE Native Code Compiler
2.4 Discrete and Fast Fourier Transforms
2.5 Vocoder

3 A Pragmatic Approach

DO

0 3T OO kW ww

4 Development Tools

4.1 Testing
4.1.1 ErlPort
4.1.2 Floating Point Equality
4.1.3 Random Input L.
4.1.4 Putting it All Together
4.2 Benchmarkingo
4.3 Profiling
4.3.1 ExProf
432 eflame

5 Implementing a Fast Fourier Transform

5.1 Mixed-radix FF'T
5.2 Iterative Improvements

6 Conclusions

6.1 The Elixir Ecosystem

vii

10
10
11
11
11
11
12
12
12
13

16
16
16

19

6.2 Optimization Techniques
6.3 Number-crunching in Elixir 00
6.4 Planning vs. Reality

References
A Dawson’s Float Equality Comparison
B FFT Implementations

C Original Project Schedule

viil

21

25

26

30

1 Introduction

1.1 Background

“A poor craftsman blames his tools”, as the traditional saying goes. While this is often taken
to mean that you should focus on your own ability and not the tools you use, I prefer a different
interpretation: Good craftsmen choose good tools. The tools we use do make a difference in
the quality of our work. To steal a quote from Jeremy Bowers: “Da Vinci with a mop and
a bucket of mud may be a better painter than you, but he would never beat Da Vinci with
quality tools” [1].

For us programmers, the languages we use can be seen as our primary tools. Being able to
choose the right language for a certain task is an important skill. Programming languages are
however much more than just their syntax and semantics. When evaluating a language, we
must also look at the whole ecosystem, the tools and the libraries available. There are many
different ways to go about this, but a hands-on approach is often the best way to learn about
a new language and its toolset.

In this paper we will take a look at Elixir [2], a new programming language targeting the
Erlang virtual machine (BEAM). We will use the example of a fast Fourier transform (FFT)
algorithm to explore the tools available for testing, benchmarking and profiling Elixir code,
as well as different techniques for improving performance. To get a concrete goal to work
towards, our target will be a FFT that is fast enough for a real-time vocoder.

1.2 Goals

1. Explore the tools available for testing, benchmarking and profiling Elixir code
2. Explore available techniques for improving performance of Elixir code

3. Use the above tools and techniques to determine if a FFT implementation fast enough
for a real-time vocoder can be written in Elixir

4. If possible, use the FFT implementation from step 3 to create a simple real-time vocoder

Since Elixir, like Erlang, has a reputation for being slow at “number-crunching”, using a
FFT algorithm as the example for this exploration might seem a bit odd. This choice does
however have several advantages. The algorithm is simple enough that testing, benchmarking,
and profiling will not take unreasonably long time, while still being complex enough that
the use of these tools to improve an implementation is warranted. There are also several
known good FFT implementations in various languages that can serve as references and aid
in testing. Finally, measuring and comparing the performance of different implementations is
easy: a faster implementation is better. All these together give ample opportunities to test
the different tools available for software development in Elixir. To trot out another old saying:
“The journey is more important than the destination”.

1.3 Restrictions

Elixir’s support for distributed programming will not be considered. Splitting a FFT calcula-
tion across multiple machines may be useful when working with huge datasets, but the latency
introduced will most likely be too much for a real-time vocoder. Using a natively compiled
language such as C to implements parts of the algorithm will not be considered either, since
the goal is to explore tools for working with Elixir. Finally, while the focus will be on tool
written in Elixir for Elixir, some tools might still be under development or missing completely
due to the young age of the language. Because of this, we will have to use some Erlang tools
as well.

2 Technical Background

2.1 Functional Programming

In contrast with object-oriented programming (OOP), functional programming (FP)—as the
name implies—emphasizes functions over data. The basis for OOP is to define specialized
data structures, classes, for the problem at hand and then tie functions to those structures
in the form of methods. FP prefers more generic data structures and smarter functions that
can operate on those structures. This along with the ability to treat functions as data and
use them as input to other functions give a different kind of flexibility as compared to OOP.
Either paradigm can be used to emulate the other, making them basically equivalent. Certain
problems, however, might be easier to reason about and solve by using one or the other.

“Traditional” OOP languages still rank high in various programming language popularity
indices [3] [4] [5]. This might change however, if the current trend towards functional pro-
gramming continues. With Clojure [6] and Scala [7] on the JVM and F* [8] on the .NET plat-
form, interest in FP is definitely on the rise. Through the addition of lambdas—anonymous
functions—to both Java [9] and C++ [10], FP concepts are seeping into OOP languages
as well. Hybrid or multi-paradigm languages seem to be the next stage in the evolution of
programming languages.

2.1.1 Important Concepts

All concepts mentioned below can be found in OOP as well, but they are generally more
prominent in FP languages.

Higher Order Function

A function that take other functions as input. An example is map that takes a list and a
function as input, applies the function to each item in the list, and returns a list of the results.
This is equivalent to an imperative for-loop that steps through each item in a list and applies
a transformation.

Lambda

An anonymous function, often created on the spot as input to a higher order function. A
convenient way to pass code around as data.

Recursion

Often the only way to perform iteration, or looping, in a functional language. Many language
implementations provide tail call optimization, or tail recursion, which enables an iterative
process to be written recursively while still only requiring constant memory [11]. This also
allows endless loops to be written in a recursive fashion. Some languages, for example Scheme
[12], mandate tail call optimization for all implementations.

3

Immutability

Once a value has been created, it cannot be changed by any means. The member data of OOP
objects is often mutable, which means that querying the same object for its state at different
times can give different answers. An immutable value on the other hand always guarantees
the same answer. To “change” an immutable value, a copy must be made and the change
performed as a transformation during the copy operation. Immutable data solves some of the
problems related to concurrent programming, but it is not a silver bullet [13].

2.2 Erlang

The Erlang programming language has seen a relatively recent increase in popularity thanks to
the likes of WhatsApp [14] and Klarna [15]. The language was developed at Ericsson in 1986
for use in telephone exchange systems. This specialized use case made certain properties highly
desirable: concurrency, asynchronous message passing, fault tolerance, and live updating of
running systems [16]. Erlang was designed with these properties in mind, which led to a
language capable of creating highly reliable systems. The most notable such system is probably
the AXD301 telephone switch, with its almost legendary availability of nine 9’s (99.9999999%
uptime) [17].

Erlang began its life as a proprietary language, but was released as open source in 1998. The
same features that made it a good fit for telephone exchanges also turned out to be useful
for other massively concurrent systems. The WhatsApp messaging system, written in Erlang,
can handle over two million concurrent TCP connections [14].

2.2.1 Language Features

Erlang code is compiled to bytecode and runs on a virtual machine. The de facto standard
implementation is called BEAM (Bogdan/Bjérn’s Erlang Abstract Machine).

The sequential parts of Erlang are functional. All values and variables are immutable and
recursion is the only loop construct. It is dynamically typed and garbage collected.

