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Abstract

In the paper of Hayton et.al [1], One-class Support Vector Machine is used for health
monitoring of a jet engine in order to discover when and if an abnormal event has oc-
cured. Hayton et.al used the amplitude of the vibration data from the engine shaft as the
feature data to the One-class Support Vector Machine algorithm. This approach works
well when the sensor data is known to be periodic, with a certain frequency; however it
can not be used if the sensor data has an irregular shape. In this paper we will extend
the concept of Hayton et.al [1] and use the Discrete Wavelet Transform coefficients as
input data to the OCSVM, rather than the Fourier Transform. This way we are able to
classify more arbitrary sensor data found in PowerCells Auxilliary Power Unit (APU).
We will also introduce a novel approach of how to select the hyperparameter σ for the
Radial Basis Function Kernel, in order to avoid both overfitting and underfitting.
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1 Background
Anomaly detection is a field within machine learning where the goal is to identify if any data
in the dataset is unexpected given the history of previous data. Unexpected events are im-
portant to detect because they could be an indication that something is wrong. During recent
years there has been an immense increase of interest within this field both in industry and
in the accademic society. The enhanced computation and storage capabilities has elevated
the applicability for all machine learning techniques. Anomaly detection is not a specific
method or algorithm but rather a collection of them, each with different pros and cons. The
underlying assumption is that only data of normality is provided to the algorithm of choice.
From this data, the task will be to find a subspace where data is classified as normal and a
complementary subspace where it is classified as abnormal. Given this proceducer, anomaly
detection is often regared as a semi-supervised learning algorithm. The reason why it is not
entirely unsupervised is because you are bound to check that no abnormal data is in the train-
ing set.

In this report we will focus on one perticular method called One-class Support Vector Ma-
chine (OCSVM). It borrows a lot of the same concepts from the widely known Support Vector
Machine classification algorithm. The OCSVM, has been used frequently both in industry
and in the academic society during recent years, for the purpose of novelty detection.

In the paper of Hayton et.al [1], OCSVM is used for health monitoring of a jet engine in
order to discover when and if an abnormal event has occured. Hayton et.al used the ampli-
tude of the vibration data from the engine shaft as the feature data to the OCSVM algorithm.
This approach works well when the sensor data is known to be periodic, with a certain fre-
quency; however it can not be used if the sensor data has an irregular shape. In this paper
we will extend the concept of Hayton et.al [1] to find a method that could be used for health
monitoring of every type of sensor data; not only the ones who are periodic. In order to
optain amplitudes of a vibration you are bound to make a fourier transform of the raw data.
But rather than using a Fourier Transform to get the amplitudes, which are used as feature
data, we will we use a wavelet transform where properties of the wavelet coefficients can be
used as input feature data to the classifying algorithm.

This paper is made in colaboration with a company, called PowerCell Sweden AB. There
mission is to design an Auxiliary Power Unit (APU) that can convert low sulfur automotive
diesel into electricity without the use of an Internal Combustion Engine (ICE) generator.
Instead of using combustion, they use a series of chemical catalytical processes to reform
hydrogen gas from the low sulfur automotive diesel. Subsequently, the hydrogen gas is then
used as an input fuel to a Proton Exchange Membrane (PEM) fuel cell that produces elec-
tricity. The major advantages with a system like this compared to a regular diesel driven
Internal Combustion Engine (ICE) generator, is the gained efficiency in fuel consumption
and lowered emissions.

The traditional ICE has been developed and optimized over a century. It is well established
how the ICE works and operate eventhough the chemical processes in the cumbustion is not
jet explored. The difference between an ICE and PowerCells APU, is that an ICE works fine
without knowing what comes out of the exhaust. The approach that PowerCell has is differ-
ent. The chemical processes are at the basis of the opertation and if some unexpected process
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occurs, the hole unit could possibly malfunction. The chemistry in the APU is complex and
sometimes difficult to model; using machine learning and novelty detection techniques one
can deal with complexity issue. It will not tell you the reason why something has occurd
but it can tell you that something has occurd. If something unexpected occurs there is a
high chance that this will lead to a degredation of the entire unit; some of the components
could be damaged when exposed to impurities. The components that PowerCell uses are
expensive and non dispensable; for that reason it’s more important to remain the integrity of
the components rather than to continue with operation. PowerCell is in need of a method
to monitor the system and detect when any unforeseen event is happening, that might harm
the system. It’s not feasible to have human monotoring due to the shear amount of data.
Therefore it will be nessesary to implement machine supervision. In order to have a machine
that supervise the process we will need to learn the machine ’what is a state of normality’
to be able to find states of abnormality. The colaboration with PowerCell also involved the
design of a framework, to detect novel events, that could be fully integrated in their sensor
data collection system.

The Discrete Wavelet Transform (DWT) has many applications in the field signal processing.
It can be used to compress or denoise a signal but it has also been used in combination with
the OCSVM for anomaly detection in Wireless Sensor Networks [2]. The idea is to: select
an interval of the time signal, perform DWT decomposition, extract the important properties
of the wavelet coefficients and lastly feed those important features into the OCSVM. The rea-
son why this could be advantageous is because the wavelet coefficients contains information
about the overall behaviour of the signal on differnet time scales.

