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An implementation of a visible light communication system based on LEDs
Adam Böcker, Viktor Eklind, Daniel Hansson
Philip Holgersson, Jakob Nolkrantz & Albin Severinson
Department of Signals and Systems
Chalmers University of Technology

Abstract
Wireless communication using visible light is an exciting prospect that, for various
reasons, has never become popular. However, this branch of communication has
several advantages, such as the fact that the infrastructure already exists and it can
offer the extra security that traditional wireless communication lack of. All that
needs to be done is to replace the current light bulbs with intelligent and efficient
bulbs capable of data transmission.

This project explores visible light communication through a prototype implementa-
tion. The implementation consists of a Linux network driver running on a single-
board computer, using a light-emitting diode for transmission and a photodiode for
reception. Further details on the implementation and design are presented in this
thesis.

The implementation is capable of full duplex communication at a bit rate of roughly
25 kbit/s, and is capable of compensating for errors that occur during transmission
to achieve reliable communication.

In closing, the thesis presents suggestions for further work to increase system per-
formance and capabilities, speculates on the limitations of the implementation and
compares it to other methods of wireless communication.

Keywords: VLC, communication, free-space, wireless

v



Sammanfattning
Trådlös kommunikation över synligt ljus är en spännande möjlighet som av olika
anledningar aldrig blivit populär. Detta trots att denna typ av kommunikation har
flera fördelar, som att infrastrukturen redan är uppbyggd och att det finns möjlighet
till extra säkerhet utöver den som finns i traditionell trådlös kommunikation. Allt
som behövs är att byta ut de lampor som används idag mot intelligenta och effektiva
lampor som kan hantera kommunikation.

Det här projektet utforskar trådlös kommunikation över synligt ljus genom en pro-
totypimplementation. Implementationen består av en nätverksmodul för Linux som
körs på en enkortsdator, med en sändare bestående av en lysdiod och en fotodiod
som mottagare. Denna tes presenterar implementationen och dess design.

Implementationen klarar av full duplex kommunikation med en bit rate på 25 kbit/s,
och klarar av att kompensera för eventuella problem under överföring för att uppnå
pålitlig kommunikation.

Avslutningsvis presenterar tesen förslag på framtida utveckling för att öka hastigheten
och systemet funktioner, spekulerar över implementations begränsningar och jämför
med andra metoder för trådlös kommunikation.

Nyckelord: VLC, kommunikation, trådlös

vi



Acknowledgements
This is a bachelor project thesis at Chalmers University of Technology, and we
primarily want to thank our supervisors Cristian B. Czegledi and Erik Agrell. We
would also like to thank ETA, Elektrosektionens teletekniska avdelning, for letting
us use their instruments and lab. Finally, we want to thank the Xenomai, OpenVLC
and Linux projects for their work on open source software that have made this project
possible.

Adam Böcker,
Viktor Eklind,

Daniel Hansson,
Philip Holgersson,
Jakob Nolkrantz &

Albin Severinson
Gothenburg, May 2015

vii





Glossary

ADC Analog-to-Digital Converter.

AGC Automatic Gain Control.

BBB BeagleBone Black.

CAD Computer-Aided Design.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

FSM Finite State Machine.

GPIO General Purpose Input Output.

LED Light Emitting Diode.

MOSFET Metal Oxide Semiconductor Field Effect Transistor.

OOK On-Off Keying.

OP Operational Amplifier.

PAM Pulse Amplitude Modulation.

PCB Printed Circuit Board.

SBC Single Board Computer.

TCS-ADC-SS Touch Screen Controller and Analog-to-Digital Subsystem.

