

Implementing stereoscopic
video processing on FPGA
Master’s thesis in Embedded Electronic System Design.

Ástvaldur Hjartarson, Klas Nordmark
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author warrants
that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible
on the Internet.
Implementing stereoscopic video processing on FPGA
Ástvaldur Hjartarson and Klas Nordmark

© Ástvaldur Hjartarson and Klas Nordmark, June 2015.

Examiner: Per Larsson-Edefors, Department of Computer Science and Engineering

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A frame processed by the system described in this report, taken after (from
left to right) remapping, Gaussian blur and Sobel filtering.

Typeset in LATEX
Department of Computer Science and Engineering
Gothenburg, Sweden June 2014

ii

Abstract
The purpose of this thesis is to investigate the viability of using FPGA acceleration
in the processing of a stereoscopic video feed. This is done by comparing speed for a
given processing resolution with a software implementation, as well as investigating
power and area usage. The processing performed include greyscaling, remapping,
resizing, Gaussian blur and Sobel filtering. Methods for disparity map calculations
are also investigated. A system capable of processing video at 60 stereo frame pairs
per second was developed.

Keywords: computer vision, FPGA, video, image processing, disparity, stereoscopy.

iii

Acknowledgements
We want to thank Lars Svensson at the Chalmers Department of Computer Science
and Engineering for his support, as well as Johan Wiebe for his invaluable knowledge
of the underlying mathematics of this work. We are also grateful towards Travis
Oliphant for the original creation of NumPy, which has helped us immensely as a
free tool for mathematical programming.

Ástvaldur Hjartarson and Klas Nordmark, Gothenburg, June 2015

v

Contents

List of Figures viii

List of Tables x

Nomenclature xiii

1 Introduction 1
1.1 Background . 1
1.2 Aims . 2
1.3 Limitations . 3
1.4 Material . 3

1.4.1 Hardware . 3
1.4.2 Software . 3

2 Methodology 5
2.1 Literature study . 5
2.2 Design methodology . 5
2.3 Evaluation . 6

3 Technical background and theory 7
3.1 Digital video . 7

3.1.1 Stereo video . 8
3.2 Conversion from RGB to greyscale 8
3.3 Remapping . 9
3.4 Resizing . 11
3.5 Filters . 11

3.5.1 Gaussian blur . 12
3.5.2 Sobel filter . 12

3.6 Disparity map . 13
3.6.1 Sum of absolute differences . 16
3.6.2 Belief propagation . 17

4 Implementation 19
4.1 Architecture overview . 19
4.2 Interfaces . 19

4.2.1 Video input assumptions . 19
4.2.2 Memory . 20

vii

Contents

4.3 Interstage synchronization . 21
4.4 Implementation details . 22

4.4.1 Greyscaling . 22
4.4.2 Remapping . 23
4.4.3 Resizing . 28
4.4.4 Gaussian blur . 30
4.4.5 Sobel filter . 30

4.5 Verification . 31
4.5.1 On-Chip functional verification 32
4.5.2 Problems with verification . 33

5 Results 35
5.1 Greyscaling . 35
5.2 Remapping . 38
5.3 Resizing . 40
5.4 Gaussian blur . 42
5.5 Sobel filter . 43

6 Discussion 45
6.1 Results and further development . 45
6.2 Work process . 47

7 Conclusion 49

Bibliography 50

viii

List of Figures

3.1 Illustration of epipolar geometry. 8
3.2 Demonstration of forward mapping. 10
3.3 A demonstration of the bilinear interpolation. 10
3.4 Software implementation of the output from the remapping stage. . 10
3.5 Illustration of weight calculation. 11
3.6 Diagram that demonstrates how distance is derived from disparity

assuming that the image planes are aligned. 14
3.7 Disparity as a function of distance. Black lines represent different ac-

curacies in the disparity levels, the leftmost line represents ± 2.0 dis-
parity level, and the lines following to the right have ±1.5,±1.0,±0.75
and ±0.5 disparity level accuracy. 14

4.1 Top level block diagram. 19
4.2 Synchronization signals between processing stages. 21
4.3 Synchronization state machine. 22
4.4 Block diagram of the greyscaling implementation. 23
4.5 Top level block diagram of the remap stage implementation. 23
4.6 The amount of lines needed to buffer at the input as a function of a

row in transformation matrix. 24
4.7 Block view of the Remap stage. 25
4.8 Statistics on how many consecutively column pixels are fetched from

the same input frame row. 26
4.9 A demonstration of the four types of input pixel row fetches that the

cache controller performs. 26
4.10 Ratio between original and downscaled frame. 29
4.11 Block diagram of the resizing implementation. 30
4.12 Block diagram of the Gaussian blur implementation. 30
4.13 Block diagram of the Sobel filter implementation. 31
4.14 Block diagram of the verification environment. 32
4.15 The datapath for the verification system. The numbers in the figure

represent bottlenecks that inhibit faster processing speeds. 32

5.1 Before greyscaling. 37
5.2 After greyscaling. 37
5.3 Figures (a) and (b) show left and right remapping input, Figures (c)

and (d) are the left and right images after remapping. 39
5.4 Before resizing. 41

ix

List of Figures

5.5 After resizing. 41
5.6 After Gaussian blur. 42
5.7 After Sobel filter. 43

x

List of Tables

4.1 Expansion of different components from equation 3.3. 27
4.2 Operations done in each stage of the Interpolator. 28

5.1 Results for the greyscaling stage. 36
5.2 Software frame rate for greyscaling. 36
5.3 Results from the remapping stage. 38
5.4 Software frame rate for remapping. 38
5.5 Results for the resizing. 40
5.6 Software frame rate for resizing. 40
5.7 Results for the Gaussian blur. 42
5.8 Software frame rate for Gaussian blur. 42
5.9 Results for the Sobel filter. 43
5.10 Software frame rate for Sobel filter. 43

7.1 Utilization and power consumption for the combined system. 49

xi

List of Tables

xii

Nomenclature

BRAM Block Random Access Memory.

B One byte.

DDR3 Dual Data Rate 3, a kind of dynamic random access memory.

Disparity map Matrix containing information on the coordinate difference be-
tween points in a stereo image pair.

Epipolar plane The plane formed by a point in 3D space and the optical centers
of two cameras.

FF Flipflop, one-bit storage element.

FPGA Field Programmable Gate Array, a kind of programmable logic device.

Frame An image in a video feed.

Gaussian blur Smoothing filter based on the Gaussian distribution.

Horopter is the 3D space that the stereo camera explores.

Kernel Matrix used in convolution with an image.

LUT Look-up table.

Pixel Smallest element of a frame, provides color information for a position.

RGB Red Green Blue, additive color model based on these three colors.

SAD Sum of Absolute Differences, a method for quantifying similarity.

Sobel filter A kind of edge-enhancing filter.

Stereo image pair Two images of the same scene taken from slightly different
positions.

xiii

List of Tables

xiv

1
Introduction

The purpose of this thesis is to investigate the viability of using FPGA ac-
celeration in the processing of a stereoscopic video feed. This is done by
comparing speed for a given processing resolution with a software imple-
mentation, as well as investigating power and area usage. Of particular

interest is investigating methods for disparity map calculations.
Video processing is typically a very computationally heavy task, with each image

frame providing a large amount of data. For example, a direct implementation of
convolution between an image of 1024 by 768 pixels and a 7 by 7 elements large ma-
trix needs 49 multiplications and 48 additions for each output pixel. For a frame rate
of 20, this would require 1526 million integer operations per second. As we cascade
several tasks of comparable complexity, software on general embedded processors
may become unsuitable for real-time applications [1].

Many image processing algorithms, however, are inherently parallel. In the ex-
ample above, no output pixel is dependent on any other output pixel. In dedicated
hardware, all 49 multiplications for an output pixel could be performed in a sin-
gle clock cycle. If very high speeds were required, multiple output pixels could be
calculated concurrently. In a system with cascaded image processing, the different
processing stages could also be performed concurrently in a pipeline. As custom
silicon solutions are not reconfigurable and have prohibitively large non-recurring
engineering costs, FPGA becomes an attractive choice of platform.

The thesis is structured as follows. An overview of the method that the problem
was approached with is given in Chapter 2, Methodology. Chapter 3, Theory, pro-
vides a mathematical description of all processing stages that are to be implemented.
Chapter 4, Implementation, provides information on the general architecture of the
system that has been developed, the interfaces that are used and the implementa-
tion of the algorithms described in Chapter 3. Results such as calculation speed and
area usage are provided in Chapter 5. Chapter 6 provides discussion on the results
and problems that have been encountered, and Chapter 7 contains the conclusions
that have been reached.

1.1 Background
Research in real-time video processing for extracting useful data is utilized in many
fields, such as active-safety systems and surveillance [2][3]. The computational com-
plexity of the algorithms involved lead to specialized hardware being used, such as
digital signal processors or FPGAs [3].

1

1. Introduction

Using an FPGA to accelerate video processing in general is a well-documented
area [3]. Problems similar to what will be described below can be found in literature
[4][5], and our scientific motivation is to investigate if we can make any improvements
in terms of speed compared to existing solutions.

1.2 Aims
During the course of the thesis project, a video preprocessing system will be devel-
oped. The intended application is for use with stereoscopic cameras in the context
of pattern recognition, particularly the detection of humans in the video feed. It is
expected that the depth information will increase accuracy of pattern recognition
compared to a simple 2D image.

Specifically, the project aims to implement the following processing stages in an
FPGA:

• Conversion from RGB to greyscale, in order to reduce the amount of data.

• Remapping, in order to to compensate for distortion introduced by the optics
and aligning rows for disparity calculation

• Resizing, in order to reduce the amount of data.

• Smoothing with a Gaussian blur, in order to reduce the impact of high-
frequency noise

• Sobel filtering, in order to enhance edges

For the entire system, and where applicable for each block, the following ques-
tions can then be investigated:

• How many clock cycles are needed to perform the processing?

• How much area does the implementation use?

• What is the minimum memory bandwidth needed?

• How much power is dissipated?

• What is the maximum stereo frame rate possible?

• What is a suitable amount or parallelism, considering platform constraints and
the throughput of other processing stages?