In this report we will present a novel approach on how to combine OCSVM with DWT in
order to create a tool for anomaly detection in a discrete time signal data. The basic linear
implementation of OCSVM will optimaly seperate a fraction of the data with a hyperplane;
it is only when kernels are introduce that a nonlinear decision boundary could be obtained.
More precisely we will use the Radial Basis Function (RBF) kernel. The drawback with
a kernel is that extra hyperparameters are introduced; in perticular the RBF-kernel has one
hyperparameter σ that needs to be determined. There is little theory of how to set these
hyperparameters but normaly they are decided through cross validation. In this report we
will also present a novel approach on how to set the hyperparameter σ in order to avoid
overfitting and underfitting of the OCSVM algorithm.
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2 Theory

2.1 Support Vector Machine
The Support Vector Machine, in its origianl form, is a binary classifier that is able to seperate
two clases of data in a high dimensional space. The SVM algorithm is all about constructing
a hyperplane that distinguish two differnt clases of from each other. The principal of how this
works can be seen in figure 2.1 a), where we illustrate the results from 2-dimensional linear
test case. The boundary decision line has a maximum margin to each of the two classes. It
is easy to see how this works in the simple case of figure 2.1 a) but the SVM machinery will
also be handle the case when is not possible to seperate the the data points with a hyperplane,
as in figure 2.1 b). With the use of the kernel trick it can even deal with nonlinear decision
boundaries, as in figure 2.1 c). In section 2.1.1 we will discribe the mathematics of how this
is done.

(a) linear SVM (b) linear SVM with outliars (c) non-linear SVM

Figure 2.1: Illustration of how the SVM is capable of classifying two classes, in three differ-
ent scenarios.

The Support Vector Machine for novelty detection is slightly different from the ordinary
binary classification that the regular SVM algorithm deals with. When working with novelty
or anomaly detection there will only be positive examples of what is ’normal’; therefore we
will only feed one class of datapoints to the algorithm. The algorithm that handles this type
of problem is called the One Class Support Vector Machine (OCSVM). Rather than finding a
hyperplane that optimaly seperates two classes, it finds a hypersphere that optimaly engulfs
a fraction ν of the datapoints, from the rest of the ’abnormal’ datapoints. If that fraction ν is
chosen to be small one will get an anomaly detection algorithm.

2.1.1 One-Class Support Vector Machine

We begin to define our training set where we denote the number of training data as l ∈ N.
The data points xi are multidimensional vectors that belongs to the input feature space χ

x1, ...,xl ∈ χ (2.1)

The true power of SVM only becomes apparent when kernels are introduced. Let Φ be
denoted as a maping function such that χ → F , where F is a inner product space and the
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image of Φ can be calculated using a kernel function [4]

k(x,y) = (Φ(x) ·Φ(y)). (2.2)

The trick of any SVM algorithm is that they never explicitly require to merely perform the
mapping Φ(xi); it is only the inner products Φ(x) ·Φ(y) that are essential to calculate. Thus
replacing the innerproduct with a kernel function, that fulfills certain requirements, will map
χ to an unknown inner product space F ; this approach is called the kernel trick. F is un-
known because the maping function Φ is unknown but for some kernels it is still possible to
derive the properties of F .

One of those is the Radial Basisi Function (RBF) kernel,

k(x,y) = e−‖x−y‖2/σ (2.3)

which is one of the more frequently used kernels. It can be shown that the transform func-
tion Φ(x) maps the feature data in χ into F ∈ R∞. If the feature data is maped into an infinte
dimonsional space F , the OCSVM algorithm can always find a seperation of the two classes
[5]; however in the feature space χ the hypersphere will be a nonlinear decision boundary.
In practice the OCSVM in combination with the RBF-kernel becomes a method of finding
high density [1], for that reason it is sometimes regared as a unsupervised learning algorithm
[5].

The primal form of the OCSVM is

min
ω∈F,ξ∈Rl ,ρ∈R

1
2
‖ω‖2 +

1
ν l ∑

i
ξi−ρ

subject to (ω ·Φ(xi))≥ ρ−ξi, ξi ≥ 0
(2.4)

This quadratic program (QP) minimization problem will seperate the data from the origin.
If the problem (2.4) is not possbile to define, beacause of outliars, one needs to introduce
soft margins. This is done with the use of slack variables ξi. Note that these slack variables
ξ are penalized in the objective function. The trade off between how much ‖ω‖2 should be
minimized in relation to slack variables ∑i ξi is regulated by the parameter ν . The decision
function

f (x) = sgn(ω ·Φ(x)−ρ) (2.5)

will be 1 if x is classified as normal and −1 if its abnormal. Note that, in the primal form we
are forced to calculate φ(x), which is not possible if we use the RBF-kernel. Therefore we
will derive the dual form of the OCSVM. A common aproach when dealing with constrained
optimization problem is to introduce the Lagrangian function

L(ω,ξ ,ρ,α,β ) =
1
2
‖ω‖2 +

1
ν l ∑

i
ξi−ρ−∑

i
αi(ω ·Φ(xi)−ρ +ξi)−∑

i
βiξi (2.6)

The Lagrangian multipliers, αi,βi ≥ 0 will penalize the Lagrangian, L, if the constraints are
violated. The objective is now to find the minimum of the Lagrangian, L. In order to find the
minimum of L(ω,ξ ,ρ,α,β ), all the partial derivatives with respect to the primal variables
ω, ξ , ρ will need to be zero.

