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Abstract

Memory operations have a significant impact on both performance
and energy usage even when an access hits in the level-one data
cache (L1 DC). Load instructions in particular affect performance
as they frequently result in stalls since the register to be loaded
is often referenced before the data is available in the pipeline. L1
DC accesses also impact energy usage as they typically require
significantly more energy than a register file access. Despite their
impact on performance and energy usage, L.1 DC accesses on most
processors are performed in a general fashion without regard to
the context in which the load or store operation is performed. We
describe a set of techniques where the compiler enhances load and
store instructions so that they can be executed with fewer stalls
and/or enable the L1 DC to be accessed in a more energy-efficient
manner. We show that using these techniques can simultaneously
achieve a 6% gain in performance and a 43% reduction in L1 DC
energy usage.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors- compilers, optimization

General Terms  Algorithms, Measurements, Performance.

Keywords Energy, Data Caches, Compiler Optimizations.

1. Introduction

Certain CPU operations, such as loads, are more critical than other
operations as they may have a greater impact on both performance
and energy usage. Even when load instructions result in level-
one data cache (L1 DC) hits, they still often cause pipeline stalls
due to the loaded register being referenced before the data value
is available. An L1 DC access also requires significantly more
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energy than a register file access since the L1 DC is much larger,
is typically set-associative requiring access to multiple ways, and
requires both a tag check and data access.

Conventionally a CPU performs a load or a store operation in
the same manner each time the operation is executed. However, the
most efficient method for performing a memory operation depends
on the context in which it is executed. Thus, we propose a hard-
ware/software co-design that provides contextual information for
load and store operations so they can be more efficiently executed
with respect to both performance and energy usage. We introduce
a set of techniques which combines context-aware code generation
with new L1 DC access schemes and auxiliary structures so that the
execution of load and store instructions can take advantage of the
context in which they are executed. The contribution of this paper is
that it demonstrates that conventional load and store operations can
be enhanced based on information of their context. These enhance-
ments require only minor instruction set and architectural changes
and can in exchange bring about substantial improvements in terms
of energy usage and performance.

2. Instruction Contexts

A typical CPU performs all data accesses in a general fashion.
However, the context of a data access can affect how the L1 DC
can be most efficiently accessed. Relevant parameters for the data
access context include the size of the displacement from the base
register, the distance in instructions from a load to the first use of
the register, and whether or not the memory access is strided. Here
we describe how the context of a data access can be used to improve
the performance and energy usage of load and store operations.

Address Displacement Context: Conventional CPUs that use a
displacement addressing mode always perform the address calcu-
lations the same way, by adding a displacement to a base register.
For large displacements, the traditional approach should be used,
where the effective address is needed to ensure that the correct L1
DC tags and data are accessed. For smaller displacements, how-
ever, it is possible to access data more efficiently. We have pre-
viously shown that it is beneficial to speculatively access the tag
arrays when the magnitude of the displacement is less than half the
L1 DC line size [1]. The address calculation is unnecessary when
the displacement is zero. During compilation we can detect the dis-
placement size of load and store operations and use this information
to access the L1 DC earlier in the pipeline when possible.
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Figure 1: Conventional L1 DC Pipeline Access

Use-Distance Context: Conventional processors utilize set-asso-
ciative caches to improve hit rate. For loads, the tags and data of all
ways are accessed in parallel to reduce the number of stall cycles,
as subsequent dependent instructions otherwise would have to wait
longer for the loaded value. The disadvantage with this parallel
access is that it wastes energy as all data arrays are read, even
though the data can only reside in at most one array. In many cases
the distance (in instructions) between a load instruction and the first
use of the loaded value is long enough for the tags and data to
be accessed in a serial (also called phased) manner, which enables
loads to only access a single data array. During compilation we can
detect the distance from a load instruction to the first use of the
loaded value. We can use this distance to determine if the L1 DC
can be serially accessed without incurring a stall with a subsequent
instruction.

Strided Access Context: There are situations in which the next
value to be accessed from the L1 DC is likely to be in the same line
as the last time that same load or store instruction was executed.
Strided load and store accesses with a stride shorter than half the
L1 DC line size can be detected during compilation. This stride
information can be stored in a small structure to avoid L1 DC tag
checks and to more efficiently access the data.

For the three contexts above, the optimizations can be com-
bined, e.g., by speculatively accessing the tags early when the dis-
placement is small and by serially accessing the tags and data when
no stalls will be introduced.

3. HW Enhancements for Loads and Stores

In this section we describe our proposed hardware enhancement
for exploiting the context in which a data access is performed
to improve the performance and energy usage of load and store
operations. While these enhancements are applied within an in-
order pipeline where the performance benefits are more obvious,
these same enhancements could also be potentially beneficial to an
out-of-order processor pipeline.

3.1 Conventional L1 DC Accesses

Figure 1 shows how a conventional N-way associative L1 DC ac-
cess is pipelined for a load operation. The virtual memory address
is generated by adding a displacement to a base address, where the
displacement is a sign-extended immediate and the base address
is obtained from the register file. In the first stage of the L1 DC
access, the data translation lookaside buffer (DTLB), the tag mem-
ory, and the data memory are accessed in parallel and the tag from
the tag memory is compared to the tag that is part of the physical
page number from the DTLB. The next stage selects the data based
on which of the N tags is a match, the retrieved data is formatted
(sign or zero extended) for byte and halfword loads, and the data is
forwarded to the appropriate unit.

3.2 Basic Definitions

Table 1 describes the various pipeline actions that are taken to
perform a memory access as defined in this paper. The address
generation (AG) is performed to calculate the effective address. The
accesses to all tag arrays (TA) occur in parallel to determine the
way in which the data resides. The accesses to all data arrays (DA)
also occur in parallel for a load instruction to avoid pipeline stalls.
A single data array (DA1) is accessed for a store, which occurs
after the tag check has been performed. The first five actions are
commonly performed when a load or store instruction is processed
in a conventional CPU. The last two actions (TI and SD) access
additional state and will be described later, in Section 3.4.1.