All of this put together let us answer the final question - is FPGA a suitable
platform for the problem at hand? The goal is to process a minimum of 20 stereo
frame pairs every second. Higher frame rates would be preferable. In order to use
this system, I/O and memory interfaces will have to be developed as well.

The report is also intended to provide a small study of different methods for
disparity map calculations, in order to make a recommendation on which algorithm
to use in further development. The disparity map is calculated from a stereo image
pair and gives depth information.

2

1. Introduction

1.3 Limitations
The method used in this study is to implement the processing on a particular FPGA
development board - it is deemed too time-consuming and of limited academic in-
terest to design a custom PCB. Accordingly, the project has strict limits defined
by the components available on the board. Field tests with an actual camera are
outside the scope of the project.

1.4 Material
An FPGA platform and associated software was necessary in order to execute the
project. This section describes the tools used and points out important features.

1.4.1 Hardware
The development board used in the project was an Xilinx Artix-7 FPGA AC701
Evaluation Kit [6]. Components of particular interest on the board are

• Artix-7 XC7A200T FPGA from Xilinx featuring 215360 logic cells, 740 DSP
slices and 13140 kbit of on-chip RAM [7].

• DDR3 memory from Micron Technology, 1 GB large with 64-bit wide bus and
a bandwidth of 12.8 GB/s [8].

• I/O including 1000 Mbit/s ethernet connection and HDMI output.

• A Quad SPI Flash from Micron containing 32MB (256Mbit).

An Bumblebee stereo camera was used to film the video used to test the pipeline
[9].

1.4.2 Software
The Xilinx Vivado Design Suite was used as the development environment through-
out the project. Apart from supporting implementing and programming designs
for the device that was used [10], it offers helpful features such as simulations [11],
creating and reading integrated logic analyzers (ILA) for debugging [12], and a cat-
alog of IP cores from Xilinx [13]. Xilinx SDK was used to develop software for a
Microblaze core used for verification purposes.

3

1. Introduction

4

2
Methodology

This chapter describes the initially planned methods for developing the sys-
tem and finding answers to the questions described in Chapter 1. First
the initial literature study is described. Following this, the approach to
the design process is presented. Finally, the planned evaluation methods

are described.

2.1 Literature study
The project began with a literature study in order to understand the problem
at hand. Relevant sources were found primarily through the search tools of the
Chalmers library. Both established literature on digital image processing and recent
research papers, particularly on disparity calculations, were searched for. Manuals
and data sheets provided online by Xilinx were also very important sources of in-
formation. A full list of sources used in the writing of this report can be found in
the bibliography.

2.2 Design methodology
Platform choice was made before the project formally began, based on rough calcula-
tions on the required memory bandwidth and FPGA size (particularly the available
on-chip RAM and number of multipliers).

While it was expected that many design choices would have to be determined
after the literature study was done, a rough idea of how to approach the problem
was determined at the start of the project. The system itself would consist of a series
of processing stages with some kind of synchronization method. Use of a high-speed
external memory would be necessary - the DDR3 on the board chosen. It was also
known that the greyscaling and downsizing of the image would decrease the amount
of data to such a degree that much of the intermediate data could be stored on-chip
on the current platform, improving speed and avoiding arbitration issues for DDR3
access.

Another important requirement for the project that was known from the be-
ginning was the need of a way to write and read images to the system. As the
development board does not have an image sensor, we would need to upload images
from a computer. The initial plan was to communicate over UART, with storage
being done on the on-board Flash memory.

5

2. Methodology

Our planned debugging method was mainly to use the Vivado simulator. We
also planned to use integrated logic analyzers when simulated behavior and on-chip
behavior did not match.

2.3 Evaluation
Evaluation was to be performed by determining throughput, latency, area and power
consumption with help by the Vivado IDE, both for individual processing stages and
the system as a whole. While the primary goal was to meet the minimum frame
rate of 20, investigating these quantities for different amounts of parallelization
was considered interesting as well. The input to the system in simulation was
an recording from an Bumblebee stereo camera [9]. The input would then give
a reasonable activity file that could be used to determine the power consumption.

Answering the main question of the thesis - if an FPGA is a suitable platform
for the application or not - would be done by comparing the cost of the device with
the cost of a CPU or GPU capable of meeting the same constraints on throughput.
Software implementations were available for this comparison. Reliability and power
consumption would be secondary aspects to compare.

Part of the evaluation would also be to theoretically reason about a few different
algorithms for disparity map calculations and determine which one of these would
be most suitable for the application and the target hardware.

6

3
Technical background and theory

This chapter provides technical background and mathematical background.
First some important terms related to digital video in general and stereo
video in particular are defined, and then the theory behind all processing
stages is described. Finally, the problem of disparity map estimation is

described. Two different algorithms are presented.

3.1 Digital video
Video consists of a series of still images — called frames — displayed in fast enough
succession to give the impression of fluid movement. In the digital domain, the
frames are matrices of pixels. The pixel is the smallest area for which color and
intensity can be defined in the image [14]. Keeping with the fact that the image is
mathematically a matrix, terms such as row and column will be used throughout
the thesis.

There are many different methods to represent color, known as color spaces.
The one most commonly used in displays is the RGB color model. In this model,
the color of a pixel is defined as the sum of a red, a green, and a blue component,
each represented with a certain number of bits, commonly eight [14]. Input data has
been assumed to be represented in this way during the project. Internally the system
mostly uses a greyscale representation, meaning that each pixel is only represented
by an eight bit intensity value.

Convolution is an important operation in digital image processing. Two-dimens-
ional discrete convolution is a straightforward extension of the one-dimensional case.
A function is “slided” over the image, with the output pixel at the corresponding
position being a linear combination of the all pixels below the function scaled by
the value of the function at that position. In any practical case, the function with
which the image is convolved would be windowed and thus a matrix of finite size. In
image processing, this matrix is often called a kernel [1]. The convolution operation
is shown in Equation 3.1, where I is an image, k is a kernel, and K is the domain
of k [15].

(I ∗ k)(r, c) =
∑

(i,j)∈K

I(r − i, c− j)k(i, j) (3.1)

7

3. Technical background and theory

3.1.1 Stereo video
The system described in this thesis is intended for usage with a stereo camera.
A stereo image pair consists of two images of the same scene, taken from slightly
different positions at the same time. The differences in the images can be used to
calculate distances [15]. A few terms will be explained here in order to facilitate the
understanding of later sections, particularly on disparity map calculations.

The problem of extracting depth information from a stereo video feed is greatly
simplified if each row in the left image resides on the same epipolar plane as the
corresponding row on the right image. An epipolar plane is a triangle with its
points at the optical centers OL and OR of the cameras and some point P . The
lines containing the intersection between the epipolar plane and the image planes
are known as epipolar lines [16]. The concept is illustrated in Figure 3.1.

Figure 3.1: Illustration of epipolar geometry.

Generally, a point in space is projected to different coordinates on the left and
right image planes. This difference is known as disparity and is useful for determining
distances in the images. If the epipolar constraint described above is met, the
disparity between the images only needs to be calculated along one dimension [16].
Meeting this condition is one of the purposes of the remapping stage described later.

3.2 Conversion from RGB to greyscale
Color data is not considered to be of importance in the system, only intensity.
Therefore, all images are converted to greyscale in order to decrease the amount
of data processed by later stages. The conversion from RGB to greyscale is made
by adding together the different color values with different weights according to
Equation 3.2:

D(i, j) = 0.2989R(i, j) + 0.5870G(i, j) + 0.1140B(i, j) (3.2)

Here R, G, and B are matrices containing the red, green and blue intensity values
for the input frame and D is the matrix representing the output frame.

The greyscaling is done for the left and right images independently. The weights
chosen are based on the ITU-R Recommendation BT.601 for digital encoding of
video [17].

8

3. Technical background and theory

3.3 Remapping
In stereo vision systems where frames are compared to each other, especially in
disparity calculations, it is important that the frames do not have any unwanted
difference which could distort the comparison. The difference can be due to lens
distortion and also because the camera sensors are not necessarily perfectly aligned.
As mentioned in Section 3.1.1, calculations are made simpler if the epipolar con-
straint is met. The cameras are spaced a few cm apart and may not be exactly
parallel to each other. Therefore the frames go through a remapping stage where
the frame is rectified and undistorted. The distortion that has to be compensated
for is inherent in the stereocamera lens.

There are two main sources of distortion in the Bumblebee camera lens: radial
distortion and tangential distortion. Radial distortion is due to the shape of the
magnification lens. The magnification in the middle of the image stretches the
observed area, but as we go near the edges of the image, observed area is compressed.
Tangential distortion is an effect that appears when the lens is not exactly parallel
to the imaging plane of the CMOS sensors. This makes the image a little skewed or
tilted. To compensate for the distortion in the lens, a calibration matrix is computed
offline before the system is put online. The calibration is done as described by Zhang
[18].

We rectify the image so that each row in each stereoscopic frame pair has matched
epipolar lines [19], which means that a matching pixel pair that points to the same
geometric area or object should be found on the same row in each frame. This re-
quirement greatly simplifies the search for matching pixels. Before rectification, the
image sensors are not coplanar, since image sensors might have some manufacturing
issues. Then, rectification is performed and it uses geometric transforms to rotate
the images so they are coplanar and the rows in each frame are aligned according
to the epipolar constraint [20].

The undistortion of the lens and the rectification of the frames are combined into
a transformation matrix. The transformation matrix can be split into two parts:
forward mapping and backward mapping. A demonstration of forward mapping can
be seen in Figure 3.2. The input image is shown, with parts of the image that will
be removed in the remapping red-tinged. The forward mapping is then essentially
the gray part of the image that is left. The next step is to backward map using
these pixels to produce the output frame. The backward mapping is to map an
output pixel to a pixel in the forward mapped region. The position in the forward
mapped region that is mapped to does not necessarily coincide with a pixel. Subpixel
information is used, making interpolation necessary. For example, in Figure 3.3, the
output pixel at position (1, 2) is supposed to take its value from position (115.6,
49.3) in the original image, where x = 0.6 and y = 0.3 are fractional components.
The intensity of the output pixel is therefore calculated from the neighboring pixels
through bilinear interpolation:

U = a(1− x)(1− y) + bx(1− y) + c(1− x)y + dxy (3.3)

U is then placed in position (1,2) in the output frame. The bilinear interpolation of
Figure 3.2 can be seen in Figure 3.4.

