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Abstract

As available information gets more accessible everywhere and as the rate
of new information grows very fast, the systems and models which retrieve
this information deserves more attention. The purpose of this thesis is to
investigate state-of-the-art machine learning methods for ranking known as
learning to rank. The goal is to explore if learning to rank can be used in
enterprise search, which means less data and less document features than web
based search. Comparisons between several state-of-the-art algorithms from
RankLib (Dang, 2011) was carried out on benchmark datasets. Further,
Fidelity Loss Ranking (Tsai et al., 2007) was implemented and added to
RankLib. The performance of the tests showed that the machine learning
algorithms in RankLib had similar performance and that the size of the
training sets and the number of features were crucial. Learning to rank is
a possible alternative to the standard ranking models in enterprise search
only if there are enough features and enough training data. Advise for an
implementation of learning to rank in Apache Solr is given, which can be
useful for future development. Such an implementation requires a lot of
understanding about how the Lucene core works on a low level. Keywords:
ranking, learning to rank, information retrieval, machine learning
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Chapter 1

Introduction

1.1 Background
As available information increases everywhere in a very fast pace, the systems
and models which retrieves this information demands more attention. This
constant growing stream of new information has both positive and negative
aspects. A positive aspect is that the user can access information previ-
ously not available, information that earlier would have taken long time to
access. Compare for example searching for information in a traditional li-
brary with searching for information in a digital online library, the latter
takes considerably shorter time. But there are also negative aspects with too
much information, often referred to as information overload. The term was
coined in 1985 by Hiltz and Turoff (1985) and states that more information
not necessarily is better. The increasing amount of information, not only on
the Internet but everywhere, requires an increased precision in the process of
retrieving this information. It puts more pressure on the actual algorithms
that is retrieving the information to deliver relevant results. When there is
more information one can also assume that there is more data that is irrel-
evant to the user. The term Information Retrieval is defined in Introduction
to Information Retrieval by Manning et al. (2008) as:

"Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers)."

This large collection of information (often documents) should be ordered
and ranked to satisfy the users demands. A search engine for example or-
ders the search results based on the users input query. One complication is
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that the generated search result may not agree with what the user wants.
Two users asking the same query may not be equally happy with the same
search results, this subjectivity makes the task of ranking the search results
particularly hard. The goal with a good ranking system is to improve the
user satisfaction by generating relevant information.

The aim of this thesis is to investigate machine learning methods for ranking,
often referred to as learning to rank. Learning to rank has been a hot topic
in recent years and a lot of progress has been made in the field of information
retrieval using different machine learning algorithms (Li, 2014).

This thesis is conducted in collaboration with Findwise Gothenburg and their
motivation for this thesis is that their customers not always are fully satisfied
with the implementation of search solutions. By researching learning to rank,
Findwise wants to be on the front line together with the research community
in information retrieval. Usually when the search results not are satisfying
a number of parameters in the search software can be fine tuned to increase
the relevance, but this is a rather complex and time consuming task. With
learning to rank this time could be used for more meaningful work.

1.2 Purpose
Can machine learning improve standard ranking models by using learning
to rank? The standard ranking models are: the BM25 algorithm (Robert-
son and Zaragoza, 2009), the Language Model for Information Retrieval
(LMIR)(Robertson and Zaragoza, 2009) and the Vector Space Model (VSM)
(Melucci, 2009). The hypothesis is that standard ranking models can be im-
proved with learning to rank. When this knowledge is established the project
advances to an implementation part where one of the researched learning to
rank algorithms gets implemented. Further, an implementation of a learning
to rank algorithm can expose possible weaknesses that can be eliminated from
a standard ranking model. Advantages as well as disadvantages of learning
to rank algorithms can be pointed out and guidelines on how to successfully
implement a effective ranking model can hopefully be established.

There is a gap in the research as learning to rank is tested only in huge
web based settings. By testing learning to rank with smaller datasets this
gap can be filled and a new possible area for learning to rank could be identi-
fied: enterprise search. Enterprise search usually has smaller amount of data
than web based search. By investigating if learning to rank works good on
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smaller datasets this thesis finds out if it is possible to get relevant search
results in enterprise search using learning to rank. Furthermore, the number
of features that can be extracted from the search software is limited. Often
a large number of features is needed and this thesis will try to discover if the
ranking turns bad when the number of features is limited.

1.3 Limitations
This thesis investigates already implemented methods with proven function-
ality and is not trying to reinvent the wheel. The methods are the top per-
formers from different benchmark tests published in various research journals
and books in the field of information retrieval.

1.4 Problem Specification
This master thesis project will give answers to the following questions:

• Is enterprise search a suitable area for learning to rank?

• Can learning to rank compete with standard search models in enterprise
search?

• Is it possible to implement learning to rank in Apache Solr1?

1.5 Methods
The early stage of the project consist of an information gathering phase to
get deeper knowledge of different approaches. This stage of the project tries
to localize advantages (and disadvantages) of several different learning to
rank algorithms. The information gathering focuses on recent research and
algorithms with a proven foundation based on machine learning. This over-
all knowledge is valuable to be able to make correct decisions about which
algorithms that are suitable for implementation. The implementation part
helps to find important things to keep in mind when implementing a custom
ranking model. To make the gathering part of the project successful it is
essential to get knowledge about which specific algorithms that works par-
ticularly good combined with certain datasets. Potential datasets have been
localized such as the Microsoft Learning to Rank Datasets from Microsoft

1http://lucene.apache.org/solr/
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Research2 and the Yahoo! Learning to Rank Challenge dataset (Chapelle
et al., 2011). These datasets are rather big and by shrinking these sets step-
wise and limit the numbers of features experiments tries to localize a suitable
algorithm to implement on a "real" dataset. The search server software which
is planned to be used in this project is Apache Solr. Solr is a open-source
search server based on Apache Lucene3, a popular search engine built entirely
in Java.

2http://research.microsoft.com/en-us/projects/mslr/
3http://lucene.apache.org/core/
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Chapter 2

Theory

This chapter is meant to give the reader an in depth explanation of how a
number of common ranking models are implemented. This chapter will also
get the reader familiar with learning to rank. More specifically, the three most
common learning to rank approaches will be explained and strengths and
weaknesses in each approach will be pointed out. Two terms essential to know
as preliminaries when approaching literature about information retrieval are
precision and recall. Precision is defined as the number of relevant documents
retrieved out of the total number of documents retrieved for a query. Recall
is the number of relevant documents retrieved out of the total number of
relevant documents in a collection (for a specific query) (Carterette, 2009).
Precision and recall are general performance measures of the information
retrieval system (i.e. the search engine) as they measure the number of
relevant results. To introduce the reader to information retrieval the theory
section will begin with an example: the famous PageRank algorithm which is
used in the worlds most common web search engine Google, to rank websites
based on popularity (Langville and Meyer, 2006).

2.1 PageRank
The PageRank algorithm was developed by the founders of Google1 Sergey
Brin and Larry Page, the purpose of the algorithm is to rank web pages based
on popularity. Brin and Page realised that web pages could be represented as
graphs, with nodes as pages and edges as links between the pages. Each web
node has two types of directed edges, in links and out links. If for example
page A has a link to page B this is represented in the graph as a directed
edge from node A to node B. A site with many in links is a popular site and

1http://www.google.com/about/company/history/
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therefore the site should receive a high pagerank score. The score for each
site in the graph is calculated iteratively and an in link from a popular site
will contribute with a higher score than a site with only a few in links. The
pagerank score P (Si) for website Si is calculated with the following equation
(where n is the current iteration):

Pn+1(Si) =
∑

Sj∈M(Si)

Pn(Sj)

L(Sj)

where M(Si) is the set of nodes which have out links to Si and L(Sj) is the
number of out links from node Sj. Initially all nodes gets the same rank score
Si = 1/m where m is the total number of nodes. The algorithm iterates until
a stable state has been reached and thereafter the web pages are ordered by
rank score.

PageRank Example

1 2

34

5

Figure 2.1: Small PageRank example

All nodes gets initialized with rank score S0 = 1/5.

Node Iteration 0 Iteration 1 Iteration 2 Rank after Iteration 2

1 1/5 1/10 1/12 3
2 1/5 5/30 1/30 4
3 1/5 13/30 23/60 2
4 1/5 4/15 14/30 1
5 1/5 0 0 5

Table 2.1: PageRank score for five nodes after two iterations.
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2.2 The ranking model
The ranking problem is only explained for document retrieval but it still
occurs in similar forms in several nearby areas such as collaborative filtering
and multi-document summarization. The goal is to retrieve the most relevant
documents ranked in order of relevance, based on the query q. The documents
are retrieved from the collection D. The ranking model is pictured in figure
2.2.

Query Ranking System

Search result

search query

ordered documents

documents,D

Figure 2.2: The ranking model for information retrieval.

Consider a collection of documents D = d1, d2, ..., dn and a query q, the goal
is to let the ranking model f(q,D) permute the order of the documents D
ordered with the most relevant results ranked the highest. The top document
can then be returned and shown as result to the user who executed the query.
The ranking model f(q,D) which is responsible for the ordering, can be
created through many different approaches. The machine learning approach
learning to rank train a model and learn a ranking function f(q,D) (see figure
2.3). The training data consist of a number of query/document pairs with
a relevance label (see sub section 2.4.1). This makes it possible to recognize
patterns which can be utilized to create good ranking function.
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Query/
document pairs

Training System

Query Ranking System

Search result

learning

Trained model

search query

ordered documents

documents,D

Figure 2.3: The ranking model in Learning to rank for information
retrieval.

2.3 Conventional Ranking Models
This section will describe some of the most common standard ranking models,
namely Okapi BM25, the Language Model for Information Retrieval (LMIR)
and the Vector Space Model (VSM). These ranking models are popular today
even though for example BM25 was developed more than 30 years ago.

2.3.1 Okapi BM25

The Okapi BM25 ranking model (BM25) (Robertson and Zaragoza, 2009),
where BM stands for best match is a probabilistic ranking model based on
term frequencies (see section 5.2.1). BM25 gives each document d in a col-
lection of documents D a distribution P (r|q, d) given a query q, where r is
a binary value 0 or 1; irrelevant or relevant. For a query q the documents
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with the highest probabilities to be relevant are returned and displayed to
the user. The probability of relevance for a document given a query is the
Probability Ranking Principle stated in "The Probability Ranking Principle
in IR" by Robertson (1977) as:

"If retrieved documents are ordered by decreasing probability of relevance on
the data available, then the system’s effectiveness is the best that can be ob-
tained for the data."