Table 1: Pipeline Actions for Data Access

[ Action [ Explanation

The sum of the base register and the immediate value is calcu-

AG lated to determine the address generation.

TA All L1 DC tag arrays in the set-associative L1 DC are simulta-
neously accessed so that the tag checks can be performed.

DA All L1 DC data arrays in the set-associative L1 DC are simul-

taneously accessed for a load operation.

A single L1 DC data array in the set-associative L1 DC is
DAl accessed for a store operation, which occurs during the cycle
after the tag check.

The loaded value is formatted (sign or zero extended) and

DF forwarded to the execution unit.

A tag and index are accessed from the strided access structure
TI

(SAS).
SD Data are accessed from the strided access structure (SAS).

Figure 2 shows the fields of an address used to access the L1
DC. The offset indicates the first byte of the data to be accessed
within the L1 DC line. The index is used to access the L1 DC set.
The tag represents the remaining bits that are used to verify that the
line resides in the L1 DC.

- | word

block number :
offiset offset

tag index

Figure 2: L1 DC Address Fields

Our compiler detects the cases shown in Table 2 for the size
of the displacement. A large displacement indicates that a conven-
tional address generation stage is required before the L1 DC tags
can be accessed. A small displacement implies that the L1 DC tags
can be speculatively accessed using the L1 DC index field from
the base register value with a high likelihood of success since it
is unlikely that adding the displacement will affect the L1 DC in-
dex field of the effective address. A zero displacement means that
address generation altogether is unnecessary.



Table 3: Cases for Pipelining Non-Strided Load Accesses

Pipeline Stage Actions

Requirements

Case | —pX— T DCI [ DC2 [ DC3 || Disp | DepInst | Stride [ Example Benefit
r[2]=M[r[4]+76];
LO AG TA+DA DF large 1-3 r[3]=r[3]+r[2];
r[2]=M[r[4]]; .
L1 TA+DA DF 1-2 s stall
* were stride > 1 line size | r[3]=r[3]+r[2]; avoids sta
TA Zero >2 Il r[2]=M[r[4]+4];
L2 AG+TA DAl DF small 1-3 stride unknown r[3]=r[3]+r[2]; 1 DA
small r[2]=M[r[4]+4]; 1 DA
L3 AG TA DALl DF Il >3 <3 or more insts> without
large r[3]=r[3]+r[2]; spec TA

Table 2: Memory Access Displacement Sizes

[ Size | Description ]

large | The displacement magnitude is greater than half the line size.
The magnitude of a nonzero displacement is less than or equal
to half the L1 DC line size.

The displacement is zero.

small

Zero

3.3 Enhancements for Non-Strided Accesses

We support four different ways of accessing the L1 DC for loads
when the stride is either too large to exploit (greater than one
half of the L1 DC line size) or is unknown. The four cases are
depicted in Table 3. The EX stage is where a conventional integer
operation is performed, the DC1 and DC2 stages represent the
conventional first and second cycles to access the L1 DC, and the
DC3 stage represents one additional cycle to access the L1 DC.
In general, our highest priority is to avoid pipeline stalls and our
secondary priority is to perform the memory access in the most
energy-efficient fashion.

Case L0: The CPU accesses the L1 DC in the conventional
manner for loads. The CPU accesses all the tag arrays (TA) and
data arrays (DA) in the DC1 stage. In this default situation, the
displacement (Disp) is large, which means a speculative tag access
is not possible, and the loaded register is referenced in one of
the following three instructions (Dep Inst). A one-cycle stall is
avoided by accessing all the tag and data arrays in parallel. Note
that the benefits of all the remaining cases for load instructions are
expressed relative to this default case.

Case L1: The CPU accesses both the L1 DC tag arrays (TA)
and data arrays (DA) in the EX stage. The requirements for this
case are that 1) the displacement is zero and 2) the loaded register is
referenced in the first or second instruction after the load. The CPU
can access the L1 DC early using the address in the base register
since the offset is zero making the address known before the EX
stage is entered. The CPU accesses both the tag and data arrays in
parallel, since the pipeline would stall an extra cycle if the L1 DC
data array is accessed in the following cycle. Figure 3 shows an
example of how case L1 can avoid a stall cycle.

G2 3 4 s 61
r(2]=M[r[4]]; ID AG TA+DA DF
r[3]=r[3]1+r([2]; . D stall stall  EX
- o2 3 4 s 6 7
r(2]=M[r[4]]; ID TA+DA DF
r[3]l=r[3]+r(2]; ID stall EX

Figure 3: Example of Case LO Replaced by Case L1

Case L2: The CPU accesses the tag arrays (TA) in the EX
stage and a single data array (DA1) in the DCI stage to reduce
energy usage. One set of requirements for this case is that 1) the
displacement is zero and 2) the loaded register is not used in the
two following instructions. Here, there would be no execution time
penalty and only a single data array (DA1) is accessed, which is in
contrast to case L1. A different set of requirements for case L2 is
that 1) the displacement is small and 2) the loaded register is used in
one of the following three instructions. With a small displacement
the CPU can speculatively access the tag arrays in parallel with the
address generation (AG) in the EX stage. However, the line offset is
not known so the data arrays cannot be accessed in the EX stage. A
single data array is therefore accessed in the DC1 stage, as depicted
in Figure 4.

1 2 3 4 5 6 7
r(2]1=M[r[4]+4]; ID AG TA+DA DF
r[3]=r[31+r[2]; D stall stall  EX
- 1 2 3 4 5 6 7
r[2]1=M[r[4]+4]; ID AG+TA DAI DF
r[3]=r[31+r[2]; D stall stall  EX

Figure 4: Example of Case LO Replaced by Case L2

Case L3: The CPU accesses all the tag arrays (TA) in the DC1
stage and a single data array (DA1) in the DC2 stage, given that 1)
the displacement is nonzero and 2) the loaded register is not used in
the following three instructions. The CPU is guaranteed not to stall,
since there are no dependent instructions in the pipeline, and energy
usage is reduced due to the access of only a single data array. The
advantage of case L3 over case L2 for small displacements is that
there can be no speculative tag access failure.