Erlang has language level support for spawning concurrent processes (threads) within the vir-
tual machine. These processes have no shared memory and can only communicate by sending
and receiving asynchronous messages. This communication works the same way for communi-
cation between networked Erlang nodes running on different computers, making distribution
completely transparent. Processes are extremely lightweight and running upwards of 30000
concurrent processes is not uncommon [16].

Listing 2.1 shows two simple functions in Erlang.

2.3 Elixir

Elixir [2] is a dynamic, functional programming language created by José Valim. It targets the
Erlang virtual machine (BEAM), which gives it the same properties of scalability, distribution
and fault-tolerance that has made Erlang famous. The language is very young, the first commit

4

-module (greeting).
-export ([hello_world/0, hello/1]).

hello_world() ->
io:format ("Hello, World!~n").

hello(Name) ->
io:format ("Hello, ~s!~n", [Name]).

© 00 O UL i W N+

Listing 2.1: “Hello, World!” and a simple greeting function in Erlang.

in the Git repository is dated January 9th 2011 and version 1.0 was released as recently as
September 18th 2014 [18]. Thanks to a solid foundation in form of the Erlang ecosystem and
the addition of tools for building, testing, package management, and documentation, Elixir
already feels very polished and developer friendly.

With Valim being a prolific Rubyist and one of the top contributors to Ruby on Rails [19], it is
not unexpected that Elixir’s syntax is heavily inspired by Ruby. Parenthesis on function calls
can be omitted and blocks are delineated with do...end. Listing 2.2 shows the same functions
as Listing 2.1, but this time in Elixir.

1 defmodule Greeting do

2 def hello_world() do

3 I0.puts "Hello, World!"

4 end

5

6 def hello(name) do

7 I0.puts "Hello, #{namel}!"
8 end

9 end

Listing 2.2: “Hello, World!” and a simple greeting function in Elixir.

Elixir functions reside in modules. The Greeting module would generally be located in a file
named greeting.ex, but the filename can be anything. The hello/1 function showcases string
interpolation, another feature that borrows its syntax from Ruby.

The general structure still stays close to Erlang, making it easy to move between the two
languages. On top of that Elixir adds macros in the lisp sense, which allows for advanced
metaprogramming, and protocols for polymorphism. Another smaller addition that nonethe-
less can make Elixir code look quite different from Erlang is the pipe operator |>. The
expression foo |> bar means to evaluate foo and add the result from that as the first argu-
ment to the function call var. This makes it easier to chain function calls in a way similar to
object-oriented method chains.

Listing 2.3 shows two functions that calculate the sum of the squares of all odd numbers in
a list. While the pipe-less version could be improved by a few well-placed line breaks, it still
must be read from the inside out. The version using pipes on the other hand has the operations
in the same order they are performed, with the subject at the very top of the pipeline. This
works well since all functions in the standard library take the subject as the first parameter.

defmodule PipeExample do
require Integer

1
2
3
4 def odd_square_sum(list) do

5 Enum.reduce (Enum.map (Enum.filter (list, &Integer.is_odd/1), &(&1 * &1)), &+/2)
6

7

8

end

def odd_square_sum_with_pipe(list) do

9 list

10 |> Enum.filter (4Integer.is_odd/1)
11 |> Enum.map (&(&1 * &1))

12 |> Enum.reduce (&+/2)

13 end

14 end

Listing 2.3: Cleaner code with the Elixir pipe operator.

The Enum module functions all take an enumerable collection first, the string functions all take
a string and so on. This allows for the creation of a hidden extra variable, which can then be
passed in to the next call in a pipeline. In the words of Joe Armstrong: “It’s kind-of what a
monad does in Haskell, but keep this a secret” [20].

2.3.1 Mix and Hex

Mix [21] is Elixir’s default build tool. It provides tasks for creating, compiling and testing
Elixir projects, as well as dependency management. Project details are specified in what
is called a mixfile, an Elixir script file named mix.exs in the project base directory. Mix is
controlled through a simple command line interface, with detailed instructions available by
invoking mix help.

For dependency management, Mix offers integrated support for Hex, “a package manager for
the Erlang ecosystem” [22]. Hex dependencies can be specified using name and version number
only. Other dependency sources are git repositories, with a shorthand notation for Github,
and local paths.

2.3.2 ExUnit

Elixir provides ExUnit [23] for basic unit testing. Tests are written using a simple DSL which
provides setup, teardown and assert functionality. Mix integration makes it possible to run
all tests for a Mix project using the command mix test, and a list of test files to run can also
be specified. When a single test file is specified, a line number can also be specified to only
run one particular test. Functionality for measuring test coverage is also included, by default
a thin wrapper around Erlang’s cover module.

2.3.3 Concurrency

Like Erlang, Elixir provides concurrency through processes and message passing. The default
position of no shared state between processes removes a whole class of problems traditionally

associated with concurrent computing. No shared state means no need for explicit locking
through semaphores or other means. Unfortunately, problems such as deadlock and livelock
still persists.

Message passing also lends itself well to an asynchronous programming style. This does
however mean that synchronous communication is harder, necessitating the creation of custom
message protocols.

2.3.4 HiPE Native Code Compiler

The High Performance Erlang (HiPE) native code compiler [24] [25] allows Erlang—and
Elixir—to be compiled to native code instead of bytecode. The code is still run inside the
BEAM, but in a different mode that allows direct execution of native code. HiPE was ini-
tially created by the High-Performance Erlang Project at Uppsala University as a standalone
compiler. It has since become integrated in the default Erlang distribution.

While natively compiled Erlang does speed up code execution in most cases, it is not completely
without drawbacks. Tracing, single-stepping and breakpoint functionality that is normally
provided by the BEAM is not available in native compiled code. There is also a small overhead
when jumping between bytecode and native code, so very frequent mode switches must be
avoided. Finally, stack traces provide much less detail for natively compiled code, which makes
debugging harder.

2.4 Discrete and Fast Fourier Transforms

The discrete Fourier transform (DFT) is defined as

N-1
Xp=>» x,e ™% k=0, N-1 (2.1)
n=0
where zy, -,z _; are complex numbers. Listing 2.4 shows a naive implementation in Elixir.
1 defmodule Naive do
2 import Complex, only: [j: 0]
3
4 use Complex.Operators
5
6 def dft([]), do: []
7 def dft(xs) do
8 big_n = Enum.count xs
9 xs = Enum.with_index xs
10
11 Enum.map 0..(big_n-1), fn(k) ->
12 Enum.reduce(xs, 0, fn({x, n}, acc) ->
13 acc + x * Complex.exp(-j * 2 * :math.pi * k * n / big_n)
14 end)
15 end
16 end
17 end

Listing 2.4: Naive DFT in Elixir

The DFT is frequently used in a large number of fields and disciplines, such as signal processing,
data compression, spectroscopy and quantum computing [26]. Its usefulness was however
limited by the quadratic runtime of the naive implementation until the invention of several fast
Fourier transform (FFT) algorithms with O(nlogn) runtime complexity, the most well-known
being the Cooley-Tukey algorithm [27]. FFTs made the use of discrete Fourier transforms
feasible, opening up new possibilities across multiple fields. This has led to the FFT being
described as “the most important numerical algorithm of our lifetime” [28].

