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Decomposing global warming using Bayesian statistics
Impact of internal climate variability and uncertainty of aerosol emissions on the
estimated equilibrium climate sensitivity
GUSTAV J. E. LJUNGQVIST
Department of Energy and Environment
Chalmers University of Technology

Abstract
In this thesis an energy balance model and regression with internal climate vari-
ability indices are employed to model ocean heat content and global mean surface
temperatures. The energy balance model takes radiative forcing as input. The na-
ture of the contribution of anthropogenic aerosol emissions to the radiative forcing
is not very well-known, and in previous research its path is usually scaled by some
factor. Here the path is allowed to vary, which reflects the historical uncertainty.
Parameters are estimated using Markov chain Monte Carlo methods. The results
show that the aerosol path flexibility substantially increases the probability of very
high values of the equilibrium climate sensitivity (ECS), but marginally decreases
the most probable value. The inclusion of long-term internal climate variability
in the form of the Atlantic Multidecadal Oscillation (AMO) in the regression does
not reduce the average error of the estimated temperature. This indicates that ob-
served historical multidecadal temperature oscillations might be better explained by
changes in external forcing than by the AMO. It is also shown that including AMO
only affects the estimated ECS to a small extent in most scenarios.

Keywords: Global warming, ENSO, Atlantic multidecadal oscillation, hiatus, aerosols,
radiative forcing, climate sensitivity.
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1
Introduction

Despite humanity’s growing emissions of carbon dioxide and other greenhouse gases
(GHGs), the global average temperature has not historically been strictly increasing.
Even though it has increased with almost one degree Celsius over the last century,
oscillations on top of the warming trend have always been present. Through the
last ∼100 years, there have been two clear periods of intensive warming (1910-1945
and 1975-2000), and two periods of less warming, or even slight cooling (1945-1975
and 2000-present), as seen in Figure 1.1. The trend over the last 10-17 years1 has

Figure 1.1: Yearly average global mean surface temperatures (GMSTs), 1880 through
2014, from two different datasets.

been labeled "the hiatus", and its reasons have been frequently debated. The atmo-
spheric concentrations of CO2 and other GHGs have continued to grow unabatedly
while the temperature increase has stalled, which has led to a questioning of the
widely held view that anthropogenic forcing causes climate warming (Kosaka and
Xie, 2013). Since virtually no climate models saw this coming, the hiatus has un-
dermined confidence in climate projections in some groups in society (Watanabe et
al., 2014). Climate research is now booming with attempts to explain the apparent
interdecadal oscillation in the global mean surface temperature (GMST). Different
explanations have different implications on the estimated equilibrium climate sensi-
tivity (ECS), a parameter denoting how many degrees the GMST would rise in the

1There is some debate regarding the starting point of the current hiatus. Some see 1998 as the
starting year, but it has been argued that this is just the product of cherry-picking the extreme
El Niño of 1997/1998, and that the "real" hiatus instead started in 2002 (Cowtan, Jacobs, et al.,
2015).
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1. Introduction

long run given a doubling of the pre-industrial atmospheric CO2 level. The ECS
is hard to quantify from the historical trend due to observational uncertainty, lack
of knowledge on the rate of internal variability and large uncertainty in the cooling
effect of aerosols. In the IPCC’s first working group’s fifth assessment report (hence-
forth IPCC AR5) this parameter was stated to be "likely between 1.5◦C and 4.5◦C"
(Bindoff et al., 2013). This measure is of great importance when attempting to pre-
dict what consequences global warming will have for our planet and its inhabitants
in the long term. This thesis will investigate how model approximations of the ECS
is affected when various sources of internal climate variability are included. It will
also attempt to shed further light on the reasons behind interdecadal temperature
oscillations, again using different internal climate variability indicators and different
assumptions on the cooling induced by aerosols.

All modeling done in this study is focusing on the global scale, and no consid-
eration will be given to regional climate variability. This manifests itself in the
assumptions that the surface box is seen as well-mixed over the entire globe, and
that the deeper ocean is modeled as a bucket, where temperature only varies with
the depth. The climate model considered will be of a simple nature, as more focus
is laid on estimating distributions of general scale parameters such as the climate
sensitivity, and the impact of internal variability mechanisms.

This thesis is organized as follows. First, an explanation of some internal climate
variability mechanisms, as well as a review of previous literature on this subject is
given in chapter 2. Some theoretical concepts are explained in chapter 3. The data
and the model is described in chapter 4. Results are presented in chapter 5 and
discussed in chapter 6. Finally, conclusions are drawn in chapter 7.

2



2
Background

In this chapter some of the most important internal climate variability mechanisms
will be explained. A look at the equilibrium climate sensitivity follows, how it is
defined and why it is hard to quantify. Finally a review of previous literature,
focusing on similar research questions as this one, is given.

2.1 The El Niño Southern Oscillation

An El Niño is the warm phase of the El Niño Southern Oscillation (ENSO), which
is associated with warm temperatures and low pressure in the east-central tropical
Pacific. Its opposite, the cool phase, is called La Niña. The strict definition of
an El Niño varies, but the definition of Trenberth (1997) is that El Niño is said
to occur if 5-month running means of sea surface temperature (SST) anomalies
in the NINO3.4 region exceed 0.4◦C for 6 months or more. The Niño 3.4 region

Figure 2.1: The geographical region where the
NINO3.4 index is recorded.

is defined as the area between
5S-5N and 170-120W, as seen in
Figure 2.1. El Niño conditions
usually last for 9-12 months, La
Niña for 1-3 years, and episodes
occur every 2-7 years. (Climate
Prediction Center, 2012). Stan-
dard conditions for the equa-
torial Pacific include easterly
trade winds transporting warm
surface water from the South
American coastline towards Australia and Indonesia, and nutrient-rich cold water
upwelling in the east. During an El Niño, pressure rises in the west and decreases
in the east, weakening or reversing the trade winds. This means that the warm
surface water of the Peruvian, Ecuadorian and Colombian coastlines stays where it
is, reducing the upwelling of cold water and increasing the sea surface temperature
in the area (National Climatic Data Center, 2015a). The warmer surface water
releases heat into the atmosphere, leading to a slight increase in global mean tem-
perature during El Niños. This is only one part of the ENSO contribution to global
average temperature, there are other ways of influence that are of more complex
nature (Trenberth, Caron, et al., 2002). It has been shown that ENSO accounts for
short-term variations in global mean surface temperature with a range up to 0.39◦C.
The global average temperature usually lags ENSO with a few months. Trenberth,
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2. Background

Caron, et al. (2002) report that warming events usually lag the NINO3.4 index with
three months. Johansson et al. (2015) find that two months maximizes correlation
between the NINO3.4 index and SSTs, whereas for land temperatures six months
gives the highest correlation.

2.2 The Atlantic Multidecadal Oscillation index

The Atlantic Multidecadal Oscillation (AMO) is a mode of variability with a much
longer periodicity than ENSO; around 60 years. It has been credited for droughts
and variations in river streamflows in North America, as well as increases in inten-
sity and/or frequency of Atlantic hurricanes (Rogers and Coleman, 2003; Trenberth
and Shea, 2006). The reasons behind the AMO are not well known, but its main
expression is in SSTs in the North Atlantic Ocean. Both observations and modeling
have indicated that the warming of the surface water during the warm phase is ac-
companied by cooling of the deeper ocean in the tropical North Atlantic (C. Wang
and Zhang, 2013). As mentioned in section 2.5 there are several studies suggesting
external forcing as a potential driver of the AMO. Another popular theory is that
the AMO is induced by variations in the Atlantic meridional overturning circula-
tion1 (AMOC) (C. Wang and Zhang, 2013).

Traditionally the index has been calculated as mean SSTs in the North Atlantic,
north of the equator, and south of 60◦N, to avoid problems with sea ice changes. It
has often been linearly detrended to highlight the variability. However, the definition
used here is from Trenberth and Shea (2006). They argue that simply detrending
the data will not remove undesirable influences on the index such as global warming
and volcanic eruptions. Instead they subtract the global (60◦S-60◦N) mean SST
from the North Atlantic (0-60◦N, 0-80◦W)2 SST, and obtain a revised AMO index
which more clearly shows the regional variability. This definition has since been the
more commonly used one.

2.3 The Pacific Decadal Oscillation index

The Pacific Decadal Oscillation (PDO) is essentially a long-term El Niño-like pat-
tern, with warm temperatures in the eastern and cool temperatures in the western
Pacific. Except from the periodicity, the PDO also diverts from ENSO in that it is
mostly seen in the Northern Pacific, with secondary effects in the tropical Pacific,
while for ENSO the opposite is true (Mantua, 2003). Most importantly it has a
much longer periodicity than ENSO, around 40-60 years. Due to problems with

1The main part of the AMOC is the Gulf Stream, and the associated North Atlantic deep water
formulation.

