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A GPU-BASED IMPLEMENTATION OF POSITION BASED DYNAMICS FOR
INTERACTIVE DEFORMABLE BODIES

Marco Fratarcangeli1 and Fabio Pellacini2

1Applied IT, Chalmers University of Technology, Gothenburg, Sweden
2Computer Science, Sapienza University of Rome, Rome, Italy

Position Based Dynamics (PBD) is a popular approach used for animating constrained particle
systems representing soft bodies, rigid bodies, and fluids. In this article, we present a mas-
sively parallel implementation of PBD for fast, interactive animation of deformable bodies.
We divide the set of constraints in independent partitions using a fast, greedy coloring graph
algorithm. Then, during the animation, the constraints belonging to each partition are solved
in parallel on the GPU. We employ an efficient simulation pipeline using a memory layout
that favors both the memory access time for computation and batching for visualization. Our
experiments show that the achieved performance speed-up is several orders of magnitude
faster than its serial counterpart.

1. INTRODUCTION

Position Based Dynamics (PBD) [Müller
et al. 07, Bender, Müller, et al. 14] has been
employed in a broad range of applications,
from knot simulation [Kubiak et al. 07], to
face animation [Fratarcangeli 12], and auto-
matic character skinning [Deul and Bender 13,
Abu Rumman and Fratarcangeli, to appear]. Its
original formulation considered just soft bod-
ies, such as cloth and inflatable balloons, and
it proved to be unconditionally robust, con-
trollable, and fast. Recently, several techniques
have been presented to extend it to both rigid
bodies [Deul et al. 14] and fluids [Macklin and
Müller 13]. Strain tensor constraints have been
proposed [Müller et al. 14, Bender, Koschier,
et al. 14], which allows animating complex
physical phenomena, including lateral contrac-
tion, bending, plasticity, and anisotropy. An uni-
fied framework presented by [Macklin et al.
14] employs PBD as a building block to model
in real time the animation of gasses, liquids,
deformable solids, and rigid bodies, including
interaction and collision with each other.
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In the original PBD approach, described
in [Müller et al. 07], the set of constraints are
solved in a Gauss–Seidel fashion, one after the
other, sequentially. As a constraint is solved,
the particles influenced by it are immediately
updated and then the following constraint is
considered. This process is iterated several
times for each animation frame; for each iter-
ation, the difference between the current and
the optimal solution of the system decreases.
This serial approach is efficient when the num-
ber of constraints is relatively small and, thus,
the number of iterations needed for reach-
ing a good approximation of the global solu-
tion is low. However, when a high number
of constraints is involved, both the computa-
tional cost of a single iteration and the number
of iterations for each frame increases. In this
case, the serial solution of the set of con-
straints quickly becomes unsuitable for interac-
tive animation.

In this article, we present a technique for
parallelizing the constraint satisfaction process,
improving the speed of convergence of the
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solver and the time performance of the whole
method, while retaining the robustness and the
inherent simplicity of the original PBD.

1.1. Prior Work
A hierarchical, ad hoc, position-based

approach for cloth by accelerating the conver-
gence speed of the solver is described in [Müller
08]. A red-black parallel Gauss–Seidel schema
for animating inextensible cloth using a force-
based system was employed by [Bender and
Bayer 08]. Although providing excellent perfor-
mance, this method is restricted to meshes with
a regular grid topology. The mesh is subdivided
into strips of constraints. The strips that have no
common particles are independent from each
other and can be solved in parallel. A sim-
ilar approach, relying on a Jacobi-like solver,
has been presented in [Fratarcangeli 11]. All of
these solvers are suitable for grid-like meshes
(e.g., cloths), but lack the generality needed to
simulate objects with arbitrary topology.

Jacobi and Gauss–Seidel iterative solvers
are often used in the context of interactive com-
puter animation because they usually provide
results faster than direct methods, even though,
in general, the obtained results have a larger
residual error. They have been employed for
contact response [Bridson et al. 02, Harada
11, Tonge et al. 12]. Recently, a unified frame-
work for rigid bodies, soft bodies, and fluids
was proposed [Macklin et al. 14], in which the
animated objects are voxelized using fixed-size
spheres, and the constraints are solved using a
Jacobi-like solver.

1.2. Contribution
We present a technique based on a graph

coloring algorithm to parallelize the solving pro-
cess of the constraints connected in an arbitrary
way. This allows animating interactively vol-
umetric objects involving a larger number of
constraints. As described in [Bender, Müller,
et al. 14], the central idea is to build a graph in
which each node is mapped to a constraint and
two nodes are connected if the correspond-
ing constraints share at least one particle. The
graph is colored using a distance-1 algorithm,
such that neighbor nodes do not share the same

FIGURE 1. 100 nonconvex objects, consisting of more than
800 K constraints, fall on the ground. Each animation step is
computed in 1.4 ms.