We support two different ways of accessing the L1 DC for stores
when the stride is either too large to exploit (greater than one half
of the L1 DC line size) or is unknown. The two cases are depicted
in Table 4. Note that all store operations are required to access the
tag arrays (TA) before accessing the single data array (DA1) since
the tag check must match for the data to be updated.

Case S0: The displacement is nonzero and the store operation
accesses the tag arrays (TA) in the DC1 stage, which is how stores
are conventionally processed.

Case S1: The displacement is zero, which enables the store
operation to access the tag arrays (TA) in the EX stage, which
may help to avoid subsequent structural hazards. Normally store
operations are considered less critical than loads as a value stored
to memory is not typically used in the instructions that immediately
follow the store. Thus, speculative accesses to the tag arrays are
not performed when the displacement is small since a speculation
failure would require accessing the tag arrays a second time.



Table 4: Cases for Pipelining Non-Strided Store Accesses

Pipeline Stage Actions

Requirements

Case | X [ DCI [ DC2 [ DC3 || Disp | Stride [ Example Benefit
SO AG TA DA1 not zero X 1. . . M([r[4]+4]=r[2];
ST TA T DAT Zero stride > 3 line size | | stride unknown MITA]=2]: Tcycle carly

3.4 Enhancements for Strided Accesses

Strided accesses with a stride shorter than half the L1 DC line size
have a high probability of accessing the same cache line more than
once. The compiler can convey information regarding such strided
accesses to the CPU. By retaining a small amount of additional
state we can then directly access the cache line without any parallel
tag or data accesses.

Figure 5 shows an example of a strided memory access that is
followed by an increment to the base register in a loop. Figure 6
shows an example of a sequence of memory accesses whose ad-
dresses vary by a constant stride, which commonly occurs in the
prologue or epilogue of a function for saving and restoring regis-
ters, respectively. The compiler can convey information regarding
strided accesses to the CPU so that more efficient data accesses can
occur by retaining a small amount of additional state.

L3: r[2]=M[r[4]];

Bt

[22]=M[r[sp]+100];
r(21]1=M[r[spl+96];
r[20]=M[r[sp]l+92];

r[4]=r[4]+4;
PC=r[4]!=r[5],L3;

Figure 5: Strided Load
3.4.1 The Strided Access Structure

We introduce a strided access structure (SAS) that is used to main-
tain information about load or store instructions that the compiler
determines have a strided access. Figure 7 shows the information
that is stored in the SAS. The V bit indicates if the entry informa-
tion is valid. The LI DC tag and L1 DC index fields contain the
virtual tag and physical index, respectively, associated with the L1
DC line (see Figure 2). The LI DC way indicates in which way the
associated L1 DC line resides. The LI DC index and L1 DC way
enables the CPU to check if the L1 DC line being accessed by the
current load or store operation matches the L1 DC line information
stored in the SAS. The PP field contains page protection bits from
the DTLB.

Figure 6: Sequential Accesses

L1 DC L1 DC L1DC word strided
\" tag index way PP DV offset data (SD)

Figure 7: Strided Access Structure (SAS)

Prior work has shown that it can be beneficial to always read
as much data as possible from the L1 DC even if the requested
data is narrow [2], e.g., reading a double word when only a byte
is requested. Additional data were stored in a separate associative
structure that is checked on subsequent loads and on a hit the L1 DC
access is avoided. During compilation we identify strided accesses
that have a shorter stride than the maximum readable data width
from the L1 DC, such as iterating over a character array. The data is
then stored in the SAS and subsequent strided accesses can access
the much smaller SAS instead of the L1 DC. Figure 7 shows in
bold the additional information that is stored in the SAS to support
this type of strided accesses. The data valid (DV) bit indicates that
the data stored in the SAS is valid. The word offset field contains

the higher-order bits of the line offset (see Figure 2) identifying the
data word of the L1 DC line that is stored in the SAS. The strided
data (SD) contains a copy of the data identified by the word offset.
The DV bit is needed as a data value is not fetched from the L1 DC
on a store with a word mismatch.

We store virtual tags in the SAS, which enables the processor
to avoid accessing the DTLB when the SAS entry being accessed
is valid. It is easier to address the problems of using virtual tags
in the SAS than in a much larger L1 DC. Synonyms (multiple
virtual addresses mapping to the same physical address) can lead
to problems after processing stores as there can be different values
associated with the same location. Synonyms can be handled by
invalidating other SAS entries that have the same LI DC way
and index when a new entry is allocated. Homonyms (one virtual
address mapping to multiple physical addresses) can be resolved
by invalidating all the SAS entries on a context switch, which is
simplified due to using a write-through policy between the SAS
entries and the L1 DC. The PP bits obtained from the DTLB when
an SAS entry is allocated are used to ensure the data is properly
accessed. L1 DC evictions due to L1 DC line replacements or
multiprocessor cache coherency invalidations can be invalidated in
the SAS by checking the LI DC way and index stored in the SAS
entries as the SAS is strictly inclusive to the L1 DC. Likewise, all
the SAS entries should be invalidated when a page is replaced.

3.4.2 Strided Access Cases

We support four different accesses for loads with a stride less than
or equal to half the L1 DC line size, as depicted in Table 5. A
stride less than or equal to half the L1 DC line size means that
the line is likely to be referenced at least twice. Invariant address
references are viewed as having a stride of zero. The SAS tag and
index (TI) pipeline action indicates that the tag and index from the
SAS are compared against the tag and index of the memory address
referenced. The SAS data (SD) pipeline action indicates that the
data in the SAS is accessed and the appropriate value is extracted.
The width of L1 DC is the number of bytes that can be transferred
between the L1 DC and the CPU in one access, which is assumed
to be 4-bytes in this paper. Only the last two cases access the data
in the SAS, which occurs when the stride is less than or equal to
half of the size of a word since it is likely that the data word in the
SAS will be referenced at least twice. The benefits listed in the table
are again relative to case L0, which is the conventional method for
pipelining loads.