2This includes the entire North Atlantic Ocean, from the Gulf of Guinea in the southeast,
the Caribbeans in the southwest, the Shetland Islands in the northeast, and the North American
coastline in the northwest.
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2. Background

multicollinearity3 with ENSO, the PDO is not used in this study. It has however
been used extensively in earlier papers, as mentioned in section 2.5 of this thesis.

2.4 The equilibrium climate sensitivity
The ECS is a parameter indicating the change in GMST implied by a doubling of
the pre-industrial atmospheric CO2 concentration4. The unit used here of the ECS
is degrees Celsius5. A similar parameter is λ, which indicates the change in GMST
implied by a unit change in radiative forcing (RF). The unit of λ is C W−1 m2. Since
a doubling of the CO2 concentration is approximately equivalent to an increase of
RF by 3.71 W m−2, the relationship between the two parameters is ECS = 3.71 · λ.
The relationship between λ and radiative forcing can be expressed as

Teq = λ · F (2.1)

where Teq is the equilibrium change in GMST and F is radiative forcing. This is
further discussed in section 3.1.

As mentioned in chapter 1 it is hard to quantify the ECS due to a number of
reasons. However, as Rahmstorf (2008) states, had it not been for feedbacks in
the climate system, the ECS would be easily calculated to be equal to 1◦C. These
feedbacks include:

• The water vapor feedback: Water vapor in the atmosphere accounts for a large
percentage of the greenhouse effect, and as temperature rises more water vapor
will be present. Therefore this is a positive feedback.

• The ice-albedo feedback: Ice and snow on Earth’s surface increases its albedo
(reflection coefficient), and reduces the amount of solar energy absorbed. A
warmer climate decreases the area of Earth covered by ice and snow, which
reduces the albedo and creates a positive feedback.

• The cloud feedback: Clouds affect the radiative forcing in different ways. They
reflect incoming shortwave radiation out into space, but on the other hand they
also send longwave radiation from below back to the surface. Presently the
net effect is a negative feedback but when temperature increases this might
change (C. Zhou et al., 2013).

• The lapse rate feedback: Atmospheric temperature decreases with altitude,
and the rate of this decrease is known as the lapse rate. It is widely believed
that the lapse rate will change and the atmosphere will take up heat more
rapidly than the surface. This would contribute to less surface warming, thus
creating a negative feedback (Boucher et al., 2013).

3When a number of explanatory variables are highly correlated, their coefficients might change
erratically, which can lead to invalid results regarding the importance of said variables.

4The pre-industrial atmospheric CO2 concentration was approx. 280 parts per million by volume
(ppmv) (Rahmstorf, 2008). In April 2015 the concentration had reached 401.24 ppmv (Dlugokencky
and Tans, 2015).

5This is equivalent to using degrees Kelvin.
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2. Background

A simple estimate of the ECS from observations is compiled by Rahmstorf (2008).
The GMST has increased by roughly 0.8◦C and the RF due to anthropogenic GHGs
has increased by roughly 2.6 W m−2 since 1750 (i.e., before the industrial revolution
sparked the observed increase of atmospheric CO2). Combining this with observa-
tions of increased ocean heat content, as well as aerosol and solar radiation changes,
one can get a crude estimate of the ECS. The glaring fact that the climate system
has not reached its equilibrium does however put a major dent in the reliability of
this estimate.

Another way to estimate the ECS is through the use of very sophisticated and
computationally intensive models simulating Earth’s climate system. The grow-
ing power of computing technology makes more advanced models possible. Many
possible combinations of parameters, indicating different responses from clouds and
other mechanisms, are tested and evaluated based on how well they compare to
observations. Literature on this subject is extensive, and some of it is recapped in
the following section.

2.5 Literature review
The apparent hiatus in global warming has been studied frequently in recent years.
Kosaka and Xie (2013) identify two schools of primary thoughts. One focusing on
changes in external forcing, and one focusing on internal climate variability (ICV).
Furthermore, Cowtan and Way (2014) explain the hiatus in the HadCRUT4 dataset
(see section 4.1 Data) with data coverage gaps, as they suggest that some oversam-
pled regions could have different temperature trends than undersampled ones, such
as the polar regions. However, Gleisner et al. (2015) argue that this fact "cannot ex-
plain the observed differences between the hiatus and the prehiatus period". Instead
they find that the temperature trend 2002-2013 is lower than 1985-1997 especially
near the equator.

Research focusing on long-term internal variability as the main reason for the hiatus
has been dominant lately. Kosaka and Xie (2013) report that low frequency Pacific
variability has reduced global warming in the 21st century, and it similarly acceler-
ated the observed warming from the 1970s to the late 1990s. They do not use any
established NINO indices, instead they use sea surface temperatures from a large
region (8.2% of the earth’s surface) in the central-eastern equatorial Pacific, and find
a significant "La Niña-like decadal cooling" in that region during the 21st century.
England et al. (2014) find the answer to be blowing in the wind, as they argue that
a strengthening in Pacific trade winds over the past two decades can fully explain
the surface warming hiatus. As explained in section 2.1, the Pacific trade winds are
closely tied to the ENSO cycle, and therefore this result is quite similar to that of
Kosaka and Xie (2013). Trenberth and Fasullo (2013) conclude that the positive
phase of the PDO during the late 20th century enhanced the surface warming, and
similarly its negative phase is cooling the surface somewhat, but it also contributes
to an overall warming of the oceans. Yao et al. (2015) also find that the PDO is
significant, but that it is leading the multidecadal variability of the surface mean
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2. Background

temperature by approximately 16 years. The AMO on the other hand is found to
be largely in phase with the multidecadal variability of the temperature. This re-
sult, that the PDO and the AMO are of similar periodicity but not in phase with
each other, is in accordance with the "stadium wave" hypothesis presented by Wyatt
et al. (2012). Since the AMO is only in the beginning of its decreasing phase, this
result suggests that "it is very likely that the current observed slowdown in the rate
of global warming will extend for several more years" (Yao et al., 2015). This is in
contrast to C. D. Roberts et al. (2015) who use global climate models from the fifth
phase of the Coupled Model Intercomparison Project (CMIP5) and a probabilistic
approach to determine the likelihood of the current hiatus continuing another five
years to be up to 25%. Watanabe et al. (2014) split the surface temperature change
into one part caused by internal climate variability, and one anthropogenic part. In
the internal climate variability they find a cooling trend around the equator, espe-
cially in the eastern Pacific. The previously mentioned findings of Gleisner et al.
(2015) are in line with this, as they also find a cooling trend close to the equator.
The hypothesis that internal variability is behind the pause in surface warming is
backed up by research showing that the deep ocean continues to heat up, throughout
the start of the 21st century (Chen and Tung, 2014; Roemmich et al., 2015). Ex-
amining subsurface temperature and salinity data, Chen and Tung (2014) find that
a recurrent salinity anomaly in the North Atlantic, closely tied to the AMO, has
recently led to an increase in heat uptake by deep ocean layers. They predict that
these planetary heat sinks will remain intact and the hiatus continue on a decadal
time scale.

Some papers use a combination of changes in external forcing and ICV to explain
the hiatus. Foster and Rahmstorf (2011) removes the noise caused by the ENSO
cycle, volcanic aerosols and the solar cycle, to find that the warming trend contin-
ues throughout 2000-2010. Similarly, Johansson et al. (2015) attribute the hiatus to
ENSO-related variability and reduced solar forcing. However, this is not the main
focus of their study; they focus on how estimates of the ECS change as observations
over the hiatus are included. It is found that the most likely value of the ECS
has decreased, but this can be due to sources of internal variability not included
in their framework. The estimates of the ECS have also fluctuated in the past
as observations have accumulated. Douville et al. (2015) show that many climate
models overestimate the influence of ENSO, which negatively affects their ability
to reliably capture the influence of the tropical Pacific ocean’s contribution to the
hiatus. Furthermore they point out that model results can be quite sensitive to ex-
perimental designs. Their model, which overrides wind stress to control the tropical
Pacific ocean heat uptake, partly captures the recent slowdown of global warming,
but overestimates global warming overall.