2.3.2 Language Model for Information Retrieval

The Language model for Information Retrieval (LMIR) (Manning et al.,
2008) and (Robertson and Zaragoza, 2009) is based on the probability ranking
principle stated above. The simplest language model is the unigram language
model, it calculates a probability distribution over a corpus P (w1, ..., wn),
for each document. Every query has its own language model M(d). Given
a query, the language model M(d) with the highest probability P (q|M(d))
is the language model of the most relevant document. LMIR returns the
most relevant documents to the user by calculating the probabilities for all
language models for all documents.

2.3.3 Vector Space Model

The vector space model (VSM) described in Introduction to Information Re-
trieval by Manning et al. (2008) and in "Vector-space model" by Melucci
(2009) is a ranking model in which queries and documents are represented
as weight vectors. The idea with VSM is to rank the documents term vec-
tors (or more common tfidf vectors) (see sub section 5.2.1) proximity to the
query term vector. The documents proximity to the query is based on the
cosine between the document and the query in the vector space. The cosine
similarity of two vectors is computed by first calculating the norm (l2 norm)
of the vectors and then the dot product. The euclidean norm makes the
length of all vectors equal and the cosine gives the similarity. A small angle
means similar vectors, if for example two identical vectors are compared the
cosine will be 0. The equation below shows how the similarity between a
term vector of a document D and a term vector of a query Q is calculated.

cosine(θ) =
Q ·D
|Q||D|

=

∑n
i=1 qi × di√∑n

i=1(qi)
2 ×

√∑n
i=1(di)

2
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2.4 Learning to Rank
In the described models above the relevant documents could be retrieved by
calculating probabilities given the query, the collection of documents and a
corpus. The goal is to now by using different machine learning approaches
achieve better ranking models than earlier. Learning to rank has three main
branches, all of which take a supervised approach to solve the ranking prob-
lem. The meaning of a supervised approach is that the algorithms need to be
trained and fed with sample data with relevance labels. This training must be
done before the algorithms actually can rank documents without any surveil-
lance. In the unsupervised approach training occurs without relevance labels.
The three branches, namely the pointwise approach, the pairwise approach
and the listwise approach will be described in the next sections. The next
sections will also to point out strengths and weaknesses with each approach.
Before the explanation of each approach a brief description of the learning-
and test- data representation, used for learning to rank will be given.

2.4.1 Data Representation

Annotated data is needed to be able to train a learning to rank ranking
model (see figure 2.3). Annotated data is search queries with retrieved doc-
uments labeled in accordance to their relevance. These labels comes from
human judgement, how well each retrieved document matches what the user
is searching for.

The training data consists of query-document pairs for a large number of
queries, each with a label in a discrete interval. Most common is the interval
{0, 4} with 0 as an irrelevant document and 4 as a perfect match. In some
cases the relevance labels are binary, {0, 1} relevant or irrelevant. Each query
is represented by an id and each query/document pair is represented by a
feature vector consisting of n features. These features can for example be
the documents term frequency, BM25 or PageRank score. Typically each
document has many features, for example one of the Microsoft Learning to
Rank Datasets2 has 136 features for each query/document pair and the Ya-
hoo dataset (Chapelle et al., 2011) has 600 features per query/document pair.
Appendix A and B lists the features of the MQ2008 and HP2003 benchmark
datasets.

A small toy example of the data representation of eight different query/document
2http://research.microsoft.com/en-us/projects/mslr/
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pairs for two different queries with four dimensional feature vectors is shown
in table 2.2. Typically the features are normalized.

label qid:id feature vector
1 qid:1 1:0.1 2:0.9 3:0.9 4:0.6
0 qid:1 1:0.1 2:0.8 3:0.9 4:0.6
3 qid:1 1:0.8 2:0.2 3:0.3 4:0.4
4 qid:1 1:0.9 2:0.3 3:0.1 4:0.7
3 qid:2 1:0.7 2:0.4 3:0.2 4:0.1
2 qid:2 1:0.1 2:0.8 3:1.0 4:0.3
2 qid:2 1:0.2 2:0.7 3:0.3 4:0.1
0 qid:2 1:0.4 2:0.6 3:1.0 4:0.2

Table 2.2: Typical data representation of a learning to rank dataset.

2.4.2 The Pointwise Approach

The pointwise approach described by Liu (2011) in Learning to Rank for In-
formation Retrieval is considered the most basic learning to rank approach.
In the Yahoo! Learning to Rank Challenge (Chapelle et al., 2011) the point-
wise approach was outperformed by the pairwise and by the listwise approach.
The approach handles each query/document pair separately and tries to pre-
dict the correct label for each pair. This is not beneficial, as the approach
ignores the group structure.

As the pointwise approach treats each single query/document pair as a single
object the ranking problem can be reduced, to classification, regression or
ordinal-regression. The classification task solves the problem where the tar-
get values are the query/document pairs corresponding labels. This means
that the classification algorithms try to classify the query/document pairs
with correct discrete relevance label given their feature vector. An exam-
ple of the pointwise approach using classification is Boosting Trees described
in "McRank: Learning to Rank Using Multiple Classification and Gradient
Boosting" by Li et al. (2008).

In regression each query/document pair is assigned with a continuous la-
bel. The goal is to minimize the error or regret. Examples of the pointwise
approach using regression is "Subset Ranking using Regression" (Cossock
and Zhang, 2006).

Ordinal-regression takes all the relevance labels (1, 2, ..., k) in order, and
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tries to correctly classify the documents with a function f and thresholds
b1 ≤ b2... ≤ bk−1 where k is the number of labels. The output of the function
gives a label to each document/query pair in a multi classification fashion.
An example of ordinal regression is the PRank algorithm (Crammer and
Singer, 2001) which uses perceptrons.

2.4.3 The Pairwise Approach

In the pairwise approach (Liu, 2011) two document/query pairs are com-
pared, given a query one of the document is more relevant than the other.
By doing this reduction to pairwise classification the approach focuses on the
maximization of the number of correct classified document pairs. To have
a ranking model that correctly can classify all pairs means that the model
also can rank all the documents correctly. Examples of implementations
with good performance using the pairwise approach for learning to rank is
RankNet (Burges et al., 2005) which uses a neural network approach and
RankBoost (Freund et al., 2003) which uses boosting.

2.4.4 The Listwise Approach

In the listwise approach (Liu, 2011) the input to the training system consists
of batches of all the documents associated with a certain query. The listwise
approach utilize the group structure of the training data. The ranking prob-
lem becomes an optimization task to generate a permutation of the input
documents such that the permutation maximize the score function of choice.
This can be seen as equal to minimizing a loss function. The listwise learning
to rank algorithms are divided into two categories, minimization of measure-
specific loss (maximization of a score function measure such that NDCG,
MAP etc.) and minimization of non-measure-specific loss (minimization of
a loss function). Adarank (Xu and Li, 2007) is a listwise approach in the
minimization of non-measure-specific loss category.

12



Chapter 3

Related Work

3.1 RankLib
RankLib (Dang, 2011) is a library with several learning to rank algorithms
implemented. RankLib is part of an open source project called The Lemur
Project1 which contains different search software. The Indri search engine
is probably the best known from the Lemur Project. The Lemur Project
is widely used in information retrieval research projects and in commercial
products. RankLib is written in Java and the algorithms listed in table 3.1
are implemented in the current version (2.4).

Algorithm Approach

MART (Gradient boosted regression tree) Pointwise
Random Forests Pointwise
RankBoost Pairwise
RankNet Pairwise
LambdaMART Pairwise
AdaRank Listwise
Coordinate Ascent Listwise
ListNet Listwise

Table 3.1: Algorithms implemented in RankLib version 2.4

In addition to these learning to rank algorithms RankLib contains different
score functions and evaluation tools to test and validate trained models. The
metrics for evaluation supported in the current version are: MAP, NDCG@k,

1http://www.lemurproject.org/
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DCG@k, P@k, RR@k and ERR@k (see section 5.2 for a description of NDCG
and DCG). K-fold cross-validation is available to predict the performance and
features can be selected to specify which features to include for training of
the model. Both models and scores can be saved to file and saved models can
be loaded to re-rank new documents. The rest of this chapter will give brief
explanations of the algorithms in RankLib version 2.4. For the interested
reader further reading and implementation details of each algorithm can be
found in the paper referred to in each section.

Figure 3.1: The Lemur Project logo

3.1.1 MART

The MART algorithm (Multiple Additive Regression Trees) is based on the
theory in "Greedy Function Approximation: A Gradient Boosting Machine"
by Friedman (2000). MART is a pointwise approach and it is also known
as Gradient Boosting Regression Trees. MART is a boosting technique (it
combines weak rankers to form a strong ranker) combined with gradient
descent.

3.1.2 RankNet

RankNet is a pairwise approach described in "Learning to Rank Using Gra-
dient Descent" by Burges et al. (2005). RankNet is using a neural network
combined with gradient descent steps to control the learning rate in each
iteration step. The neural network has two hidden layers and uses backprop-
agation to minimize a cost function to perform the pairwise ranking. The
probabilistic framework in FRank (see chapter 4) is based on the probabilistic
framework in RankNet.

3.1.3 RankBoost

RankBoost (Freund et al., 2003) is a pairwise technique based on boosting.
RankBoost operates in rounds and choose the feature in each round that
minimizes a loss function. FRank (chapter 4) is to a large degree based
on RankBoost, as the additive model of weak rankers for learning to rank
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in FRank is taken from RankBoost. Further the threshold values used in
FRank is also adapted from RankBoost.

3.1.4 AdaRank

AdaRank is based on the paper "AdaRank: A Boosting Algorithm for In-
formation Retrieval" by Xu and Li (2007). AdaRank is another boosting
technique which combines weak rankers to create the ranking function. The
algorithm is inspired by AdaBoost or "Adaptive Boosting" (Schapire, 1999),
a well recognized machine learning algorithm. AdaRank takes the listwise
approach to the learning to rank problem and tries to minimize the perfor-
mance measures directly instead of indirect minimization of a loss function
as the similar algorithms above.