2.5 Vocoder

A vocoder (voice encoder) [29] is a system originally developed in the 1930s to code speech for
transmission in telecommunications applications. By splitting an audio signal into a number
of frequency bands and recording the signal level in each band the amount of information
required to store speech can be greatly reduced. This in turn leads to a reduction in the
bandwidth needed for transmitting speech while also simplifying encryption, which was greatly
appreciated by the military. In more modern times, the vocoder has seen extensive use in
music, filmmaking and games. It is often used to produce an electronic or robotic voice, but
other effects are also possible.

While the classical vocoder is an analog device, digital vocoders can be created solely in
software. Digital vocoding can be performed on pre-recorded input or on a live input stream.
A real-time vocoder can operate on input streams with minimal delay, which makes it usable
for live performances.

A simple vocoder takes two inputs, the modulator and the carrier. The modulator is usually
speech or song, while the carrier is a signal that is rich in overtones such as a sawtooth wave
or similar. The most basic version uses FFTs to split the modulator into frequency bands
just like its analog counterpart. The amplitude of each band can then be mapped onto the
corresponding band of the carrier signal. Thereafter, the result is inverse transformed to
put it back in the time domain. More advanced versions might add sibilance channels to
better handle sibilants (’s’, 'f’, 'ch’ and similar sounds), or allow modifications in the time
domain as well as in the frequency domain, among other functionality. The Auto-Tune [30]
pitch correction software is based on one variant, the phase vocoder, and the singing voice
synthesizer Vocaloid [31] uses similar technology.

3 A Pragmatic Approach

There are certain areas where only the best software is acceptable. The importance of being
able to trust medical technology 100% is something most people can agree upon. The space
sector is another area where correctness is paramount, and mistakes can lead to great losses of
both money and lives. Aiming for perfection in cases like these makes sense, even though the
cost of doing so is quite high. The effects of the Pareto principle and the law of diminishing
returns, when applied to software development, makes the search for perfection prohibitively
expensive for most more mundane areas. The time and money needed for the best solution
can not be justified. For most applications, a “good enough” implementation is, well, good
enough.

In the case of a real-time vocoder, the ability to produce output faster does not matter after a
certain threshold, since the throughput will be capped by the input rate anyway. This means
that once we have a solution that can handle the input, with some margin, searching for the
fastest possible solution is meaningless. No implementation can produce output faster than
the input stream, since there simply will not be any input to vocode. The same holds true
for many other applications. A web server only needs to keep up with the rate of incoming
requests. A program that interacts with a user only needs to respond fast enough that the
user does not notice any delay. The average human will not feel any noticeable difference
between one and ten milliseconds. In general, IO-bound programs only have to keep up with
the 10-speed, anything above that does not improve anything.

There might well be applications where that level of optimization is desirable anyway. For
instance, a more efficient implementation that uses fewer cycles might also increase battery life
for mobile devices. Reducing energy consumption is also interesting from an environmental
perspective. With mobile devices being as ubiquitous as they are, any change that reduces
their environmental footprint can be seen as a positive change. We will however not consider
these aspects directly, but instead focus solely on performance.

This leaves two questions that must be answered:
o What are the criteria for a “good enough” application?
e Does the application fulfill those criteria?

The first question is usually not all too hard to answer. For the vocoder, it must be capable
of keeping up with the input. There is a hard limit on how long vocoding an input chunk
can take. The second question can be quite a bit harder, however. There are several different
techniques that can be used to check different aspects of a solution. Testing is one way to check
correctness, while benchmarking and profiling can be used to check and improve performance.
The next section uses the example of the real-time vocoder to explain these techniques as
applied to Elixir, using several of the tools available.

4 Development Tools

With the goal of creating a real-time vocoder we will first need a FFT to convert the input
to the frequency domain. Is it possible to write a FFT implementation in Elixir that is
“good enough”? Before we can answer that question, we must define “good enough” for this
application.

A vocoder takes two input signals, the carrier and the modulator. Both signals are chunked
into windows of a certain size, in the simplest case just by taking a set number of samples from
each. To be able to handle input in real-time, each window must be fully vocoded in less time
than the window time. If we assume a window size of 2048 samples—a common value—and a
sample rate of 48000H 2, the window time would be 248 s ~ 42.67ms. We must thus be able
to Fourier transform the carrier and the modulator, split the results up into bands and map
the modulator onto the carrier, and perform an inverse transform in less than approximately
40ms. Assuming the mapping stage require as much time as a single transform, this gives a
maximum time of 10ms for a transform of size 2048. Most vocoders use overlapping windows
to improve audio quality, which would further reduce this time. It is also common to use a
window function such as a Hamming window to chunk the inputs signals. This makes the
calculations above a bit too simple, but we can still use them to estimate the absolute lower
bound on the performance of an FFT implementation. If an implementation can achieve sub-
millisecond times it is most likely good enough for a real-time vocoder. If the times hover just
under 10ms it will probably not work.

We can now define “good enough” to be the ability to perform a FFT of size 2048 in 1ms
or less. The next step is to gather the tools needed to check if our implementation is “good
enough”.

4.1 Testing

We must first find a way to convince ourselves that our implementation is correct. A lightning
fast FF'T that produces incorrect output is a waste of storage space and processor cycles.
Although it would be good practice to employ several different testing methods, for the sake
of brevity we will focus on one in particular.

The general idea is to compare the output of our Elixir FFT against the output from a know
good FFT implementation, in this case the one from NumPy [32]. When implementing the
above method, two problems appear. We need a way to move data between Elixir and Python,
as well as a way to compare floating point numbers for equality correctly. Additionally, there
is the question of how to generate test inputs, a problem common to all test methods. When
testing a function that takes a single 32-bit int or float as input the answer is simple: Test
all of them. There are only about four billion different inputs, which on a modern machine
will not take very long at all. Unfortunately, this approach does not work for functions with
multiple or unbounded parameters, for instance the FFT. In these more complicated cases,
we must somehow find a representative input sample.

10

4.1.1 ErlPort

Erlang and Elixir has the concept of ports for calling out to code in other languages. The
basic interface provided, while not too complicated, does require a bit of work to use. ErlPort
[33] is a library that simplifies external calls, currently supporting Python and Ruby. It takes
care of data type mapping and provides an interface for calling arbitrary functions in either
direction. It is also possible to provide encoder and decoder functions for custom data types,
which makes it easy to translate between Elixir structs and Python or Ruby classes.