Research focusing on changes in radiative forcing includes Kaufmann et al. (2011),
who attribute both the current hiatus and the 1940-1970 cooling period to a large
extent to the fact that sulfur emissions increased more than, or as much as, green-
house gas emissions during these periods. Since 1970 extensive efforts have been
made to reduce air pollution, which they claim reduced the aerosol cooling effect

7



2. Background

and led to the heavy global warming that evidently was present during 1970-2000.
Finally, a recent increase in coal burning in Asia, and China in particular, has again
led to sulfur and greenhouse gas emissions canceling each other out as drivers of
the global mean temperature. Booth et al. (2012) are of a similar opinion as they
argue that "aerosol emissions and periods of volcanic activity explain 76 per cent
of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea
surface temperatures". They suggest that it is in fact anthropogenic aerosol radia-
tive forcing that is the origin of the AMO-like temperature cycle seen over the 20th
century. Wilcox et al. (2013) extend their result to the global scale. However, using
records of tree rings and ice cores, several papers (Delworth and Mann, 2000; Gray
et al., 2004; Chylek, Folland, et al., 2012) have found evidence for AMO-like cycles
going back several centuries; long before anthropogenic effects on climate were of
any significance. Similarly, as a response to Booth et al. (2012), Tung and J. Zhou
(2013) use the Central England Temperature (CET), a temperature series going all
the way back to 1659, to show that multidecadal variability is present before the in-
dustrial revolution as well and hence can not be explained by anthropogenic aerosol
emissions. Instead they claim that this recurrent multidecadal oscillation is likely
an internal variability related to the AMO. Still, there is research claiming that even
before any anthropogenic influence on the climate, external forcing from volcanic
aerosols and the variability of the solar cycle, could have played a role in pacing
internal variability (Otterå et al., 2010; T. Wang et al., 2012; Knudsen et al., 2014).
In J. Zhou and Tung (2013) they continue to show that when including the AMO in
a multiple regression analysis, similar to that of Foster and Rahmstorf (2011), there
is no evidence of a hiatus in the anthropogenic warming, but the warming trend is
reduced by a factor of at least two. Related to this are the findings of Chylek, Klett,
et al. (2014), who state that most climate models are unable to simulate the AMO
cycle. Still some CMIP5 models reproduce the AMO-like cycle with correct timing.
However, they show that this behavior is due to an overestimation of aerosol effects,
which leads to the anthropogenic component cooling the system between 1950-1970.
IPCC’s AR5 concludes that it remains uncertain how much of the decadal tem-
perature variations that is attributed to the AMO in some studies that is actually
related to external forcing (Bindoff et al., 2013). The same report states that more
certain is the fact that the contribution of the AMO to global warming since 1951
is considerably less than 0.1◦C, and that it is "virtually certain that internal climate
variability alone can not account for the observed global warming" since the middle
of the 20th century.

Some, but not all, of the papers mentioned here provides estimates of the ECS.
There are also numerous papers estimating the ECS without any specific focus on
the recent hiatus. As mentioned in chapter 1, IPCC’s AR5 summarizes estimates
up to 2013, stating that the ECS is "likely between 1.5◦C and 4.5◦C" (Bindoff et al.,
2013). One of the lower recent estimates is given by Skeie et al. (2014) who report
an estimate for the corresponding interval of (0.92, 3.18). At the other end of the
spectrum is Sherwood et al. (2014) who report a lower bound of 3◦C, with a most
likely value of 4◦C. The sensitivity of the estimate to which temperature dataset is
used is highlighted by Libardoni and Forest (2011).
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2. Background

Concerning the methods used for climate research, most research in the past decades6

has been centered on the use of coupled atmosphere-ocean general circulation models
(AOGCMs). These models are usually large and complex, whose primary function
is to understand the dynamics of the physical constituents of the climate system
(atmosphere, ocean, land and sea ice), and for making projections based on future
greenhouse gas and aerosol forcing (Flato et al., 2013). Lately, third-generation
GCMs known as earth system models (ESMs) have been developed, which incorpo-
rate interactive biochemistry, including the carbon cycle (Dunne, 2014). As stated
earlier, virtually no climate models were able to predict the hiatus (Fyfe et al., 2013;
C. D. Roberts et al., 2015). This is a contributing reason to that recently empiri-
cal statistical models have been used more frequently, to complement physics-based
models (Chylek, Klett, et al., 2014). Some papers use statistical methods exclusively
(e.g. Foster and Rahmstorf, 2011; Wu et al., 2011; Chylek, Klett, et al., 2014; Yao
et al., 2015), some pair it with GCMs (C. D. Roberts et al., 2015), and some use
statistics in combination with simpler physics-based models (Tomassini et al., 2007;
Aldrin et al., 2012; Skeie et al., 2014; Johansson et al., 2015).

This thesis will look to join the latter group, as a simple energy balance model
is combined with regression and Monte Carlo methods, to continue investigating
the explanations behind the interdecadal temperature oscillations we have seen dur-
ing the past century. The aerosol forcing path will be allowed to vary and different
internal climate variability indices will be included, and the effects on the climate
sensitivity parameter will be examined. Many authors who perform similar analyses
account for interannual variability by including ENSO in their analysis. Including
interdecadal variability is not as frequently seen; it is done by Skeie et al. (2014),
but they base their long-term variability on a combination of GCM simulations and
data. Here the long-term variability will be based solely on data from the AMO
index. The flexibility in the aerosol path considered here has to the knowledge of
this author not been included in any earlier studies of similar nature.

6General circulation models (GCMs) were initially developed in the 1950s and 1960s, and the
first AOGCM was developed by Manabe and Bryan in 1969 (Edwards, 2001).
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3
Theory

This chapter explains the key theoretical concepts on which this study is built. Some
examples of previous literature in this field using the same concepts are also given.

3.1 Energy balance model

An energy balance model (EBM) is a simple climate system model, built on the fact
that all incoming energy is either emitted back out into space or absorbed. Following
Kriegler (2005) we set FS to be the infrared radiation from Earth’s surface, and note
that since Earth’s surface radiates like a blackbody, by Stefan-Boltzmann’s law we
have that FS = σT 4

S where σ = 5.67 · 10−8 W m−2 K−4 is the Stefan-Boltzmann
constant and TS is the surface temperature of Earth. Letting FSol denote the portion
of solar radiation absorbed by Earth and G be the additional energy distributed to
Earth’s surface due to the absorption of infrared radiation in the atmosphere, we
can express energy balance as

σT 4
S = FSol +G (3.1)

Deviation from this energy balance induces a heat flux at Earth’s surface. The net
radiative imbalance implied by an external forcing F and a change in temperature
can be expressed as N = F − T

λ
(Geoffroy et al., 2013). Here F includes radia-

tive forcing due to emissions of GHGs, changes in solar radiation, and atmospheric
aerosols. The other term, T

λ
includes the temperature feedback. When this system

reaches its steady-state, N = 0, we get Teq = Fλ. This is equivalent to the def-
inition of the climate sensitivity parameter λ in section 2.4; λ is the equilibrium
temperature implied by a unit change in RF.

A logical next step to extend this very simple EBM is to describe how the heat
accumulated by Earth is distributed. This is commonly done by adding the deep
ocean to the model. An example is the two-box EBM used by Geoffroy et al. (2013)
where the heat exchange between the surface- and deep ocean box is assumed to
be proportional to the difference between the temperature perturbations of the two
boxes. The model employed for this study is similar but slightly more advanced;
the deep ocean box is split into several layers, whose heat exchange is modeled by
one-dimensional diffusion, with uniform diffusivity. The ocean surface water, land,
and the atmosphere is combined into the well-mixed surface box. Similar models
have been studied in Wigley and Schlesinger (1985), Kriegler (2005) and Johansson
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(2011). The model is described by the following set of equations:

Cs
∂T (0, t)
∂t

= F(t)− T (0, t)
λ
− Fd ,∀t ≥ 0 (3.2)

∂T (z, t)
∂t

= κ
∂2T (z, t)
∂z2 ,∀t ≥ 0, z > 0 (3.3)

Fd = −ρcκ
(
∂T (z, t)
∂z

)
z=0

,∀t ≥ 0 (3.4)

Equation (3.2) describes the surface box, equation (3.3) describes the diffusion be-
tween layers in the deep ocean box, and equation (3.4) describes the heat flux be-
tween the surface box and the upmost layer of the deep ocean box. The temperature
at time t and layer z of the deep ocean box is denoted T (z, t), and T (0, t) is the
temperature of the surface box. The radiative forcing at time t is F(t). We have
the initial condition T (z, 0) = 0, ∀z ≥ 0, and the boundary condition(

∂T (z, t)
∂t

)
z=zB

= 0,∀t ≥ 0 (3.5)

at the bottom of the ocean. We have that Cs = cρh where h is the effective depth
of the surface box, c is the specific heat capacity of water (4186 J kg−1 K−1), and
ρ is the density of salt water (1027 kg m−3). Finally κ is the effective diffusivity of
heat in the deep ocean. The role of each parameter is further discussed in section
4.5.

3.2 Bayes’ theorem
Bayes’ theorem for distributions takes the following form:

p(θ|y) ∝ L(y|θ) · p(θ) (3.6)

Here θ is a set of parameters, and y is data. p(θ) is the a priori probability density
function (PDF), and p(θ|y) is the a posteriori PDF, where the likelihood L(y|θ) of
the data y given the parameters θ, has been taken into account. This is useful when
one has a vague sense of the distribution of a parameter, and data is available. The
theorem gives a way to combine prior knowledge and new evidence into a better
estimate, the posterior distribution.