∂L
∂ω

= 0 ⇒ ω = ∑
i

αiΦ(xi) (2.7)
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∂L
∂ξ

= 0 ⇒ αi =
1
ν l
−βi ≤

1
ν l

(2.8)

∂L
∂ρ

= 0 ⇒ ∑
i

αi = 1 (2.9)

The substitution of (2.7) into (2.5) yeilds

f (x) = sgn

(
∑

i
αik(xi,x)−ρ

)
(2.10)

The substitution of (2.7), (2.8),(2.9) into (2.5) gives the dual form of the OCSVM.

min
α

1
2 ∑

i j
αiα jk(xi,x j)

subject to 0≤ αi ≤
1
ν l

, ∑
i

αi = 1
(2.11)

According to Scholkopf et al. one can show that at the optimum, the two inequality con-
straints (2.11) become equalities if αi and βi are nonzero, i.e. if 0 < αi < 1/(ν l). Therefore,
we can recover ρ by exploiting that for any such αi , the corresponding data point xi satisfies

ρ = (ω ·Φi) = ∑α jk(x j,xi) (2.12)

2.1.2 Sequential Minimum Optimazation

At the basis of any type of SVM algorithm is a quadratic optimization problem. Normaly
these are solved using an of the shelf quadratic programming algorithm. Studies have shown
that these algorithms performs very porly when they are applied to a SVM optimization prob-
lem, [5]. The main reason is because the kernel matrix, Ki j = Φ(xi) ·Φ(x j), becomes to large
to be stored in the cache memory. Basically the kernel matrix will need to be recomputed or
obtained in each iteration when quadratic programming is used. Scholkopf et al. solved this
issue by contructing an algorithm called Sequential Minimum Optimazation (SMO).

The novel approach of SMO, rather than standard quadratic programming , is to break up the
constrained optimization over all Lagrangian multipliers into the smallest optimization steps
possible. The trick is to select two Lagrangian multipliers, i.e. α1, α2 and regard the rest of
the multipliars as constant. The constraind minimization (2.11) can now be rewritten as

min
α1,α2∈R

1
ν l

2

∑
i, j=1

αiα jKi j +
2

∑
i=1

αiCi +C (2.13)

Scholkopf et al. makes a derivation of how to explicitly find the optimum of the reduced
problem (2.13), given the equality constriant. The final result is

α1 = ∆−α2

α2 =
∆(K11−K12)+C1−C2

K11 +K22−2K12

(2.14)
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Scholkopf et al. also describes a hierarchy of how to select α1 and α2 from the entire set
of Lagrangian multipliers αi. In generall, a multiplier is more likely to be selected if its
corresponding data point is a support vector. For this reason the SMO algorithm requires
only a smaller part of the kernel matrix, Ki j, to be stored in the cache memory, which was
the main issue with the standard QP-solver.

2.2 Wavelets
Wavelets have many application within the field of signal processing. It can be used for
denoising, compression and signal analysis. Especially the signal analysis property is some-
thing that will be used in this report. The applications and use of the Wavelet transform are in
many ways similar to the Fourier Transform. The Wavelet Transform is however superior to
the Fourier Transform, for signal analysis purposes, when the signal has an irregular shape.
If the signal is non periodic and irregular, the Fourier Transform could still be used for recon-
struction purposes but the fourier coefficients will not be particularly useful for any type of
signal analysis. The amplitude of the fourier coefficents gives information about which fre-
quencies that can be found in the signal. Eventhough this could be useful information when
the signal is periodic, it is not useful when the signal is irregular. The reason is because the
phase of the coefficients are random, and its the phase that contains the information about of
how too reconstruct the signal. For that reason the fourier coefficents can not be trusted for
signal analysis on an irregular signal. The Wavelet coeffecients on the other hand carries in-
formation about the properties of even irregular signals. Another useful feature of the Wavlet
coefficients is its localization property; this implies that a coefficient gives information about
how the signal behaves at a specific place and time scale.

Time series signals are discrete and for that reason the Discrete Wavelet Transform (DWT)
will be used. Much like the Fast Fourier Transform (FFT) it is the discrete representation of
its continous counterpart. A signal with 2n sampled data points will be possible to decom-
pose to a level N ≤Nmax ≤ n. Nmax depends on n and which type of wavelet that is used. The
DWT-spectra consist of N +1 different parts arranged as follows {AN ,CN ,CN−1, ...,C2,C1}.
AN has 2n−N coefficients and together they discribe to overall flux of the signal, see figure 2.2
b). CN−L, L = {0,1,2, ...,N−1} has 2n−(N−L) coefficients and they describe the behaviour
of the signal on time scale that characteristic for the level N−L, see figure 2.4. [6]

Figure 2.2, 2.3 and 2.4 illustrates how the wavelet decompostion works in practice. The
signal is composed by adding gausian noise to a fluctuating signal. On top of that a deviation
was added to illustare an anomaly. Even if the anomaly is not greater in amplitude than the
fluctuations and the noise, it is still very much noticeable on the wavelet coefficients, see
figure 2.4.
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Figure 2.2: A test signal signal composed of: two wide peaks around 0.5 and 1.5, one sinus
wave, white noise and one narrow peak at 1.5 representing an anomaly.