4.1.2 Floating Point Equality

“[Floating-point] math is hard.” (Bruce Dawson [34])

Never compare two floats for equality. Most, if not all, programmers have stumbled upon this
advice at some point in their life. The problem lies within the limited precision of floating
point numbers and the rounding errors this can introduce. Bruce Dawson has written many
great articles about floats and their quirks (and about other subjects as well). In one of them
[34] he elaborates on the equality problem, and details the problems with standard methods
such as epsilon comparison and ULP (Units in the Last Place) based comparison. His proposed
solution is based on a combination of absolute epsilon and ULP comparison. Take note that
while Dawson uses single precision floats for all examples, the method works just as well for
double precision. This means that it works with Elixir floats, which are all double precision.
An Elixir implementation can be found in Appendix A.

4.1.3 Random Input

Erlang provides the random module for generating pseudo-random numbers. The PRNG state
can be handled in two different ways. If you do not mind implicitness, the module can store
its state in the process dictionary and update it as a side-effect of every call. If you prefer the
‘pure’ functional way, the state can be sent in as an explicit argument and the updated state
will be returned alongside the random number.

Audio data is almost always normalized to a stream of floating point numbers in the range
[—1,1]. We will assume that this is the case for the input to our FFT and generate our test
data in this interval. Since we will only be working with real input, we can take a shortcut by
not testing complex input.

4.1.4 Putting it All Together

The final procedure for testing the Elixir FFT implementation is as follows:
1. Generate a list of random real numbers in the range [—1, 1]
2. Apply Elixir FFT function on the list
3. Use ErlPort to apply the numpy.fft.fft [35] function on the list
4

. Compare the results of step 2 and 3 using Bruce Dawson’s float comparison method [34]
with epsilon = 1e-9 and max_ulps = 10

11

5. Repeat steps 1-4 for inputs of varying size, ten times for each size

The ten repetitions in step 5 was chosen more or less arbitrarily. A higher number means
better testing overall, but also more time required for each test run. Ten times per input size
gives a nice balance between the number of different inputs tested and the time it takes to
run the tests.

The above is not enough to prove that the implementation is correct beyond all doubt. It
will however give a decent amount of confidence in the implementation’s correctness, which
for this application is all we need.

4.2 Benchmarking

Many FFT benchmarks, such as the ones found on the FFTW benchFFT website [36], measure
their results in “mflops”. While this might be a measurement of actual flops, the results are
often scaled in some way to make it easier to compare the performance of different size FFTs
on the same graph. This might be convenient for comparing different FFT implementations,
but it is not as useful when you want to know if an implementation is fast enough for a certain
application. Actual wall-clock time is more useful for applications with real-time constraints,
such as a real-time vocoder.

Two benchmarking tools that are useful for this type of measurements are Benchfella [37]
and Bmark [38]. Both provide simple DSLs for defining benchmarks and functionality for
comparing benchmark runs, and both integrate with Mix. Benchfella also provides a graphing
functionality that can plot the results of multiple runs on an HTML page. Bmark on the other
hand uses statistical hypothesis testing when comparing benchmark runs, making it easier to
see if a result is statistically significant.

4.3 Profiling

When looking for code that can be improved, profiling is an invaluable tool. While bench-
marking can put concrete numbers on the performance characteristics of a piece of code, it can
not explain why the code is slow or fast. Code profiling is one way to find out more details.

Erlang provides built-in functions (BIF) for tracing through code, which Elixir also can take
advantage of. There are several modules and applications built upon these BIFs that simplifies
profiling of different aspects. Two of them that are particularly useful are ExProf and eflame.

4.3.1 ExProf

ExProf [39] is a wrapper for Erlang’s eprof profiler. By using Erlang’s built-in trace function-
ality it records the number of calls to each function, a well as the time consumed by each call.

Listing 4.1 shows the abridged output from running ExProf on a non-optimized mixed radix
FFT.

It is easy to see that more than a quarter of the running time is spent creating and multiplying
complex numbers. One reason for this is that the twiddle factors are computed when needed,

12

FUNCTION CALLS yA TIME [uS / CALLS]

------------- -== - [-==--]
math:exp/1 45056 1.71 7047 [0.16]
'"Elixir.Enum':with_index/1 22527 1.72 7084 [0.31]
'Elixir.Complex ':neg/1 45056 1.74 7180 [0.16]
'Elixir.Complex':exp/1 45056 1.75 7190 [0.16]
'Elixir.Complex.0Operators':'/'/2 45056 1.95 8023 [0.18]
'"Elixir.Complex':'div'/2 45056 1.95 8045 [0.18]
'Elixir.Complex':add/2 43008 2.00 8231 [0.19]
'Elixir.Basic':omega/2 40960 2.04 8391 [0.20]
'"Elixir.Complex.0Operators':'-"'/1 45056 2.06 8488 [0.19]
lists:reverse/1 44027 2.07 8624 [0.19]
math:sin/1 45056 2.08 8561 [0.19]
'"Elixir.Basic':'-butterfly/2-fun-1-'/4 40960 2.13 8789 [0.21]
'"Elixir.Basic':zip_each/2 73726 2.15 8863 [0.12]
'Elixir.Complex':cis/1 45056 2.24 9224 [0.20]
math:cos/1 45056 2.40 9899 [0.22]
'"Elixir.Basic':'-zip/2-fun-0-"'/2 73726 3.18 13100 [0.18]
'"Elixir.Enum':'-with_index/1-fun-0-'/2 63488 3.35 13790 [0.22]
lists:mapfoldl/3 98298 4.92 20243 [0.21]
'Elixir.Complex.0Operators':'x"'/2 226303 9.55 39340 [0.171]
'Elixir.Complex ':new/2 407552 12.68 52198 [0.13]
'Elixir.Complex ':mul/2 271359 13.12 54013 [0.20]

Listing 4.1: Sample ExProf output (abridged)

which results in a large amount of duplicate work. Reducing the number of calls to the complex
functions is the most straightforward way to reduce the running time in this case.

4.3.2 eflame

Another common way to find performance bottlenecks is to look at sampled stack traces.
Using these stack traces it is possible to identify hot code paths, the parts of the program
where the most CPU time is spent. However, stack traces are often long and cumbersome to
read and interpret. Flame graphs [40] are a way to visualize these stack traces, giving a better
overview of the data. The name comes from the shape of the graphs, which resemble flames,
and the fact that they show which code paths are hot. eflame [41] is an Erlang module for
producing such graphs.

Figure 4.1 shows a flame graph for the same mixed radius FFT implementation as in the
ExProf example above.