3.3 Markov chain Monte Carlo methods
Posterior distributions of parameters are often hard to sample from directly. Markov
chain Monte Carlo (MCMC) methods are algorithms that make this possible by
constructing a Markov chain which converges to the desired distribution. MCMC
methods have been used before in this type of research, for example in Titus and
Narayanan (1996), Tomassini et al. (2007), Aldrin et al. (2012), Skeie et al. (2014)
and Johansson et al. (2015). The algorithm used in this study is the Metropolis
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algorithm, proposed by Metropolis et al. (1953). In line with previous research, it is
assumed that the parameters are independent of each other in the a priori distribu-
tion. This greatly simplifies the generation of samples in the Metropolis algorithm,
which can be done by random-walk updating. A description of the algorithm follows:

1. Let θi be the current set of parameters, and θnew the proposal for new param-
eters. The new parameters are drawn from a proposal distribution Q(θnew|θi)
which is in this study chosen to be N (θi, ν). Here ν is the covariance matrix,
but since all parameters are assumed independent of each other, it is filled
with zeros everywhere except for on its diagonal. The diagonal is a vector of
variances. The magnitudes of these variances are discussed below.

2. The probability of accepting this new set of parameters is calculated by

p = f(θnew)
f(θi)

(3.7)

where f is a PDF proportional to the PDF of the desired, posterior, distribu-
tion. If p ≥ 1 then the new parameters are accepted, and θi+1 = θnew. If p < 1
then the new parameters are accepted with the probability p. If the candidate
is rejected, then θi+1 = θi.

To get a sample which well resembles the distribution, one usually discards the first
iterations, known as the burn-in period. The parameter values during this period
might be too influenced by the starting values, θ0. The length of the burn-in period
is influenced by the step size, i.e., the magnitude of elements in ν. With small steps,
the burn-in period should be quite long. Also, a set of nearby steps will always be
correlated with each other. Therefore one could throw away some observations and
only look at every kth sample, known as "thinning". It has been noted that thinning
rarely is an efficient way of getting better samples (MacEachern and Berliner, 1994;
Link and Eaton, 2012). It does not significantly effect the posterior distribution,
but it can be beneficial as smaller datasets are easier to work with.

Choosing the sizes of variances in the proposal distribution is a very important
step in designing the Metropolis algorithm. If the variances are too large, the al-
gorithm will attempt to take large steps. This will have the consequence that the
random walk will quite quickly come close to its optimal state. This might sound
beneficial, but once it is there, very few proposed parameters will be accepted, since
they will be very far away from the optimal state, and therefore give a much smaller
likelihood. Hence the random walk will not give a good representation of the full
posterior distribution. The acceptance rate is the fraction of the proposed parame-
ters that are accepted, and it would in the case of very large variances be too low.
On the other hand, too small variances implies a slow random walk, which will take
a very long time to explore the full distribution. G. O. Roberts et al. (1997) show
that if both the target posterior distribution and the proposal distribution Q(θnew|θi)
are normal, then the optimal acceptance rate is roughly 25% for dimensions higher
than two. There is no established way of estimating the acceptance rate for a given
covariance matrix ν beforehand, so it is commonly updated by trial-and-error until
a satisfactory acceptance rate has been obtained.
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3.4 Regression
Linear regression is used to model the relationship between a dependent variable
and one or more explanatory variables. The dependent variable is approximated by
a linear combination of the explanatory variables:

yi =
m∑
j=1

βjxi,j + εi, i = 1, ...n (3.8)

where n is the number of observations and m the number of explanatory variables.
βj is the regression coefficient for the jth variable, xi,j is the ith observation of the
jth variable, yi is the ith observation of the dependent variable, and εi is the error
term for the ith observation.

It is often of great interest to check whether an explanatory variable really helps
explaining the dependent variable. Here the null hypothesis H0 : βj = 0 will be used.
If this hypothesis can be rejected with a good amount of confidence, then we can
say that there is significant linear correlation between the jth explanatory variable
and the dependent variable. The significance level is denoted α and it is defined
as the risk of rejecting H0 when it is in fact true. If the (1 − α) · 100% confidence
interval for βj does not contain 0, then βj is significant at the α significance level.
Common values for α are 0.10, 0.05 and 0.01.
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4
Methods

This chapter first describes the data used in this study, and then explains and
motivates the methods that are employed.

4.1 Data

Radiative forcing due to greenhouse gases is taken from Meinshausen et al. (2011)1.
This data only covers the period 1765-2005, but it is extended to 2006-2013 with the
RCP4.5 scenario2, which is close to the actual development. Similarly to Johans-
son et al. (2015), the total anthropogenic aerosol forcing (including direct aerosol
forcing, aerosol cloud interaction and black carbon on snow) is treated together.
Data for this too is taken from Meinshausen et al. (2011). Volcanic forcing is for
the period 1765-1849 also taken from Meinshausen et al. (2011). For 1850 and on-
wards it is taken from Goddard Institute for Space Studies (2015). Unfortunately,
this dataset ends in September 2012, so for the final 15 months the volcanic forcing
is set to zero. Solar radiative forcing is taken from Meinshausen et al. (2011) for
1765-1978. For 1979-2013 total solar irradiance data is taken from Fröhlich (2000)3,
and converted to radiative forcing using an approximate earth albedo of 0.3. The
radiative forcing data can be seen in Figure 4.1. A closer look on said figure reveals
that the solar cycle was in its negative phase approximately 2005-2013, which as
stated in section 2.5 has been mentioned as part of the explanation of the current
hiatus. This negative phase was actually an unusually significant one, with 2010
being the lowest yearly average of measured solar irradiation since 1933.

Ocean heat content (OHC) is defined as the heat stored in the oceans, and it is
given in 1022 Joules, both in the data and for the rest of this thesis. Data is taken
from National Oceanographic Data Center (2015). In this source the OHC is calcu-
lated using the upper 2000 meters of the ocean. Measurements began in 1955, and
the data is pentadal (5 year) averages. Therefore it is only available for 1957-2012,
and hence OHC will only be evaluated on this period. The pentadal observations
can be seen as low-pass filtered annual observations, and they are treated as annual
observations. For a sensitivity analysis regarding this assumption, see Johansson

1Available online, see Meinshausen (2011).
2The RCP4.5 scenario is the Representative Concentration Pathway that gives a +4.5 W m−2

RF value, compared to pre-industrial values, in 2100. Representative Concentration Pathways are
projections describing possible climate futures, adopted by the IPCC in 2013.

3Available online at http://climexp.knmi.nl/data/itsi.dat. Visited on January 22, 2015.
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4. Methods

Figure 4.1: Changes in radiative forcing from pre-industrial levels. "GHG" is an
abbreviation for greenhouse gases, and "Volc" is volcanic aerosols.

et al. (2015). The OHC data is visualized in Figure 4.2.

Figure 4.2: OHC data. The confidence intervals are approximate normal, con-
structed by multiplying the standard errors by 1.96 which gives a confidence level of
95%.

Temperature data is taken from two different sources. The HadCRUT4 data (tem-
perature and temperature uncertainties) is taken from Met Office Hadley Centre
(2015). It combines the HadSST3 dataset for sea temperature, and CRUTEM4
for land temperature. The datasets are produced by Met Office Hadley Centre
(HadSST) and the Climatic Research Unit of University of East Anglia (CRUTEM),
both based in the United Kingdom. The other dataset is produced by the National
Oceanic and Atmospheric Administration’s (NOAA’s) National Centers for Envi-
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ronmental Information (NCEI)4. This dataset is henceforth referred to as NOAA
temperature data, and it is taken from National Climatic Data Center (2015b).
It combines SSTs from the ERSST v3b dataset with land temperature from the
Global Historical Climatology Network-Monthly (GHCN-M) dataset. The tempera-
ture datasets differ in a number of ways; urbanization bias adjustment, measurement
bias adjustment, gridding methodology, etc. (Morice et al., 2012). The uncertainty
in temperature resulting from the choice of methodology is referred to as "structural
uncertainty". Using multiple temperature datasets in studies such as the analysis
conducted in this thesis yields the advantage of being able to assess the sensitivity
of results to structural uncertainty. Therefore all model evaluations here will be
run on both datasets separately. Observational uncertainties are available for both
datasets, and they are visualized in Figure B.1 in appendix B.

Figure 4.3: Summary of internal climate variability indices.