3.1.5 Coordinate Ascent

The Coordinate Ascent method is described as an optimization method in
the paper "Linear Feature-Based Models for Information Retrieval" by Met-
zler and Bruce Croft (2007). The method optimize through minimization of
measure-specific loss, more specifically the mean average precision (MAP).
The Coordinate Ascent suffer from getting stuck in local minimas, when
searching for the global minima of the MAP, but by doing a number of
restarts (typically 10) this can be avoided.

3.1.6 LambdaMART

LambdaMART described in "Adapting Boosting for Information Retrieval
Measures" by Wu et al. (2010) is an ensemble method consisting of boosted
regression trees (MART) (Friedman, 2000) in combination with LambdaRank
(Burges et al., 2006). LambdaRank is a neural network algorithm for learn-
ing to rank with the same basic idea as RankNet (backpropagation to mini-
mize a loss function). LambdaRank’s loss function is meant as an upgraded
version of the loss function in RankNet with faster running time and bet-
ter performance on measures. The authors of LambdaRank points out that
their algorithm could be combined with boosted trees. The developers of the
LambdaMART algorithm implemented an algorithm that does what Burges
et al. (2006) did advice.
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3.1.7 ListNet

ListNet is an algorithm in RankLib from the paper "Learning to Rank: From
Pairwise Approach to Listwise Approach" by Cao et al. (2007). ListNet is
using a neural network approach with gradient descent to minimize a loss
function, similar to RankNet. ListNet differs from RankNet as the method
uses the listwise approach instead of the pairwise approach taken in RankNet.
In this way ListNet tries to utilize the benefits of the group structure of the
training data.

3.1.8 Random Forests

The Random Forests (Breiman, 2001) is an ensemble of decision trees. In
each decision tree a random subset space of the data is selected to create the
tree. The left out data is then tested on the tree and the out of bag data
error (OOB error) is calculated (similar to cross validation). The tree with
the lowest error is then chosen as the ranking model. The left out data is
usually around 1/3 of the data size and the subsets are chosen randomly for
each new tree.

3.1.9 Linear Regression

It is not mentioned in the RankLib wiki but there is an implementation
of linear regression in the source code of RankLib. The implementation is
pointwise and the goal is to find a regression line that separates and classifies
the documents. The way the RankLib implementation does this is through
the least-squares method (Lawson and Hanson, 1995).

16



Chapter 4

Fidelity Loss Ranking

As RankLib is the best known learning to rank library the decision was
made to support RankLib by addition of a yet unimplemented algorithm.
The choice of algorithm to implement was based on which algorithms that
are popular, have proven performance and yet is unimplemented in RankLib.
The performance measures of the benchmark datasets in Learning to Rank
for Information Retrieval and Natural Language Processing by Li (2014) and
the Yahoo! Learning to Rank Challenge results (Chapelle et al., 2011) showed
that one of the top algorithms from the comparisons was missing in RankLib,
Fidelity Loss ranking (FRank) (Tsai et al., 2007).

FRank is a pairwise approach developed by Tsai et al. at Microsoft Re-
search who claims in "FRank: A Ranking Method with Fidelity Loss" (Tsai
et al., 2007) that "The FRank algorithm performs effectively in small train-
ing datasets...". This was the main reason why this algorithm was chosen for
implementation as the size of the training data often is limited in enterprise
search solutions.

The theoretical approach of FRank is to combine the probabilistic frame-
work of RankNet (Burges et al., 2005) and the additive boosting approach
in RankBoost (Freund et al., 2003). A bit simplified FRank is trying to
combine a number of weak rankers to get a good ranking function. A weak
ranker is a function that classifies a document by just looking at one feature.
By looking at many different weak rankers and then choose the one in each
iteration giving rise to the minimal fidelity loss, the weak rankers is combined
to create a ranking function.
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4.1 Fidelity Loss
Fidelity Loss is traditionally used in physics used to measure the difference
between two states of a quantum (Birrell and Davies, 1984) but it can also be
used to measure the fidelity between two different probability distributions.
In FRank the loss function is adapted to pairwise classification and the loss
of a pair is measured as:

Fij = 1− (
√
P ∗ij · Pij +

√
(1− P ∗ij) · (1− Pij))

P ∗ij is the target probability, which is assigned {0, 0.5, 1} depending on the
labels of the pair. If i has a higher label than j the target is 1, if i and j
have the same label, the target is set to 0.5. Finally if document j is more
relevant and have a higher label than document i the target probability P ∗ij
is set to 0. The logistic function is applied to Fij and the new loss function
becomes:

Fij = 1−
([
P ∗ij · (

eoij

1 + eoij
)
] 1

2 +
[
(1− P ∗ij) · (

1

1 + eoij
)
] 1

2
)

where oij is the rank order of document i and j. Figure 4.1 shows that the
loss for P ∗ij = 0.5 has its minimum at the origin and give rise to zero loss.
This is a useful property, RankNet (Burges et al., 2005) for example, which is
based on the minimization of a similar loss function does not have minimum
loss equal to zero.
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Figure 4.1: The loss function in FRank as a function of oij for the
different target probabilities.
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4.2 Algorithm description
The goal is to construct the ranker function H(x) as a combination of weak
rankers h(x) and corresponding weights α at each iteration t:

H(x) =
∑
t

αtht(x)

where ht and αt denotes the weak ranker and the corresponding weight found
at each iteration. In FRank the weak ranker ht(x) is binary, each feature of
each document is compared to a threshold value, and are assigned either 0
or 1. The threshold value can be chosen in different ways, for example many
different thresholds for each feature can be used and create several weak
rankers and then pick the values with best performance. As the documents
often have a large number of features to pick from (typically above 40 fea-
tures) only one threshold is chosen for each feature in this implementation
to keep down the running time. The idea of binary thresholds is adapted
from RankBoost (Freund et al., 2003) which also uses the same type of bi-
nary classifiers as FRank. In this implementation each threshold is randomly
chosen for each feature from a feature value.

The ranking function is constructed by in each iteration choosing the weight
at which minimize the Fidelity Loss. The Fidelity Loss J over the ranking
function Hk is defined as:

J(Hk) =
∑
q

1

|#q|
∑
ij

F
(k)
ij

The first sum is a weight for each document pair where q is the total number
of documents for a query. This will make all queries equally important and
not bias a query because it got a large number of document pairs. From now
on this weight is denoted D(i, j) for a document pair i, j.

D(i, j) =
1

|#q|

With the formula for the fidelity loss in addition to D(i, j) we get the follow-
ing equation for the loss:

J(Hk) =

=
∑
ij

D(i, j)·
(
1−
[
P ∗ij ·(

eH
i,j
k−1+αkh

i,j
k

1 + eH
i,j
k−1+αkh

i,j
k

)
] 1

2 +
[
(1−P ∗ij)·(

1

1 + eH
i,j
k−1+αkh

i,j
k

)
] 1

2

)
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where
hi,jk , hk(xi)− hk(xj)

Because the weak rankers only can have the values 0 or 1, the pairwise ranker
hi,jk can take the values {−1, 0, 1} this means that the derivation of the fi-
delity loss can be simplified as described in Tsai et al. (2007), to obtain the
following expression for the weight αk:

αk =
1

2
ln

∑
hi,jk =1W

i,j∑
hi,jk =−1W

i,j

W i,j are the pairwise weights initially set to D(i, j) and updated as following
in each iteration k:

W i,j
k = D(i, j) ·

(
(P ∗ije

Hi,j
k−1)

1
2 − eH

i,j
k−1(1− P ∗ij)

1
2

(1 + eH
i,j
k−1)

3
2

)
Algorithm 1 shows the pseudocode of the FRank implementation.

Algorithm 1 FRank
Input: Document pairs and weak ranker candidates hm(x) where m is the
number of features.

Calculate the initial pair-weights D(i, j) for each document pair
for t=1 to k do . k is the number of weak learners to be combined

for c=1 to m do . m is the number of features
Calculate αt,c
Calculate fidelity loss J(Hk)

ht(x)← ht,c(x) with minimum loss
αt ← corresponding αt,c
update pair-weights according to W i,j

k

Output: Ranker H(xi) =
∑k

t=1 αtht(x)
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Chapter 5

Experiments

This section displays the results of the tests ran on the algorithms in RankLib
and FRank. The test setup, the score metric and the benchmark datasets
are described. This section also describes the started work of implementing
learning to rank in Apache Solr.

5.1 Experimental Setup
The main goal with the comparisons was to see if one or several algorithms
could perform well when the training data was limited. This is interesting as
the algorithms in RankLib usually have very large training sets (the case in
the benchmark datasets) which not is easy to create in an enterprise search
solution. As the number of extractable features from Solr is limited the com-
parisons also include tests with the features that can be extracted from Solr.
These tests are included to see if this ranking works as good as in a web
based setting with more features per document. The top 3 and top 5 results
was identified as good numbers of hits to consider relevant.

To be able to draw sensible conclusions from the tests, two baseline algo-
rithms were included in the test runs. Linear Regression was the first method
included as it is a simple and more straightforward approach compared to
the other algorithms in RankLib. It is valuable to see if and how much better
the more advanced approaches perform on the benchmark tests. The second
baseline algorithm is just random ordering of the documents. The motivation
to include this is that the scores of the other algorithms will be more intuitive
when they can be related to the score of the random ordering. As the test
sets are scaled down the hypothesis is that the score of the RankLib algo-
rithms eventually will decrease and converge with the score of the random
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algorithm.

5.2 Definitions & Score Metrics
This sub section describes some common information retrieval definitions and
the score metric used in the experiments to measure the performance of the
learning to rank algorithms.

5.2.1 Common Definitions in Information Retrieval

In the introduction to the theory chapter two key terms in information re-
trieval were introduced: precision and recall (Carterette, 2009). Just to
recall, precision is a probability measure of how likely it is that a random
chosen document out of all of the documents in the search result is relevant.
Recall is a probability measure of how likely it is that a random chosen rele-
vant document is in the search result. Precision and recall are more precisely
defined with the following definitions:

Precision =
RelevantDocuments ∩RetrievedDocuments

RetrievedDocuments

Recall =
RelevantDocuments ∩RetrievedDocuments

RelevantDocuments

Often only the top n results are of concern, this is notated as Precision@n
or P@n. @n notation is intuitive; for example in a web search engine one
probably never is concerned with all the retrieved search hits. Seldom more
than the first page of search results is of interest.