Each box represents a particular function on the stack. Functions are stacked on top of their
ancestors, making the y-axis show the stack depth. The top-most box is the function that was
on-CPU at the point of a certain sample. The x-axis spans the total sample population. The
width of a box represents the total amount of samples it was on-CPU or part of the ancestry of
a function that was on-CPU. The left-to-right ordering is not necessarily meaningful. eflame
is capable of preserving the order of calls, while the reference implementation sorts the calls
alphabetically. The colors of the graph are not significant either, but are usually randomly
picked warm colors that make the graph even more flame-like. Finally, flame graphs are
interactive. When opened in a browser, it is possible to zoom in on parts of a graph by

13

Basic FFT

| i
|l @ = 0
| | CElixicEnumerabl.. [Elix. | E8 |
B | WEixicEnum:map/2 [l | ElixicBasi.)
B E. B [EIXREAUMEMap/2FURI |« ElixirEnum:-re. 1
EBIES@IE.. | ElixirEnum:-reduce/3.. [EINNEMUMSHEpISNNN | E- Em W
€. E. [| ENXiREAURTMap/ZIMNN E'ixir.Enum:-reduce.. | Elix. [El. |

Elixir.Enum:-r..

_

)
|
] Elixir.Enum:-reduce/3-lists ~fold|/2-0-/3

Elixir.Enum:-mapy..

Elixir.Enum:map/2

Elixir Enum:-m..

“J0 Elixir.Enum:map/2

Figure 4.1: Sample flame graph generated by eflame.

14

clicking on one of the boxes, and mouseover reveals additional statistics.

The graph in figure 4.1 clearly shows the recursive structure of the FF'T, with multiple calls to
Basic.fft/2 stacked on top of each other. The flat-ish peaks along the right side of the graph
contain most of the calls to the functions operating on complex numbers. As expected, most
time is spent performing complex operations.

15

5 Implementing a Fast Fourier Transform

5.1 Mixed-radix FFT

The algorithm we will use is the mixed-radix FFT, which can be seen as a generalization of
the Cooley-Tukey algorithm [27]. Remember that the DFT is defined as

N—1
Xp=>» x,e ™% k=0, N—1 (5.1)
n=0

Assuming the input size is a power of two, the Cooley-Tukey algorithm first rearranges this
into two sums, one over the even indexes and one over the odd indexes:

N/2-1 N/2-1
_ —i2wk2m —i2mk2m+l
Xy = E Tom€ N+ Lom+1€ N (5.2)
m=0

m=0

—i2mk

From the sum over the odd indexes we can then factor out a common multiplier of e=™~ ",
commonly called a twiddle factor:

N/2-1 N/2—-1

—12mk -2 —i27k —i2mk_m_
Xy = E Tome NP FeTN E Tomare N2 (5.3)

We have now broken down the sum into two DFTs, one of the even-indexed inputs and one of
the odd-indexed inputs. This decomposition, sometimes called the Danielson-Lanczos lemma,
can then be performed recursively for the smaller DFTs. The lemma can be generalized to
work for any composite input size N = N;N,, and it is this generalized lemma that forms the
basis of the mixed-radix FFT. The basic flow of the mixed-radix FFT is

1. Perform N; DFTs of size N,
2. Multiply by twiddle factors
3. Perform N, DFTs of size N, often called butterflies

The name ’butterfly’ in the last step comes from the case where N; = 2. The shape of a
data-flow diagram for a DF'T of size 2 resembles a butterfly, hence the name.

The mixed-radix FFT can handle inputs of any size, but it works best for sizes that are
highly composite. Since prime-sized DFT cannot be broken down further using this method,
base cases are usually computed using the naive @(n?) method. Listing B.1 shows a rather
inefficient implementation of this algorithm in Elixir.

5.2 Iterative Improvements

We can now begin improving the FFT implementation, using the tools from above. The first
step is to test the current implementation. When we are confident that it is correct, we can
benchmark the code to see how we are doing in terms of performance. We can thereafter

16

profile the code and look for areas we can improve. The process can then be repeated until
we are happy with the performance or until we cannot improve it any further.

Listing 5.1 shows the benchmarking results for the first implementation and nine successive
improvements. The first column is the name of the benchmark, the second is the number of
runs and the last is the average time per run. The benchmark labeled ’basic’ was the first
working implementation.

FFTBench

concurrent 100 11578.33 ps/op
all_butterfly 100 15642.31 ps/op
combined_complex_op 100 15691.89 pus/op
tuple_complex_native 100 16963.70 ps/op
tuple_complex 50 37938.70 ps/op
precompute 50 42042.40 ps/op
array_data 50 45845.20 ps/op
no_operators 50 69827.70 ps/op
memoized 50 70610.68 ps/op
basic 10 103750.60 ps/op

Listing 5.1: FF'T benchmark results, output from Benchfella

All benchmarks were made using 2048 samples of a 440 hz sawtooth wave generated by Yoshimi
[42] and captured through JACK [43]. The benchmarking machine was a Lenovo G570 laptop
with an Intel Core i5-2430M 2.40GHz CPU. The steps taken to improve performance, working
from the bottom of Listing 5.1 and up, were as follows:

o Memoize twiddle factors to greatly reduce the number of complex exponentiations needed
« Remove operator overloading'for complex numbers

« Use Erlang arrays [44] instead of Elixir Lists for all data

o Precompute twiddle factors to remove the overhead of memoization

o Use bare Tuples to represent complex numbers instead of Structs

« Compile to native code using HiPE

o Combine the complex multiplication and addition in the butterfly in a single function,
reducing the amount of allocations of new complex numbers

o Use a DFT of size 1 as the base case instead of the naive DFT implementation used
previously

e Spawn multiple processes for the top level of the recursive decomposition

While the benchmark times fluctuated a bit from run to run, the final version was always 9-10
times faster than the first version. Unfortunately, a time of around 11ms for a FF'T of size 2048
is not fast enough for our real-time vocoder. For the sake of comparison, the corresponding
time for Python’s NumPy.fft.fft, written in well-optimized C, on the same machine is around
Tus.

IElixir does not actually support operator overloading, but something similar can be achieved by un-
importing Kernel operator functions such as Kernel.+/2 and replacing them with your own. This is kind of
hacky and should probably not be used in production code, but in this case it made the complex arithmetic
look so much nicer.

17

The final code can be found in Listing B.2.

18

6 Conclusions

6.1 The Elixir Ecosystem

For any language, the quality of the tools is important, maybe even more so than the quality of
the language itself. Despite being such a young language, Elixir already has many useful tools
available. The advantage of having a build system included in the default distribution cannot
be overstated, especially when the build system can be extended as easily as Mix. This creates
a uniform way to perform common tasks such as testing and benchmarking, often as simple as
executing mix <task>. Another benefit of Mix is that it dictates the general structure of Elixir
projects. This allows developers moving between projects to concentrate on the code, making
it easier to get up to speed on a new codebase. Of course, there are still some rough edges.
For instance, it is hard to find information on how to treat projects with parts implemented
in Erlang or native code. In any case, Valim’s decision to include Mix from the very start can
only be seen as a net positive.

For basic testing, ExUnit works well enough. Getting started is easy since Mix includes a
skeleton test file with every new project, and running the tests is a simple mix test. Running
the tests every so often to confirm that the latest changes did not break anything quickly
became a habit.