Case L4: The CPU checks the SAS tag and index (TI) field
and a single data array (DA1) is accessed in the EX stage as the
displacement is zero. The data array is speculatively accessed as
there is a dependence in the next two instructions that would cause
a stall. The benefits are that DTLB and tag array (TA) accesses are
avoided, only one data array (DA1) is accessed, and one stall cycle
is avoided.

Case L5: The CPU accesses a single data array (DA1) after the
SAS tag and index (TI) check. This sequence of pipeline actions
occurs when the displacement is zero and the loaded register is
not used in the next two following instructions. Accessing the data
array one cycle later will not cause a stall in this case and the data
array will not be unnecessarily accessed if the SAS tag or index
do not match. The same sequence occurs when the displacement is
not zero as the data array cannot be accessed in the EX stage since



Table 5: Cases for Pipelining Strided Load Accesses

Pipeline Stage Actions

Requirements

Case | X [ DCI [ DC2 || Disp | Deplnst | Stride [ Example Benefits
Th+ T2I=M[41]; 10 DTLB + no TA +
L4 DF 1-2
DAI were 1 L1 DC width < stride | r[3]=r{3]+r[2]; || 1DA +avoid I stall
TI Zero >2 && stride < L line size | r[2]=M[r[4]+4]; no DTLB +
<3 }
LS AG+TI DAl DE not zero no TA + 1 DA
L6 TI+ Jero | r[2]=M[r[4]]; no DTLB + no TA +
SD+DF tride < L L1 DC width r[3]=r[3]+r[2]; no DA + avoid 2 stalls
7 TI SD+ Zero ST stnde = 3 wi T2I=EM[r[4]+4]; || no DILB + no TA +
AG+TI DF not zero r[3]=r[3]+r[2]; no DA + 1 cycle early
Table 6: Cases for Pipelining Strided Store Accesses
Pipeline Stage Actions Requirements
Case | —FX [ DCI [ DCZ || Disp | Stride [ Example Benefits
T B 0
2 TI DAI Zero 5 L1 DC w1dtlh < str.lde M[r[4]]=r[2]: no DTLB + no TA +
AG+TI not zero | && stride < 3 line size 1 cycle early
TI SD+ ZEero . 1 . AT no DTLB + no TA +
S3 AGITT | DAl oL 2610 stride < 5 L1 DC width | M[r[4]+4]=r[2]; 1 cycle early

the line offset has not yet been calculated. Note the tag and index
comparison will occur near the end of the cycle after the address
generation (AG) has been completed. The benefits are that DTLB
and tag array (TA) accesses are avoided and only one data array
(DA1) is accessed.

Case L6: The CPU checks the SAS tag and index (TI) field
and the SAS data (SD) data value is extracted and formatted (DF)
in the EX stage. The value can be extracted from the SAS data
and formatted in a single cycle since the SAS can be quickly
accessed. All of these pipeline actions occur in the EX stage to
avoid a stall with the following instruction that referenced the
loaded register. The benefits are that DTLB and tag array (TA)
accesses are avoided, no data arrays are accessed, and two stall
cycles are avoided.

Case L7: The CPU checks the SAS tag and index (TI) field
in the EX stage, and the SAS data (SD) value is extracted and
formatted (DF) in the DC1 stage. This case is applied either when
the displacement is zero and the next instruction does not use the
loaded register, or when the displacement is not zero as the SAS
data (SD) cannot be accessed in the EX stage since the offset is not
known at that time. The benefits are that DTLB and tag array (TA)
accesses are avoided, no data arrays are accessed, and the data is
obtained one cycle early, which in some cases may avoid a stall.

It is possible that the SAS tag and index will match, but the SAS
word offset does not match in cases L6 and L7. If so, then the data
will be accessed from the data array in a manner similar to case L5.
Likewise, it is possible that the SAS tag or index will not match
for any of the cases in Table 5. In these situations the data will be
accessed from the L1 DC in a manner similar to case LO to ensure
stalls are minimized.

We support two different accesses for stores with a stride less
than or equal to half the L1 DC line. The two cases are depicted in
Table 6. In case S2 the data value is not written to the SAS, while
in case S3 it is. Both cases have the benefits of not accessing the
DTLB and the tag arrays (TA) and completing the store operation
one cycle earlier than a conventional store. These benefits can
reduce energy usage and may help to avoid structural hazards.

The L1 DC data array is updated on each store instruction to
ensure consistency with SAS data. Each conventional store instruc-
tion also requires an associative check of the tag, index, and offset
stored in all valid SAS entries so that any entry that matches will
have its data field updated. This capability is possible since the SAS
consists of only a few entries and is implemented in flip flops. To

avoid aliases in the structure, a strided access entry is invalidated
when it matches the L1 DC tag and index of a different entry being
allocated. Strided access entries that match an L1 DC line being
evicted are also invalidated.

4. Enhanced Load and Store Compilation

A number of compiler modifications are required to support the en-
hanced loads and stores described in this paper. First, the compiler
uses the algorithm shown in Figure 8 to allocate memory refer-
ences to the SAS entries shown in Figure 7 for the cases depicted
in Tables 5 and 6. Conventional basic induction variable analysis is
used to determine strides at compile time. Strided references with a
stride that is less than one half of the L1 DC line size are allocated
starting with the innermost loops first. Note that invariant address
references are treated as having a stride of zero.! A reference is
merged with an existing entry if it is within one half of a line’s dis-
tance of a reference associated with that entry. If there are more
entries allocated than are available, then the entries with the most
estimated references are selected. Memory references even at the
outermost level of a function are allocated when they are detected
to likely be in the same line as a previous reference, which is com-
mon when multiple registers are saved and restored in the function
prologue and epilogue, respectively, as shown in Figure 6. Strided
access entries are allocated without regard to which entries may be
allocated to references in a called function since the tag and index
(TD) field is checked on each access to the strided access structure.