Internal climate variability indices are also taken from several different sources.
To capture ENSO effects the NINO3.4 index will be used. It is calculated from
NOAA’s ERSST v3b, taken from van Oldenborgh (2015). Again, for a description
of the NINO3.4 region see Figure 2.1. Data is monthly, and it is calculated as
anomalies in SST over the region from that month’s historical mean. In this study,
the time scale considered is years, so the data will be annual averages. As discussed
in section 2.1, the global temperature lags the NINO3.4 index with a few months.
Upon analyzing the correlation (see appendix A.1), it is found that for both temper-
ature datasets two months maximizes correlation with the NINO3.4 index. Hence a
two month lag is used when calculating yearly averages, so that the value for year
Y is the average from November year Y − 1 to October year Y . The AMO data
is calculated in two ways. We have one time series based on the temperature set

4This data was produced by NOAA’s National Climatic Data Center (NCDC) until recently,
when NCDC merged with the National Geophysical Data Center and the National Oceanographic
Data Center into NCEI.
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ERSST v3b, the same SST data as the NOAA temperature series is based upon.
Even though the global mean has been subtracted from the AMO signal, and the
signal has been filtered, there might be correlation based on observational and struc-
tural uncertainties between the AMO signal and the temperature data. Therefore
calculations will also be carried out with the AMO signal calculated on the SST
part of the HadCRUT temperature data (HadSST 3.1.1.0). Both versions are taken
from van Oldenborgh (2015). Note that the NINO3.4 data suffers from the same
problem, at least at a first glance. It is calculated from the NOAA temperature
dataset, and there is a risk that there is correlation between the NOAA tempera-
ture and this NINO3.4 data that stems from observational or structural uncertainty.
However, upon examining the correlations (again, see appendix A.1) between the
different temperature datasets and the ERSST NINO3.4 data, it is found that they
are very similar. In fact the correlation is slightly larger for the HadCRUT GMSTs,
and not the other way around. Therefore it is deemed unnecessary to also analyze
NINO3.4 data based on the HadSST temperature data. The time series for both El
Niño and AMO are visualized in Figure 4.3.

4.1.1 Filtering

Figure 4.4: Weights for the used filter.

To extract the multidecadal oscillatory
part of the AMO signal, it is common
to apply a low-pass filter to it. For this
thesis, the AMO data is filtered using
a 13-term weighted moving average fil-
ter, which is used in the IPCC’s AR4
(Trenberth, Jones, et al., 2007) and sev-
eral other papers (Trenberth and Shea,
2006; Trenberth and Fasullo, 2013; Yao
et al., 2015). Other filters that have
been used for this purpose includes a
plain uniform running average filter, for
example with length 11 years (Knudsen et al., 2014), or a Butterworth filter (Ot-
terå et al., 2010). Data is annual, so the filtered data point at year i is influ-
enced by the years i± 6. The weights approximate a normal distribution5, as seen
from the bell-shaped plot of the weights in Figure 4.4. Specifically, the weights
are 1

576(1, 6, 19, 42, 71, 96, 106, 96, 71, 42, 19, 6, 1). Just as in Trenberth, Jones, et al.
(2007), the "minimum slope" constraint of Mann (2004) is used at the beginning and
end of each filtering. To approximate this constraint, one pads the time series with
values within half the window width of the boundary, reflected in the boundary.
In other words, the beginning of the time series xt, t ∈ [0, n] will in the case of a
13 term window be padded by x6, x5, x4, x3, x2, x1 before the start (x0, x1, ...). This
reduces the slope of the smoothed series as it approaches the boundary.

5Approximately N (0, 2.22).

18



4. Methods

4.2 Discretization of the energy balance model
The system described by equations (3.2)-(3.4) is discretized using Euler forward in
time. For all t ≥ 0 we have

T (0, t+ ∆t) = T (0, t) + ∆t
Cs

(
F(t)− T (0, t)

λ
− Fd

)
(4.1)

T (z, t+ ∆t) = T (z, t) + κ∆t
(∆z)2 (T (z + ∆z, t)− 2T (z, t) + T (z −∆z, t)) (4.2)

Fd = −ρcκ∆z (T (∆z, t)− T (0, t)) (4.3)

where equation (4.2) holds for all z > ∆z. The depth of the deep ocean box is set
to zB = 4000 m, and ∆z = 100 m, which has been common in earlier research using
similar models (Kriegler, 2005). Even though the data is annual, ∆t = 1 year is
too large a timestep, since it leads to instability of the system for this choice of ∆z.
Therefore ∆t = 0.1 years is used in the numerical integration.

4.3 Evaluating model
After temperature estimates have been obtained using the box diffusion model,
estimates of the OHC are calculated. Since the OHC data is calculated from the
upper 2000 meters of the ocean, only these layers are used to estimate the OHC,
even though there might be more layers present. The heat content of layer z is

H = ρcAhzT (z, t) (4.4)

where A is the area of Earth’s oceans6, and hz is the height of layer z. The OHC
pentadal observations are normalized over the period 1957-1986 (Johansson et al.,
2015), but the temperature estimates obtained from the diffusion box model are
anomalies from the temperature in 1765. Therefore the estimates and the observa-
tions will be offset with some constant. To deal with this the residuals are subtracted
by their mean, to make them centered around zero. Finally an autoregressive (AR)
term, with lag 1, is also added to the residuals, since autocorrelation is present.
AR(1) processes have been used extensively in climate research for modeling inter-
nal climate variability (Johansson et al., 2015). The likelihood function is

LH = φ(Hres; 0, σ1 + σh) (4.5)

where φ(x, µ, s) is the normal distribution PDF evaluated at x, with mean µ and
standard deviation s. The observational uncertainty is given by σh, which is an
exogenous input, and σ1 is a parameter of the model.

Now, internal climate variability (ICV) is involved. The preferred ICV indices are
added linearly:

Tres(t) = Tobs(t)− T (0, t)−
n∑
i=1

βi · ICV(i) (4.6)

6The area of Earth’s oceans is here approximated to be 360 · 106 km2.
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Here T (0, t) is the calculated temperature at time t of the surface box, and n is the
desired number of ICV indices, in our case equal to one or two. Since temperature
data is given as anomalies from the mean over some period, which can be different
for each data source, the residuals are centered around zero by adding a constant
just as for the OHC residuals. Furthermore, the temperature residuals are assumed
to follow an AR(1) process, also just as the OHC residuals. The likelihood function
looks as follows

LT = φ(Tres; 0, σ2 + σt) (4.7)

This is obviously very similar to the OHC case, equation (4.5). The approximate
uncertainty of the temperature observations is available for both the HadCRUT and
NOAA datasets. To calculate the likelihood of the data given a set of parameters,
the two likelihood functions are multiplied:

L(y|θ) = LH · LT (4.8)

where LH and LT are calculated with the data y and parameters θ. This value is
then inserted into equation (3.6) to obtain posterior parameter estimates.

4.4 Aerosol scaling
There is a great deal of uncertainty surrounding the effects of aerosols on the radia-
tive forcing, as concluded in AR5’s eight chapter (Myhre et al., 2013). Especially the
cloud albedo effect, and the changes in surface albedo due to black carbon on snow,
have question marks surrounding themselves. In this model, as well as many others,
a scaling factor waero is used. This factor is multiplied to all aerosol forcing data,
over the entire time domain 1765-2013. However, as Tanaka et al. (2009) states, the
historical uncertainty has often been overlooked. In other words, the magnitude of
the aerosol forcing is adapted, but the path is still uncertain. To compensate for
this, a set of weights are added to this model, to more fully characterize historical
forcing uncertainty. A set of breaking points are defined, with 1765 and 1880 being
the two first ones. Then between the years 1880-2013, a breaking point is added
every 20 years. Finally each observation of aerosol forcing is multiplied by a linear
combination of the weights of its two closest breaking points. In other words, the
aerosol scaling is not constant, but piecewise linear over time. If we have J break
points, then for every break point j between 1 and J − 1:

â(i) = a(i)wj · (mj − i) + wj+1 · i
mj

, 0 ≤ i < mj (4.9)

â(i) - Scaled aerosol value at time t.
a(i) - Pre-scaling aerosol value at time t.
mj - Years between break point j and j + 1.
wj - Weight at break point j.

So if for example there are break points at years 1960 and 1980, then the aerosol
weight at year 1967 would be 7

20w1980 + 13
20w1960. It is important to keep in mind that
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the aerosol scaling function over time will still be multiplied by waero, a constant
with a much wider prior than the time dependent weights. The priors of the time
dependent weights should be kept narrow as there is only brief insecurity in the
aerosol path, but plenty of insecurity regarding its magnitude.

4.5 Parameters and priors
In this section, the parameters and their prior distributions are described. Priors
should be informative for the parameters where one has certain knowledge, and
vague for others. For some parameters we do not want to constrain the posterior
distribution very much, but still there is no need to allow for values that are far
from credible. A summary of all parameters can be found in Table 4.1.