Trying to improve the performance of FFTs in a language without mutable data types was
interesting, to say the least. Most, if not all, openly available implementation make heavy
use of mutable arrays, even in other languages that prefer immutability such as Haskell. The
Erlang array module helped, since it is quite a bit faster for random access than lists. Even
so, the execution time in the final version was pretty evenly split between complex arithmetic
on one hand, and element access and insertion on the other.

Using HiPE to compile Elixir code was easier than expected. It did not however provide as
much of a performance boost as I had hoped, just 2-3 times instead of the 10-20 that I have
seen mentioned in several places. It is also a shame that code compiled with HiPE cannot be
traced, making it hard to debug and profile.

On top of all this, having full access to the Erlang ecosystem is incredibly useful. If there is a
tool or library missing in Elixir, it can probably be found in Erlang.

6.2 Optimization Techniques

Among the different optimization steps described in Section 5.2 two steps gave better results
than expected. First, removing redundant computations through the memoization and later
precomputation of the twiddle factors reduced the original runtime by more than 30%. In
hindsight, it is clear that removing a large number of expensive floating point operations
would result in a large speedup. Secondly, changing from lists to arrays cut the runtime by
another 15%. While Erlang arrays don’t have constant time lookup, they were still leaps and
bounds faster than the @(n) lookup of linked lists. As a side effect of changing to arrays, the
number and size of memory allocation for copies could also be reduced.

19

Two other optimization steps did not live up to expectations. Native compilation using HiPE,
while providing a boost, was not nearly as effective as I had been led to believe. One reason for
this seems to be that the way the BEAM handles floats does not translate well to native code.
Finally, introducing concurrency in an efficient way proved to be quite difficult. The simple
solution used—splitting the top level of the recursion into multiple processes—did work, but
surely there are better ways to do it. The fact that the test machine only had two CPU cores
did not help either.

To summarize, avoiding redundant calculations and using proper data structures are impor-
tant, native compilation can help certain types of programs more than others, and while Elixir
makes concurrency easier it can still be tricky to write good concurrent code.

6.3 Number-crunching in Elixir

Elixir’s and Erlang’s reputation for being slow at numerical computing seems to have a solid
foundation. Seeing as this is not the primary purpose of the languages, this does not come as
much of a surprise. An Erlang/Elixir expert could probably squeeze out a bit more perfor-
mance, but Elixir would still not be a good fit for a real-time vocoder. When speed is needed,
choosing a different language is the proper course of action.

Still, Elixir might be an interesting choice for applications that must handle huge datasets.
When your input data does not fit in RAM, raw language performance is less relevant since
IO will be the most likely bottleneck. Taking advantage of the distributed nature of Elixir
to split the data across a network of nodes could give some interesting results. Using native
code for the numerical computations and Elixir to direct the data flow would definitely be
more in line with the strengths of the language. FFTs with input sizes on the scale of 10s of
gigasamples or larger might benefit from this technique.

6.4 Planning vs. Reality

The original schedule for this project can be found in Appendix C. Everything went accord-
ing to plan up until the Python FFT benchmarks in the fourth week of the project. The
difference in benchmark times between Elixir and Python was too great. I knew that Elixir
would be slower than an optimized C implementation, but I did not think it would be this
slow. Investigating this took priority over benchmarking further implementations, I started
the optimization work scheduled for weeks 6 and 7 immediately. This took about twice as
much time as expected. Due to the fact that there are few highly optimized functional FFT
implementations around, most available optimization techniques were not usable in Elixir. I
had to delve deeper into both the intricacies of functional programming and the gory details
of the BEAM to find out why my code was slow.

Once I had determined that an Elixir FFT would not be fast enough for the real-time vocoder,
my focus shifted to this report. I had dedicated a large part of the three weeks before the
presentation to writing, and I am glad that I did. Researching and documenting sources
required more time than expected, but it was balanced out by the fact that I could not work

20

on the vocoder. If I could change anything, I would set off more time to have the drafts proof
read by someone other than just myself.

21

References

Jeremy “jert” Bowers. Hacker News Comment Thread. URL: https://news.ycombinator.
com/item?1d=2379866 (visited on 2015-05-31).

Elizir. URL: http://elixir-lang.org (visited on 2015-03-04).

The RedMonk Programming Language Rankings: January 2015. URL: https://redmonk.
com/sogrady/2015/01/14/1language-rankings-1-15/ (visited on 2015-06-29).
Langpop.com — Programming Language Popularity. URL: http://www. langpop.com/
(visited on 2015-06-29).

TIOBE Programming Community Index. URL: http://www.tiobe.com/index . php/
content/paperinfo/tpci/index.html (visited on 2015-06-29).

Clojure Home Page. URL: http://clojure.org/ (visited on 2015-06-29).

Scala Home Page. URL: http://www.scala-lang.org/ (visited on 2015-06-29).

F* Home Page. URL: http://fsharp.org/ (visited on 2015-06-29).

What’s New in JDK 8. URL: http://www.oracle.com/technetwork/java/javase/8-
whats-new-2157071.html (visited on 2015-06-29).

Lambda Functions (since C++11). URL: http://en . cppreference . com/w/ cpp/
language/lambda (visited on 2015-06-29).

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation
of Computer Programs. 2nd ed. MIT Press, 1996. Chap. 1.2.1. 1SBN: 0-262-51087-1. URL:
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#% sec_1.2.
1 (visited on 2015-07-10).

Alex Shinn, John Cowan, and Arthur A. Gleckler, eds. Revised” Report on the Algo-
rithmic Language Scheme (“R7RS”). 2013-06-06. Chap. 3.5 Proper tail recursion, p. 11.
URL: http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs. pdf
(visited on 2015-07-14).

Joe Dufty. Thoughts on immutability and concurrency. 2010-07-11. URL: http: //
joeduffyblog.com/2010/07/11/thoughts-on-immutability-and-concurrency/
(visited on 2015-07-10).

1 million is so 2011. 2012-01-06. URL: https://blog.whatsapp.com/196/1-million-
is-s0-2011 (visited on 2015-07-05).

Klarna Engineering Insights. 2015-01-09. URL: http://engineering . klarna . com/
article/klarna-engineering-insights/ (visited on 2015-07-05).

Bjarne Décker. “Concurrent Functional Programming for Telecommunications: A Case
Study of Technology Introduction.” Master’s Thesis. Royal Institute of Technology, 2000.
Chap. 3-4, pp. 9-22. URL: http://www.erlang.se/publications/bjarnelic.pdf
(visited on 2015-07-07).

Joe Armstrong. What’s all this fuss about Erlang? URL: https://pragprog . com/
articles/erlang (visited on 2015-07-05).

José Valim. Elixir v1.0 released. URL: http://elixir-lang.org/blog/2014/09/18/
elixir-v1-0-0-released/ (visited on 2015-05-07).

Rails Contributors - #5 José Valim - All time. URL: http://contributors.rubyonrails.
org/contributors/jose-valim/commits (visited on 2015-05-26).

Joe Armstrong. A Week With Elizir. URL: http://joearms.github.i0/2013/05/31/a-
week-with-elixir.html (visited on 2015-05-26).