Next, the compiler classifies each memory reference, which re-
quires detecting the displacement size (large, small, zero) and the
distance between a load and the first instruction that uses the loaded
register. Since other transformations can affect both this displace-
ment and distance, memory references are classified after all other
conventional compiler optimizations have been applied, including
instruction scheduling that attempts to separate loads from depen-
dent instructions. The load and its first dependent instruction may
not always be in the same basic block. Thus, a forward recursive
search to return the minimum distance in instructions is performed
in all successor blocks if a dependent instruction is not found in the

I A loop-invariant address reference indicates that the address used to access
memory does not change in the loop. Note this is not the same as a loop-
invariant value. For instance, a global variable could be referenced inside of
a loop that contains a function call, which prevents the value of the global
variable from being hoisted out of the loop.



FOR each loop level in function
in order of innermost first DO
FOR each strided or loop-invariant load and store
in the loop DO
IF stride <= 1/2 line size THEN
IF reference <= 1/2 line size distance from
another entry for the same loop THEN
Merge the reference with the existing entry;
ELSE
Allocate the reference to a new entry;
IF too many entries THEN
Select the entries with the most estimated references;

Figure 8: Algorithm for Allocating Strided Access Entries

basic block containing the load and the maximum number of in-
structions (three in our pipeline) has not already been encountered.
Figure 9 shows an example where the dependent distance between
the load and an instruction that uses the loaded register is conserva-
tively calculated to be two instead of three as the branch could be
taken. A call or a return instruction can also be encountered before
the maximum distance to an instruction with a loaded register is
found. In such cases the compiler assumes the distance to the first
dependent instruction is four or more instructions.

r[2]=M[r[4]];
PC=r[3]!=r[4],L5;
r[4]=rl6];
rl6l=rl[6]l+r[2];
L5: r[3]=r[3]1+r[2];

Figure 9: Load with Multiple First Dependents Example

Once all the memory references have been classified, another
compilation pass reclassifies memory references that can lead to
structural hazards. Consider the example code segment in Fig-
ure 10(a). Both load instructions have small displacements and as-
sume they are not strided. The first load has a dependence four
instructions later and has been classified as case L3 in Table 3. The
second load has a dependence three instructions later and has been
classified as case L2 in Table 3. However, classifying these two
loads in this manner results in a stall due to a structural hazard
for the tag array (TA), one data array (DA1), and data formatting
(DF), as shown in Figure 10(b). In this case the compiler reclassi-
fies the first load instruction from case L3 to case L2 as shown in
Figure 10(c) to avoid the structural hazard stall. We analyzed all
possible pairs of classifications of memory operations in order to
determine how to best avoid each structural hazard.

In addition to the required compiler modifications previously
outlined, the hardware enhancements of our techniques enable us
to perform the following optimization: The compiler hoists a loop-
invariant displacement address from a load instruction out of a loop
when avoiding the address generation could eliminate a stall or
reduce energy usage. For instance, consider the example in Fig-
ure 11(a). Each of the load instructions uses a loop-invariant dis-
placement address, as r [sp] is invariant in the loop. Assume these
loads are not hoisted out of the loop as these memory references
may be updated elsewhere in the loop. Further assume all of the
strided access entries have been allocated to other memory refer-
ences. The first load instruction has a dependence five instructions
away, so it is classified as case L3 in Table 3. The displacement
address of the first load is not hoisted out of the loop as this will
not eliminate a stall or avoid access to the tag arrays (TA) or a data
array (DA1). However, the second and third load instructions each
has a dependence in the second instruction following the respective
load. Because they each has a large displacement value, these two
loads are classified as case L0 in Table 3. Assume there is only one

loadl: r[2]=M[r[4]1+8];
load2: r[3]=M[r[5]+4];
rl4]l=r[4]
r[5]=r[5]+4;
=r[3]+r[2];

(a) Instructions

1 2 3 4 5 6

loadl [L3]: .. AG TA DAl DF
load2 [L2]: stal AG+TA DA1 DF

(b) Original Classification of Loads

12 3 456
loadl [L2]: AG+TA DAl DF
load2 [L2]: AG+TA DA1 DF

(c) After Reclassifying Load 1

Figure 10: Reclassifying Memory Operations Example

available register within the loop. The compiler hoists one of the
two loop-invariant displacement addresses out of the loop as shown
in Figure 11(b). Since the two displacement addresses use the same
invariant base register and the difference between the two is small,
the compiler modifies the displacement address of the third load to
use the newly allocated register r [8] and the displacement to be
relative to the second load’s original displacement. The initial and
revised classifications of the second and third loads are shown in
Figures 11(c) and 11(d), respectively. The second load that now
has a zero displacement is classified as case L1 in Table 3 to obtain
the data one cycle earlier to avoid a stall cycle. The third load that
now has a small displacement is classified as case L2 in Table 3 to
enable accessing only a single data array (DA1), which will reduce
energy usage.

r[8]=r[spl+72;

L4:r[3] =M[r([spl+96]; L4: r[3]1=M[r[s ]+96];
r[4]=M[r[spl+72]; r[4]=M[z[8]]
r[5]=M[r[spl+76]; r[5] M[r[8]+4],
r[6]=r[6]l+r[4]; r[6]l=rl6l+r[4];
r{6]l=r[6]+r[5]; r[6]=r[6]l+r[5];
r{6]l=r[6]-r[3]; r[6]l=r[6]l-r[3];

PC=r[7]!'=0,14; PC=r[7]!'=0,14;

(a) Original Loop Code (b) After Hoisting a

Loop-Invariant Address

1 2 3 4 5 6
load2 [LO]: AG TA+DA DF .
load3 [LO]: AG TA+DA DF

(c) Initial Classification of 2nd and 3rd Loads

1 2 3 4 5 6
load2 [L1]: TA+DA DF
load3 [L2]: AG+TA DAl DF

(d) Reclassification of 2nd and 3rd Loads

Figure 11: Hoisting Loop-Invariant Displacement Example



5. Conveying Load/Store Context to the HW

There has to be a means of conveying to the hardware the informa-
tion extracted by the compiler about the context in which a memory
operation is performed. We assume an instruction set architecture
(ISA) with a displacement-based addressing mode where the load
and store instruction formats have the displacement in an immedi-
ate field, e.g., the MIPS I instruction format shown in Figure 12(a).
One solution to convey the additional information is to restrict the
immediate field to use fewer bits and use the remaining bits to en-
code the necessary information. The higher-order bits of the imme-
diate field in Figure 12(b) are used to indicate the type of enhanced
memory reference to perform.