Notation Name Unit Prior
σ1 Std. dev. of temperature C U(0,∞)
σ2 Std. dev. of OHC 1022 J U(0,∞)
λ Climate sensitivity parameter C m2 W−1 U(0,5)
κ Diffusivity m2 s−1 U(10−5, 10−3)
h Effective depth of surface box m U(10,100)
ζh,t AR(1) terms - U(-1,1)
βi Coefficients for ICV - U(-1,1)
wvolc Weight of volcanic RF - ln N (-0.187,0.4042)a
waero Weight of aerosols - N (1,0.62)
wy Weight of aerosols around year y - N (1,0.12)

Table 4.1: Model parameters, with prior distributions. Note that all uniform priors
are on open intervals.
a - Corresponds to mean 0.9, standard deviation 0.379.

The prior of the climate sensitivity parameter λ is in earlier work usually uniform
over a large interval, and this is the case here as well. The upper limit of 5 C m2

W−1 includes even the highest outlier estimates of this parameter. From section 2.4
we have that ECS = 3.71 · λ, so λ = 5 C m2 W−1 corresponds to ECS = 18.55◦C.
The different estimates of the ECS summarized in IPCC’s AR5 chapter 10 (Bindoff
et al., 2013), all have the 95th percentile lower than 10◦C, so the prior used here
should be wide enough.

The vertical diffusivity parameter κ decides how quickly heat is taken up by the
oceans. The higher the diffusivity, the more rapidly energy is driven down into the
oceans. Therefore a high diffusivity also means that the surface temperature will
show a slower response to increased external forcing (Johansson, 2011). The param-
eter has a uniform prior on (10−5, 10−3) m2 s−1 or (0.1,10) cm2 s−1. In Johansson
(2011) values between 0.5-3.0 cm2 s−1 are used, and Kriegler (2005) finds that high
likelihoods are concentrated at κ below 2 cm2 s−1. However, the IPCC’s working
group I third assessment report (TAR) states that it can be as large as 9 cm2 s−1
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(Cubasch et al., 2001), hence the width of this prior.

The depth h of the mixed ocean box plays the following role in the model. Since
this box is the upmost one it is the most responsive to changes in external forcing
on short time scales. The deeper it is, the more it will contribute to the estimated
OHC. In other words, a larger h means that the estimated OHC reacts quicker to
changes in external forcing. As Johansson et al. (2015) states, h is usually set to
50-75 meters in globally aggregated EBMs. Since we do not want to constrain it
very much the prior is set to U(10,100).

The AR terms ζh and ζt have uniform priors on (-1,1). The prior can not be wider
than this, because an AR(1) process where the absolute value is larger than one is
unstable. Hence all information in the posterior distribution of these parameters
will come from data.

As stated earlier the total anthropogenic aerosol forcing (including direct aerosol
forcing, aerosol cloud interaction and black carbon on snow) is treated together.
The estimates in IPCC AR5 chapter 8 indicates plenty of uncertainty regarding this
data (Myhre et al., 2013). A 90% interval of -1.9 to -0.1 W m−2 is reported, with a
best estimate of -0.9 W m−2. This corresponds approximately to a 90% interval for
the weight between −0.1

−0.9 = 0.11 and −1.9
−0.9 = 2.11. Note that this distribution is not

quite symmetric. For simplicity a normal distribution will be used here, centered
around 1 since there is no immediate reason to distrust the data. A standard de-
viation of 0.6 corresponds to the 90% interval (0.013, 1.987) which is deemed close
enough to (0.11, 2.11). It has been noted (Johansson, 2011) that statistically this
parameter tends to follow λ in energy balance models. This is very intuitive; the
higher the climate sensitivity, the more negative the aerosol forcing must be for the
estimated temperature to follow the historical temperature. The same paper states
that the opposite relationship can be seen between the aerosol weights (waero, wvolc)
and the diffusivity κ. As mentioned above, a low heat diffusivity is tied to a faster
temperature response. Therefore, to fit modeled GMSTs with data, the net aerosol
forcing has to be relatively large for a given λ.

The aerosol path weight priors are centered around one, with a standard devia-
tion of 0.1, which allows for some flexibility in the path. In Figure 4.5 the resulting
prior aerosol path uncertainty is visualized. The path can vary inside the intervals,
and is then multiplied by waero to adapt the magnitude.

The volcanic forcing is specifically tied to the diffusivity, depth of the mixed layer,
and the ECS, since volcanic aerosols is the source of radiative forcing that is most
likely to change dramatically on short notice. A low (high) diffusivity, i.e., quick
(slow) temperature response, would mean that volcanic eruptions are more (less)
clearly noticeable in the GMST, for given values of h and the ECS. The uncertainty
of volcanic aerosol forcing is not clearly reported in IPCC AR5. Hence the estimate
of Tomassini et al. (2007) will be used, i.e., a lognormal distribution with mean 0.9
and standard deviation 0.379.
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Figure 4.5: The prior aerosol path uncertainty for the assumed standard deviation
of 0.1. Plotted are the 95% confidence intervals at each break point.
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The Metropolis algorithm is run with a few different proposal distributions, where
the variances are tweaked until a satisfactory acceptance rate is obtained. The aver-
age acceptance rate for the proposal distribution ultimately chosen is around 25-30%
for all evaluations. For each model configuration the Metropolis algorithm is run
with n = 5 · 106 iterations, where the 2 · 105 first observations are discarded as the
burn-in period, whose length is determined by visual examination of the random
walks. To begin with, the model is run for both temperature datasets without any
ICV. Then ICV is added, first ENSO for interannual variability, and then the AMO
for interdecadal variability. AMO data is first taken from the ERSST dataset, the
same as the NOAA temperature data and the ENSO data is calculated from. As
mentioned earlier, calculations are also carried out using another AMO data source,
the HadSST temperature dataset. The results of these calculations are presented in
section 5.1. As a sensitivity analysis on the variable aerosol path, all calculations
are also carried out with fixed aerosol path. The results of these calculations are
presented in section 5.2. In this chapter models that do not include any internal
climate variability are referred to as "No ICV". Models including ENSO but no
interdecadal variability are referred to as "ENSO", and models also including AMO
are referred to as "ENSO+AMO".

When adding ICV one must pay attention to the regression coefficients to see
whether they are statistically significant or not. The ENSO coefficients βENSO are

Figure 5.1: Posterior distributions of βENSO (left) and βAMO (right) for different
model configurations.

significant for every model configuration, as seen from the posterior distributions in
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Figure 5.1. For all the distributions the probability of βENSO = 0 is infinitesimal,
so we can reject the null hypothesis that there is no significant linear correlation
between the EBM temperature residuals and the NINO3.4 index. However, this can
not be said for the AMO coefficients βAMO. For the HadCRUT temperature dataset
βAMO is significant at the α = 0.05 level. For the NOAA temperature dataset on the
other hand, βAMO is not significant at all, even though the AMO data is taken from
a dataset which the NOAA temperature data is partly based upon. Therefore, the
results given by the model based on NOAA temperature data and including AMO
might not be very interesting, since the crucial assumption that the AMO affects
the surface box temperature does not seem to hold.

The posterior densities of the ECS are visualized in Figure 5.2. Overall, a pat-
tern can be seen where the HadCRUT temperature data is associated with higher
posterior values of the ECS than the NOAA data. Also, the posterior distributions
using the HadCRUT GMSTs are generally wider, with a heavier right tail. In Table

Figure 5.2: Posterior distributions for the equilibrium climate sensitivity, for differ-
ent model configurations.

5.1, 90% credible intervals of the ECS are shown. This is convenient for comparison
with estimates from previous research. The table reveals that the right tail of the
ECS posterior for the HadCRUT ENSO+AMO model is especially heavy, which is
not easily seen in Figure 5.2. The probability that the ECS is greater than 10◦C
is 10 times greater when both ENSO and AMO are considered, compared to when
none of them are, for both temperature datasets. Again, the difference between
temperature datasets is substantial, as for any given model P (ECS > 10) is more
than 10 times greater when the HadCRUT dataset is used compared to when the
NOAA dataset is used.

The posteriors of the scale factor for anthropogenic aerosols, waero, is visualized
in Figure 5.3. As expected they follow the posteriors of the ECS, with higher values
for HadCRUT than NOAA temperature data. It also seems that including ICV
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Temp. dataset Model 5th perc. Mode 95th perc. P (ECS > 10)

HadCRUT
no ICV 2.11 2.73 6.33 0.0058
ENSO 2.34 3.00 7.56 0.0210
ENSO+AMO 2.07 2.55 11.58 0.0617

NOAA
no ICV 1.80 2.32 4.43 0.0004
ENSO 1.87 2.28 4.22 0.0011
ENSO+AMO 1.89 2.38 4.51 0.0046

Table 5.1: Properties of the posterior densities of the ECS for different model config-
urations. The 5th and 95th percentiles of the posterior distributions form 90% credible
intervals. The mode is the peak of the density function, i.e., the most probable value
of the parameter. P (ECS > 10) is the probability that the ECS exceeds 10◦C.

increases waero slightly across both temperature datasets.