22

https://news.ycombinator.com/item?id=2379866
https://news.ycombinator.com/item?id=2379866
http://elixir-lang.org
https://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
https://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://www.langpop.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://clojure.org/
http://www.scala-lang.org/
http://fsharp.org/
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.1
http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
http://joeduffyblog.com/2010/07/11/thoughts-on-immutability-and-concurrency/
http://joeduffyblog.com/2010/07/11/thoughts-on-immutability-and-concurrency/
https://blog.whatsapp.com/196/1-million-is-so-2011
https://blog.whatsapp.com/196/1-million-is-so-2011
http://engineering.klarna.com/article/klarna-engineering-insights/
http://engineering.klarna.com/article/klarna-engineering-insights/
http://www.erlang.se/publications/bjarnelic.pdf
https://pragprog.com/articles/erlang
https://pragprog.com/articles/erlang
http://elixir-lang.org/blog/2014/09/18/elixir-v1-0-0-released/
http://elixir-lang.org/blog/2014/09/18/elixir-v1-0-0-released/
http://contributors.rubyonrails.org/contributors/jose-valim/commits
http://contributors.rubyonrails.org/contributors/jose-valim/commits
http://joearms.github.io/2013/05/31/a-week-with-elixir.html
http://joearms.github.io/2013/05/31/a-week-with-elixir.html

[30]

Miz Documentation. URL: http://elixir-1lang.org/docs/stable/mix/ (visited on
2015-05-17).

Hez. URL: https://hex.pm/ (visited on 2015-05-17).

ExUnit Documentation. URL: http://elixir-lang . org/docs/stable/ex_unit/
(visited on 2015-05-19).

The High-Performance Erlang Project. URL: https://www.it.uu.se/research/group/
hipe/index.shtml (visited on 2015-05-17).

K. Sagonas et al. “All you wanted to know about the HiPE compiler (but might have
been afraid to ask)” In: Proceedings of the PLI'03 Erlang Workshop. 2003-08. URL:
http : //www . erlang . org/workshop /2003 / paper / p36 - sagonas . pdf (visited on
2015-05-17).

Larry Hardesty. Fxplained: The Discrete Fourier Transform. 2009-11-25. URL: http:
//newsoffice.mit.edu/2009/explained-fourier (visited on 2015-02-12).

James W. Cooley and John W. Tukey. “An Algorithm for the Machine Calculation of
Complex Fourier Series”. In: Mathematics of Computation 19 (1965), pp. 297-301. URL:
http://dx.doi.org/10.2307/2003354.

Gilbert Strang. “Wavelets”. In: American Scientist 82.3 (1994), p. 253. URL: http:
//www . jstor.org/stable/29775194.

Wikipedia. Vocoder — Wikipedia, The Free Encyclopedia. 2015. URL: http://en.
wikipedia.org/w/index.php?title=Vocoder&oldid=658938750 (visited on 2015-05-26).
Auto-Tune 8. URL: http://www.antarestech.com/products/detail . php?product=
Auto-Tune_8_66 (visited on 2015-05-26).

Vocaloid Home Page. URL: http://www.vocaloid.com/en/ (visited on 2015-05-26).
NumPy Home Page. URL: http://www.numpy.org/ (visited on 2015-05-31).

ErlPort. Connect Erlang to other languages. URL: http://erlport.org/ (visited on
2015-05-19).

Bruce Dawson. Comparing Floating Point Numbers, 2012 FEdition. 2012-02-25. URL:
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-
numbers-2012-edition/ (visited on 2015-05-19).

numpy.fft.fft — NumPy Manual. URL: http://docs.scipy.org/doc/numpy/reference/
generated/numpy.fft.fft.html (visited on 2015-03-24).

The benchFFT Home Page. URL: http://www . fftw . org/benchfft/ (visited on
2015-05-21).

Alexei Sholik. Benchfella Github Repository. URL: https://github.com/alco/benchfella
(visited on 2015-05-28).

Joseph Kain. Bmark Github Repository. URL: https://github.com/joekain/bmark
(visited on 2015-05-28).

parroty. ExProf Github Repository. URL: https://github.com/parroty/exprof (vis-
ited on 2015-05-11).

Brendan D. Gregg. CPU Flame Graphs. URL: http : //www . brendangregg . com /
FlameGraphs/cpuflamegraphs.html (visited on 2015-05-13).

Vladimir Kirillov. eflame Github Repository. URL: https ://github . com/proger /
eflame (visited on 2015-05-13).

Yoshimi Home Page. URL: http://yoshimi.sourceforge.net/ (visited on 2015-05-21).
JACK Audio Connection Kit. URL: http://jackaudio.org (visited on 2015-03-04).

23

http://elixir-lang.org/docs/stable/mix/
https://hex.pm/
http://elixir-lang.org/docs/stable/ex_unit/
https://www.it.uu.se/research/group/hipe/index.shtml
https://www.it.uu.se/research/group/hipe/index.shtml
http://www.erlang.org/workshop/2003/paper/p36-sagonas.pdf
http://newsoffice.mit.edu/2009/explained-fourier
http://newsoffice.mit.edu/2009/explained-fourier
http://dx.doi.org/10.2307/2003354
http://www.jstor.org/stable/29775194
http://www.jstor.org/stable/29775194
http://en.wikipedia.org/w/index.php?title=Vocoder&oldid=658938750
http://en.wikipedia.org/w/index.php?title=Vocoder&oldid=658938750
http://www.antarestech.com/products/detail.php?product=Auto-Tune_8_66
http://www.antarestech.com/products/detail.php?product=Auto-Tune_8_66
http://www.vocaloid.com/en/
http://www.numpy.org/
http://erlport.org/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
http://www.fftw.org/benchfft/
https://github.com/alco/benchfella
https://github.com/joekain/bmark
https://github.com/parroty/exprof
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://github.com/proger/eflame
https://github.com/proger/eflame
http://yoshimi.sourceforge.net/
http://jackaudio.org

[44] Erlang array Module Documentation. URL: http://www.erlang.org/doc/man/array.
html (visited on 2015-05-28).