6 bits 5 bits 5 bits
‘ opcode ‘ IS ‘ rt ‘
(a) MIPS Instruction I Format

16 bits

immediate

6 bits 5 bits 5bits  2+n bits

‘ opcode ‘ IS ‘ rt

14—n bits

immediate ‘

‘ meminfo ‘

(b) Enhanced Load and Store Instruction Format
Figure 12: Instruction Format for Loads and Stores

Table 7 shows how the meminfo field in Figure 12 is interpreted.
Two bits are used to identify the type of memory reference depicted
in Tables 3 through 6. Note that the instruction opcode indicates
whether or not the memory operation is a load or a store. Two bits
are needed to distinguish cases L4-L7 since all four cases can have
a displacement value of zero and the distance to the first dependent
instruction and the stride is unknown when a conventional load
instruction is decoded. The remaining » bits indicate which of the
2™ — 1 strided access entries is referenced if a case in Tables 5
or 6 is specified. Note that a value of zero indicates that a case in
Tables 3 or 4 is to be used instead. These ISA changes are quite
small in comparison to the benefits they achieve.

Table 7: meminfo Value When n=2

2 bits Non-Strided Accesses Strided Accesses
Entry | Case Entry [ Case
00 00 LO or SO¢ not 00 | L4 or S2¢
01 00 Ll orS1¢ not 00° | LS5 or $3¢
10 00 L2 not 00° L6
11 00 L3 not 00° L7

¢ Depending on the instruction’s opcode.
b The entry is used to index into the SAS.

6. Evaluation Framework

We evaluated our techniques in the context of in-order processors,
which is a class of processors of growing importance as computa-
tion is facing ever more stringent power and energy requirements.
In-order processors are common in mobile devices, ranging from
sensors to high-end phones, and are showing great promise for data
center and scale-out workloads [3].

We used the VPO compiler [4] to implement the optimizations
discussed in Section 4. Based on 20 different MiBench bench-
marks [5], we used SimpleScalar [6] with a heavily modified load
and store pipeline to extract micro-architectural events. We es-
timated the data access energy based on the number of micro-
architectural events and the energy per event. The energy dissi-
pated for the different L1 DC and SAS events (see Table 8) was
estimated from placed and routed netlists in a 65-nm commercial
process technology at nominal process conditions and 1.2 V.

Note that the presented results are for benchmarks where the
run-time library has not been compiled with the presented tech-
niques and it is very likely that both performance and energy would
improve if they also would be compiled.

Table 8: Energy for Different Events

[ Event [ Energy (pJ) |
Read tags for all ways 57.3
Read 32-bit data for all ways 84.4
Read 64-bit data for all ways 168.8
Write 32-bit data 20.4
Write 64-bit data 40.8
Read 32-bit data 21.2
Read 64-bit data 42.4
Compare SAS tag and index (1/3/7 entry) | 0.10/0.23/0.75
Read SAS word (1/3/7 entry) 05/1.1/3.4
Write SAS word (1/3/7 entry) 1.8/24/3.2

[ DTLB (16 entries, fully associative) [ 175 ]

The simulated architecture is an in-order processor with a 3-
stage L.1 DC pipeline, as shown in Figure 1. The L1 instruction and
data caches are 16kB 4-way associative and the translation looka-
side buffers (TLBs) have 16 entries. The L1 DC is implemented
using two 32-bit wide SRAM banks for each way. This results in
an energy-efficient L1 DC implementation; single word accesses
only need to probe a single SRAM, while the L1 DC still can handle
double word accesses in a single cycle by probing both the SRAMs.
Figure 13 shows the L1 DC configuration that is used for the energy
estimation. Each way consists of two data banks, which can be in-
dependently probed for read operation. Since each of the data way
is 4kB for a 16kB 4-way associative cache, we use two 512wX32b-
m4 banks for each way. This configuration allows to access double
words with the same latency of a single word, while trying to keep
the overhead as low as possible for single word accesses, by prob-
ing only a single bank for those accesses. The ARM Cortex A7
is an example of an in-order processor that utilizes this type of L1
DC configuration. We have not included the energy overhead of the
control logic, which results in slightly optimistic energy savings.

TAG-0 pata0 ||oaTao | |TAC"|[paTat [|oaTa-t | |TAC2||DATA 2 [|DATA-2 | [AC-3|[DATA 3 [|DATA-3

BANK-0 | [BANK-1 BANK-0|[BANK-1 BANK-0||BANK-1 BANK-0 | [BANK-1

Figure 13: 16kB 4-way Set Associative Cache Configuration with
Support for Efficient Single and Double Word Accesses

7. Results

We first varied the number of SAS entries. Note there are actually
two separate SAS structures. One structure does not contain data
and is used for cases L4, L5, and S2. The other structure does
contain data (bold portion of Figure 7) and is used for cases L6,
L7, and S3. Figure 14 shows the average effect on L1 DC and
DTLB energy when context-aware load and store operations are
used and the number of strided access entries is varied from 1, 3,
and 7.2 The energy is normalized to a conventional L1 DC and
DTLB when no enhanced operations and no SAS structures are
used. As the number of SAS entries is increased, the L1 DC and
DTLB energy is reduced since the number of accesses to the L1
DC and DTLB is decreased. However, the difference in L1 DC and

2 We only estimated L1 DC/DTLB/SAS usage energy. While our approach
can avoid many address generation additions, this is not included in our
energy results.