Three other terms more related to the technical aspects of the search are
term frequency (tf), inverse document frequency (idf) and term frequency -
inverse document frequency (tf-idf) (Manning et al., 2008). The tf is the
number of times a specific word occurs in a document. This is usually calcu-
lated for all words in the corpus, with stop words removed. A corpus is a set
of words, for example all word in a specific language. Stop words are small
words (’at’, ’in’, ’this’ etc.) that are removed because they do not reflect
the content and to make the statistical measures useful. In the tf model the
documents marked as relevant will simply be the documents with the most
frequent occurrences of the word/s in the search query. In the bag of words
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model documents are represented by the terms they contain and the corre-
sponding term frequencies.

The idf is as the name implies the inverse of the document frequency. The
document frequency for a term t is the number of documents in the collection
of documents D which contains the term. The purpose of the inverse doc-
ument frequency is to weigh uncommon terms more heavily than common
terms. As an example, think of a collection of economics articles, a search
query "car finance" will weight "car" much higher than "finance" if the term
"finance" is in nearly every economics article and the term "car" is uncom-
mon among the articles in the collection. The inverse document frequency is
calculated for each term in the query as:

idf =
|D|

log(df)

The scale of the logarithm above can be tuned for the purpose depending on
how much one want to boost rare terms.

The tf-idf is meant as an improved version of the term frequency, as some-
times the search results will not be very precise with all terms equally weighted.
By combining the inverse document frequency with the term frequency a good
composition of two models is obtained. The tf-idf is calculated for each term
in the query as:

tfidf = tf · idf

A high tf-idf score indicates that the term is frequent in a few documents and
if the term gets less frequent or more distributed over documents the score
will drop.

5.2.2 Discounted Cumulative Gain

One of the most common methods to measure the relevance of a search re-
sult with is the Discounted Cumulative Gain (DCG) (Li, 2014). The notation
DCG@n is used where n is the top number of results taken into considera-
tion. The score is based on the intuition that in a good ranking system the
documents with the highest labels will be ranked the highest. With DCG
lower search results will contribute less and less to the total score. DCG is
calculated with the following equation:
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DCG@n =
n∑
i=1

2reli − 1

log2(i+ 1)

where reli is the relevance label of document number i in the ordered result
list. DCG is often normalized and becomes the score metric called Normal-
ized Discounted Cumulative Gain (NDCG) (Manning et al., 2008). NDCG
is measured as the DCG divided with the Ideal Discounted Cumulative Gain
(IDGC). The IDGC is the maximum score a ranked search results possibly
can get, i.e. the optimal ordering of the results.

NDCG@n =
DCG@n

IDCG@n

As an illustrating example we calculate the DCG, IDCG and NDCG (@4) for
the query with id 1 from Table 2.2. We assume that an imaginary ranking
function has ranked the relevance of the documents for query 1 with the rel-
evance in the following decreasing order: {4 � 1 � 3 � 2} with row number
as document number. The symbol � represent ordering, d1 � d2 means that
d1 is ranked higher than d2. This gives the DCG score:

DCG@4 =
24 − 1

log2(1 + 1)
+

21 − 1

log2(2 + 1)
+

23 − 1

log2(3 + 1)
+

20 − 1

log2(4 + 1)
= 19.13

the IDCG score (for {4 � 3 � 1 � 2}):

IDCG@4 =
24 − 1

log2(1 + 1)
+

23 − 1

log2(2 + 1)
+

21 − 1

log2(3 + 1)
+

20 − 1

log2(4 + 1)
= 19.92

and finally the NDCG score:

NDCG@4 =
19.13

19.92
= 0.97

5.3 Benchmark Datasets
The idea behind using benchmark datasets is to let the developers focus
on the development of algorithms instead of the gathering of and set up of
good data. To find and pre-process data can be very time consuming if no
data is available and benchmark datasets can save a lot of time. Benchmark
datasets also brings justice to comparisons of algorithms as the developers
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can not construct a dataset designed specifically for their algorithm. A pos-
sible drawback with benchmark datasets is that the developers design an
algorithm exclusively for performance on a certain dataset with a poor gen-
eral performance.

5.3.1 Preprocessing of data

As described in "LETOR: A Benchmark Collection for Research on Learning
to Rank for Information Retrieval" by Qin et al. (2010) there are four main
preprocessing steps to get useful training data; selecting corpora, sampling
of documents, extracting features and extracting metadata. The Gov1 and
Gov22 datasets were the chosen corpora in the benchmark datasets. The
Gov and Gov2 datasets are publicly available and they are common in dif-
ferent measurements of information retrieval implementations. The datasets
are usually very large and as 25 million queries were not needed to create
a training set a subset was chosen (the sampling of documents step). The
third preprocessing step (the feature extraction part), must be seen as the
most important step as the features to represent each query/document pair
are chosen. The number of features varies a lot between different benchmark
datasets and the decision must be made which of the features that are of
interest to create a useful benchmark set. The features extracted into the
LETOR datasets was selected with the main goals to include the "classical
information retrieval features" (such as tf, idf and tfidf) and choose features
often represented in SIGIR3 (Special Interest Group on Informaition Re-
trieval) papers. The last step, extraction of metadata, is done to be able
to tune the dataset. A few examples of metadata (stored in XML) are the
number of documents, the length of term vectors and the values of the pa-
rameters for the features from the BM25 and the LMIR model. Furthermore
some of the features in the benchmark datasets are only document dependent
such as document length, some are only query dependent such as idf but the
most of the features are both query and document dependent.

5.3.2 MQ2008

The Million Query 2008 dataset (MQ2008) is a benchmark dataset from the
LETOR 4.0 package (Qin and Liu, 2013). MQ2008 is created by Microsoft
Research Asia and the data is coming from the Million Query track from

1http://ir.dcs.gla.ac.uk/test_collections/govinfo.html
2http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
3http://sigir.org/
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TREC 20084. The dataset consists of 784 queries from the Gov2 web page
collection, Gov2 is a huge collection of approximately 25 million web pages
distributed by University of Glasgow. Each query/document pair is repre-
sented by a 46 dimensional feature vector, see appendix A for a description of
these features. In total there are 15211 query/document pairs in the MQ2008
dataset.

5.3.3 HP2003

The second benchmark dataset used in this thesis is the Homepage finding
2003 dataset (HP2003) from the Gov collection (the precursor to Gov2).
HP2003 is bigger than MQ2008 in terms of document/query pairs, it con-
tains 147606 query/document pairs but only 150 queries. The documents in
the Gov collection contains more features than the documents in Gov2, 64
dimensional feature vectors instead of 46 dimensional. See Appendix B for a
description of the features in the HP2003 dataset. It is beneficial to see and
analyse how the results differs in this type of dataset compared to MQ2008.

5.4 Comparison between the algorithms in
RankLib

5.4.1 MQ2008 test results

The first tests were carried out on the MQ2008 dataset. The testing consisted
of 5-fold cross-validation and the tables with corresponding plots shows the
average results of the testing (5-fold cross-validation) for all of the algorithms
in RankLib. The results from three different categories of tests are presented:
NDCG@3 score, NDCG@5 score and NDCG@3 score with a limited number
of features.

Table 5.1 and figure 5.1 shows the results of the NDCG@3 measure. The
results shows that the neural network approaches in ListNet and RankNet
had the worst performance (except for Random). This can be due to that a
couple of parameters needs to be fine tuned in these algorithms, but for the
tests all of the methods ran out of the box with default parameter values. By
inspecting the plots in figure 5.1 the results of the top algorithms appears to
have very similar performance, with no clear winner.

4http://trec.nist.gov/tracks.html
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For all the algorithms the score decreases when the training data is shrunken
below a certain point. This point is approximately somewhere around 1000−
2000 query/document pairs or 100 queries. At 1077 query/document pairs
the performance is starting to decrease and in the smallest test environment
with only 592 query/document pairs the performance is even worse. As a
final observations the performance of the Linear Regression is surprisingly
good, it is both a memory and time efficient method compared to many of
the more sophisticated methods.

Query/Doc. Pairs 592 1077 1955 7769 15211
No. of Queries 39 69 126 410 784

MART 0.27 0.38 0.44 0.4 0.42
RankNet 0.27 0.33 0.34 0.38 0.39
RankBoost 0.35 0.36 0.42 0.4 0.41
AdaRank 0.32 0.37 0.41 0.4 0.4
Coordinate Ascent 0.33 0.37 0.42 0.41 0.42
LambdaMART 0.36 0.37 0.43 0.41 0.41
ListNet 0.28 0.32 0.36 0.38 0.38
Random Forests 0.31 0.38 0.43 0.41 0.41
FRank 0.31 0.4 0.4 0.41 0.39
Linear Regression 0.25 0.35 0.4 0.4 0.4
RANDOM 0.24 0.18 0.21 0.2 0.2

Table 5.1: NDCG@3 score for the MQ2008 dataset.
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Figure 5.1: NDCG@3 score as a function of the number of
query/document pairs in the MQ2008 dataset.
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Table 5.2 and figure 5.2 shows the results of the NDCG@5 score on the
MQ2008 dataset. The same conclusions as from the NDCG@3 tests can be
drawn as the difference between the top 3 and the top 5 results does not
differ significantly. The same algorithms are in the top as in the NDCG@3
tests and the decrease in performance occurs at the same size of the tests
as in the NDCG@3 case. The performance of FRank is average in both the
NDCG@3 and the NDCG@5 case.