9

3. Technical background and theory

Figure 3.2: Demonstration of forward mapping.

Figure 3.3: A demonstration of the bilinear interpolation.

Figure 3.4: Software implementation of the output from the remapping stage.

10

3. Technical background and theory

3.4 Resizing
In order to decrease the amount of calculations needed in the later parts of the
system, the frames are downscaled. While a lower resolution camera feed could be
used to begin with, having a higher resolution input has advantages - the higher-
resolution image could be useful in finer feature detection, making it possible to
implement more functionality later on. The resizing of the images uses a weighted
average to calculate the values for the pixels in the smaller image. This is done first
either along the rows, or the columns of the image matrix, and then along the other
dimension [14]. For each row ib in an intermediate, row-downsized output matrix
B, the value of each pixel can be calculated according to Equation 3.4.

B(ib, j) =
u∑

k=−u

w(k)A(ia + k, j) (3.4)

Here A is the input image frame and ia is the middle of the rows being averaged
for ib. u is equal to half the length of the nonzero part of the weight function
w(k) rounded down. The same procedure can be done along the columns of the
intermediate matrix to complete the downsizing.

The weight function used is triangular in shape. The exact weights are different
for each output pixel. An output pixel corresponds to an area in the original image
whose center does not necessarily coincide exactly with a certain input pixel, and
different weights are used to take this sub-pixel information into account. The idea is
illustrated in Figure 3.5. The weights are calculated by assuming a triangle window
centered around the corresponding position of the output pixel in the original image
with sub-pixel precision. The triangle function has value 1 at the center and then
decreases linearly to zero at the edges. The weights are then calculated by finding
the value of the triangle function at the original pixels within the window, and then
normalizing the sum to 1.

Figure 3.5: Illustration of weight calculation.

3.5 Filters
After resizing, the images are filtered in order to smooth out high frequency noise
and emphasize edges. The smoothing is achieved with a Gaussian blur, and the edge
enhancement is done with a Sobel filter.

11

3. Technical background and theory

3.5.1 Gaussian blur
This filter consists of convolving the image with a windowed two-dimensional Gaus-
sian function, shown in Equation 3.5. The filter prevents outliers and other noise
that may have been introduced in the image capture and processing steps thereafter
[21].

G(x, y) = 1√
2πσ2

e
x2+y2

2σ2 (3.5)

This constitutes a low-pass filter, smoothing the image. The window used in this
work has a size of seven by seven pixels. The image frame is zero-padded to enable
calculations for the pixels along the edges of the frame. If we denote the input
matrix A and the output matrix B, the operation can be expressed as in Equation
3.6.

B(i, j) =
7∑

m=1

7∑
n=1

A(i+m− 1, j + n− 1)G(m,n) (3.6)

3.5.2 Sobel filter
Edges in an image are characterized by fast changes in intensity. Accordingly, a filter
that emphasizes edges should leave high-frequency components as they are while
attenuating low frequencies. One of the simpler ways to do this in digital image
processing is with a Sobel filter. The Sobel filter is a discrete-time approximation
of the gradient of the continuous image that the frame is assumed to be sampled
from. The spatial derivative of an input matrix A is approximated in the horizontal
and the vertical direction through convolution with two different kernels, as shown
in Equation 3.7 and Equation 3.8, respectively [22].

Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ A (3.7)

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ A (3.8)

With this convolution, each output pixel in Gy and Gx is a weighted sum of the
difference between its immediate adjacent pixels along the respective dimension and
the differences between the corresponding pixel pairs immediately adjacent to this
pair. The middle pair is given weight 2 while the two other pairs are given weight
1.

In this application, only the magnitude is important, not the direction of the
gradient. The magnitude is calculated as shown in Equation 3.9.

G(x, y) =
√
G2

y(x, y) +G2
x(x, y) (3.9)

12

3. Technical background and theory

3.6 Disparity map
The disparity map is a matrix of all the disparities that can be calculated between
the two cameras. To find the pixels that correspond to the same point in space is a
computationally heavy operation, and we will go into the details later in the section.
But if the we know which pixels match then distance can be calculated. Figure 3.6
demonstrates a stereo camera setup, where distance z to point h is related to the
disparity between frames [20]. Disparity is d = xL− xR, xL and xR are the position
of the best matching pixels in each frame. The left image plane and the right image
plane are assumed to be coplanar, which should be true after the remapping stage.
Distance fL and fR is the length from the focal point(OL and OR) of the lenses to
the image plane of each camera, f = fL = fR is true if the planes are coplanar.
Baseline b stands for the length between the two camera centers. The pixel size (p)
of each individual pixel in the camera also affects the length, since the pixel gives
discrete intensity values at a fixed area and therefore affects the continuity of the
baseline. The focal length has also to be tuned to the pixel size, since too much light
going through individual pixels sensors will distort the image. B and C in Figure
3.6 are then finally assumed to be of equal length and with these assumptions we
can derive the length from the baseline b to the point h.

z = bf

dp
(3.10)

As can been seen in Equation 3.10 there is an inverse relationship between the
disparity and distance. Therefore a small disparity represents a great distance and
in contrast a large disparity represents a small distance, this relation can be seen in
Figure 3.7. In Figure 3.7 we plot the relationship between disparity and distance
with parameters from a Bumblebee stereo camera [9].

When deciding which algorithm is feasible for detecting objects such as humans,
design accuracy will be an important factor. In Figure 3.7, five black lines are
plotted. They represent the distance that can be achieved with different disparity
accuracy, if we want to be able to have at least 10 cm depth resolution. Furthermore
the lines represent the minimum allowed disparity, that is if resolution of 10 cm is
needed. With better accuracy, the running time of the algorithms is usually slowed
down. However, the camera can be set up so that small inaccuracy will not affect
the range of intrest. On the other end is the maximum disparity and it can limit how
close to the camera we can see. The higher the maximum disparity is the slower the
algorithms become, since each pixel has to compare with more pixels in the other
frame. After the rectification step in remapping, the rows in each camera frame
should be epipolar lines and therefore the matching location in the other image
should be along the same row. Hence the task of finding a matched pixel is greatly
simplified.

13

3. Technical background and theory

Figure 3.6: Diagram that demonstrates how distance is derived from disparity
assuming that the image planes are aligned.

Figure 3.7: Disparity as a function of distance. Black lines represent different
accuracies in the disparity levels, the leftmost line represents ± 2.0 disparity level,
and the lines following to the right have ±1.5,±1.0,±0.75 and ±0.5 disparity level
accuracy.

14

3. Technical background and theory

The disparity map stage is a computationally heavy operation. Therefore it
is important to choose an algorithm that fits well with an FPGA platform. To
understand what algorithm we should use, a small overview of existing algorithm
was conducted. Stereo vision disparity algorithms have been categorized into four
essential steps or substeps [23]:

• Similarity matching, or matching cost computation

• Cost (support) aggregation

• Disparity computation

• Validation and disparity refinement

The first step, similarity matching, is done by comparing pixels in one frame,
called the base frame, with the matching stereo frame. Comparing the pixels can
be done with squared intensity differences (SD), absolute differences (AD) or more
robust methods that help the next step in the algorithm to perform better[23]. The
dissimilarity of the pixels is called cost. How we compare the two frames depends on
the algorithm, but to reduce the amount of computations performed a horopter is
established. The horopter sets minimum disparity and maximum disparity between
the frames [20]. That horopter is then used to limit the disparity algorithms range in
searching for corresponding pixels. The similarity function then creates a disparity
space which is a cube that has the same size as one frame and a depth that is
determined by the horopter [23].

The second step is cost support aggregation. This step is different depending on
which particular disparity algorithm is used. Cost support aggregation is essentially
the process of finding a potential matching pixel in the disparity space by means of
a supporting region [23]. The supporting region usually is a window function that
compares the neighboring pixels at that disparity with the anchoring window in
the reference frame. The anchoring window is not moved while comparing with all
the possible matches in the other frame, the range the window travels is set by the
horopter. The anchoring window is then moved to the next pixel in the reference
frame and same procedure of traversing the range is followed. This step is often
skipped by global algorithms, since in the global case the support aggregation is
often implicit in the disparity computation [23].

The third step is the disparity computation. How disparity is computed is de-
pendent on the algorithm but they all try to find the matching pixel based on the
previous steps. The algorithms can be divided into three groups: local, global, and
hierarchical algorithms [23]. Local methods use a window of data centered on the
position where the output disparity is to be calculated, see Section 3.6.1. These
methods lack accuracy and reliability in texture-less environment but perform with
good speed [24]. In contrast, there are global graph methods that use values from
all over the frame in a graph structure, propagating information between them to
find the disparity of a single pixel. These methods do not generally work in real
time but have higher accuracy than the local methods [24]. In between global and
local methods we have also hierarchical methods that employ a hybrid of the two

15

3. Technical background and theory

methods, for example block based belief propagation [25]. The hierarchical meth-
ods try to reduce the accuracy of a global method to get an increased speed in the
computation.

The fourth step is to refine the disparity output. The refinement is often done
with median filters that remove spurious disparities which are also known as spikes.
Another refinement method is to achieve sub-pixel disparity through curve fitting
between the calculated values, the curve is then used to get subpixel data. Also of
importance is how occluded areas are dealt with. Occluded areas are the areas that
one camera sees but the other one does not, e.g. when one camera sees behind a
human but the other camera does not see that area. Occluded areas can be dealt
with by assigning a likely neighboring value to the area or by using surface fitting
techniques [26][23].

In the following subsections we will briefly describe two algorithms that represent
local and global methods.

3.6.1 Sum of absolute differences
The traditional method of detecting similarities is with the sum of absolute differ-
ences (SAD) [23]. A similarity measure is computed by subtracting the intensities
of pixels in one frame from the corresponding intensities in the other frame and
then taking the absolute value. The matching cost is then summed up inside a local
window. Equation 3.11 describes this process [27].