DTLB energy between three and seven SAS entries is very small,
which indicates that three SAS entries for each structure are enough
to capture most of the strided references. Also as the number of
SAS entries increases, the energy expended by the SAS increases.
The 3-entry SAS is the most energy efficient and reduces L1 DC
and DTLB energy by 43.5%. Figure 15 shows the average effect on
execution time when the number of strided access entries is varied
from 1, 3, and 7. The execution time decreases as the number of
SAS entries is increased since more loads can potentially avoid
stalls (cases L4, L6, and L7). The benefit from avoiding load stalls
is partially offset by additional instructions that are executed when
large displacements can no longer fit in load and store instructions,
as depicted in Figure 12. The performance difference between
using 3 SAS entries (6.2%) and 7 SAS entries (6.6%) is very little.
The remaining results assume 3-entry SAS structures, which are
very small and occupy only about 3% of the L1 DC area.

The proposed instruction format has a smaller immediate field
compared to the base case that we use for comparison. Our com-
piler therefore has to constrain the range of the displacement to fit
in the format shown in Figure 12(b). The more restricted immediate
field has little effect on the number of executed instructions since
most load and store displacement values require only a few bits.

0.60 1.00
0.98
0.96
0.94
0.92
0.90 +
0.88 +
0.86
0.84
0.82

0.45 - 0.80 -
1 3 7 1 3 7
SAS Entries SAS Entries

m L1 DC = DTLB = SAS m Execution Time With SAS

Overhead Due to Large Imm.

0.55

0.50 -

Relative Data Access Energy
Relative Execution Time

Figure 14: Access Energy Figure 15: Execution Time

Figure 16 shows the dynamic frequency of the load and store
classifications. About 50% of the loads and 63% of the stores were
classified as strided (cases L4 to L7 and cases S2 to S3). About
35% of the loads and 17% of the stores were classified as not
strided (cases LO to L3 and cases SO to S1). Only about 4% of the
loads and 10% of the stores received the default classification of
L0 or S0, respectively. However, a significant fraction of the strided
classifications (cases L4-L7 and S2-S3) were converted to the de-
fault classifications (L0 and S0) at run-time due to not matching
the SAS tag+index. Likewise, some strided loads that access data
(cases L6 and L7) were converted to not access data (case L5) due
to a word offset miss. The portion that was converted is depicted
in the bars by the color that matches the color of L0 and SO or
the bottom portion of L5. Note there are no performance penalties
for converting to other classifications at run-time since these mis-
speculations are discovered before the L1 DC is accessed. We did
not compile the entire run-time library, which resulted in 15% of
the loads (UL) and 19% of the stores (US) being unclassified and
treated as cases L0 and SO, respectively. Note that classifying these
additional loads and stores should further improve the energy and
execution time benefits.

Figure 17 shows the effect that each classification had on reduc-
ing L1 DC and DTLB energy usage as compared to the L0 and SO
default classifications. Cases L7 and S2 had the most impact since
they were the most frequently used classifications (see color of bars
in Figure 16) and could completely avoid both DTLB and L1 DC

0.40 LO or SO references ﬂ M

m L5 references

m other references

Relative All Loads or Stores

LO L1 L2 L3 L4L5L6L7 UL S0S18283 US

Memory Access Classifications

Figure 16: Distribution of Cases for Loads and Stores
(UL and US are unclassified loads and stores)

accesses. If an SAS structure was not utilized, then cases L2 and
L3 would have a more significant impact on energy usage. Note
that cases LO, L1, SO, and SI have no impact on energy, as L0 and
SO are the default classifications and L/ and S/ access the cache
early, but in a conventional manner.

Figure 18 shows the impact of the various cases on execution
time as compared to the default classifications of L0 and SO. Only
L1, L4, L6, and L7 can improve performance. Many of the loads
classified as L6 and L7 were converted to L5 loads when the word
offset did not match the SAS entry data word. Likewise, a signifi-
cant percentage of the L4, L6, and L7 loads did not hit in the SAS
and were converted to L0 loads. L6 has a higher relative impact on
performance than implied by Figure 16 since each reference avoids
two stall cycles.
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. . : Figure 18: Execution
Figure 17: Energy Gain by Cases Time Gain by Cases

Figures 17 and 18 clearly illustrate that not all cases contribute
equally to the energy and performance gain. Case L2, L3, L4, and
L5 show limited improvements in both energy and performance.
One could consider excluding these cases to simplify the hardware
implementation and encode the fewer cases more compactly in
load and store instructions. Case L7 is responsible for much of the
load energy reduction and cases L1, L6, and L7 are responsible for
most of the execution time improvement. An alternative instruction
encoding could be to use a single bit to encode the nonstrided L0
and L/ and the strided L6 and L7 cases. For a 3-entry SAS, this
would mean decreasing the number of bits used to encode the load
or store context from four (2+2) to three (1+2) (see Figure 12).
Such a decrease could be beneficial for instruction set architectures
with more restrictive displacement fields like the ARM instruction
set that only has 12-bit displacements for loads and stores.

Figure 19 shows the decrease in DTLB and L1 DC tag array ac-
cesses and L1 DC data array accesses. Decreases in DTLB and L1
DC tag array accesses are obtained from hits in the SAS structure
(LA4-L7 and S$2-S3). Decreases in L1 DC data array accesses come
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Figure 19: DTLB/L1 DC Tag Array and L1 Data Array Accesses
by Benchmark

from accessing 1 of 4 (L2-L5) or accessing 0 of 4 (L6-L7) L1 DC
data arrays. On average, 45% of the DTLB accesses and L1 DC tag
checks and 38% of the L1 DC data array accesses are avoided.

Figure 20 shows the effect on L1 DC and DTLB energy for each
benchmark. The energy reductions varied from as low as 16.8% for
dijkstra to as high as 81.1% for gsort with an average of 43.5%.
These variations are affected by the context in which the frequent
load and store instructions are performed that determined their clas-
sification. Since the execution time improvements of our proposed
techniques are quite significant the overall CPU energy dissipa-
tion will be reduced. However, the energy usage improvements pre-
sented in this paper are for the L1 DC and the DTLB only.
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Figure 20: Data Access Energy by Benchmark

Figure 21 shows the effect on execution time for each bench-
mark. The execution time reductions varied from almost no effect
up to 20% with an average of about 6% with every benchmark pro-
viding some improvement.