Query/Doc. Pairs 592 1077 1955 7769 15211
No. of Queries 39 69 126 410 784

MART 0.33 0.44 0.49 0.45 0.46
RankNet 0.3 0.31 0.43 0.43 0.43
RankBoost 0.42 0.4 0.47 0.45 0.45
AdaRank 0.41 0.43 0.45 0.45 0.45
Coordinate Ascent 0.43 0.42 0.46 0.46 0.46
LambdaMART 0.38 0.43 0.47 0.47 0.45
ListNet 0.3 0.3 0.38 0.41 0.44
Random Forests 0.39 0.42 0.49 0.46 0.45
FRank 0.36 0.42 0.45 0.46 0.44
Linear Regression 0.36 0.39 0.45 0.45 0.44
RANDOM 0.32 0.26 0.29 0.26 0.26

Table 5.2: NDCG@5 score for the MQ2008 dataset.
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Figure 5.2: NDCG@5 score as a function of the number of
query/document pairs in the MQ2008 dataset.
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Table 5.3 and figure 5.3 shows the results of the tests ran on the MQ2008
dataset with "Solr features only". This means the features that can be
extracted from Solr without too much effort. In the MQ2008 dataset this
means feature 1-20 (see Appendix A) tf, idf, tfidf and document length for all
indexed fields.As the NDCG@3 and NDCG@5 results above were as similar
as they were the Solr features testing was only executed for NDCG@3. The
results below clearly shows that the performance decreased when the number
of features was limited to 20. The Random Forests algorithm is the top
performer when the dataset has the original and half of the original size.

Query/Doc. Pairs 1077 1955 3877 7769 15211
No. of Queries 69 126 253 410 784

MART 0.3 0.27 0.31 0.31 0.36
RankNet 0.24 0.22 0.24 0.22 0.21
RankBoost 0.23 0.26 0.25 0.25 0.26
AdaRank 0.24 0.22 0.29 0.26 0.28
Coordinate Ascent 0.3 0.3 0.29 0.29 0.31
LambdaMART 0.32 0.29 0.28 0.32 0.35
ListNet 0.19 0.19 0.2 0.22 0.24
Random Forests 0.3 0.27 0.3 0.34 0.38
FRank 0.28 0.28 0.27 0.28 0.26
Linear Regression 0.22 0.2 0.18 0.2 0.22
RANDOM 0.21 0.22 0.22 0.21 0.2

Table 5.3: NDCG@3 score for the MQ2008 dataset with Solr features
only.
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Figure 5.3: NDCG@3 score as a function of the number of
query/document pairs in the MQ2008 dataset with Solr features only.

5.4.2 HP2003 test results

This sub section displays the results of the tests ran on the HP2003 bench-
mark dataset. The HP2003 dataset is bigger than the MQ2008 dataset overall
as HP2003 contains more query/document pairs but the number of queries is
lower. All algorithms that was included in the MQ2008 tests was not included
in the HP2003 tests. This was mainly due to memory issues (not enough
memory in the Java heap) regarding the large number of query/document
pairs. An important note is that none of the algorithms that had top perfor-
mance on the MQ2008 tests was left out. The results of the HP2003 set can
therefore be seen as a good complement to the MQ2008 tests. The left out
algorithms were RankBoost, ListNet and FRank. The results shown below
are also as in the MQ2008 case the average results of 5-fold cross-validation.

Table 5.4 and figure 5.4 shows the results of the first tests ran on the HP2003
benchmark set. First and foremost the score is on average higher in the
HP2003 tests than in the MQ2008 tests. The NDCG@3 results shows that
the best algorithms are Coordinate Ascent and Random Forests. Notice that
when the performance of the algorithms in general decrease (when the size of
the training data is decreased), the score of the the Linear Regression increase
and the different scores are almost converging at 11000 query/document
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pairs. Random Forests is still the best algorithm overall (closely followed
by Coordinate Ascent) even if its score has started to decrease at the 11000
query/document pairs mark.

Query/Doc. Pairs 11000 20000 38000 74000 147606
No. of Queries 10 20 38 74 150

MART 0.48 0.77 0.74 0.75 0.76
RankNet 0.64 0.62 0.83 0.75 0.72
AdaRank 0.67 0.55 0.69 0.77 0.72
Coordinate Ascent 0.69 0.87 0.88 0.82 0.75
LambdaMART 0.6 0.63 0.73 0.71 0.75
Random Forests 0.77 0.85 0.86 0.85 0.79
Linear Regression 0.68 0.5 0.53 0.51 0.5
RANDOM 0.1 0.08 0.59 0 0.19

Table 5.4: NDCG@3 score for the HP2003 dataset.
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Figure 5.4: NDCG@3 score as a function of the number of
query/document pairs in the HP2003 dataset.

The results from the NDCG@5 benchmark tests for the HP2003 dataset are
shown in table 5.5 and figure 5.5. Just as in the MQ2008 dataset the top 5
scores resembles to a very large degree the top 3 scores. Notice here that the
Random Forests algorithm stands out as the top performer in all of the test
configurations closely followed by Coordinate Ascent.
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Query/Doc. Pairs 11000 20000 38000 74000 147606
No. of Queries 10 20 38 74 150

MART 0.48 0.78 0.76 0.76 0.77
RankNet 0.48 0.67 0.83 0.8 0.74
AdaRank 0.71 0.74 0.64 0.77 0.75
Coordinate Ascent 0.73 0.84 0.85 0.81 0.76
LambdaMART 0.42 0.65 0.78 0.76 0.74
Random Forests 0.77 0.86 0.87 0.84 0.8
Linear Regression 0.72 0.57 0.57 0.56 0.52
RANDOM 0.1 0.35 0.61 0.06 0.17

Table 5.5: NDCG@5 score for the HP2003 dataset.
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Figure 5.5: NDCG@5 score as a function of the number of
query/document pairs in the HP2003 dataset.

The last test carried out was a "Solr features only" test on the HP2003
dataset. The results are displayed in table 5.6 and the corresponding plots
are displayed in figure 5.6. By removing more than two thirds of the fea-
tures the score clearly has decreased compared to the NDCG@3 score above.
The Random Forests implementation still has the best performance and it
seems like the decrease in performance (in terms of NDCG@3) is equally
spread among the different methods. Note that the neural network approach
RankNet actually has the best performance without any parameter tuning
in the "original size" test (147606 query/document pairs). As the data is
scaled the performance of RankNet gets worse and is not better than the
other methods.
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Query/Doc. Pairs 11000 20000 38000 74000 147606
No. of Queries 10 20 38 74 150

MART 0.51 0.45 0.46 0.48 0.44
RankNet 0.24 0.24 0.42 0.41 0.6
AdaRank 0.46 0.49 0.43 0.36 0.47
Coordinate Ascent 0.57 0.48 0.45 0.4 0.48
LambdaMART 0.48 0.46 0.38 0.47 0.45
Random Forests 0.57 0.5 0.53 0.48 0.51
Linear Regression 0.42 0.39 0.43 0.41 0.4
RANDOM 0 0.03 0.08 0.15 0.11

Table 5.6: NDCG@3 score for the HP2003 dataset with Solr features
only.
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Figure 5.6: NDCG@3 score as a function of the number of
query/document pairs in the HP2003 dataset with Solr features only.

5.4.3 A short summary of the results

This summary contains the key content of the results which is stated af-
ter careful inspection of the results above. The results in summary is the
following:

• The results of the different methods are very similar and there is not a
single method that stands out as the best.

• The performance decrease when the number of features is decreased.

• The performance decrease when there is not enough training data.
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5.5 Learning to Rank in Apache Solr
This section describes the initiated work to implement learning to rank in
Apache Solr. In combination with the future work section it covers what
has been accomplished and what should be accomplished next. To be able
to follow the description of the initiated work a brief introduction to Solr is
given.

5.5.1 Apache Solr

Apache Solr5 is an open source enterprise search server built on Apache
Lucene6 which is the core that provides search features. Both Solr and Lucene
are built entirely in Java and belongs to the Apache Software Foundation, an
organization that provides free software based on open source licenses. The
software is distributed under the Apache Software Licence which lets anyone
modify the code, under the only premise that the modifications are noted.
Solr is widely used in the information retrieval industry and the product is
considered leading in the field along with Elastic7.

Solr lets users index documents or equivalent data to a search server (a
web application) and users can then issue search queries. Solr matches with
documents and returns search results. This is the base functionality of Solr
but along comes a number of more advanced features. Some of the more
advanced features in Solr are query completion, faceting and full text search.

The default scoring model in Solr is a tfidf model8 but other scoring models
such as BM25 and LMIR are also implemented. This means that the user can
choose a suitable scoring model based on the needs. There is a graphical user
interface in Solr which can be used for administration. To make the com-
munication more simplified a package called Solrj9 can be used that allows
communication with Solr through REST10 via Java. Another alternative is
direct communication with Solr through REST via the HTTP protocol.

5http://lucene.apache.org/solr/
6http://lucene.apache.org/core/
7https://www.elastic.co/
8http://lucene.apache.org/core/5_0_0/core/org/apache/lucene/search/

similarities/TFIDFSimilarity.html
9https://cwiki.apache.org/confluence/display/solr/Using+SolrJ

10http://rest.elkstein.org/
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5.5.2 Learning to Rank in Apache Solr

The implementation communicate with the Lucene core on a quite low-level
which means that the code could be implemented theoretically in any Lucene
based software (for example Elastic) and not just only in Solr.

The result retrieval starts when a query is posted to the Solr search server.
This retrieval consists of two main parts, matching and scoring (see figure
5.7). Matching, the first part, is where Solr matches documents similar to
the query and returns a list of matched documents. In a learning to rank
implementation this part does not need to be modified. The second part,
the scoring, needs to be modified to be able to implement learning to rank.
The modified scoring should be responsible for the ordering of the matched
documents with a suitable learning to rank scoring function.

Query Matching Scoring Search Result
matched docs

Figure 5.7: Solr matching and scoring.

To understand why the default scoring was needed to be modified underlying
understanding of the scoring mechanisms is needed. Each document in Solr
consists of a number of indexed fields. The indexed documents are not re-
quired to have the same type of fields (TextField, IntField etc.) nor the same
number of fields. The way that Solr usually calculates the score is that for
all of the fields in a document that match the query, it calculates the score.
The score is then either returned as a sum of the individual field scores or as
the highest field score. This is depending on the tie parameter which can be
passed as a parameter in the search query. There are a lot of different pa-
rameters in Solr that can be configured according to what fields that should
be prioritized in the environment. For the learning to rank implementation
these parameters are ignored as the goal is to automatically find good rankers.

Two of the most important steps in the implementation are the feature ex-
traction and the creation of the feature vectors. As the matching documents
can have different indexed fields and a different number of features indexed
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this could result in construction of feature vectors with different features.
To solve this problem each document must have the same fields or the Solr
configuration must force the same fields to be indexed for all documents.
Documents often have the same structure and in this implementation the
assumption is made that the same fields are indexed. This means that the
feature vectors can be constructed with the same lengths. As uniform feature
vectors are constructed, the focus is switched to the content of the features
and to extract as many features as possible for each field. The feature extrac-
tion is important, especially as the experiments showed that the performance
of the algorithms improved as the number of features was higher.