24

http://www.erlang.org/doc/man/array.html
http://www.erlang.org/doc/man/array.html

A Dawson’s Float Equality Comparison

1 @spec close_enough?(number, number, number, non_neg_integer) :: boolean
2 def close_enough?(a, b, epsilon, max_ulps) do

3 a = :erlang.float a

4 b = :erlang.float b

5

6 cond do

7 abs(a - b) <= epsilon -> true

8

9 signbit(a) != signbit(b) -> false

10

11 ulp_diff(a, b) <= max_ulps -> true

12

13 true -> false

14 end

15 end

16

17 # signbit/1° is used instead of a regular “sign/1° function in order to
18 #properly handle -0.0 (negative zero). It shouldn't appear in ordinary
19 #code, but it *can* be constructed using Elixir binary syntax.
20 ©@spec signbit(float) :: boolean

21 def signbit(x) do

22 case <<x :: float>> do

23 <<1 :: 1, _ :: bitstring>> -> true

24 _ => false

25 end

26 end

27

28 G@spec ulp_diff(float, float) :: integer

29 defp ulp_diff(a, b), do: abs(as_int(a) - as_int (b))

30

31 @spec as_int(float) :: non_neg_integer

32 defp as_int(x) do

33 <<int :: 64>> = <<x :: float>>

34 int

35 end

Listing A.1: Equality comparison for floating point numbers, based on Bruce Dawson’s method
[34]

25

B FFT Implementations

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

defmodule FFT do
require Integer
import Complex, only:

use Complex.0Operators

def naive([]), do: []
def naive(xs) do

[j: o]

big_n = Enum.count xs
xs = Enum.with_index xs

Enum.map O0..(len-1),
Enum.reduce(xs, O,

fn(k) ->
fn({x, n}, acc) ->

acc + x * Complex.exp(-j * 2 * :math.pi * k * n / big_n)

end)
end
end

def fft([]), do: []
def fft([x]), do: [x]
def fft(xs) do

fft xs, ExMath.factors (Enum.count(xs))

end

defp fft(xs, [_last]),
defp fft(xs, [f | £s])
Xs
|> group_every (£f)
|> Enum.map (&fft (&1,
|> butterfly(f)
end

do: naive(xs)
do

fs))

defp butterfly(rows, f) do
big_n = Enum.count(rows) * Enum.count (hd(rows))

rows
| > Enum.map (fn(row)

->

row |> List.duplicate(f) |> Enum.concat

end)

> zip

|> Enum.with_index

|> Enum.map(fn({col,
col

k}) ->

|> Enum.with_index
|> Enum.reduce(0, fn({x, n}, acc) ->
acc + omega(big_n, nx*k) * x

end)
end)
end

#Twiddle factors
defp omega(n, k), do:

Complex.exp(-j * 2 * :math.pi * k / n)

26

54
55
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

defp group_every(collection, n) do

collection
|> Enum.chunk(n, n, [])
|> zip
end
#Multilist zip. Same as “List.zip/1° but without converting the resulting
#lists to tuples.
defp zip([]), do: []
defp zip(list_of_lists) when is_list(list_of_lists) do
zip(list_of_lists, [])
end
defp zip(list, acc) do
converter = fn(x, acc) -> zip_each(x, acc) end
{mlist, heads} = :lists.mapfoldl converter, [], list
case heads do
nil -> :lists.reverse acc
_ -> zip mlist, [:1lists.reverse(heads)|acc]
end
end
defp zip_each(_, nil) do
{nil, nil?}
end
defp zip_each([h|t], acc) do
{t, [hlaccl}
end
defp zip_each([], _) do
{nil, nil}
end
end

Listing B.1: First implementation of the mixed-radix FFT algorithm.

27

© 0 O Ui W N+

defmodule FFT do

@compile :native
@compile {:hipe, [:03]}

def twiddle_factors(big_n) do
0..(big_n-1)
|> Enum.map(fn(i) ->
cis -2*:math.pi*i/big_n
end)
|> List.to_tuple
end

:nat_array is the Erlang “array module compiled with HiPE.
#If the input length includes a factor 2, 3 or 4, split the decomposition
#over that many parallel processes using ~Task.async/1°.
def fft(xs, twiddles) do
if :nat_array.size(xs) <= 1 do
Xs
else
{f, fs} = case ExMath.factors(:nat_array.size(xs)) do
[2, 2 | fs] -> {4, fs}
[3 | £fs] -> {3, fs}
[2 | £s] -> {2, fs}
fs -> {1, fs}
end

children = 0..(£f-1)

tasks = Enum.map(children, fn(n) ->
Task.async fn() -> fft(xs, f, n, twiddles, fs) end
end)
|> :nat_array.from_list

:nat_array.map(fn(_, task) ->
Task.await task
end,
tasks)
|> butterfly(f, 1, twiddles)
end
end

defp fft(xs, _stride, offset, _twiddles, []) do
:nat_array.from_list([:nat_array.get(offset, xs)])

end
defp fft(xs, stride, offset, twiddles, [f | £fs]) do
:nat_array.map(fn(n, _) ->
fft(xs, stridexf, offset+stride*n, twiddles, fs)
end,

:nat_array.new(f))
|> butterfly(f, stride, twiddles)
end

defp butterfly(ts, f, stride, twiddles) do

t_len = :nat_array.size(:nat_array.get(0, ts))
size = f *x t_len

28

o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

:nat_array.map(fn(k, _) ->
rem_k = rem(k, t_len)
:nat_array.foldl(fn(n, t, acc) ->
:nat_array.get(rem_k, t)
|> c_op(elem(twiddles, rem(n*k, size)*stride),
end,
{0, 0},
ts)
end,
:nat_array.new(size))
end
defp cis(x), do: {:math.cos(x), :math.sin(x)}
#c_op(a, b, ¢c) := a*b + ¢, for three complex numbers
defp c_op({r1, i1}, {r2, i2}, {r3, i3}) do
{r1*r2 - i1*i2 + r3, ri1*i2 + r2*il + i3}
end
end

acc)

Listing B.2: Final implementation of the mixed-radix FFT algorithm.

29

C Original Project Schedule

Week | Activity
1 Planning and preliminary research.
2 Research algorithms, libraries, prior work.
Write Elixir port to SciPy.
3 Implement and benchmark FFT algorithms in Elixir.
4 Setup benchmarking environment for Python and C.
Prepare benchmarking of SciPy and FFTW.
5 Benchmark SciPy and FFTW.
Finish first draft.
6 Analyze benchmark results.
Research performance improvements.
7 Benchmark and document eventual improved implementations.
8 Finish second draft.
9 Begin implementation of vocoder.
Thesis writing.
10 Thesis writing.
Continue work on vocoder if time left.
11 Finish final draft before presentation.
Prepare for presentation.
Write opposition report.
12 Presentation.
Finish thesis.

30

	Abstract
	Preface
	Abbreviations
	Contents
	Introduction
	Background
	Goals
	Restrictions

	Technical Background
	Functional Programming
	Important Concepts

	Erlang
	Language Features

	Elixir
	Mix and Hex
	ExUnit
	Concurrency
	HiPE Native Code Compiler

	Discrete and Fast Fourier Transforms
	Vocoder

	A Pragmatic Approach
	Development Tools
	Testing
	ErlPort
	Floating Point Equality
	Random Input
	Putting it All Together

	Benchmarking
	Profiling
	ExProf
	eflame

	Implementing a Fast Fourier Transform
	Mixed-radix FFT
	Iterative Improvements

	Conclusions
	The Elixir Ecosystem
	Optimization Techniques
	Number-crunching in Elixir
	Planning vs. Reality

	References
	Dawson's Float Equality Comparison
	FFT Implementations
	Original Project Schedule