8. Related Work

It is common for level-two (L2) or level-three (LL3) caches to se-
quentially access their tag and data arrays to reduce energy us-
age [7]. This approach is practical because memory accesses to the
L2 and L3 caches are relatively few compared to L1 cache accesses,
hence the execution time overhead is low. It has been shown that al-
ways sequentially accessing the tag and data arrays for load opera-
tions to the L1 DC incurs an unacceptable performance penalty [8].

Many techniques have been proposed to reduce energy in set-
associative L1 DCs. Unlike our context-aware techniques, way-
prediction techniques have a relatively high performance penalty
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Figure 21: Execution Time by Benchmark

of several percent [8, 9]. A way cache was used to save the L1
DC way of the last 16 cache accesses in a table, and each memory
access performs an associative tag search on this table [10]. If there
is a match, then only a single L1 DC way is activated. The energy
to access this way cache is likely similar to the energy of accessing
a DTLB. In contrast, our strided access structure is much smaller
and at most only a single entry is accessed for each load reference.
Way halting is another method for reducing the number of tag
comparisons [11], where partial tags are stored in a fully associative
memory (the halt tag array) with as many ways as there are sets
in the cache. In parallel with decoding the word line address, the
partial tag is searched in the halt tag array. Only for the set where
a partial tag match is detected can the word line be enabled by the
word line decoder. This halts access to ways that cannot contain
the data as determined by the partial tag comparison. Way halting
requires specialized memory implementations that might have a
negative impact on the maximum operational frequency.

Witchel et al. propose a hardware-software design for data
caches using direct address registers (DARs) [12]. The compiler
annotates a memory reference that sets a DAR identifying the ac-
cessed L1 DC line and subsequent memory references that are
guaranteed to access the same line reference the DAR. The DAR
approach is somewhat similar to the approach we use for case L5
in Table 5 as both approaches annotate load and store instructions
and store the way in which the data resides to avoid tag checks
and n-1 data array accesses for an n-way associative L1 DC. How-
ever, the DAR approach requires several compiler transformations,
such as loop unrolling and stripmining, to make these guarantees,
which can result in code size increases. In contrast, our strided ac-
cess structure contains a tag and index field to ensure that the entry
matches the reference, which enables our approach to potentially
avoid more L1 DC tag checks with fewer changes to the compiler.
In addition, our techniques also avoid more L1 DC data array ac-
cesses (L2-L3, L6-L7) and improve performance (LI, L4, L6-L7).

Other small structures have been proposed to reduce L1 DC en-
ergy usage. A line buffer can be used to hold the last line accessed
in the L1 DC [13]. The buffer must however be checked before
accessing the L1 DC, placing it on the critical path, which can de-
grade performance. The use of a line buffer will also have a high
miss rate, which may sometimes increase L1 DC energy usage due
to continuously fetching full lines from the L1 DC memory. A small
filter (LO) cache accessed before the L1 DC has been proposed to
reduce the power dissipation of data accesses [14]. However, filter
caches reduce energy usage at the expense of a significant perfor-
mance penalty due to their high miss rate, which mitigates some of
the energy benefits of using a filter cache and has likely discouraged
its use. A technique to speculatively access an L0 data cache in par-
allel with its address calculation was proposed to not only eliminate
the performance penalty but also provide a small performance im-
provement compared to not having an LO data cache [15]. While
this approach does not require any ISA changes, our context-aware



loads and stores approach is simpler to implement in hardware and
provides comparable energy and greater performance benefits. A
tagless access buffer (TAB) has been proposed to reduce the en-
ergy usage of strided access [16] by accessing a compiler managed
structure instead of a more expensive L1 DC. However, the use of
a TAB requires additional instructions to be inserted and prefetch-
ing of data, which results in both greater ISA changes and a more
complex hardware implementation than the presented approach.

One proposed scheme, which claims to eliminate about 20%
of the cache accesses, always reads the maximum word size even
though the load may only be for a byte. The additional data read can
then be used in a later memory reference without accessing the L1
DC [2]. This approach requires an associative check of block num-
bers and word offsets of all the entries in the load queue. In contrast,
our approach only requires checking one strided access entry.

9. Future Work

There are several enhancements that could be made to improve the
energy and performance benefits of context-aware loads and stores.
Compiling the entire run-time library would enable enhancement
of more loads and stores, which should improve both energy usage
and performance. There are often cases where an SAS entry is al-
located in a loop, but is evicted before being accessed again due to
a function being called in that same loop. Performing interprocedu-
ral analysis would enable different SAS entries to be used, which
should result in fewer SAS evictions. The techniques proposed in
this paper were evaluated for an in-order pipeline, but they are also
potentially beneficial for out-of-order (O0O) pipeline. While it is
likely that some of the load stalls can be avoided in an OoO pro-
cessor, much of the energy benefits from exploiting context-aware
loads and stores may be possible. An experimental study is needed
to determine how to best apply these techniques within an OoO
pipeline and their potential benefits.

Currently the classification of loads and stores is performed af-
ter all compiler optimizations have been performed, which includes
instruction scheduling. The VPO scheduler attempts to separate
loads from dependent instructions as far as possible. One possi-
bility is to integrate the classification of loads and stores with the
instruction scheduler in an attempt to order instructions to achieve
the most effective classifications.

10. Conclusions

We have demonstrated in this paper that both data access energy
and performance can be improved by applying different techniques
for memory operations based on the compile-time context in which
they are performed. We simultaneously achieved a 6% decrease in
execution time and a 43% reduction in L1 DC and DTLB energy
usage. Our techniques are relatively simple to implement in a pro-
cessor, can be achieved without aggressive compiler optimizations,
and require only small changes to an instruction set architecture.
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