In the current implementation the following features are extracted for each
field tf, idf and tf-idf. If for example each document has 10 fields, this
would mean 30 features to rank on. Features like BM25 and LMIR values
for all fields are necessary supplements to get more features. The feature
extraction is achieved by creation of a custom query parser plugin. See
LearningPlugin.java in appendix D for code of how this plugin for Lucene
is created. After the plugin is created the custom scoring should be imple-
mented in LearningQuery.java (appendix D).

The method customExplain demonstrates how terms can be extracted for
each field in a document. The customScore method should be responsible
to do the ranking and return the score for each document. The methods
customScore and customExplain are called for every matched document.
The extracted features in the current implementation are extracted from the
tfidf similarity model in Lucene, which also is the default similarity model
in Solr. Further Lucene contains other similarity models such as BM25 and
LMIR. By extracting features for these two similarity models together with
the default similarity enough features for each field can be extracted to be
able to do learning to rank with good performance. For further information
about learning to rank in Solr and which direction that is recommended to
continue in see the future work section.
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Chapter 6

Discussion

This section reviews the results from the tables and the plots in the exper-
iments section in a wider perspective. To begin with, no evaluated method
stands out as the best method. Random Forests had the best performance
overall but most of the other algorithms were still very close to Random
Forests even if they were a bit behind. The assumption is that the most or
perhaps all of the algorithms could gain from parameter tuning, for example
the neural networks approaches RankNet and ListNet. This assumption is
supported by Li (2014) in Learning to Rank for Information Retrieval and
Natural Language Processing who presents results from tuned algorithms
with better performance than the results in this thesis. There is no proof for
which of the methods that could gain the most from tuning and the experi-
mentsf proves that some of the methods are not suitable for out of the box
learning to rank. The reason why parameter tuning was ignored was to see
the out of the box performance as this often is a sought property in enter-
prise search. The goal was to find a solution that was time efficient out of
the box and to fine tune parameters for all of the methods was not an option.

The NDCG scores decreased when the number of features were limited, this
means that the number of features is an essential factor to be able to create
a satisfying ranking function. The reason for why the score is decreasing
is because when there are not enough features it is impossible to create a
good ranker with the limited amount of information available. The differ-
ence between the MQ2008 and HP2003 results (HP2003 had higher scores)
was expected as the HP2003 set is considered easier to rank according to
Learning to Rank for Information Retrieval and Natural Language Process-
ing (Li, 2014). This should be partly due to the 64-dimensional features
vectors in HP2003 compared to the 46-dimensional in MQ2008. Another
likely reason for the better results in HP2003 could be that there are a lot
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more documents to choose from for each query in HP2003. It should be easier
to find three or five relevant documents (labeled highly relevant i.e. labeled
4 on a scale 0-4) when choosing from 1000 documents per query (HP2003)
compared to choosing from 20 documents per query (MQ2008). There is still
no certainty that that is the case but it is likely as the results are better in
the HP2003 performance measures.

Further inspection of the experiments reveals that the training dataset must
be big enough to be able to create a good ranking function. How large the
training set exactly should be varies from case to case and obviously depends
on the documents. A good measure discovered in this thesis is that when
the training data is shrunken and the measure-specific loss on the validation
data starts to increase there is not enough data.

A final remark about the FRank implementation; the authors (Tsai et al.,
2007) claims that the algorithm works better than its competitors on smaller
datasets but that clearly is not the case in the tests executed. This could
be due to lack of parameter fitting in the experiments (too few iterations
etc.) or due to the research bias that seems to occur in many papers in the
research field of information retrieval. Researchers develops methods which
have the best performance compared to other methods in their test setting.
The experiments in this thesis showed that there is not a single method that
always is best in a general test setting. This fact is famously stated and
known as the "no free lunch" theorem.
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Chapter 7

Conclusions & Future Work

7.1 Conclusions
This thesis has evaluated a supervised machine learning approach for rank-
ing of documents called learning to rank. Learning to rank traditionally is
used in web based search and this thesis is evaluating learning to rank in
enterprise search. The outcome of the thesis is that learning to rank is more
suitable for web based search than for enterprise search. There is more data
available in web based search and it is easier to train a model efficiently with
enough training data. The number of extractable features is often limited
in an enterprise search solution. This makes it hard for learning to rank to
compete with standard search models in enterprise search as learning to rank
is dependent on the number of features. An implementation of learning to
rank in Apache Solr does still have potential to be superior to standard mod-
els but there must be enough extractable features, a large number indexed
fields and enough annotated data. This thesis has begun the implementation
of a potential solution, this implementation can be continued as future work.

7.2 Future Work
This section gives advice on how this work can be continued (by another
master thesis or similar). As a recommendation four steps are given of how
the work can proceed.

1. Create feature vectors in Solr. This is already started in this thesis, and
the key is to extract as many features as possible. In Solr many similar-
ity models can be used simultaneously by creating a QueryParserPlugin
and implement a CustomScoreQuery to extract features in different
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ways. It is not necessary to implement a new query parser and it is not
enough to only implement a custom similarity.

2. Save feature vectors for different queries, inspect and give retrieved
search hits relevance labels.

3. Train a suitable learning to rank algorithm with the annotated data
created.

4. Use this model as scorer in your CustomScoreQuery, to rank and give
the documents matched by Solr a custom score.

Finally, online learning have possibilities in learning to rank in combination
with Solr. To automatically give relevance labels and create training data
based on what the users are clicking (step 2 above). This can be achieved by
saving and extracting information from click logs and combine the informa-
tion with the corresponding documents. The technique is called click through
analysis (Joachims, 2002) and is described in the next section.

7.2.1 Click through analysis

By using click through analysis a trained learning to rank model can be fur-
ther trained after it is launched. This type of continuous learning is often
refereed to as online learning. The opposite is called offline or batch learning
which is the typical case for learning to rank. By monitoring the user be-
haviour from logs, a model can learn from what the users are actually clicking
on in the retrieved search result. In this way the users behaviour automat-
ically creates training data. The notion is that a relevant document makes
the user click on the link to the document and stop the searching as the user
found relevant information. The time between the retrieved results and the
click can be monitored to see how long time the user needed to decide which
link to click on. A fast click can mean that the user found the relevant infor-
mation directly without hesitation. If the user continues to ask new similar
queries then the first links probably was not as relevant as desired.
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Appendix A

Feature description - MQ2008

The first dataset used to measure the performance of the different algorithms
in RankLib was the MQ2008 supervised ranking dataset from LETOR 4.01.
The set contains document-query pairs with 46 different features.

Abbreviations:
TF - Term Frequency
IDF - Inverse Document Frequency
DL - Document Length
LMIR.ABS, LMIR.DIR, LMIR.JM - Different LMIR scoring functions.

Table A.1: Features included in the MQ2008 dataset.

Feature Number Description

1 TF, body
2 TF, anchor
3 TF, title
4 TF, URL
5 TF, document
6 IDF, body
7 IDF, anchor
8 IDF, title
9 IDF, URL
10 IDF, document
11 TF-IDF, body
12 TF-IDF, anchor

Continued on next page
1http://research.microsoft.com/en-us/um/beijing/projects/letor/

41

http://research.microsoft.com/en-us/um/beijing/projects/letor/


Table A.1 – continued from previous page

Feature Number Description

13 TF-IDF, title
14 TF-IDF, URL
15 TF-IDF, document
16 DL, body
17 DL, anchor
18 DL, title
19 DL, URL
20 DL, document
21 BM25, body
22 BM25, anchor
23 BM25, title
24 BM25, URL
25 BM25, document
26 LMIR.ABS, body
27 LMIR.ABS, anchor
28 LMIR.ABS, title
29 LMIR.ABS, URL
30 LMIR.ABS, document
31 LMIR.DIR, body
32 LMIR.DIR, anchor
33 LMIR.DIR, title
34 LMIR.DIR, URL
35 LMIR.DIR, document
36 LMIR.JM, body
37 LMIR.JM, anchor
38 LMIR.JM, title
39 LMIR.JM, URL
40 LMIR.JM, document
41 PageRank
42 Number of inlinks
43 Number of outlinks
44 Number of slashs in URL
45 Length of URL
46 Number of child pages
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Appendix B

Feature description - HP2003

The second dataset used to measure the performance of the different algo-
rithms in RankLib was the HP2003 supervised ranking dataset from the Gov
collection1. The set contains document-query pairs with 64 different features.

Abbreviations:
TF - Term Frequency
IDF - Inverse Document Frequency
DL - Document Length
LMIR.ABS, LMIR.DIR, LMIR.JM - Different LMIR scoring functions.

Table B.1: Features included in the HP2003 dataset.

Feature Number

1 TF, body
2 TF, anchor
3 TF, title
4 TF, URL
5 TF, document
6 IDF, body
7 IDF, anchor
8 IDF, title
9 IDF, URL
10 IDF, document
11 TF-IDF, body
12 TF-IDF, anchor

Continued on next page
1http://ir.dcs.gla.ac.uk/test_collections/govinfo.html
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Table B.1 – continued from previous page

Feature Number Description

13 TF-IDF, title
14 TF-IDF, URL
15 TF-IDF, document
16 DL, body
17 DL, anchor
18 DL, title
19 DL, URL
20 DL, document
21 BM25, body
22 BM25, anchor
23 BM25, title
24 BM25, URL
25 BM25, document
26 LMIR.ABS, body
27 LMIR.ABS, anchor
28 LMIR.ABS, title
29 LMIR.ABS, URL
30 LMIR.ABS, document
31 LMIR.DIR, body
32 LMIR.DIR, anchor
33 LMIR.DIR, title
34 LMIR.DIR, URL
35 LMIR.DIR, document
36 LMIR.JM, body
37 LMIR.JM, anchor
38 LMIR.JM, title
39 LMIR.JM, URL
40 LMIR.JM, document
41 Sitemap based term propagation
42 Sitemap based score propagation
43 Hyperlink based score propagation: weighted in-link
44 Hyperlink based score propagation: weighted out-link
45 Hyperlink based score propagation: uniform out-link
46 Hyperlink based propagation: weighted in-link
47 Hyperlink based feature propagation: weighted out-link
48 Hyperlink based feature propagation: uniform out-link
49 HITS authority

Continued on next page

44



Table B.1 – continued from previous page

Feature Number Description

50 HITS hub
51 PageRank
52 HostRank
53 Topical PageRank
54 Topical HITS authority
55 Topical HITS hub
56 Inlink number
57 Outlink number
58 Number of slash in URL
59 Length of URL
60 Number of child page
61 BM25, extracted title
62 LMIR.ABS, extracted title
63 LMIR.DIR, extracted title
64 LMIR.JM, extracted title
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Appendix C

FRank code implementation

This appendix contains the source code for the FRank implementation. FRank
is written in Java and the main reason for that is because RankLib also is
implemented in Java. A number of helper functions from RankLib are used
by the algorithm to parse and iterate through the training and validation
data. The performance measures (MAP, NDCG, ERR etc.) are calculated
by functionality already implemented in RankLib. A large part of the FRank
implementation is based on the RankBoost implementation as the two meth-
ods have similar approaches and their implementation details resembles each
other. Frank.java is the main class and FrankWeakRanker.java is a helper
class that’s representing the weak rankers that are created in each iteration
of the FRank algorithm.