SAD(x, y, d) =
bw2 c∑

h=−bw2)c

bw2 c∑
k=−bw2)c

|IL(x+ k, y + h)− IR(x+ k, y + h+ d)| (3.11)

Here w is the length of the edge of the window; the window is a square and the
lengths of its edges are odd, IL is the left image and IR is the right image. x and y
are the coordinates inside the frames. The window is moved over the images along
the same row until it reaches the maximum disparity value. Then the minimum
error from Equation 3.11 is chosen as the corresponding pixel in the other image.
This optimization of taking the lowest error is called Winner Takes it All (WTA)
[23]. The method can introduce errors in disparity when observing texture-less or
repeating regions.

Disparity refinement methods can help with cleaning up outliers and occluded
areas. Median filters can filter out the outliers. Occluded areas can also be reduced
by comparing the right image to the left image as well as comparing the left image
to the right image [23]. The last method would shrink the disparity map by the size
of the SAD window. Furthermore for most local methods accuracy is an issue [23].
However, if the camera has a small distance that it has analyze, for example a 1.5
m range, then the camera can be set up so that an resolution of few disparity levels
does not affect the the distance calculation. This can be seen from Figure 3.7.

16

3. Technical background and theory

3.6.2 Belief propagation
Belief propagation (BP) is a global method that achieves high accuracy disparity.
Implementations of the BP as an hierarchical method on an FPGA have shown
promising results in regards to running time [25]. However, as a global method on a
CPU, it has achieved 1 second processing time for one image pair [28]. BP assigns
each pixel with a label fp in a finite set L. In the case of disparity calculations, fp

represents disparity and L is limited in size by the horopter. The algorithm uses
messages that are passed through Markov random field (MRF) models to try to
converge on a correct disparity between frames. The algorithm seeks to find the
labelling f that minimizes Equation 3.12. The equation gives the energy in the
difference between the labelling and the actual disparity. The energy is given by
two parameters, as seen in Equation 3.12 [29].

E(f) = Esmooth(f) + Edata(f) (3.12)

Here, Edata is the difference from the observed data and Esmooth measures how
much the labeling f is not piecewise smooth [29]. The algorithm is an approximation
of the optimal solution since labeling an MRF has been shown to be an NP-hard
problem [30]. The algorithm has to iterate over the whole graph many times in order
to get accurate results, the intermediate data of the algorithm is the disparity space
and hence a lot of data has to be stored in between iteration. The main drawback
of belief propagation is then the intensive memory storage requirements needed to
process one frame.

17

3. Technical background and theory

18

4
Implementation

This chapter will describe how the algorithms were implemented in the
FPGA, including general system architecture and a description of the in-
terfaces for input, output and memory. The chapter does not aim to give a
line-by-line description of the HDL code, but will describe relevant imple-

mentation details of the different processing stages. The verification methods used
are also described.

4.1 Architecture overview

Figure 4.1: Top level
block diagram.

The system is realized as a series of processing blocks. As
the calibration matrices for the remapping are too large
to be stored in on-chip RAM, external DDR3 memory is
used. Intermediate data is stored in on-chip RAM. The
general architecture can be seen in 4.1. As the system
is pipelined, the throughput of the system is equal to
the throughput of the slowest processing block, while the
latency is equal to the latency of the slowest processing
block multiplied by the total number of processing blocks.
The system clock speed is 200 MHz.

4.2 Interfaces
In order to read and write data, store intermediate values,
and debug the system, a number of different interfaces to
other devices had to be developed. These interfaces are
described in this section.

4.2.1 Video input assumptions
At the start of the project, the video input method was
not known. Therefore a few assumptions were made
about the input. It was assumed that the camera would
act as a rolling shutter and that it would send one row
at a time. Furthermore it was expected that there would
be some delay time between the rows and that the input
could be fed straight into the greyscaling stage. It was

19

4. Implementation

also assumed that the camera would be connected to the system through an ethernet
connection and therefore be limited to a data rate of 1 Gb/s.

4.2.2 Memory
This subsection will briefly describe the forms of memory employed in the system.
It only covers the memory expected to be used in a final product during run-time.
The verification section briefly describes how additional memory has been used in
development and can be used for automatic configuration of the FPGA.

4.2.2.1 Block RAM

The Artix-7 XC7A200T has 13140 kbit of on-chip RAM available. The size of
memories created in the design is always a multiple of 18 kbit (other sizes can be
chosen, but an amount of resources corresponding to the next multiple will be used).
The block RAM is highly configurable, with the width and depth being development
parameters. Two blocks can be appended to each other if a larger single memory
space is required. The RAM is true dual port, meaning that two read or write
operations can be performed at the same time, if care is taken not to work on the
same address (which may corrupt data). If so desired, the two ports can use a
different clock [31].

In the system, the block RAM is used to implement row buffers for the different
stages. Half the memory space is used by one stage to store output data, while the
other half is used by the other stage as input data. When both are done with one row,
they switch. Later stages, when the frame size has been reduced, employ full frame
buffering. This follows the same principle, but with one whole frame being written
or read before switching. The dual ports are very useful, as they allow pipelined
processing stages to read and write to a common memory space concurrently. As
the port width is set by the designer (within some constraints [31]), multiple pixels
can be read or written in a single operation.

4.2.2.2 DDR3

The Dual Data Rate 3 (DDR3) memory used to store frames between pipelines was
controlled using an IP core generated with Xilinx MIG (Memory Interface Gener-
ator) . This core gives a simpler interface compared to working directly towards
the memory. It also provides features such as optimizing in which order to read
requested memory positions, and then buffering them into the correct order [32].
The controller is clocked at twice the system clock rate, 400 MHz.

The memory itself has a 64-bit wide data bus. As a double data rate memory, it
works on both clock flanks, giving a peak transfer rate of 6.4 GB/s. The memory has
an 8n-prefetch structure, meaning that it communicates with the FPGA in bursts
of 8×64 = 512 bits. Data is arranged in columns along rows in four different banks.
Initially accessing a row has longer latency than consecutive reads along the same
row, motivating certain patterns of memory access. As all the data structures in
the system are read and written linearly along rows, the memory can usually be
operated at nominal speed.

20

4. Implementation

In addition to the IP controller, an arbiter was written to divide memory access
among the different processing stages. The arbiter receives requests from the dif-
ferent processing stages to use the memory, along with command code and possibly
data to be written. The arbiter handles requests in a fixed order determined from
the memory bandwidth needed by each processing block. This was proven unneces-
sary in the end, as the abundance of on-chip memory makes the DDR3 needed only
by the remapping stage.

4.3 Interstage synchronization
In order to synchronize all stages, there is a need to have a control state machine
for each stage. The signals we use are ready signals that propagate either forward
or backwards. In Figure 4.2, we demonstrate a connection diagram between three
blocks - previous (p), current (c) and next (n). The controller for each stage then
follows a state machine like described in Figure 4.3. In this diagram, the two first
numbers at each transition shows which value the external stage ready signals should
be in order to allow a transition (first the ready signal from the previous block,
then the ready signal from the next block). The two numbers to the right of the
slash indicate what values the output ready signals to the previous block and the
next block should be asserted as when the transition occurs. An x means that the
value does not matter. Transitions from the GO state also depend on stage-specific
internal logic (for example it only transitions to input wait when the calculations
on one row are complete).

If the input double buffer and the output double buffer are of the same size,
then handshakes are made with both the preceding and the succeeding stage before
calculations start. At the conclusion of a handshake, the two involved subsystems
switch which area of the shared RAM that they work on. However, the system
switches from buffering rows to buffering whole frames after the resizing stage, which
requires a special solution. This is simply handled by stage-specific logic ensuring
that handshakes with the Gaussian blur are only made after a certain number of
handshakes with the resizing.

cp n

p_c_r

c_p_r n_c_r

c_n_r

Figure 4.2: Synchronization signals between processing stages.

21

4. Implementation

Figure 4.3: Synchronization state machine.

4.4 Implementation details
This subsection summarizes how the processing described in the theory section was
implemented. All calculations on the amount of clock cycles needed for a stage are
assuming an ideal case where the throughput of the system is not limited by the
frame rate of the video source.

The block diagrams in this section are color-coded in the following manner:

White blocks Entities directly used by the processing stage illustrated.

Red blocks Neighbouring entities, included to make the data path clearer.

Grey lines Synchronization signals.

Blue lines Image data.

Red lines Other data, such as coefficients stored in memory.

4.4.1 Greyscaling
This processing stage has input pixels with a length of 24 bits, eight each for the
red, green and blue component. The output pixels — as well as the weights used
to calculate them — are eight bits long. The greyscaling needs three multipliers
for each pixel it should be able to calculate in a clock cycle. The input memory is
treated as a double row buffer.

Due to limitations in the interface between Microblaze and BRAM, the write
port width of the input buffer was limited to powers of two. Due to this limitation,
some additional logic to sort data read into the greyscaler correctly was added. For
example, if 256 bits are read in one clock cycle during operation, only 192 bits are
processed. The remaining 64 bits are stored in a register, and it is processed in the
second clock cycle, with the first 128 bits of the second memory read appended to it.
The remaining 128 bits are used in the third clock cycle with the first 64 bits of the
third memory read appended to it. The remaining 192 bits are stored and processed
in the fourth clock cycle, and the process then repeats itself. This means that no
memory is read in the fourth clock cycle. A simplified block diagram illustrating
the greyscaling component is shown in Figure 4.4.

22

4. Implementation

Figure 4.4: Block diagram of the greyscaling implementation.

4.4.2 Remapping
Remapping is the next stage in the image processing pipeline. Remapping shares a
block RAM with the greyscaling where data is buffered and synchronization signals
(described in Section 4.3) are used to control access to it (see Figure 4.5). Imple-
mentation of this stage is dependent on parameters from the commercial Bumblebee
stereo camera [9].

Figure 4.5: Top level block diagram of the remap stage implementation.

The top level block view seen in Figure 4.5 can be divided into three main areas:
memory controller, remap and interpolator. The memory controller’s role is to
handle the access to the input memory and to make sure that the greyscaling is not
overwriting data that has yet to be used by the remapping stage. Remap fetches
input pixel data from the input buffer, pairs it with the correct transformation
weights and signals the interpolator to work on the data. The interpolator then
takes the data into a pipeline where the data is processed and stored into the double
buffer in the resizing stage.

Most stages in the pipeline have a double row buffer, but the buffer between
greyscaling and remapping stage was chosen to be a circular row buffer(CB). The
reason for choosing a CB is because each output row might need multiple rows from
the input. The memory controller lets each stage have its row in the CB and the
stages have to ask permission to start on the next row. The amount of rows needed
to store on the input in the circular buffer depends on the transformation matrix
values which are computed in a foreground calibration.