Figure 2.3: The A16 coefficients, from the DWT decomposition, of the signal in figure 2.2.
The signal consisted of 219 data points. The Haar wavelet was used up to level 16. Maximum
level for the Haar wavelet in this case is 19. The A coefficients represents the overall flux of
the signal and it is possible from this figure to distinguish the two wide peaks added at 0.5
and 1.5, that were added to the signal
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(a) C16 (b) C15 (c) C14

(d) C13 (e) C12 (f) C11

(g) C10 (h) C9 (i) C8

(j) C7 (k) C6 (l) C5

(m) C4 (n) C3 (o) C2

Figure 2.4: The DWT decomposition, using the Haar wavelet, of the signal in figure 2.2 a).
Figure a) - o) displays the detail coefficients, C on various sublevels. It is possible to display
the anomaly added to the signal in figure b) - h). In figure c) we can also see trails of the
sinus wave that was added to the original signal.

8



3 Method
Unlike an ICE or a Jet Engine, the APU that Powercell designs have very few revolving parts
since it does not depend on combustion. The only revolving parts you can find are electricly
driven pumps, compressors and fans. Typically, the sensor data of importance are not peri-
odic in there appearance; thus a fourier transform would tell very little of the sensor signal.
Extreme values could in some cases tell that an importan and abnormal event has occured,
but looking at figure 2.2 we see that it would be very hard to set a treshold over what is
extreme and what is normal. From this figure, we can tell that it is more the shape of the
signal, with its small but significant spike, that strikes as odd rather than the absolute values.

PowerCell have have a series of test units that are deliviering a continous data stream to Pow-
erCells server. The data is sampled from multiple sensors on the unit, at a rate of ∼ 10[Hz],
batched and is sent to the server at approximatly minute intervalls. This yeilds a multi di-
mensional time series data containing all the information of what state the unit is currently
in. During main operation the unit should behave in a predictable way. Non the less Pow-
ercell has experinced disruptions when the unit deviates from the main operation normalty
state, such that forced shutdown was the only option. We will use data from a 6 days conti-
nous data collection, with known deviations, as a test case to evalute the performance of the
anomaly detection framework. The work was performed using object-orientend program-
ming in Matlab.

At the core of the framework is an open source library called LIBSVM [7] that implements
the One Class Support Vector Machine (OCSVM) described in section 2.1. With a low value
of the parameter ν , OCSVM can be used as an anomaly detection algorithm. LIBSVM is
written in C++ but it can be compiled and integrated in Matlab using the MATLAB Compiler
Toolbox. LIBSVM is a highly reputed tool within in the machine learning community [7]
with a well documented interface, support for multiple standard kernels and a built in appli-
cation for cross-validation. In order to obtain a nonlinear decision boundary, a RBF-kernel
was used.

3.1 Training, and parameter selection
Training a OCSVM, using a RBF-kernel, will require the selection of two parameters ν and
σ . How these parameters are chosen will impact the classification enormously. As we con-
cluded in section 2.1.1 the parameter ν is the fraction of data points that should be classified
as abnormal; thus ν can be translated into a level of tolerance. To obtain an anomaly de-
tection algorithm this parameter should be relativly low, if we assume that the training data
contains few anomouls points. In practice it could be benefitial to choose a hole range of
tolerance levels and subsequently classify the new data on these various levels. This way
one gets an understanding of how anomalous the new data potentially is. In this report we
set the range ν = {1%,2%,5%,10%}. When ν is decided the question remains how to set
σ as a function of ν . There are two phenomenons that can emerge if σ(ν) is chosen porly,
these are called overfitting and underfitting. Both of these are undesirable properties that
needs to be avoided; in figure 3.1 a) we can see an example of overfitting and in figure 3.1 c)
an example of underfitting for a 2-dimensional test problem.
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(a) σ = 5 (b) σ = 20 (c) σ = 80

Figure 3.1: Classification made using the One-Class Suport Vector Machine and an RBF
Kernel with different values of the hyperparameter σ . In the yellow area the data points are
classified as normal and in the blue area they are anomalous. The training data is drawn
from three differnet multivariate Gaussian distributions, centered around (−5,5), (0,0) and
(−5,−5). Tolerance level ν = 0.2

Overfitting seems to occurs when σ is chosen too small and underfitting when σ is too
large. Note that the desired classification, Figure 3.1 b), is derived when σ has an interme-
diate value. Therefore we needed a method for finding: what is an intermediate value of σ

for each specific case. The only tool availiable is cross-validation; the idea with this tool
is to split the training data into n subsets, where n− 1 subsets are used as training data and
the remaining set will be the test data. By alternating the test set it is possible to get stat-
ics of how sensitive the classification is. In this enitre report we used 10-fold cross validation.