FIGURE 2. An input tetrahedral mesh.

color. By definition, this means that nodes with
the same color do not share any particle. The
constraints assigned to the same color can then
be solved in parallel during the animation.

We provide a parallel implementation tar-
geting modern GPUs’ architectures, able to
interactively animate both flat and tetrahedral
meshes, as in the example shown in Figure 2.

Differently from [Macklin et al. 14], we
employ a Gauss–Seidel solver instead of a
weighted Jabobi because, as shown in Section
5, it allows faster convergence speed without
requiring the voxelization of the input mesh.

2. POSITION BASED DYNAMICS

Position Based Dynamics (PBD) [Müller
et al. 07, Bender, Müller, et al. 14] is a
method based on Verlet integration [Verlet 67]
for interactively animating deformable objects.
The objects are modeled as a set of n par-
ticles whose motion is governed by a set of
m non linear constraints. The system of con-
straints is solved using Gauss–Seidel iterations
by directly updating the particle positions. PBD
avoids the use of internal forces, and the posi-
tions are updated such that the angular and
the linear momenta are implicitly conserved.
In this way, the whole process is not affected by
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the typical instabilities of interactive, physically
based methods.

The set of constraints is composed by non-
linear equality and inequality equations such
that:

Ci
(
p
) � 0, i = 1, . . . , m, (1)

where the symbol � stands for either = or
≥, p = [

pT
1, . . . , pT

n
]T is the vector of parti-

cle positions, n is the number of particles,
and m is the number of constraints. The con-
straints are generally nonlinear and they are
solved sequentially through Gauss–Seidel iter-
ations. Each equation is linearized individually
in the neighborhood of C around the current
configuration p to find the correction �p:

Ci
(
p + �p

) ≈ Ci
(
p
) + ∇pCi

(
p
) · �p = 0,

(2)

where ∇pCi
(
p
)

is the vector containing the
derivatives of the equation Ci w.r.t. the n com-
ponents of p.

The correction �p is imposed to be in the
direction of ∇pC

(
p
)
:

�p = λi∇pCi
(
p
)

. (3)

This condition implicitly conserves the linear
and angular momenta, while at the same time
allowing solution of the under determined sys-
tem of constraints. Combining Equations 2 and
3 yields:

λi = − Ci
(
p
)

∣∣∇pCi
(
p
)∣∣2

. (4)

2.1. Stretch Constraint
We define one stretch constraint for the

particles (p1, p2) at the end points of each edge
of the input mesh, including the edges of the
internal tetrahedrons:

C
(
p1, p2

) = ∣∣(p1 − p2
)∣∣ − d = 0, (5)

is used to keep particles p1 and p2 at distance
d, where d is the rest length of the edge.

Given the configuration (p1, p2) of two par-
ticles connected by a stretch constraint, the
corrections to the positions (Equations 3) in
order to satisfy the constraint are:

�p1 = −1
2

ks
(∣∣p1 − p2

∣∣ − d
) p1 − p2∣∣p1 − p2

∣∣ ,

�p2 = +1
2

ks
(∣∣p1 − p2

∣∣ − d
) p1 − p2∣∣p1 − p2

∣∣ ,

(6)

where ks ∈ (0, 1] is a stiffness scalar parameter,
which slows the convergence of the constraint
and provides a “springy” behavior to the corre-
sponding edge.

2.2. Tetrahedral Volume Constraint
We define one volume constraint for the

particles (p1, p2, p3, p4) at the corners of each
tetrahedral of the mesh. The volume constraint
maintains the rest volume of four particles form-
ing a tetrahedron, enforcing the conservation of
the total volume of the mesh:

C
(
p1, p2, p3, p4

) = 1
6

(
p2,1 × p3,1

) · p4,1 − V0.
(7)

where pi,j is the short notation for pi − pj and
V0 is the rest volume of the tetrahedral.

The gradient with respect to each parti-
cle is:

∇p2C
(
p2,3

) = 1
6

(
p2,1 × p3,1

)
, (8)

∇p3C
(
p3,4

) = 1
6

(
p3,1 × p4,1

)
, (9)

∇p4C
(
p4,2

) = 1
6

(
p4,1 × p2,1

)
, (10)

∇p1C
(
p1

) = − (∇p2C
(
p2,3

) + ∇p3C
(
p3,4

)

+ ∇p4C
(
p4,2

))

= −1
6

((
p2,1 × p3,1

) + (
p3,1 × p4,1

)

+ (
p4,1 × p2,1

))
.