The scale factor for volcanic aerosols, wvolc, has posterior distributions focused on
much lower values than the prior. In Figure 5.3 both the posterior distributions and
the prior is visualized. In the same figure the posteriors of the effective diffusivity
κ are shown. They are focused around 0.3-0.5 cm2 s−1, i.e., in the low end of the
prior. Including ICV in the model yields slightly higher values of κ. Again, higher
diffusivity means that the surface box temperature reacts slower to an increase in
external forcing. A pattern can be recognized where introducing ENSO in the model
leads to higher diffusivity and a lower weight on volcanic aerosols. A higher κ for
a given set of wvolc, h and ECS means that volcanic eruptions are less noticeable
in the surface box temperature, while the OHC signal increases. Since the OHC
data used here is pentadal, the short-term impacts that volcanic eruptions bring
are suppressed. This is probably a reason for that the posterior distribution of the
weight is so much lower than its prior. Another reason might be the lamentable lack
of data after September 2012.

The aerosol path weights have in most cases posterior distributions quite similar
to their prior, N (1, 0.12). The piecewise linear part of the weight function is shown
in the bottom right image in Figure 5.3. Again, this function is multiplied by waero
to get the full aerosol weight function. Recall that a high weight means a bigger
contribution of aerosols to the radiative forcing, i.e., a lower value of RF and a lower
temperature in the following years. Therefore one would expect that trends for
the aerosol path would be opposite the trends for the GMST. This holds primarily
for the HadCRUT data: Decreasing aerosol weights over 1900-1940, and increasing
weights from 2000 to 2013 is consistent with this way of reasoning. In the results
for the NOAA data those two trends are more subtle, but the high value of w1980
helps explaining both the 1945-1975 cooling and the 1975-2000 warming trends.

Results obtained when evaluating the models with parameters set to the modes
of their posterior distributions can be found in Table 5.2. It is clear that including
ENSO improves the temperature fit; it removes 26% of the temperature mean ab-
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Figure 5.3: Posterior distributions of waero (top left), wvolc (top right) and κ (bottom
left) for different model configurations. The bottom right image shows the aerosol path
weight functions using the posterior mode of each weight.

solute error (MAE) and 38% of the mean squared error (MSE) for the HadCRUT
temperature data. For the NOAA temperature data the corresponding numbers are
22% and 29%. The OHC errors however are more difficult to interpret: For Had-
CRUT they do not change very much, but for NOAA they are significantly higher
when ENSO is included. When adding AMO to the model, temperature errors do
not decrease. This is a notable result which will be discussed in chapter 6.

Temp. dataset Model OHC Temperature
MAE MSE MAE MSE

HadCRUT
no ICV 0.7820 1.0461 0.0795 0.0093
ENSO 0.7662 1.0683 0.0585 0.0058
ENSO+AMO 0.9386 1.4337 0.0606 0.0060

NOAA
no ICV 0.7820 1.0461 0.0720 0.0076
ENSO 0.8502 1.2102 0.0561 0.0054
ENSO+AMO 0.7949 1.0906 0.0559 0.0053

Table 5.2: Evaluation results. MAE indicates mean absolute error, MSE mean
squared error.
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In Figure 5.4 the similarities and differences between the observed and the mod-
eled temperature are illustrated. The model used in this case was ENSO+AMO
using HadCRUT temperature data. The observed data is plotted along with each
year’s 90% interval for the modeled temperature. We see that the model captures
the 21st century hiatus fairly well. However, we know from Table 5.2 that the errors
are even smaller when the AMO is not considered, and indeed the hiatus is modeled
quite well when that is the case as well. A corresponding image to Figure 5.4 but
without AMO in the model is shown in appendix B, Figure B.2. Also shown in the
very same appendix, Figure B.3, is a corresponding graph but for the estimated and
observed OHC, instead of temperature.

Figure 5.4: Observed and modeled temperature, for the HadCRUT temperature
data and ENSO+AMO model. The model intervals are constructed by taking the 5th
and 95th percentiles of each year’s temperature estimate.

5.1 AMO data from HadSST
The parameter that is affected the most from changing the source of AMO data is
naturally βAMO, the AMO regression coefficient. A comparison between the posterior
distributions for βAMO using different AMO data is given in the left image of Figure
5.5. We see that for both temperature datasets, using the HadSST AMO data
nudges the posterior distributions of βAMO to the right. The change is not very
large and the most important facts still stand: For HadCRUT temperature data,
βAMO is still significant at the α = 0.05 level, and for NOAA temperature data
βAMO is still not significant at all. A comparison of the ECS for the ENSO+AMO
model with different AMO data sources can be seen in the right image of Figure
5.5. Here the 90% intervals of the ECS are (2.13, 8.37) for HadCRUT and (1.84,
4.28) for the NOAA temperature data. Comparing these to the intervals presented
in Table 5.1, as well as inspecting the right image in Figure 5.5, reveals that the
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Figure 5.5: Posterior distributions of βAMO (left) and ECS (right) for different AMO
data sources.

ECS estimates are slightly affected when the AMO data source is changed. For both
datasets, the right tails of the posterior distributions become less pronounced. The
probability of an ECS greater than 10◦C is 3.6% for HadCRUT temperature data,
and <0.01% for NOAA temperature data. Still, at least for the HadCRUT data, the
right tail of the posterior distribution of the ECS becomes heavier when the AMO
is included compared to when it is not. No other parameters than βAMO and the
ECS are significantly affected when changing the AMO data source, so no further
plots depicting posterior distributions will be shown here.

5.2 Fixed aerosol path
To analyze the consequences of the flexible aerosol path, simulations are also run
with a fixed aerosol path for comparison. First of all, the posteriors of the ECS be-
come narrower, which is expected. This can be seen by comparing the left image in
Figure 5.6 and Figure 5.2. A fixed aerosol path closes some possibilities and makes
the whole model less flexible, which should narrow the posteriors of many param-
eters. In Table 5.3 some properties of the posterior distributions of the ECS are
shown. This table can be compared to Table 5.1, where the corresponding numbers
are presented for the variable aerosol path. The posterior mode is higher when the
aerosol path is held fixed for all models except the HadCRUT ENSO, where it is
almost identical (2.99 versus 3.00). This is especially apparent for the models using
the NOAA temperature dataset, where the ECS mode is approx. 0.3-0.4◦C higher
when the aerosol path is held fixed. Note that including AMO in the model does
not increase the probability of high values of ECS in the same way as for the flexible
aerosol path. Instead P (ECS > 4.5), the probability of an ECS value greater than
4.5◦C, decreases when AMO is added and the HadCRUT temperature data is used.
Regarding other parameters, the right image in Figure 5.6 shows that the waero pos-
teriors are much more similar over datasets. The posteriors using the HadCRUT
data are lower, and the NOAA data higher, than when the aerosol path is allowed to
vary. In other words, the differences found by using different temperature datasets
seem to be smaller when the aerosol path is fixed. The ENSO parameters βENSO
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Figure 5.6: Posterior distributions of the ECS (left) and waero (right), when the
aerosol path is held fixed.

Temp. dataset Model 5th perc. Mode 95th perc. P (ECS > 4.5)

HadCRUT
no ICV 2.27 2.88 3.94 0.0091
ENSO 2.31 2.99 4.23 0.0254
ENSO+AMO 2.06 2.65 3.68 0.0034

NOAA
no ICV 2.02 2.74 3.63 0.0025
ENSO 2.11 2.72 3.65 0.0028
ENSO+AMO 2.02 2.64 3.70 0.0043

Table 5.3: Properties of the posterior densities of the ECS for different model con-
figurations, when the aerosol path is held fixed. Compare to table 5.1 for the flexible
aerosol path. The 5th and 95th percentiles of the posterior distributions form 90%
credible intervals. The mode is the peak of the density function. P (ECS > 10) has
been excluded since it is 0 for all models, and replaced by P (ECS > 4.5).

do practically not change at all. The AMO parameters βAMO become slightly lower
but the facts of importance still hold; For HadCRUT temperature data βAMO is
significant at the α = 0.05 level, for NOAA temperature data it is not significant at
all. In accordance with earlier discussions regarding the strong connection between
the ECS or λ and the weight of anthropogenic aerosols, waero, the latter’s posteriors
become significantly narrower when the aerosol path is held fixed, just as is the case
for the ECS.