Figure 3.2 a) shows a plot of the cross-validation value cv(ν ,σ). It tells us that: if no
overfitting has occured the cross-validation value should be approximatly equal to ν , over-
fitting occurs for small value of σ and underfitting can not be detected directly through
cross-validation. By studying 2-dimensional cases, as in figure 3.2, it becomes clear that
the optimal classification occurs on the ridge of Figure 3.2 a), in the transition from over-
fitting to underfitting. This transition is possible to detect, even if cross-validation can not
tell the difference between good classification and underfitting. Figure 3.2 b) shows a plot
of the difference ∆ = |ν− cv(ν ,σ)| and it appearce as though ∆ has an exponential decline
towards zero with increasing σ . Note that ∆ is bounded such that 0 < ∆ < 1 and the limit
σ = 0 is prohibited. For each value of ν there exist a σ0 > 0 for which cross-validation
becomes numerically viable. Optimally σ0 should be chosen such that 0 << ∆(ν ,σ0) < 1.
The exponentially declining behaviour of ∆, for a fix value of ν , could then be modeled as

∆ν(σ) = ∆(σ0)exp{−a(σ −σ0)
b}; σ > σ0, a,b > 0 (3.1)

The parameters a,b was calculated using a curvefitting algorithm that minimizes the least
square error between samples of ∆ and the model, equation (3.1). The empircal values of
∆(σi) were sampled from the set

{σ0, ...,σN−1,σN , ...,σ2N : ∆(σN−1)> c > ∆(σN), |σi−σi+1|= δ} (3.2)

When ∆ν has dropped to a level of around 1%∼ 5%, then we know that we are on the brink
of the ridge where the transintion from overfitting to underfitting occurs. The corresponding
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(a) cv(ν ,σ)

(b) ∆(ν ,σ)

Figure 3.2: a) shows the crossvalidation value cv(ν ,σ). b) shows the difference ∆ =
|cv(ν ,σ)− ν |. Overfitting can be detected when cv 6= ν . ∆ declines exponentially when
σ increases.

σ∗ value will then be

∆ν(σ
∗) = c; c ∈ [0.01,0.05]

σ
∗ =

[
ln∆(σ0)− lnc

a

]1/b

+σ0
(3.3)

Further testing on 2-dimensional test cases showed that it could be profitable to multiply σ∗

with a factor, d ∈ [1,2]. Rather than being on the brink of the ridge (d = 1) we move a little
bit past it (d > 1).

Using this new approach for parameter selection of the OCSVM we have a found robust
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Figure 3.3: Plot of the exponentially declining behaviour of ∆ν for a fix choice of ν . The
blue data is the sampled value of ∆ and the red curve is the fitted model, equation 3.1, to that
data.

method to derive a set of parameters {ν ,σ(ν)}. The method introduces two new parame-
ters c and d. The drawback of two paramters, rather than one, was compensated by the fact
that both c and d are bounded to very small intervals; in contrast to σ that virtually could
take any value. Any choice of {c,d} ∈ [0.01,0.05]× [1,2] has been proven viable in the
2-dimensional test cases, see figure 4.2.

The multiple cross-validation needed to decide σ(ν) will be the most computationally heavy
task. Once the parameters {ν ,σ} are set, the training of an OCSVM object will only be a
fraction of the overall computational time. A OCSVM object is a data structure that con-
tains all information required for classification; in particular this includes: Suport-Vectors,
corresponding Lagrangian multipliers αi, normalization values and the offset ρ . All SVM
methods are sparse which implies that only few data point called Suport-Vectors are needed
for classification. The sparsity property is advantageous when CPU/memory usage is limit-
ing.

3.2 Flow of Data
In order to create a tool that monitored the gathered data from an APU unit it was important
to understand how the flow of data looks and also understand what was the purpose of the
data collected. Only then is it possible to design a program that fullfills the criteras that
PowerCell has on such system. The end goal is to make a binary classification of the data
collected. The classification will be made by an algorithm called One Class Support Vector
Machine. Since that algorithm and many other machine learning techqniques requires an
input data of the form Xi = {x1,i,x2,i...,xn,i}, we will need a method of converting timeseries
data Y = {y(t1),y(t2), ...,y(tm)} to that appropriate form. In this section we will describe in
detail how we are able to calculate the feature data Xi
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The concept of having units online and gathering abundently with data is a trend that has
progressed during reacent years in industry, it is called Big Data. The generall objective, for
companys like PowerCell, to collect all this data is to monitor how there units are performing
and how are they being operated. With that knowledge it is then possible to improve there
products, either with software upgrades or with hardware changes in the product develop-
ment phase. PowerCell is still in its developent phase therefor they are eager to learn how
there units behaves during operation. A specific application could be that PowerCell knows,
before the customer does, that there is something deviating with there unit. They could then
contact the customer and alert them of this issue or remotely make adjustments that might
solve the problem that has occured.

A common tool that is widely used within the field of Big Data, is called Hadoop. The
aim of Hadoop is to distribute storage and processing of very large data sets on multiple
workers. However Hadoop is only possible to use if the files are on a HDFS format. Pow-
erCell is working with a HDF5 filesystem rather than HDFS, therefore it is not possible to
work with the mapreducer functionallity of Hadoop. Even if Hadoop is a powerfull tool
when working with Big Data, it is mostly optimized for finding features in historical data.
Due to this fact, the design of the program must be such that it reads and analyse the data the
moment it arrives rather than to store it and analys it later.