23

4. Implementation

4.4.2.1 Memory controller

The memory controller reads pixels into the CB and and weights into the transfor-
mation matrix double buffer (DB). On start-up, the memory controller reads in a
row from the DDR3 external memory and compares all the transformation weights
to find the highest and lowest row needed in the input memory. That is, the highest
row is the row closest to the top of a frame and the lowest is the row closest to the
bottom of the frame. It then reads continuously from the greyscaling stage until
the lowest row needed for that output frame row has been written into memory, the
memory controller then signals the remapping stage that all input data is ready.
The next transformation matrix row in the DDR3 is then read simultaneously as
next row of the input greyscaled pixels is read into CB memory.

The memory controller stalls the input when it reaches the highest row that is
being processed by the remapping stage and the remapping stage stalls until it gets
the lowest row. Therefore the memory has to be bigger than the largest distortion in
the camera and a little bit more if possible since the remapping stage does not process
every row at a constant speed and because of the streaming input we might need
to keep a continuous input pixel flow. The input memory requirement of distortion
from the example stereo camera can be seen in Figure 4.6. The figure is plotted
by examining the highest and the lowest row on the input needed for that row on
the output. That difference is then the input storage need of that transformation
matrix. As can be seen, the requirements for storing input rows are greater around
the edges, since the distortion is greater closer to the edge of a frame.

Figure 4.6: The amount of lines needed to buffer at the input as a function of a
row in transformation matrix.

24

4. Implementation

4.4.2.2 Remapping

Figure 4.7: Block view of the Remap stage.

In Figure 4.7 we can see the remap stage; it consists of the fetch weights stage
(FW), cache controller (CC) and an interpolator. The FW stage interacts with the
memory controller and handles the synchronization logic. When FW reads the first
transformation weights, it checks if the input has reached the lowest row for that
output pixel row. If the input has not reached that row, then the FW stalls until
that row is in memory. When all rows are in memory, the FW stage tells CC that
the input for that row is ready and sends CC the first transformation weights. CC
then reads in the pixels needed for the transformation weight and stores them in
block RAM access registers. The CC reads a memory element into the cache which
is called word, word is the size of the port width to memory and includes a fixed
number of greyscaled pixels. When the registers have been updated the CC signals
the interpolator that it has all the data and ask FW for the next transformation
weights.

The size of the transformation weights has a critical effect on the off-chip memory
bandwidth. Equation 4.1 tells us how much off-chip bandwidth in MB is needed for
the stage:

M(fs) = 2fs(HW)(2(I + F)) (4.1)

Here H is height of frame, W is width of frame, fs is stereo frames per second,
I is the size in bits of the integer part of the weights and F is the size in bits of
the fractional part of the weights. In the implementation described here, I is 10
bits and F is 16 bits. Now, we put all the known factors in the equation above
we get that for each stereo frame processed per second we need memory bandwidth
of M(fs) = fs10.2MB/s. If the remapping is the only stage needing to access
to external memory, 626 transformation matrices could be read from memory per
second.

CC was implemented to reduce the block RAM memory access since we always
need pixels from two different places in memory if the port width is two. The
amount of pixels to be fetched from one frame row in the block RAM was decided
from Figure 4.8. Eight column pixels from the same row was chosen as the fetch
size, since it was the lowest average fetch size for the entire transformation matrix
in both lenses. The port width for the current transformation matrix is investigated
with different port widths in Section 5.2.

25

4. Implementation

Figure 4.8: Statistics on how many consecutively column pixels are fetched from
the same input frame row.

The set of accesses needed from the input block RAM can be seen in Figure 4.9.
Black pixels in Figure 4.9 are pixels that are not in the cache, white pixels are in the
cache, red pixels are pixels that need to be fetched from the input block RAM into
the cache, o is that starting transformation weight, and x is the next transformation
weight.

(a) (b)

(c) (d)

Figure 4.9: A demonstration of the four types of input pixel row fetches that the
cache controller performs.

When the stage starts a new output pixel row, it loads into word (l, i) and word
(l+ 1, i) (see Figure 4.7) the pixels that are needed for the first calculation, where i
is the column address in block RAM and l is the row address in block RAM. It then

26

4. Implementation

continues until the next transformation weight points to a pixel that is not in the
cache. If the input pixel needed is the one above or below, then one word read will
suffice. An example of a fetch that fetches the word above can be seen in Figure
4.9(a). If we need the row above then cache word (l+ 1, i) is used to store the input
pixel values in cache word (l, i) and cache word (l, i) is use to store input pixels in
the word address above, that is, word (l − 1, i).

If the same row is still needed when we get to the last column pixel stored in the
cache, we need to do a right shift. Such a fetch is demonstrated in Figure 4.9(b).
Word (l, i) and word (l + 1, i) are in memory and the word pair word (l, i+ 1) and
word (l + 1, i+ 1) are also needed in order to get input pixels that are across block
RAM address boundaries. Then two memory fetches are performed and all four
words are kept in memory.

If it happens that we are on the address boundary and the next transformation
weight is above or below, then we have the fetch case demonstrated in 4.9(c). Two
fetches are needed, one word below to the right and a word below to the left. The
left fetch is quite wasteful since we fetch 8 pixels for just the last pixel. Gribbon
et al. suggest[33] to use instead a three point bilinear interpolation to save us the
trouble of getting that corner pixel but in this implementation we still do that fetch.

The last and the worst case fetch is when pixels need be fetched across block
RAM address boundaries and at the same time we need a word in the row above or
below. This is demonstrated for the row above in Figure 4.9(d). Then we need fetch
from three memory locations, word (l − 1, i), word (l − 1, i+ 1) and word (l, i+ 1).
The same applies as in the fetch before that we only need one pixel from the word
(l − 1, i).

4.4.2.3 Interpolator

The interpolator is described in Section 3.3 by Equation 3.3. We implement that
equation by splitting it into four parts (U(1), U(2), U(3), U(4)). If we add these
parts together we should get the desired output pixel.

Table 4.1: Expansion of different components from equation 3.3.

U = U(1) + U(2) + U(3) + U(4)
U1= a(1− x)(1− y) a(1− x− y + xy) a((1− y)(1− x))
U2= bx(1− y) b(x− xy) b(x− xy)
U3= cy(1− x) c(y − xy) c(y − xy)
U4= d(xy) d(xy) d(xy)

Expansion 1 2 3
Additions 3+2 3+5 3+4

Multiplications 4+4 4+1 4+2
Latency 5 6 5

The addition of U(1), U(2), U(3) and U(4) to produce the output pixel and the
multiplication of the pixels (a,b,c,d) with the transformation fractional part (x,y)
cannot be reduced, but the operation of multiplying the transformation fractions
together can be reduced. In Table 4.1, three different expansion from the original

27

4. Implementation

equation are investigated. Multiplication and addition have the constants 3 and
4 respectively to show the operations that cannot be expanded. Multiplication is
a more power-expensive operation than addition; therefore we seek to reduce the
multiplication done by the interpolator. But as we can see in Table 4.1, latency
can also become an issue, since in expansion 2, we have the fewest multiplications
but we have to store all the pixels and transformation fractions for one clock cycle
extra. Therefore, expansion 3 was chosen to be implemented, since it had the lowest
latency and number of multipliers.

Table 4.2: Operations done in each stage of the Interpolator.

stage 1 2 3 4 5

Op.

1-y (1-y)(1-x) a((1− y)(1− x)) U(1)+U(2) U(1,2)+U(3,4)
1-x x-xy b(x− xy) U(3)+U(4)
xy y-xy c(y − xy)

d(xy)

To be able to clock the interpolation at a high rate, we need to have multiple
pipeline stages. The amount of pipeline stages affect the latency and the power
consumption. Table 4.2 shows the calculation done in each stage in the interpolator.

4.4.3 Resizing
The resizing scales down an image frame from 1024 by 768 pixels to 307 by 230
pixels in order to decrease the amount of calculations needed later in the signal
chain. The resolution is based on the software provided by the advisor - higher
resolution could potentially be used in a final hardware system. The ratio between
the input and output frame is illustrated in Figure 4.10. It is performed in two steps,
first along columns and then along rows. Weights as well as what input pixel indices
should be used for each output pixel is calculated offline and stored in read-only
memory on the FPGA at configuration. The weight window is nine pixels wide.
Input pixels, output pixels and weights are all eight bits long. The input memory
works as a double row buffer, identical to the greyscaling. The intermediate frame
data between column reduction and row reduction is stored in a double frame buffer,
requiring a significant amount of the available BRAM.

28

4. Implementation

Figure 4.10: Ratio between original and downscaled frame.

As can be seen, the resizing is in essence two largely identical processing stages,
one working horizontally and one working vertically. In each part, a top level handles
IO and synchronization. Beneath this level, a sorting unit is instantiated, which
routes pixel data to averaging units as specified by the contents of the index ROM.
Weights are taken from the weight ROM. The averaging units are instantiated below
the sorter, and finally multipliers are instantiated below each averaging unit. Each
averaging unit uses nine multipliers. One averaging unit is needed for each output
pixel to be calculated in parallel in each step of the resizing.

The resizer reads new data from the input BRAM when signalled by control logic
in the sorter. This logic checks if the index ROM indicates that there are pixels
needed in the next output calculation that are not among the currently available
data. As the windows of the different output pixels may overlap, only part of the
data is changed during this operation. Specifically, only a third of the data cached
inside the sorter is changed. The remaining data is shifted and the current base
index of the cached data is updated. A total of 24 pixels are cached in the column
reducing section at any given time, while a total of 18 pixels are cached in the
row reducing section. Pipelining is used in order to meet timing constraints - data
is stored after input, after multiplication, and after the partial results are added
together into the output pixel.

The port width from the input memory to the column reduction is 512 bits,
corresponding to 64 pixels. The ports of the intermediate memory and the output
memory, however, are only one pixel wide. Smaller port widths were used since the
first stage outputs along rows, while the second reads along columns. Using wider
port widths to increase throughput is possible, but would make the memory control
more complex.

A simplified block diagram of the resizing is shown in Figure 4.11.