The code has two methods of special interest, init() and learn() (learn
calls the learnWeakRanker() helper method). The init() is just as the
name implies a method for initialization of all data structures. In the init()
the threshold values are assigned, chosen from an already existing feature
value. If every feature value is 0 or 1, a random value between 0 and 1
is selected as threshold value. The target probabilities (see section 4) are
also calculated in init() by doing pairwise comparisons between all the
query/documents pairs relevance labels.

The learn() method is following the implementation details of the FRank
algorithm. The method runs for a specific number of iterations (the number
of weak rankers to combine) which can be specified by the input parameter
-round n. The default number of iterations is currently set to 100. After the
ranker function is calculated a number of performance measures are printed
out depending on what the user has specified. As a final mention a number
of methods are overridden from the Ranker superclass to fill the criteria for

46



Frank.java to be a valid Ranker subclass.

C.1 Frank.java
1 package ciir.umass.edu.learning;
2

3 import java.io.BufferedReader;
4 import java.io.StringReader;
5 import java.util.ArrayList;
6 import java.util.List;
7

8 import ciir.umass.edu.metric.MetricScorer;
9 import ciir.umass.edu.utilities.SimpleMath;

10

11 public class Frank extends Ranker{
12

13 public static int nIterations =100;//number of rounds
14

15 // sample weights D(i,j) calculated for each query-pair
16 protected double[][][] sweights = null;
17

18 // weights for each query-pair W(i,j)
19 protected double[][][] weights = null;
20

21 // binary weak ranker values for each query-pair
22 protected double[][][] h_ij = null;
23 protected double[][][] H_ij = null;
24 protected double[][][] targetProbability=null;
25

26 protected double[][] thresholds = null;
27

28 //best weak rankers at each round
29 protected List<FrankWeakRanker> wRankers = null;
30

31 //alpha (weak rankers’ weight)
32 protected List<Double> rWeight = null;
33

34 protected double bestLoss=1E6;
35 protected double H_0 =0.0;
36

37 protected double Inf=Double.POSITIVE_INFINITY;
38

39 protected int n;
40

41 protected double bestAlpha;
42

43 //to store the best model on validation data (if specified)
44 protected List<FrankWeakRanker> bestModelRankers =
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45 new ArrayList<FrankWeakRanker>();
46 protected List<Double> bestModelWeights = new ArrayList<Double>();
47

48

49 public Frank(){
50 }
51

52 public Frank(List<RankList> samples, int[] features, MetricScorer scorer){
53 super(samples, features, scorer);
54 }
55

56 @Override
57 public void init(){
58 PRINTLN("INITIALIZING...");
59

60 wRankers = new ArrayList<FrankWeakRanker>();
61 rWeight = new ArrayList<Double>();
62

63 //generate random thresholds for each feature for each iteration
64 thresholds=new double[nIterations][];
65

66 for(int i=0;i<nIterations;i++){
67 thresholds[i]= new double[features.length+1];
68 //If nIterations > sample size we just choose same thresholds again
69 RankList rl = samples.get(i%samples.size());
70 for(int f=1;f<=features.length;f++){//features start at 1!
71 int v=0;
72 while((thresholds[i][f]=rl.get(v).getFeatureValue(f))==0
73 || thresholds[i][f]==1){
74 v++;
75 if(v==rl.size()){
76 thresholds[i][f]=Math.random();
77 break;
78 }
79 }
80 }
81 }
82

83 //calculate the weights for all pairs by equation 1.
84 sweights = new double[samples.size()][][];
85 weights = new double[samples.size()][][];
86 H_ij = new double[samples.size()][][];
87 targetProbability = new double[samples.size()][][];
88 for(int i=0;i<samples.size();i++){
89

90 //make sure the training samples are ordered by ranking
91 samples.set(i, samples.get(i).getCorrectRanking());
92 RankList rl = samples.get(i);
93
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94 sweights[i] = new double[rl.size()][];
95 weights[i] = new double[rl.size()][];
96 H_ij[i] = new double[rl.size()][];
97 targetProbability[i] = new double[rl.size()][];
98 for(int j=0;j<rl.size()-1;j++){
99

100 sweights[i][j] = new double[rl.size()];
101 weights[i][j] = new double[rl.size()];
102 H_ij[i][j] = new double[rl.size()];
103 targetProbability[i][j] = new double[rl.size()];
104 for(int k=j+1;k<rl.size();k++){
105 sweights[i][j][k] = 1.0 / rl.size();
106 weights[i][j][k] = 1.0 / rl.size();
107 H_ij[i][j][k]=0.0;
108

109 if(rl.get(j).getLabel()>rl.get(k).getLabel()){
110 targetProbability[i][j][k]=1.0;
111 }
112 else if(rl.get(j).getLabel()==rl.get(k).getLabel()){
113 targetProbability[i][j][k]=0.5;
114 }
115 else{
116 targetProbability[i][j][k]=0.0;
117 }
118 }
119 }
120 }
121

122 PRINTLN("INITIALIZING DONE");
123 }
124

125 private FrankWeakRanker learnWeakRanker(){
126

127 double num;
128 double denom;
129 double alpha;
130

131 int bestIndex =-1;
132 bestAlpha=-1;
133

134 double loss;
135 double exp;
136 double pow1;
137 double pow2;
138 double rank_j;
139 double rank_i;
140

141 bestLoss=Inf;
142
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143 for(int f=1;f<=features.length;f++){
144 //calculate alpha for each feature by Equation 3.
145 num=0.0;
146 denom=0.0;
147 h_ij = new double[samples.size()][][];
148

149 for(int i=0;i<samples.size();i++){
150

151 RankList rl = samples.get(i);
152 h_ij[i] = new double[rl.size()][];
153 for(int j=0;j<rl.size()-1;j++){
154

155 h_ij[i][j] = new double[rl.size()];
156 for(int k=j+1;k<rl.size();k++){
157 rank_i=0;
158 rank_j=0;
159

160 if(rl.get(j).getFeatureValue(f)>thresholds[n-1][f]){
161 rank_i=1;
162 }
163 if(rl.get(k).getFeatureValue(f)>thresholds[n-1][f]){
164 rank_j=1;
165 }
166

167 h_ij[i][j][k]=rank_i-rank_j;
168

169 if(h_ij[i][j][k]==1){
170 num+=weights[i][j][k];
171 }
172 else if(h_ij[i][j][k]==-1){
173 denom+=weights[i][j][k];
174 }
175 }
176 }
177 }
178 //Equation 3
179 alpha=0.5*SimpleMath.ln(num/denom);
180

181 if(Double.isInfinite(alpha) || Double.isNaN(alpha)){
182 alpha=0;
183 }
184 //calculate fidelity loss for each feature by Equation 2.
185 loss=0.0;
186

187 //only calculate loss if alpha is valid
188 if(!Double.isInfinite(alpha) && !Double.isNaN(alpha)){
189 for(int i=0;i<samples.size();i++){
190 RankList rl = samples.get(i);
191 for(int j=0;j<rl.size()-1;j++){
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192 for(int k=j+1;k<rl.size();k++){
193 exp=Math.exp(H_ij[i][j][k]+(alpha*h_ij[i][j][k]));
194 pow1=Math.pow(targetProbability[i][j][k]*
195 (exp/(1.0+exp)),0.5);
196 pow2=Math.pow((1.0-targetProbability[i][j][k])*
197 (1.0/(1.0+exp)),0.5);
198 loss+=(sweights[i][j][k]*(1-pow1-pow2));
199 }
200 }
201 }
202 }
203

204 if(loss < bestLoss){
205 bestLoss =loss;
206 bestAlpha=alpha;
207 bestIndex=f;
208 }
209 }
210 if(bestIndex==-1){
211 return null;
212 }
213 return new FrankWeakRanker(bestIndex, thresholds[n-1][bestIndex]);
214 }
215

216 @Override
217 public void learn(){
218

219 PRINTLN("----------------------------------------------------------
220 ---------------------");
221 PRINTLN("Training starts...");
222 PRINTLN("----------------------------------------------------------
223 ---------------------");
224 PRINTLN(new int[]{7, 8, 8, 9, 9, 9, 9}, new String[]{"#iter", "Loss",
225 "alpha","Threshold",
226 "Feature", scorer.name()+"-T", scorer.name()+"-V"});
227 PRINTLN("----------------------------------------------------------
228 ---------------------");
229

230 for(n=1;n<=nIterations;n++){
231 FrankWeakRanker wr = learnWeakRanker();
232 if(wr == null){//no more features to select
233 System.out.println("No more features to select");
234 break;
235 }
236

237 wRankers.add(wr);
238 rWeight.add(bestAlpha);
239

240 double num;
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241 double denom;
242 double exp;
243

244 //Update weights according to Equation 4.
245 for(int i=0;i<samples.size();i++){
246 RankList rl = samples.get(i);
247 for(int j=0;j<rl.size()-1;j++){
248 for(int k=j+1;k<rl.size();k++){
249