PowerCell has fitted there APU units with a data-logg filesystem that enables them to logg
time-series data from an enitre set sensor. With a given frequency these logg-files are up-
loaded to a cloud storage server. From this server the logg files can be download to the
PowerCell server. After all files from all sensorns are downloaded they are processed and
stacked into a HDF5 file format. The structure of that file has been standardise to a standard
the company has chosen to name PSM1. Knowing that the files were structured in a similar
and predictable way, it enabled us to create a tool that potentially could work for any Power-
Cell units. Figure 3.4 shows a flow chart of how the PSM1 files are created.

Each PSM1 file is given a timestamp that correlates to the earliest time of any sensor data

Figure 3.4: An illustration of the data flow. Raw files for all the different sensors are sent
to a cloud storage at minutes interval. Subsequently the raw data is collected from the cloud
to PowerCells server. At the server the raw data is processed and merged into a PSM1 file
format.

that has been logged in that perticular file. The timestamp is a double precision variable that
denotes the number of days plus the fraction of days elapsed from year 0 (B.C). Note that all
sensor data in the PSM1 are unlikely to start and end at the same time. Each sensor contains
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two vectors of equal size. One with the signal values and one time vector with fractions of
days elapsed since the timestamp of the PSM1 file. To get a continous time-series data with
complementay timestamps for each data point we need to add the timestamp of the file to
the time vector of each sensor. At the edges of each file the data-loggs are known to be both
insuffcient or redundant, meening that data could either be missing or duplicated. To join the
old data with the new data requiered some preprosseing, where each sensor needed seperate
treatment. Missing data could obviously not be recovered, the only thing we could do was to
set a limit of how much data we tolerate to loose before we report an error. Since each data
point has a time stamp, the duplicated data could easily be removed.

When a new PSM1 file appears on the server and it is read by the program, the program
scans all sensors and convert their time vector into a timestamp vector. It checks that all
sensors data-logg are, continuos with a given tolerance and marks the sensor that stoped log-
ging data earliest. The timestamp where this occurs is considered to be the timefront of that
PSM1 file. To avoid any issues, no data will be extracted in front of the timefront. Since the
data in front of the timefront will still be useful when an additional file is added it is saved
for later use. In Figure 3.5 we explain how PSM1 files are merged into a multi dimensional
timeseries data vector.

It is more benefitial to have one continous data vector, rather than multiple disconected

Figure 3.5: An Illustration of how multiple PSM1 files are merged into a multiple timeseries
sensor data. Note that the timefront for the different sensors are not alligned.

vectors, since the intention is to extract feature data from a timeseries interval rather than
from one single data point. If the timeseries vectors are disconected one can not extract as
many intervals as is otherwise possible when they are all connected, thus we would get less
unique data points. With only one single data point it is harder to detect trends in the data;
in addition it is impossible to filter out what is noise and what is a signal. Precisely how the
feature data is calculated on this interval is described in section 3.3.

Given a timestamp Ti the program should be able to extract an interval of timeseries data,
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Yi with a fixed amount of data points, from multiple sensors Sk : k = {1, ..,m}. From each
sensor, Sk, a subset of the feature data, X j∗ : j∗ = { jk1, .., jkn}, is calculated. Subsequently
the entire feature data vector Xi = {X j : j = { j11, .., j1n, j21, ..., jk1, ..., jkn, .., jmn}} can be
assembled for the associated timestamp Ti.

Figure 3.6: An illustration of how timeseries interval Yi is converted into feature data X j,
used by the OCSVM. The black boxes representes one or multiple operations from Table 1.

3.3 Calculating feature data from a sensor
There are many mathematical operations you can perform on a time-series interval with
fixed length. Each one of theses operations reflects different properties about that interval.
Basic operations like max/min, mean and the standard deviation are meassures of extreme,
expectancy value and volatility; all are interesting properties that might be able to detect
anomalies as they occur. However it is easy to find examples when they can not detect an
event that appears anomalous for the human eye, see figure 2.2.

A key aspect to this report was to investigate if the Wavelet Transform could be used with
advantagous results. The idea is to use the wavelet coefficients of the Discrete Wavelet
Transform (DWT) as the input feature data to the OCSVM. The localization property, of the
wavelet coefficents, ensures that anomalies occuring at a specific part and timescale of the
signal will also be reflected as an anomaly at a specific part of the DWT spectra. If a signal
is known to have normal fluctuations at some specific timescales, typically it would be in-
teresting to monitor all the other timescales where there should be no fluctuations. With this
technique it is possible to distinguish an anomaly, that is relatively small in comparison to
the normal fluctuations, with a much greater significance level.

Table 1 shows a list of all the operations that has been integrated so far into the framework
that are possible to use as input data to the OCSVM algorithm.
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Decomposition Level Sub-level Operation 2 Operation 1
- - - mean/std(Y) -
- - - max/min(Y) -
- - - max(‖Y −mean(Y )‖) ‖...‖100%−Z%

Wavedec(Y) N - max/min(AN)
Wavedec(Y) N - ‖max(AN)-min(AN)‖ -

Wavedec(‖Y −mean(Y )‖) N - max/min(AN) -
Wavedec(‖Y −mean(Y )‖) N - std(AN) -

Wavedec(Y) N L max(‖CN,n‖) ‖CN,n‖Z1%−Z2%
Waverec(Y) N L mean/std(Y) -
Waverec(Y) N L max/min(Y) -
Waverec(Y) N L max(‖Y −mean(Y )‖) ‖...‖100%−Z%

Table 1: List of the various mathematical operations possible to perform on the timeseries
interval Y .