29

4. Implementation

Figure 4.11: Block diagram of the resizing implementation.

4.4.4 Gaussian blur
As the window used is seven by seven pixels wide, 49 multiplications and 48 addi-
tions are required to calculate one output pixel. Similar to some of the preceding
stages, the blur is implemented using a top level that handles reading, writing and
synchronization. Below the top level, there is a sorting entity that routes data be-
tween the top level and the convolution entities. The convolution units themselves
are instantiated below the sorting unit, and finally individual multipliers are instan-
tiated below the convolution units. The window moves from left to right along the
top row, and then along the next row in the same manner, until the entire output
frame has been calculated. It follows that 49 pixels have to be read from memory
at the start of a row, but later pixels in the same row only need seven new pixels
made available. Input data is stored in a double frame buffer.

As only 49 weights are needed, they are stored in look-up tables rather than
BRAM in order to slightly simplify the code. Weights, input pixels and output
pixels all use a word length of eight bits.

A simplified block diagram of the Gaussian blur is shown in Figure 4.12.

Figure 4.12: Block diagram of the Gaussian blur implementation.

4.4.5 Sobel filter
The Sobel filter enhances edges as described in Chapter 3. In the implementation,
the convolutions are not performed using multipliers. Instead, all input pixels are

30

4. Implementation

extended to a signed 16 bit representation, with the pixels to be subtracted given
a negative sign. The values that need to be multiplied by 2 are left-shifted one bit.
The values are then added together. This is done for both the x-axis kernel and the
y-axis kernel concurrently. Input data is stored in a double frame buffer.

The filter is structurally similar to earlier processing stages, as is illustrated in
Figure 4.13. No multipliers are instantiated, however, as mentioned above. The
zero-padding and shifting is performed in the convolution entity. Memory accesses
are handled in the same manner as for the Gaussian blur, but scaled down to a three
by three window.

In order to decrease complexity, the magnitude of the gradient is not calculated
using a square root. Instead, it is approximated as the sum of the absolute value of
the x- and y components (see Equation 4.2, where G is the gradient, Gx its compo-
nent along the x-axis and Gy its component along the y-axis). This approximation
gives correct values when the gradient is parallel to an axis, but does not give perfect
results at other angles.

|G| ≈ |Gx|+ |Gy| (4.2)

The filter is susceptible to overflow. This is handled through saturation. This
results in somewhat thicker edges than in the ideal case.

Figure 4.13: Block diagram of the Sobel filter implementation.

4.5 Verification
A number of different tools were used for verification during the development. Initial
evaluations were done with testbenches in the Vivado simulator in order to ensure
basic functionality. Tests were then performed on-chip, using the On-Chip verifi-
cation as described below. Vivado supports use of integrated logic analyzers (ILA)
on-chip in order to capture signals when certain conditions are met and then transfer
them to the PC over JTAG. This was particularly useful when doing development
relying on hardware external to the FPGA, such as the DDR3 memory.

The Python packages Numpy and OpenCV were used to convert PNG images
into binary matrices with RGB data in a row-major order, suitable for writing to the
Flash memory on the development board in order to perform on-chip verification
without a real-time video feed. Python scripts were used to convert output data
into PNG images as well.

31

4. Implementation

A simplified block diagram of the verification environment is shown in Figure
4.14. A more detailed description on the development board and the FPGA is
described in Section 1.4.1.

Jtag

GPIOs

Microblaze

Uart

I/O controller

BRAMs

PC

UUT

QSPI flash

FPGA
Development Board

Figure 4.14: Block diagram of the verification environment.

4.5.1 On-Chip functional verification
To verify functionality of each stage, two stereoscopic images are run through the
system for quality and integrity comparison on the output with a software solution.
The datapath of the verification is seen in Figure 4.15.

Before on-chip functional verification can start, we store the stereoscopic images
in the off-chip flash memory. We then let a Microblaze [34] read from the flash and
then store one frame row in the input BRAM. When the Microblaze has finished
writing one row to the input BRAM, it signals the I/O controller to read the frame
row, through the Xilinx IP AXI GPIO. The controller then sends the row to the unit
under test (UUT). The UUT then works on one row or waits for more rows from
I/O controller, depending on the input requirements of the UUT. We then record
the execution time of one row with ILA and can estimate the theoretical speed of
the stage, i.e. the number of frames the stage can execute per second without any
data bottleneck that might occur in other stages such as the camera feed, output of
data, or any other stage of the pipeline. The UUT send the image frame data back
to the I/O controller which stores the results in an output BRAM (both memories
are called BRAMs collectively in Figure 4.14). When the output BRAM is full, the
data is read by the Microblaze and sent over the UART to the PC conducting the
test. There the output frame is compared with already processed frame, to ensure
that the system does not have any errors.

Microblaze

Uart

I/O controller

Input BRAM

PC UUT

QSPI flash

Output BRAM

1 2

3

Figure 4.15: The datapath for the verification system. The numbers in the figure
represent bottlenecks that inhibit faster processing speeds.

32

4. Implementation

The reason that we cannot get a reasonable time measurement for a whole frame
through the device is the bottlenecks in the data communications (as will be dis-
cussed below) and the available BRAM in the system. A whole input test frame
cannot be stored on the onboard BRAM because one frame is larger than the avail-
able memory (onboard BRAM is approximately 1.6MB and one image frame is
2.4MB). There are three main bottlenecks in the system and they are colored with
red and numbered in Figure 4.15. The first data bottleneck is the QSPI flash in-
terface (number 1 in Figure 4.15). The flash interface can not provide more than
54Mb/s. The second bottleneck is the Microblaze, since it can only read and write
to each BRAM separately. The third and final bottleneck is the UART, since the
top baud rate is 115kb for our PCs.

4.5.2 Problems with verification
Initially, when planning this stage, we thought it should take three weeks, but
because of unforeseen problems it took significantly longer. Initially, we decided
that we needed the on-chip functional verification to verify our implementation. We
needed the access to the external flash and the testing PC via UART, but we also
wanted to be able to have a video interface to test the real time constraints of the
system and some possible corner cases. Therefore, we choose to use the Microblaze
softprocessor to interface all the external components. Xilinx free IPs all interface
together via the AXI bus, and therefore an easy solution was to use the Microblaze
to control all these AXI bus communications.

The first problem encountered with AXI system was how to interface the external
flash with the Microblaze. There was not any good documentation on the Microblaze
drivers and therefore we needed to do a lot more testing than expected. The next
problem was how to interface Microblaze with our hardware design. After a bit of
searching we decided to use a double buffer method, where we would fill a buffer,
and then signal our hardware with a GPIO that data is ready to be read and then
write the next buffer. The buffer interface was implemented with an AXI BRAM
controller and the signaling was done with an AXI GPIO interface to the AXI
bus. Now that our interface method was complete we needed to have VHDL code
that handle the communication with Microblaze BRAMs and GPIOs. Initially, we
thought that this would be easy, but it turned out to be more problematic than
expected. The Microblaze could not be clocked as fast as the rest of the system,
leading to two different clock domains. This required a more robust handshaking
procedure. Before we started, we knew that the speed of the UART communication
and the QSPI flash would slow done the testing procedure. Therefore, we would
have delays both when inputting data and on the output. The control layer had to
work with sink and source driven methods to handle the delays, which made the
handshake procedures more complex.

The last and most troublesome part was getting Microblaze and the controller to
work together. ILA was an important tool for solving that problem. We had many
kinds of strange behavior from Microblaze, which resulted from the Xilinx AXI
interconnect IP module. Apparently, when interfacing native BRAM you cannot
use interconnect FIFOs, since that is not supported. Using them caused problems

33

4. Implementation

with data delivery and many tests were performed before the problem was identified.
A additional problem the interconnect was the addressing used by the Xilinx IP AXI
BRAM controller (ABC). The ABC would just access every fourth word in memory
and did not access any in between; we saw that we read and wrote four times to the
same memory location. This was solved with counting the write enables and read
enables from the ABC and use that counter to address the memory space instead of
the controller address. This solution can hardly be considered ideal.

34

5
Results

This chapter describes the performance achieved with the different processing
stages as well as the system as a whole, and comparison is made with
software implementations. Images processed by the system are included
to illustrate the functionality of the system. Speeds given for individual

stages assume ideal conditions, that is, no delays introduced by waiting for a camera
or other processing. A frame size of 1024 by 768 pixels is used up to and including
the resizing, after which a frame size of 307 by 230 pixels is used.

Power estimations were performed with switching activity recorded in simula-
tions with real images and a clock frequency of 200 MHz. This is also the assumed
clock speed in speed estimations. Note that frames per second here refers to frame
pairs per second, as the intended usage is with a stereo camera.

For comparison, the frame frequency is also given for software implementations.
The platform used in the comparisons was an Intel Core i7-4910MQ CPU clocked at
2.9 GHz. Measurements were made both for the single core and the multicore case.
The software and measurements of it were provided by the project advisor [35]. It
was written in C++ using the OpenCV library.

Utilization given in this chapter includes resources used by the processing stage
itself as well as its input BRAM.

The images shown up to the resizing are shown at a smaller size than used in
the system in order to fit them into the document.

5.1 Greyscaling
The greyscaling implementation was evaluated for four different cases, enabling con-
current processing of 1, 2, 4, and 8 output pixels. The design is pipelined in such a
manner that one batch of output pixels can be output each clock cycle while pro-
cessing a row. Each row needs an additional seven clock cycles for synchronization.
The results for the four different implementations can be seen in Table 5.1, where
the period given is for one frame pair. The frame rate for a software implementation
is shown in Table 5.2.

35

5. Results

Table 5.1: Results for the greyscaling stage.

Speed
Concurrent output pixels Period (cycles) Period (ns) Frames/second

1 791,808 3,959,040 126.3
2 398,592 1,992,960 250.8
4 201,216 1,006,080 497
8 103,680 518,400 964.5

Power
Concurrent output pixels Static (W) Dynamic (W) Total (W)

1 0.131 0.088 0.219
2 0.131 0.099 0.231
4 0.131 0.112 0.244
8 0.132 0.180 0.312

Utilization
Concurrent output pixels LUT FF BRAM

1 1,061 (0.79%) 861 (0.32%) 270 kbit (2.05%)
2 1,131 (0.84%) 928 (0.34%) 270 kbit (2.05%)
4 1,289 (0.96%) 1,068 (0.39%) 270 kbit (2.05%)
8 1,521 (1.13%) 1,093 (0.4%) 270 kbit (2.05%)

Table 5.2: Software frame rate for greyscaling.