Switching the AMO data source to the HadSST dataset yields 90% posterior ECS
intervals of (2.03, 3.66) for HadCRUT data and (1.95, 3.66) for NOAA data. Com-
paring these intervals to the ones presented in Table 5.3 using the AMO index
calculated from NOAA data, shows that the differences are very small. This is con-
sistent with the variable aerosol path case, as presented in section 5.1. The posterior
distributions of the regression coefficient βAMO are barely changed at all. This, and
some other posterior distributions for parameters using the fixed aerosol path can be
seen in appendix B.1. A table corresponding to Table 5.2 but for the fixed aerosol
path, containing model errors, is given in appendix A.2. Just as for the flexible
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aerosol path, ENSO lowers the temperature errors by a considerable amount. The
errors do not decrease when AMO is included, which is also consistent with the
flexible aerosol path results.
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The posterior ECS intervals presented in this study for the variable aerosol path
model are wide, at least for the HadCRUT data, compared to other recent esti-
mates: IPCC’s AR5 mentions (1.5, 4.5) as a 90% interval (Collins et al., 2013), and
more recently Johansson et al. (2015) estimated the same interval to be roughly
(2.0, 3.2), although they state that their width might be on the low side. When
Johansson et al. (2015) do not include ENSO in their analysis, the interval shifts to
the right and widens to (2.1, 3.8). This is not at all the case here: For the HadCRUT
temperature data the ECS estimates increase when ENSO is included, and for the
NOAA temperature data they do not change. The fixed aerosol path results agree
overall to a much wider extent with previous literature’s results, which is expected
since almost all earlier studies consider it fixed.

Another interesting result is that including the AMO in the regression on tempera-
ture only reduces the estimated ECS slightly. Earlier papers have concluded AMO
can be credited for a large part of the late 20th-century warming trend. Specifically
J. Zhou and Tung (2013) find that including AMO reduces the warming trend by
a factor of at least two, and both Chylek, Klett, et al. (2014) and Wu et al. (2011)
suggest that up to one third of late 20th-century warming can be credited to the
AMO. Although none of the mentioned papers discuss the actual effect on the ECS,
it is reasonable to believe that these results would imply a lower ECS estimate when
the AMO is included in the analysis. In this study this is true for HadCRUT tem-
perature data, as the ECS in the ENSO+AMO model has a lower posterior mode
than in the ENSO model, both for flexible and fixed aerosol paths, but the change
is small. For the NOAA temperature data the AMO does not have a statistically
significant impact on the GMST, so including AMO does not change the ECS esti-
mates. It should be noted that the study conducted by Skeie et al. (2014) is similar
in approach to the one presented here. They find that including long-term variabil-
ity leads to two changes in the estimated ECS: The mode is marginally lowered,
and the uncertainty is substantially greater than when no long-term variability is
considered. The increase in uncertainty can be recognized in this study’s results for
the flexible aerosol path, but curiously not for the fixed aerosol path.

Overall, variations in results over temperature datasets are massive. This reveals
a problematic sensitivity to experimental design. This result is not new; Libardoni
and Forest (2011) analyze the ECS using several different datasets, and they find
that the ECS estimate using HadCRUT data is slightly larger and with a heavier
right tail than the estimate using NOAA data. They find 90% intervals for the ECS
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to be (1.9, 5.1) for HadCRUT3 and (1.8, 4.7) for NOAA data. Their difference is
not as large as that found here, but they use older versions of both the HadCRUT
and NOAA datasets. As seen at the start of this report in Figure 1.1, the difference
between the temperature datasets is seemingly not that large. However, their un-
certainties differ substantially, as seen in Figure B.1. This is possibly a reason for
the large differences in results between the two temperature datasets. Investigating
this could be interesting for future research.

The uncertainty in the historical RF contribution of anthropogenic aerosols has
been overlooked in many earlier studies. The flexible aerosol path presented here
takes into consideration that not only the scale factor of aerosols, but the actual
aerosol path as well, is uncertain. The result is a much higher probability of a large
ECS. For the fixed aerosol path the estimated probability of the ECS being greater
than 10◦C is zero for all models. When the aerosol path is flexible the probability
rises to as much as 2% for the ENSO model, and 6% for the ENSO+AMO model,
with HadCRUT temperature data. As a comparison, Aldrin et al. (2012) report a
corresponding probability of 0.1% for their model, which has a fixed aerosol path
and considers ENSO but no interdecadal variability. Skeie et al. (2014) report a
0.1% probability of the ECS being greater than 4.5◦C when they do not consider
long-term variability, which rises to 1.4% when they do. The results for the fixed
aerosol path presented in section 5.2, and specifically Table 5.3, do not show this
trend, as including AMO actually lowers the probability of high ECS for HadCRUT
temperature data, and only increases it marginally for NOAA data. Again, for the
flexible path these values are much higher overall.

It should be noted that the choice of priors for the aerosol path weights could have
a large impact on the results. The priors chosen here are all normally distributed
with standard deviation 0.1. It would be interesting to investigate how the results
change when other priors are used. One could possibly consider the prior standard
deviations to be decreasing with time.
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This study has examined the impact of aerosol path flexibility and internal climate
variability on the global mean surface temperature and the equilibrium climate sen-
sitivity (ECS). The ECS is defined as the equilibrium change in global mean surface
temperature that a doubling of the pre-industrial atmospheric CO2 concentration
would bring. The aerosol path flexibility substantially increases the probability of
very high values of the ECS, but marginally decreases the most probable value.
The 90% intervals for the ECS using HadCRUT temperature data and both short-
and long-term internal variability are (2.07, 11.58) for the flexible aerosol path and
(2.06, 3.68) for the fixed aerosol path. Using different datasets for the global mean
surface temperature changes the results considerably for the flexible aerosol path:
The corresponding intervals using temperature data from NOAA are (1.89, 4.51)
and (2.02, 3.70).

The impact of interdecadal internal variability on the global mean surface tem-
perature is frequently debated. The results presented here does not show consensus
between different datasets on this. Such internal variability in the form of the AMO
index is statistically significant when using the HadCRUT temperature dataset, but
not for the NOAA data. In the cases where the AMO has a statistically significant
impact on the global mean surface temperature, the estimated equilibrium climate
sensitivity is slightly lowered. The estimated temperature does not come closer
to observed data with the introduction of AMO to the model. This means that
interdecadal internal climate variability might have a smaller effect on the global
mean surface temperature than some earlier work suggests. It also indicates that
observed historical multidecadal temperature oscillations might be better explained
by changes in external forcing than by the AMO.

The differences between temperature datasets might be partly due to large dis-
crepancies in their observational uncertainties, but investigating this could be an
intriguing question for future work. Further exploring the effects of historical uncer-
tainty of the aerosol path is another possible research direction. Investigating the
consequences of the choice of priors associated with the aerosol path, or search for
other ways of expressing the historical uncertainty, might be interesting areas for
future research.
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A
Tables

A.1 Correlations

Temp. dataset
Months HadCRUT NOAA
0 0.3844 0.3847
1 0.4119 0.4082
2 0.4229 0.4156
3 0.4197 0.4096
4 0.4100 0.3982
5 0.3979 0.3849
6 0.3860 0.3723
7 0.3777 0.3639
8 0.3728 0.3596
9 0.3716 0.3594
10 0.3733 0.3630
11 0.3747 0.3674

Table A.1: Correlations between the NINO3.4 index and GMST, from HadCRUT
and NOAA, for different lags. Two months lag maximizes correlation for both datasets.
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A. Tables

A.2 Evaluation results for fixed aerosol path

Temp. dataset Model OHC Temperature
MAE MSE MAE MSE

HadCRUT
no ICV 0.7320 0.9286 0.0777 0.0089
ENSO 0.7806 1.0821 0.0597 0.0060
ENSO+AMONOAA 0.7509 1.0108 0.0590 0.0058
ENSO+AMOHad 0.7777 1.0477 0.0591 0.0059

NOAA
no ICV 0.7638 1.0183 0.0716 0.0074
ENSO 0.7404 1.0103 0.0552 0.0053
ENSO+AMONOAA 0.8894 1.3106 0.0557 0.0053
ENSO+AMOHad 0.8195 1.1531 0.0555 0.0052

Table A.2: Evaluation results for the fixed aerosol path. MAE indicates mean
absolute error, MSE mean squared error.
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B
Figures

Figure B.1: Temperature data uncertainty for both datasets.

Figure B.2: Observed and modeled temperature, for the HadCRUT temperature
data and ENSO model. The model intervals are constructed by taking the 5th and
95th percentiles of each year’s temperature estimate.
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B. Figures

Figure B.3: Observed and modeled OHC, for HadCRUT temperature data and the
ENSO+AMO model. The model intervals are constructed by taking the 5th and 95th
percentiles of each year’s OHC estimate.

B.1 Posterior distributions for fixed aerosol path

Figure B.4: Posterior distributions of βENSO (left) and βAMO (right) using the fixed
aerosol path.
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B. Figures

Figure B.5: Posterior distributions of κ (left) and wvolc (right) using the fixed aerosol
path.
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