4 Results
The reason for using only 2-dimensional test cases is due to the fact they are the only ones
can be visualized and verified so that the classification is satisfying. Its not the algorithm
that does not work in higher dimensions but rather the verification of hyperparameters. The
idea of the method developed in section 3.1 is to have an unbiased selection of the parame-
ter σ(d). The curse of dimensionality says that a good classification will require more data
in a higher dimensional space, as the euclidean distance between the data points increases;
therefore it is likely to assume that the optimal choice of σ is very much dependent on the
dimensionality. The parameter d should theoretically not be affected by the dimensionality
as it is mearly a meassure of overfitting versus underfittning, independent of the numder of
dimensions in feature space.

Two sensors with distinguishable characteristics were choosen in order to test the perfor-
mance of the developed method. For each sensor two features were selected from Table 1.
Subsequently, feature data was calculated at minutes interval from the entire 6 days of data.
This yielded a ∼ 1200× 2 feature data vector, where the first half of it was used as train-
ing data. Training and parameter selection, of the OCSVM, was made on multiple tolerance
levels ν = {0.01,0.02,0.05,0.1}. When the training was completed all feature data points
were classified as either normal ( f = 1) or anomolous ( f =−1), equation (2.10). Figure 4.1
shows the sensor signal along with the classification results of all the tolerance levels, for
one of the two sensors selected. Similarly figure 4.2 shows the signal and the classification
for the second sensor.

To make good evaluations of how the method is performing it is important to get an un-
derstanding of how the input feature data is localized in feature space. In Figure 4.3 and 4.4
a series of snapshots are made of the feature space where data points are mostly localized. In
addition the subspace where datapoints are classified as normal is highlighted as the yellow
area and the abnormal area is highlighted as blue. From these figures it becomes apparent
how the classification depends on the parameter selection of ν and σ = dσ∗. The data points
that are inside the decision boundary are plotted in green and the ones are outside are plotted
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in red. Note that all feature data has been normalized and scaled such that the mean equals
zero and the standard deviation equals one. One type of feature data could have fluctuations
that are many orders of magnitude larger than other types of feature data. Theoretically it
should not matter if normalization is performed or not, but numerically it can be essential to
get the SMO to converge.

Figure 4.1: Plot of the timeseries sensor data (TS101) for continuous operation over
6 days. The corresponding anomaly classification on the multiple tolerance levels ν =
{0.01,0.02,0.05,0.1}. A white pixel indicates an anomaly detection at that perticular time
and tolerance level. The parameter d = 2. The 2 types of input feature data are mean and
Wavedec(max(‖C17,12‖0%−100%), from sensor TS101.

Figure 4.2: Plot of the timeseries sensor data (TS104) for continuous operation over
6 days. The corresponding anomaly classification on the multiple tolerance levels ν =
{0.01,0.02,0.05,0.1}. A white pixel indicates an anomaly detection at that perticular time
and tolerance level. The parameter d = 2. The 2 types of input feature data are mean and
Wavedec(max(‖C17,12‖0%−100%), from sensor TS104.
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(a) ν = 0.01,d = 1.0 (b) ν = 0.01,d = 1.5 (c) ν = 0.01,d = 2.0

(d) ν = 0.02,d = 1.0 (e) ν = 0.02,d = 1.5 (f) ν = 0.02,d = 2.0

(g) ν = 0.05,d = 1.0 (h) ν = 0.05,d = 1.5 (i) ν = 0.05,d = 2.0

(j) ν = 0.10,d = 1.0 (k) ν = 0.10,d = 1.5 (l) ν = 0.10,d = 2.0

Figure 4.3: Plot of the decision boundary in feature space for an array of the the parameters,
ν and d. The 2 types of input feature data are mean and Wavedec(max(‖C17,12‖0%−100%),
from sensor TS101.
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(a) ν = 0.01,d = 1.0 (b) ν = 0.01,d = 1.5 (c) ν = 0.01,d = 2.0

(d) ν = 0.02,d = 1.0 (e) ν = 0.02,d = 1.5 (f) ν = 0.02,d = 2.0

(g) ν = 0.05,d = 1.0 (h) ν = 0.05,d = 1.5 (i) ν = 0.05,d = 2.0

(j) ν = 0.10,d = 1.0 (k) ν = 0.10,d = 1.5 (l) ν = 0.10,d = 2.0

Figure 4.4: Plot of the decision boundary in feature space for an array of the the parameters,
ν and d. The 2 types of input feature data are mean and Wavedec(max(‖C17,12‖0%−100%),
from sensor TS104.

19



5 Discussion
The main objective of the work that has been done was to design a framework that can be
used as a health monotoring system in PowerCells current data infrastructure. One major
concerns was to investigate the feasibility of the DWT + OCSVM algorithm, that represents
the foundation of the entire framework.