Platform Frames/second
CPU (single core) 608.1
CPU (multicore) 1,460.6

Input and output with an example image is shown in Figure 5.1 and Figure 5.2.

36

5. Results

Figure 5.1: Before greyscaling.

Figure 5.2: After greyscaling.

37

5. Results

5.2 Remapping
In Figure 5.3, we can see the hardware results for demonstration. As previously
pointed out, the stereo frame pair after remapping does not cover the whole visual
field that was present in the frames before remapping. Therefore if the misalignment
of the frames is great we will have smaller visual field to work with. The remapping
stage was evaluated for one pipeline case. The results of our implementation can
be seen in Table 5.3. Different fetch width for the cache word were tried out. The
remapping stage uses 6 Digital Signal Processing (DSP) slices (0.81%), and it is the
only stage that uses such resources. The memory bandwidth needed to DDR3 to
sustain the speed of 64.4 Frames/second is 658MB/s, calculated from Equation 4.1.
The required bandwidth is 10% of the maximum bandwidth available.

Table 5.3: Results from the remapping stage.

Speed
Port width (pixels) Period (cycles) Period (ns) Frames/second

16 3,017,918 15,089,590 66.27
8 3,108,008 15,540,040 64.4
4 3,622,734 18,113,670 55.21
2 4,660,904 15,540,040 42.91

Power
Port width (pixels) Static (W) Dynamic (W) Total (W)

16 0.133 0.152 0.285
8 0.133 0.122 0.255
4 0.132 0.133 0.264
2 0.133 0.194 0.327

Utilization
Port width (pixels) LUT FF BRAM

16 2,578 (1.92%) 2,840 (1.06%) 1,180 kbit (9.86%)
8 1,964 (1.46%) 2,577 (0.96%) 1,180 kbit (9.86%)
4 1,728 (1.29%) 2,451 (0.91%) 1,180 kbit (9.86%)
2 1,584 (1.18%) 2,389 (0.89%) 1,180 kbit (9.86%)

Table 5.4: Software frame rate for remapping.

Platform Frames/second
CPU (single core) 133.638
CPU (multicore) 414.364

38

5. Results

(a) (b)

(c) (d)

Figure 5.3: Figures (a) and (b) show left and right remapping input, Figures (c)
and (d) are the left and right images after remapping.

39

5. Results

5.3 Resizing
The resizing implementation was evaluated for three different cases: using 1, 2, or 4
averaging units for each reduction step. The results are shown in Table 5.5. Software
comparisons are given in Table 5.6.

Table 5.5: Results for the resizing.

Speed
Averaging units Period (cycles) Period (ns) Frames/second

2 988,881 4,944,405 101.1
4 835,285 4,176,425 119.8
8 758,517 3,792,585 131.8

Averaging units Power
Static (W) Dynamic (W) Total (W)

2 0.136 0.317 0.452
4 0.136 0.469 0.605
8 0.137 0.732 0.869

Averaging units Utilization
LUT FF BRAM

2 7,366 (5.5%) 7,382 2.75%) 4,320 kbit (32.88%)
4 11,664 (8.71%) 7,788 (2.91%) 4,320 kbit (32.88%)
8 19,422 (14.51%) 7,788 (2.31%) 4,320 kbit (32.88%)

Table 5.6: Software frame rate for resizing.

Platform Frames/second
CPU (single core) 1,944.8
CPU (multicore) 1,906.9

Example input and output are shown in Figures 5.4 and 5.5.

40

5. Results

Figure 5.4: Before resizing.

Figure 5.5: After resizing.

41

5. Results

5.4 Gaussian blur
Three different degrees of parallelization were evaluated for the Gaussian blur. These
consisted of using 1, 2, or 4 convolution units. The throughput is limited by the
BRAM port width used: a maximum of one pixel per clock cycle can be read. For
this reason, the differences between the test cases are very small. The results are
given in Table 5.7. Software comparisons are given in Table 5.8.

Table 5.7: Results for the Gaussian blur.

Speed
Convolution units Period (cycles) Period (ns) Frames/second

1 793,036 3,965,180 126.1
2 757,845 3,789,225 132
4 740,136 3,700,680 135

Power
Convolution units Static (W) Dynamic (W) Total (W)

1 0.133 0.072 0.205
2 0.133 0.112 0.245
4 0.133 0.207 0.34

Utilization
Convolution units LUT FF BRAM

1 1,573 (1.17%) 2,127 (0.79%) 1,332 kbit (10.14%)
2 2,247 (1.67%) 2,743 (1.02%) 1,332 kbit (10.14%)
4 3,712 (2.77%) 3,903 (1.45%) 1,332 kbit (10.14%)

Table 5.8: Software frame rate for Gaussian blur.

Platform Frames/second
CPU (single core) 3,327.7
CPU (multicore) 2,141.8

Example output is given in Figure 5.6.

Figure 5.6: After Gaussian blur.

42

5. Results

5.5 Sobel filter
Results for the Sobel filter are given here. It suffers from the same limitations as the
Gaussian. The processing speed, power consumption, and utilization can be seen in
Table 5.9. Software comparisons are given in Table 5.10.

Table 5.9: Results for the Sobel filter.

Speed Period (cycles) Period (ns) Frames/second
499,556 2,497,780 200.2

Power Static (W) Dynamic (W) Total (W)
0.132 0.031 0.163

Utilization LUT FF BRAM
993 (0.74%) 636 (0.23%) 1,260 kbit (9.58%)

Table 5.10: Software frame rate for Sobel filter.

Platform Frames/second
CPU (single core) 826.7
CPU (multicore) 594.1

Example output is given in 5.7.

Figure 5.7: After Sobel filter.

43

5. Results

44

6
Discussion

This chapter contains reflections on our results. Suggestions for further de-
velopment are also given, including discussion on what disparity map al-
gorithm would be suitable for the platform evaluated or a similar one.
Finally, the methodology and work process is briefly discussed.

6.1 Results and further development
The greyscaling is well optimized and works at speeds superior to the single core
CPU when calculating eight pixels in parallel. This stage can be considered a clear
success and well-suited for the platform.

It is clear from the results that the remapping will be a bottleneck for the system
throughput. Remapping could have higher throughput if the spatial locality of rows
would be used to process two or more output pixels from the same output row.
Timing constraints of the project ruled out a serious attempt, but the mechanism
has been implemented by Oh and Kim [36]. Furthermore Oh and Kim computed the
remap transformation matrices online in real time to save off-chip memory band-
width. But, in order to do that, division and square root operations have to be
performed for each output pixel [36]. Using some data compression techniques and
going for lower accuracy in the fractional part (10 or 8 bits instead of the 16 bits
originally proposed) would be another way to lower the off-chip memory bandwidth
of our current implementation. The necessity of such development depends on how
the following disparity map stage would be implemented. Gribbon et al. propose
to use a three point interpolation instead of fetching a single pixel in the up right
fetch from Figure 4.9d [33]. This might be good if memory bandwidth to the input
to CB is a limiting factor on throughput. Just using bigger port widths in our plat-
form solves that issue reasonably well as can be seen from the port width testing in
Section 5.2. However, the interpolation scheme proposed by Gribbon could improve
the FPS by one or two frames.

The resizing currently is significantly slower than the software alternatives it
has been compared with. There is significant room for improvement in the resizing
stage primarily through more sophisticated memory usage - currently, the column-
reduced frame is double buffered in order to simplify memory access patterns. The
BRAM utilization would be lowered if the row-reduction worked horizontally along
the image as rows became available, rather than working along columns when a
whole frame is available. Speed could then also potentially be increased by using a
wider port width. It was decided to leave this issue as is due to the time constraints

45

6. Discussion

and other aspects that needed to be covered by the project, as well as the bottleneck
of the remapping limiting throughput anyway.

In the current implementation, the Gaussian blur and Sobel filter, much like the
resizing, are limited by memory port width. This is of little concern, given that
they still work faster than the remapping and likely faster than any camera. It is
likely that memory could be utilized more efficiently for both stages. Currently,
full on-chip frame buffering is used, as the available memory allows it after the
resizing. More importantly, it would be relatively simple to make the Sobel filter
more accurate by implementing a fully pipelined square root circuit instead of the
current approximation, as well as by normalizing the output rather than saturating
it. The remapping limits throughput to such a degree that the double frame buffer
between the filters could be changed to a single frame buffer in order to save memory.

As system throughput is limited to about 60 frame pairs per second by the
remapping, there is no point in using the fastest implementations of other stages.
The other parts of the system should rather use the slowest of the evaluated imple-
mentations in order to decrease power consumption.

The system could be ported to a cheaper platform. The most important change
this modification would require is to move intermediate data into external memory.
Using a System on Chip platform such as the Xilinx Zynq-7000 series is an attractive
option, as the hard processor could handle input/output tasks, and perhaps run
feature detection on-chip.

The stereo camera setup influences the system quite heavily as can be seen from
Figure 3.7 in Section 3.6. Therefore it is important to set all the parameters correctly
depending on the application details. For example, let’s say a camera is set up in
a ceiling that is 3.5 meters from the floor, and we want to detect humans in the
cameras field of view. In that case the the camera has to be calibrated for having
the horopter from 1 m to 3.5 m. That camera can then not be used if the ceiling is
any higher but if it is lower than the horopter can be shrinked to 0.5 m or 0.25 m
but that in turn will limit the area covered by the camera.

Our small study of disparity map calculations focused on block matching using
sum of absolute differences and on belief propagation. The latter gives much better
results, at the cost of increased complexity and higher required memory bandwidth.

In the case of block matching using SAD, the cost aggregation, similarity match-
ing, and Winner Takes it All evaluation can all be performed in the same sweep
across the frames. No intermediate values have to be stored, resulting in compar-
atively small memory requirements. Perri et al. [27] compare a few SAD imple-
mentations; most of the implementations could achieve a frame rate of more than
20 FPS with the frame size we use after resizing, with several of them using slower
platforms than the one used here [27]. It would seem that block matching with SAD
is very possible to implement on our platform or a similar one.