(11)
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The correction of each particle belonging to
the tetrahedron is:

�p1 = − 1
6

· s · kv · ((
p2,1 × p3,1

) + (
p3,1 × p4,1

)

+ (
p4,1 × p2,1

))
,

�p2 =1
6

· s · kv · (
p2,1 × p3,1

)
,

�p3 =1
6

· s · kv · (
p3,1 × p4,1

)
,

�p4 =1
6

· s · kv
(
p4,1 × p2,1

)
, (12)

where kv is the stiffness parameter and s is the
scaling factor:

s =
1
6

(
p2,1 × p3,1

) · p4,1 − V0
∑4

i=1 |∇piC
(
pi

) |2 . (13)

3. ALGORITHM AND
IMPLEMENTATION

3.1. Graph Coloring
We implemented a Gauss–Seidel solver in

a parallel fashion to speed-up the constraints’
solving process. We define a graph with a node
for every constraint in the system. Two nodes

of the graph are connected if the correspond-
ing constraints share at least one particle. Each
color corresponds to a partition of constraints.
We solve all the constraints belonging to a parti-
tion in parallel: we instantiate a thread for each
constraint within the same partition. This way,
all the constraints assigned to the same color
are solved with a single kernel call. The num-
ber of kernel calls to compute one iteration of
the parallel Gauss–Seidel solver is thus equal
to the number of colors instead of the num-
ber of constraints, as in the serial approach.
Figure 3 depicts this mechanism for a simple
mesh composed by stretch constraints.

The graph coloring problem, in its simplest
form, involves the assignment of colors to each
node in the graph, such that two connected
nodes do not share the same color. In other
words, given a graph G(V, E) and a set S of col-
ors, a proper coloring is a map c : V → S s.t.
∀ 〈u, v〉 ∈ E, c (u) �= c (v).

Finding the minimal number of colors for
coloring a generic graph G (the chromatic
number) is known to be NP-hard [Garey and
Johnson 79].

A widely known approach is the following:
let v1, v2, . . . , vn be an ordering of the nodes
of the graph G = (V, E); for k = 1, 2, . . . , n, the
sequential algorithm, assign vk to the small-
est possible color, as depicted in Algorithm 1,
which is able to provide a good solution and
can be computed during the initialization phase
in O (n).

p1

p2

p0

p4

p3

p5

p7

p6

c0,1

c0,2 c0,3

c0,4

c1,2

c2,3

c3,4

c4,1

c5,3 c5,6

c5,7c5,4

c3,6

c6,7

c7,4

(a) A set of 8 particles connected by 15 stretch constraints.
Here ci,j is the short notation for C(pi, pj).

c0,1

c0,2
c0,3

c0,4

c1,2

c2,3

c3,4

c4,1

c5,4

c3,5 c5,6

c6,7

c3,6

c6,7

c7,4

(b) The corresponding dual graph.

FIGURE 3. A graph coloring algorithm is applied to a simple particle system to parallelize the computation of the constraints. In this
simple case, the constraints are solved in five steps, the number of colors, instead of 15, the number of constraints. Table 1 provides more
detailed figures about the number of steps required to solve the constraints.
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Algorithm 1. (Greedy Heuristic for Coloring a Graph G (V, E))

1: let v1, v2, . . . , vn be an ordering of V
2: for i = 1 to n do
3: determine forbidden colors to vi
4: assign vi the smallest permissible color
5: end for

We used the smallest-last ordering defined
in [Matula and Beck 83, Coleman and More
83]. Assume that the vertices vk+1, . . . , vn have
been selected.

Choose vk so that the degree of vk in the
subgraph induced by

V − {
vk+1, . . . , vn

}

is minimal. This choice guarantees that
Algorithm 1 produces a coloring with at most

max
{
1 + δ (G0) : G0 is a subgraph of G

}

(14)

colors, where δ (G0) is the smallest degree of
the vertices in G0.

4. GPU IMPLEMENTATION

During the design of an algorithm for the
GPU, it is critical to minimize the communica-
tion overhead between the CPU and the GPU,
reducing the amount of data that travels on the
main memory bus. The time spent for trans-
mitting data on the bus is actually one of the
primary bottlenecks that strongly penalize the
time performance [nvB 13].

We designed our system in order to min-
imize the amount of data that travels on the
PCI bus and keep the data on the GPU as
much as possible. In the initialization phase, we
load all the data required for the animation on
the video memory. Then, during the animation
phase, we update the data structures directly on
the GPU. In this way, the CPU is not involved in
the animation process (besides being responsi-
ble for calling the GPU kernels), and any data
exchange using the bus is avoided.

We use a structure-of-arrays approach to
store all the properties of the particles and

the constraints. Each array stores one of the
properties for all the objects involved in the ani-
mation. The state of the particles consists of the
following properties:

• current position float P[3 ∗ n];
• past position float P−1 [3 ∗ n];
• mass float mass[n];

where n is the total number of particles repre-
sented in the scene. The properties describing
each type of constraints are:

• rest value float d[m];
• stiffness float s[m];
• list of affected particles int idp [m ∗ c];

where m is the number of constraints and c
is the number of particles influenced by the
type of constraints. For example, for stretch
constraints c = 2 and for tetrahedral constraints
c = 4.