The inclusion of the DWT into the framework was done in such a way that it only added
functionality to the framework. If it will be proven in the future that wavelets does not add
any extra usability it can easily be excluded again. However the results shows that, if the
parameters of the Wavelet Transform are choosen correctly it can indeed detect properties of
the signal that is otherwise hard to detect with conventional mathematical operations. The
problem is that, it is only true if the parameters are choosen correctly. The typical things that
needs to be decided are: type of decomposition wavelet, decomposition level and wavelet
coefficient level. These three properties in combine can be translated into an approximate
timescale where we are looking for anomalies at. It is possible to map the parameter selec-
tion of the DWT into an approximate timescale but that work has not been included in this
report. Before the framework can be put in to use it will be necessary to conduct such a
mapping. Subsequently one will also need to decide what timescales are relevant for each
perticular sensor.

Another aspect that is important for good classification is the amount of input data to the
OCSVM algorithm. PowerCell supplied approximately 6 days of usefull continous data sam-
pled at a rate of ∼ 10[Hz]. Even if this is a lot of data much of it is reduntant when we look
at the behaviour of the signal, using DWT. With this approach its less important how often
the signals are sampled and more important over how long time the signals collected its data.
Those 6 days of data also needs to be devided into a training set and test set, reducing the
reliability of the classification even further. Some of the signals have normal fluctuations
that extends in the order of hours; for that reason we need longer time intervalls and more
data. All these facts put together accumlates to the assumption that, 6 days is a too short
time period for the unit to exhibit all possible types of normal behavior necessary for a good
classifiction. Note that the framework can easily be converted to only input the signal values
directly, into the OCSVM algorithm, thus eliminating some of the issues with insufficient
data. Nevertheless, that idea has been disregarded since it would only be possible to detect
anomalous absolute values and not trends.

One of the key reasons for PowerCell to initiate this work was to learn more about there
own product. There goal is to increase the life expectancy of the unit and if it behaves unsta-
ble, in an unpredictable way, the life expectancy might be compromised. They are in such
an early stage of their development that they don not know exactly what they are looking
for; for that reason an unsupervised algorithm is more suitable for PowerCells needs. The
OCSVM is advantagous because it is regared as an unsupervised or semi-unsupervised learn-
ing algorithm. The method developed for parameter selection of the hyperparameter σ(ν)
proved to be robust and without any need of supervision. The remaining parameter ν ∈]0,1[
can be interpreted as a tolerance level; rather than choosing one level it is possible to choose
multiple tolerance levels for classification of a data point. Since we are looking for anoma-
lies it is only interesting if ν is choosen somewhere in the range from 0−10%.
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The purpose of the entire framework is to derive OCSVM objects, containing all informa-
tion necessary for classification. The combination of a OCSVM object and instructions of
how to calculate feature data are the only tools needed too perform a classification. The
sparsity of the OCSVM object makes it favourably when computation time is limited, as it
would be if classification were to be performed locally on the APU unit. If a classifier is set
to operate locally on a unit, the kind of feature data that is choosen to be observed needs to be
optimized for the limiting computing power conditions. The DWT is a fairly fast method, due
to its downsampling properties. The Haar wavelet is the least advanced wavelet and thus it
is also the fastest. Since we are not interested in reconstructing the signal after decomposing
it, the Haar wavelet satisfies the needs of our application just as well as any of the more ad-
vanced wavelet. The Haar wavelet is even preferable because it is possible to decompose to
a higher level than any other wavelet; this allows us to study longer time scales with less data.

The result presented are focused on the potential and feasibilty of the method for choos-
ing the hyperparameter to the RBF-kernel, which is really important for good classification.
Even if the results shows that anomoulos behaviour is detected, it should not be interpret
as a conclusive proof that it was those behaviours which caused the forced shutdown of the
unit. There is still some work left to do in order to assess if any or multiple sensor showed
conclusive signs of anomalies that could explain the shut down. Naturally this work will also
have to incorporate PowerCells knowledge of the unit; a sensor can have bad readings but
still have no correlation to the error that emerged.

With the framework it is possible to have multiple monitors. If a certain type of error is
assumed to correlate with one set of sensors and another error correlates with a different set
of sensors they can still be monitored simultaneously. Each individuall monitor object con-
sists of an OCSVM object along with instructions of how to extract feature data from all the
sensors. If there is any douplet instructions the framework will notice that and only calculate
the feature data ones, in order to save computation time.
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5.1 Recommendations
The conclusion from the work conducted so far at PowerCell can be summorized into some
recommendations for further development that needs be adressed.

• The success of a machine learning algorithm depends heavily on the amount of train-
ing data. PowerCell will require more data if they wish to implement this anomaly
detection framework any further.

• To have any use of the work that has been done so far it is essential to start map-
ping what timescales are relevant for each sensor and translate that into an appropriate
feature data instruction.

• It also important to start reflecting upon on how many monitors there should be?
Should there be one for each sensor or should there be just a few, monotoring a collec-
tion of sensors with high correlation? The framework is versatile and would potentially
support both appraoches simultaneously.

• The OCSVM can be converted into a statistical method, making it possible to estimate
the probability that a new data point is anomalous. Investigating how a statistical
OCSVM can be incorporated into the framework is recommended.

• The entire report has had clear focus on the OCSVM as the anomaly detection algo-
rithm of choice. An interesting topic, that has been disregarded in this report, is to
investigating how other methods, like the Principal Component Analysis, would per-
form in comparison to the OCSVM.
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