Tseng et al. made a block-based implementation of belief propagation on an
FPGA platform [25]. Block-based belief propagation divides the frames into sections.
In this particular case, the sections were 32 by 32 elements. With this approach,
the required on-chip block RAM needed for processing one block is 172 KB. The
part of the frames that are not in the block are stored in external memory since we
need to keep the disparity space after each iteration of the algorithm. That puts a

46

6. Discussion

great strain on the off-chip memory bandwidth and could result in the need of more
expensive memory hardware structure.

6.2 Work process
Much less was achieved during the project than what was planned. The original
intention was to write a hardware implementation for a chosen disparity map al-
gorithm. About halfway into the project, this ambition was abandoned, as other
development took too much time. A large amount of time was spent developing
interfaces for on-chip testing, which in the end had to be scrapped as they were
too time-consuming to develop. We had to move on in order to develop the im-
age processing that the thesis was intended to cover. Final tests were done with
simulations rather than running on chip. In what we have developed, we recognize
several possibilities for improvement that might have been implemented if we had
more time. If we were able to redo the project from scratch, we would probably
have a smaller scope and use a platform with proper video input capabilities.

47

6. Discussion

48

7
Conclusion

Out of the evaluated implementations, the slowest ones will be used for
the greyscaling, the resizing and the filters, as total system throughput
is limited by the remapping stage. The remapping stage will use a port
width of eight pixels, as there seemed to be very little speed gain from

increasing it further. With this configuration, about 60 frame pairs per second can
be processed. Utilization and power consumption for the combined system with
these choices is shown in Table 7.1. Utilization includes the DDR3 controller, but
power estimations do not (due to simulation issues). The controller is expected to
add a significant amount of power consumption, as it is responsible for about half
the total logic utilization and runs at twice the clock speed as the rest of the system.

Table 7.1: Utilization and power consumption for the combined system.

LUT 23132 (17.23%)
FF 20004 (7.45%)

BRAM 9162 kbit (69.71%)
DSP 6 (0.81%)

Static power 0.145 W
Dynamic power 0.557 W
Total power 0.702 W

The software implementation performs the entire preprocessing chain at 84 FPS
when using a single core and 128 FPS when using all available cores. However,
according to Intel, the processor used dissipated an average of 47 W when performing
demanding tasks, and the recommended shelf price is $570 [37]. For comparison, the
FPGA used in the project costs $251.25 at one reseller [38], and the project could
be scaled down to a cheaper platform. It is our belief that the camera will likely
limit the speed in a real system, making the cost and power consumption a more
important factor as long as the processing stays above the frame rate of the camera.

To summarize, it is clear to us from our results that an FPGA is viable for imple-
menting a stereo video preprocessing pipeline. While the software implementation
that we have compared with is faster, it was run on a expensive and power intensive
desktop platform not suitable for embedded applications. Economical concerns may
necessitate using a cheaper platform than what was evaluated in this project. The
primary concern with this is the smaller amount of on-chip memory, which will likely
require heavier use of external high-speed memory.

Due to the lower complexity and memory requirements, our suggestion for initial

49

7. Conclusion

development of a disparity map calculator would be to use a local method such as
block matching using sum of absolute differences. Ways to refine and improve the
method can then be pursued.

It might be advisable to perform further development on a System on Chip such
as the Xilinx Zynq-7000 series in order to more easily integrate the processing in a
complete camera system. The on-chip microprocessor of the Zynq platform could
handle tasks outside the scope of the image pipeline itself, for example the IP stack
in order to enable video over ethernet.

50

Bibliography

[1] J. M. Blackledge, Digital Image Processing: Mathematical and Computational
Methods. Woodhead Publishing, 2006.

[2] Y. Wang and J. Kato, “Integrated pedestrian detection and localization using
stereo cameras,” in Digital Signal Processing for In-Vehicle Systems and Safety.
Springer, 2012.

[3] N. Kehtarnavaz and M. Gamadia, Real-Time Image and Video Processing:
From Research to Reality. Morgan & Claypool, 2006.

[4] M. Arias-Estrada and J. M. Xicotencatl, “Real-time FPGA-based architecture
for stereo vision,” in Real-Time Imaging V, 59, 2001.

[5] “Real-time image processing with dynamically reconfigurable architecture,”
Real-Time Imaging, vol. 9, no. 5, pp. 297 – 313, 2003.

[6] AC701 Evaluation Board for the Artix-7 FPGA User Guide. Xilinx, 2013.

[7] 7 Series FPGAs Overview. Xilinx, 2014.

[8] DDR3 SDRAM SODIMM. Micron Technology, 2010.

[9] I. Point Grey Research. Bumblebee2 1394a. [Online]. Available: http:
//www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems

[10] Vivado Design Suite User Guide: Implementation. Xilinx, 2015.

[11] Vivado Design Suite User Guide: Logic Simulation. Xilinx, 2015.

[12] Vivado Design Suite User Guide: Programming and Debugging. Xilinx, 2015.

[13] Vivado Design Suite User Guide: Designing with IP. Xilinx, 2015.

[14] S. Dhanani and M. Parker, Digital Video Processing for Engineers. Elsevier,
2012.

[15] R. M. Haralick and L. G. Shapiro, “Glossary of computer vision terms,” Pattern
Recognition, vol. 24, no. 1, pp. 69 – 93, 1991.

[16] C. Georgoulas and I. Andreadis, “FPGA based disparity map computation with
vergence control,” 2010.

51

http://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
http://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems

Bibliography

[17] C. Poynton, Digital Video and HDTV. Morgan Kaufmann, 2002.

[18] Z. Zhang, “A flexible new technique for camera calibration,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330–
1334, Nov 2000.

[19] R. I. Hartley, “Theory and practice of projective rectification,” International
Journal of Computer Vision, vol. 35, no. 2, pp. 115–127, 11 1999, copyright -
Kluwer Academic Publishers 1999; Last updated - 2012-10-21.

[20] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008.

[21] D. Bailey, Design for Embedded Image Processing on FPGAs. Wiley, 2011.
[Online]. Available: https://books.google.se/books?id=uvq7ImNssKwC

[22] P. Danielsson and O. Seger, “Generalized and separable sobel operators,” in
Machine Vision for Three-Dimensional Scenes. Academic Press, 1990.

[23] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” International Journal of Computer Vision,
vol. 47, no. 1-3, pp. 7–42, 2002.

[24] “Accurate hardware-based stereo vision,” Computer Vision and Image Under-
standing, vol. 114, no. 11, pp. 1303 – 1316, 2010, special issue on Embedded
Vision.

[25] Y.-C. Tseng, N.-C. Chang, and T.-S. Chang, “Block-based belief propagation
with in-place message updating for stereo vision,” in Circuits and Systems,
2008. APCCAS 2008. IEEE Asia Pacific Conference on. IEEE, 2008, pp.
918–921.

[26] S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,”
International Journal of Computer Vision, vol. 35, no. 3, pp. 269–293, 12 1999,
copyright - Kluwer Academic Publishers 1999; Last updated - 2012-10-21.

[27] S. Perri, D. Colonna, P. Zicari, and P. Corsonello, “SAD-based stereo matching
circuit for FPGAs,” in Electronics, Circuits and Systems, 2006. ICECS ’06.
13th IEEE International Conference on, Dec 2006, pp. 846–849.

[28] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation for
early vision,” International journal of computer vision, vol. 70, no. 1, pp. 41–
54, 2006.

[29] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization
via graph cuts,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 23, no. 11, pp. 1222–1239, 2001.

[30] M. F. Tappen and W. T. Freeman, “Comparison of graph cuts with belief
propagation for stereo, using identical MRF parameters,” in Computer Vision,
2003. Proceedings. Ninth IEEE International Conference on. IEEE, 2003, pp.
900–906.

52

https://books.google.se/books?id=uvq7ImNssKwC

Bibliography

[31] 7 Series FPGAs Memory Resources. Xilinx, 2014.

[32] Zynq-7000 AP SoC and 7 Series Devices Memory Interface Solutions v2.3.
Xilinx, 2014.

[33] K. T. Gribbon and D. G. Bailey, “A novel approach to real-time bilinear in-
terpolation,” in Field-Programmable Technology, 2004. Proceedings. 2004 IEEE
International Conference on. IEEE, 2004, pp. 126–131.

[34] MicroBlaze Processor Reference Guide. Xilinx, 2014.

[35] J. Wiebe, private communication.

[36] S. Oh and G. Kim, “An architecture for on-the-fly correction of radial distortion
using FPGA,” pp. 68 110X–68 110X–9, 2008.

[37] (2015) Intel® core™ i7-4910mq processor (8m cache, up to
3.90 ghz). [Online]. Available: http://ark.intel.com/products/78939/
Intel-Core-i7-4910MQ-Processor-8M-Cache-up-to-3_90-GHz

[38] (2015) Xc7a200t-2fbg676c xilinx inc | 122-1865-nd | digikey.
[Online]. Available: http://www.digikey.com/product-search/en?mpart=
XC7A200T-2FBG676C&vendor=122

53

http://ark.intel.com/products/78939/Intel-Core-i7-4910MQ-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/78939/Intel-Core-i7-4910MQ-Processor-8M-Cache-up-to-3_90-GHz
http://www.digikey.com/product-search/en?mpart=XC7A200T-2FBG676C&vendor=122
http://www.digikey.com/product-search/en?mpart=XC7A200T-2FBG676C&vendor=122

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Aims
	Limitations
	Material
	Hardware
	Software

	Methodology
	Literature study
	Design methodology
	Evaluation

	Technical background and theory
	Digital video
	Stereo video

	Conversion from RGB to greyscale
	Remapping
	Resizing
	Filters
	Gaussian blur
	Sobel filter

	Disparity map
	Sum of absolute differences
	Belief propagation

	Implementation
	Architecture overview
	Interfaces
	Video input assumptions
	Memory

	Interstage synchronization
	Implementation details
	Greyscaling
	Remapping
	Resizing
	Gaussian blur
	Sobel filter

	Verification
	On-Chip functional verification
	Problems with verification

	Results
	Greyscaling
	Remapping
	Resizing
	Gaussian blur
	Sobel filter

	Discussion
	Results and further development
	Work process

	Conclusion
	Bibliography