Using structure-of-arrays allows us (1) to
perform coalesced accesses to the video mem-
ory and (2) to load only the required data
for each kernel call. For example, whereas the
Verlet integration step requires all the prop-
erties for the particles, the constraint solving
step requires just the current position’s array.
The outcome of the computation, stored in the
array P, is mapped to a Vertex Buffer Object and
rendered with a single OpenGL drawing call.

5. RESULTS

We have implemented our technique in
CUDA and timings for various scenes were
measured on an NVIDIA GTX 780 ti GPU
(Table 1). We also compare with both the stan-
dard PBD implemented in c + + and running
on a single core, and with our technique imple-
mented in c + + using Intel Thread Building
Blocks technology [Reinders 07], running on an
Intel i7-5930K processor with 12 cores.

These times do not include rendering and
collision handling. Figure 1 shows a set of
100 tori falling on the ground and colliding
with each other. Figure 6 shows a flat cloth
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TABLE 1. Quantitative results of our experiments on three different scenes (s0, s1, s2) depicted, respectively, in Figures 6, 7, and 1. For
each scene, the number and type of constraints (s: stretch, b: bend, t: tetrahedral) are reported. For each type of constraint, the number
of colors is reported, which corresponds to the number of phases required to compute one Gauss–Seidel iteration. We run the animations
on a single core CPU (cpu st), a multi core CPU (cpu mt), and a GPU and report the average frames-per-second over 500 frames

Constraints / colors avg fps

Particles s b t its cpu st cpu mt gpu

s 0 10K 29K/8 29K/18 − 8 25 73 1105
s 1 16K 80K/64 42K/20 50K/124 4 15 45 326
s 2 91K 493K/17 − 313K/26 8 3 5 700

FIGURE 4. Falling cube composed of 25 K constraints; the time
budget for each animation frame is 5 ms. The cube animated
using the weighted Jacobi solver (upper row) is softer than that
obtained with Gauss–Seidel (lower row) because its convergence
rate is slower.

falling on a tube, and Figure 7 shows a volu-
metric mesh initially flattened to the ground,
which restores its original volume. The tetra-
hedral meshes used in Figure 1 and Figure 7
are obtained using [Boissonnat et al. 02]. The
corresponding animations are shown in the
accompanying video.

5.1. Discussion and Limitation
The performance of the GPU solver is

bounded by the number of times the GPU
kernels are called, rather than the number of
particles and constraints involved into the ani-
mation. This is depicted in the case of s0 and
s2 in Table 1, where the performance speed-up
of the GPU is higher than s1 because, despite
the larger number of particles, the number of
colors is smaller than in the other cases.

The main issue with using graph coloring
for parallelizing the solving process with Gauss–
Seidel is that the number of constraints for
each color varies significantly. This leads to an
asymmetric amount of work in each kernel call
and, therefore, the parallel performance is not
optimal. This problem does not exist in the
weighted Jacobi approach, used in [Macklin

0

0.025

0.05

0.075

0.1

0.125

0.15

0 500 1000 1500 2000 2500 3000 3500

FIGURE 5. Convergence graph of the falling cube animation
(Figure 4): residual error on constraints versus time (in ms). Color
key: Green, Gauss–Seidel; Red, averaged Jacobi.

FIGURE 6. A flattened Stanford Bunny restores its original vol-
ume. The volumetric mesh consists of 170 K constraints and each
animation step is computed in 3 ms.

FIGURE 7. Cloth consisting of 60 K constraints falls and collides
with a tube. Each animation step is computed in 0.1 ms.

et al. 14]: in a first parallel pass each con-
straint is satisfied separately and then, in a
second pass, all the displacements influencing
each particle are summed and averaged. This
process is clearly simple to implement on a
parallel processor such as the GPU, and it is
faster to execute; however, the convergence
speed to reach a solution is slow compared
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with the other methods for solving linear sys-
tems. We compared the convergence speed
of the weighted Jacobi solver with the Gauss–
Seidel approach, using a test scene with a falling
cube composed of 25 K constraints (Figure 4).
We imposed a time budget of 5 ms for each
animation frame. The iterations for the Jacobi
solver were fast to compute, and we accommo-
dated 24 iterations within the time budget for
each animation frame. Using the Gauss–Seidel
approach, each iteration requires a number of
kernel calls equal to the number of colors, and
so it needs, in general, more time than a Jacobi
iteration. For this reason, only eight iterations
could be accommodated in the given time
budget. Nonetheless, the convergence speed
of the Gauss–Seidel solver is higher than the
Jacobi, and overall, the solution of the system
is reached faster, as shown in Figure 5 and in
the accompanying video.
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