250 //update ranker
251 H_ij[i][j][k]+=bestAlpha*h_ij[i][j][k];
252

253 //update weights
254 exp=Math.exp(H_ij[i][j][k]);
255 num=Math.pow(targetProbability[i][j][k]*exp,0.5)-
256 (exp*Math.pow(1-targetProbability[i][j][k], 0.5));
257 denom=Math.pow(1+exp,1.5);
258 weights[i][j][k]=sweights[i][j][k]*(num/denom);
259 }
260 }
261 }
262

263 PRINT(new int[]{7, 8, 8, 9, 9}, new String[]{n+"", bestLoss+"",
264 SimpleMath.round(bestAlpha,3)+"",
265 SimpleMath.round(wr.getThreshold(),3)+"",wr.getFID()+""});
266 PRINT(new int[]{9}, new String[]{
267 SimpleMath.round(scorer.score(rank(samples)), 4)+""});
268

269 if(validationSamples != null){
270 double score = scorer.score(rank(validationSamples));
271 if(score > bestScoreOnValidationData){
272 bestScoreOnValidationData = score;
273 bestModelRankers.clear();
274 bestModelRankers.addAll(wRankers);
275 bestModelWeights.clear();
276 bestModelWeights.addAll(rWeight);
277 }
278 PRINT(new int[]{9}, new String[]{SimpleMath.round(score, 4)+""});
279 }
280 PRINTLN("");
281 }
282

283 if(validationSamples != null && bestModelRankers.size()>0){
284 wRankers.clear();
285 rWeight.clear();
286 wRankers.addAll(bestModelRankers);
287 rWeight.addAll(bestModelWeights);
288 }
289
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290 scoreOnTrainingData = SimpleMath.round(scorer.score(rank(samples)), 4);
291 PRINTLN("--------------------------------------------------------------
292 ------");
293 PRINTLN("Finished sucessfully.");
294 PRINTLN(scorer.name() + " on training data: " + scoreOnTrainingData);
295

296 if(validationSamples != null){
297 bestScoreOnValidationData = scorer.score(rank(validationSamples));
298 PRINTLN(scorer.name() + " on validation data: " +
299 SimpleMath.round(bestScoreOnValidationData, 4));
300 }
301 PRINTLN("---------------------------------");
302 }
303

304 @Override
305 public Ranker clone(){
306 return new Frank();
307 }
308

309 @Override
310 public String toString(){
311 String output = "";
312 for(int i=0;i<wRankers.size();i++)
313 output += wRankers.get(i).toString() + ":" + rWeight.get(i) +
314 ((i==wRankers.size()-1)?"":" ");
315 return output;
316 }
317

318 @Override
319 public String model(){
320 String output = "## " + name() + "\n";
321 output += "## Iteration = " + nIterations + "\n";
322 output += toString();
323 return output;
324 }
325

326 @Override
327 public void loadFromString(String fullText){
328 try {
329 String content = "";
330 BufferedReader in = new BufferedReader(new StringReader(fullText));
331

332 while((content = in.readLine()) != null){
333 content = content.trim();
334 if(content.length() == 0)
335 continue;
336 if(content.indexOf("##")==0)
337 continue;
338 break;
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339 }
340 in.close();
341

342 rWeight = new ArrayList<Double>();
343 wRankers = new ArrayList<FrankWeakRanker>();
344

345 int idx = content.lastIndexOf("#");
346 if(idx != -1){//remove description at the end of the line (if any)
347 //remove the comment part at the end of the line
348 content = content.substring(0, idx).trim();
349 }
350

351 String[] fs = content.split(" ");
352 for(int i=0;i<fs.length;i++){
353 fs[i] = fs[i].trim();
354 if(fs[i].compareTo("")==0){
355 continue;
356 }
357 String[] strs = fs[i].split(":");
358 int fid = Integer.parseInt(strs[0]);
359 double threshold = Double.parseDouble(strs[1]);
360 double weight = Double.parseDouble(strs[2]);
361 rWeight.add(weight);
362 wRankers.add(new FrankWeakRanker(fid, threshold));
363 }
364

365 features = new int[rWeight.size()];
366 for(int i=0;i<rWeight.size();i++){
367 features[i] = wRankers.get(i).getFID();
368 }
369 }
370 catch(Exception ex){
371 System.out.println("Error in FRank::load(): " + ex.toString());
372 }
373 }
374

375 @Override
376 public String name(){
377 return "FRank";
378 }
379

380 @Override
381 public void printParameters(){
382 PRINTLN("Number of iterations: \t"+nIterations);
383 }
384

385 public double eval(DataPoint p){
386 double score = 0.0;
387 for(int j=0;j<wRankers.size();j++){
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388 score += rWeight.get(j) * wRankers.get(j).score(p);
389 }
390 return score;
391 }
392 }
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C.2 FrankWeakRanker.java
1 package ciir.umass.edu.learning;
2

3 public class FrankWeakRanker {
4 private int fid = -1;
5 private double threshold = 0.0;
6

7 public FrankWeakRanker(int fid, double threshold){
8 this.fid = fid;
9 this.threshold = threshold;

10 }
11

12 public int score(DataPoint p){
13 if(p.getFeatureValue(fid) > threshold){
14 return 1;
15 }
16 return 0;
17 }
18

19 public int getFID(){
20 return fid;
21 }
22

23 public double getThreshold(){
24 return threshold;
25 }
26

27 public String toString(){
28 return fid + ":" + threshold;
29 }
30 }
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Appendix D

Apache Solr code implementation

This appendix contains the code for the started work on the implementation
of learning to rank in Apache Solr. LearningPlugin.java is the plugin for
Lucene and LearningQuery.java is the custom scoring which belongs to this
plugin.

D.1 LearningPlugin.java
1 public class LearningPlugin extends QParserPlugin{
2

3 @Override
4 public void init(NamedList args) {
5 SolrParams params = SolrParams.toSolrParams(args);
6 // handle configuration parameters
7 // passed through solrconfig.xml
8 }
9

10 @Override
11 public QParser createParser(String qstr,
12 SolrParams localParams, SolrParams params, SolrQueryRequest req) {
13

14 return new LearningParser(qstr, localParams, params, req);
15 }
16

17 private static class LearningParser extends QParser {
18

19 private Query innerQuery;
20

21 public LearningParser(String qstr, SolrParams localParams,
22 SolrParams params, SolrQueryRequest req) {
23 super(qstr, localParams, params, req);
24 try {
25 QParser parser = getParser(qstr, "lucene", getReq());
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26 this.innerQuery = parser.parse();
27 } catch (SyntaxError ex) {
28 throw new RuntimeException("error parsing query", ex);
29 }
30 }
31

32 @Override
33 public Query parse() throws SyntaxError {
34 return new LearningQuery(innerQuery);
35 }
36 }
37 }

D.2 LearningQuery.java
1 public class LearningQuery extends CustomScoreQuery{
2

3 private Query subQuery;
4 private Set<Term> terms =null;
5 private TFIDFSimilarity tfsim=null;
6 private LeafReader reader =null;
7

8 public LearningQuery(Query subQuery){
9 super(subQuery);

10 this.subQuery=subQuery;
11 tfsim= new DefaultSimilarity();
12 terms = new HashSet<Term>();
13

14 subQuery.extractTerms(terms);
15 }
16

17 @Override
18 protected CustomScoreProvider getCustomScoreProvider(
19 LeafReaderContext context) throws IOException {
20 return new MyScoreProvider(context);
21 }
22

23 class MyScoreProvider extends CustomScoreProvider {
24

25 public MyScoreProvider(LeafReaderContext context) {
26 super(context);
27 reader=context.reader();
28 }
29

30 @Override
31 public float customScore(int doc, float subQueryScore,
32 float valSrcScore) throws IOException {
33 return customScore(doc, subQueryScore, new float[]{valSrcScore});
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34 }
35

36 @Override
37 public float customScore(int doc, float subQueryScore,
38 float[] valSrcScores) throws IOException {
39 //here the feature vector should be extracted and the documents
40 //should be scored based on a suitable learning to rank algorithm.
41

42 //The score returned here is what Solr will rank on.
43 return 1;
44 }
45

46 @Override
47 public Explanation customExplain(int doc, Explanation subQueryExpl,
48 Explanation valSrcExpl) throws IOException{
49 return customExplain(doc, subQueryExpl, new Explanation[]
50 {valSrcExpl});
51 }
52

53 //Explain is a method for printing the extracted features
54 @Override
55 public Explanation customExplain(int doc, Explanation subQueryExpl,
56 Explanation[] valSrcExpl) throws IOException{
57

58 Explanation exp2 = new Explanation();
59 Fields fields =MultiFields.getFields(reader);
60 for(String field :fields){
61 TermsEnum termsEnum = MultiFields.getTerms(reader, field)
62 .iterator(null);
63 DocsEnum docsEnum;
64 BytesRef bytesRef;
65 while ((bytesRef = termsEnum.next()) != null){
66 if (termsEnum.seekExact(bytesRef)){
67 String term = bytesRef.utf8ToString();
68 for(Term t:terms){
69 if(term.equals(t.text())){
70 docsEnum = termsEnum.docs(null, null,
71 DocsEnum.FLAG_FREQS);
72 while (docsEnum.nextDoc() !=
73 DocIdSetIterator.NO_MORE_DOCS){
74 float tf=tfsim.tf(docsEnum.freq());
75 Explanation exp = new Explanation(tf,
76 "tf in "+field);
77 exp2.addDetail(exp);
78 float idf=tfsim.idf(termsEnum.docFreq(),
79 reader.numDocs());
80 exp = new Explanation(idf,"idf in "+field);
81 exp2.addDetail(exp);
82 float tfidf=tf*idf;
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83 exp = new Explanation(tfidf,"tf-idf in "+
84 field);
85 exp2.addDetail(exp);
86

87 }
88 }
89 else{
90 //if no field match all fields are 0
91 Explanation exp = new Explanation(0,"tf in "+
92 field);
93 exp2.addDetail(exp);
94 exp = new Explanation(0,"idf in "+field);
95 exp2.addDetail(exp);
96 exp = new Explanation(0,"tf-idf in "+field);
97 exp2.addDetail(exp);
98 }
99 }

100 }
101 }
102 }
103 return exp2;
104 }
105 }
106 }
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