VLC Visible Light Communication.

ix





Contents

List of Figures xii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Visible Light Communication . . . . . . . . . . . . . . . . . . 2
1.1.4 Systems Model . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Purpose and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Main Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Subtasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Primary Specifications . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 Desired Specifications . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 End Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methods 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Development platform . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Design verification . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.7 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



Contents

3 Results 29
3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Data Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.6 Error Detection and Handling . . . . . . . . . . . . . . . . . . 36

4 Discussion and Conclusions 37
4.1 General Discussion and Limits . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Required Specifications . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Desired Specifications . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Increasing System Capacity . . . . . . . . . . . . . . . . . . . 41
4.3.2 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

A Appendix I
A.1 Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Instrument list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

B Appendix III

C Appendix V
C.1 Adler-32 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . V

xii



List of Figures

1.1 The layers of the TCP/IP system model, lower levels are closer to the
physical world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Task divided into subtasks. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 High-level overview of the communication system implemented. . . . 7
2.2 Transmitter’s general design. . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 MOSFET symbol with gate, drain and source. . . . . . . . . . . . . . 9
2.4 Schematics of the transmitter. . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Receiver’s general design. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Transimpedance amplifier. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 A passive, analog, first order high-pass filter. . . . . . . . . . . . . . . 13
2.8 Transfer function for the high-pass filter. . . . . . . . . . . . . . . . . 14
2.9 Schematic of the automatic gain control. . . . . . . . . . . . . . . . . 15
2.10 Voltage division over a transistor acting as an AGC. . . . . . . . . . . 15
2.11 The schematics of the receiver. . . . . . . . . . . . . . . . . . . . . . . 16
2.12 FSM chart describing the transmitter software . . . . . . . . . . . . . 18
2.13 FSM chart describing the receiver software . . . . . . . . . . . . . . . 18
2.14 The packet layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.15 The Early Late symbol synchronization method. The groups of three

samples are separated with the dotted lines. Drifting is detected when
one of the edge samples differ from the other two in its group. When
drifting is detected the dotted lines are marked red in the diagram. . 24

2.16 Manchester encoding. The boolean sequence representing a digital one. 25
2.17 Manchester encoding. The boolean sequence representing a digital

zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.18 Manchester encoding. The boolean sequence representing a the digi-

tal sequence 1110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.19 Bit level communication channel model based on Manchester encoding. 28

3.1 Example of a signal propagated from the transmitter to the receiver. 29
3.2 Eye pattern measured at the output of the BBB at the transmitter. . 30
3.3 Signal measured over the LED. . . . . . . . . . . . . . . . . . . . . . 31
3.4 Maximum frequency measured at the output of the transmitter. . . . 31
3.5 The signal measured at the output of the transimpedance amplifier. . 32
3.6 The signal measured at the output of the high-pass filter. . . . . . . . 32
3.7 Signal measured at the output of the AGC. . . . . . . . . . . . . . . . 32
3.8 Signal measured at the output of the ADC. . . . . . . . . . . . . . . . 33

xiii



List of Figures

3.9 Eye pattern measured at the output of the ADC. . . . . . . . . . . . 33
3.10 Maximum frequency measured at the output of the receiver. . . . . . 34

B.1 Picture of the final transmitter. . . . . . . . . . . . . . . . . . . . . . III
B.2 Picture of the final transmitter mounted on the BBB. . . . . . . . . . III
B.3 Picture of the prototype transmitter. . . . . . . . . . . . . . . . . . . IV
B.4 Picture of the prototype receiver. . . . . . . . . . . . . . . . . . . . . IV

C.1 Adler-32 sequentially described. Two variables A and B is created and
the data is looped through bytewise. Dependent of the file content A
and B get different values which is concatenated. This represent the
Adler-32 checksum of the file. . . . . . . . . . . . . . . . . . . . . . . V

xiv



1
Introduction

Visible light communication (VLC) is an exciting prospect, with a long historical
background, but has never become popular for various reasons. However, currently
interest for this kind of communication is increasing, and the technology for making
it possible is constantly becoming more easily available.

The main technological development that made VLC possible is cheap, high-powered
light-emitting diodes (LED) of high quality, capable of switching at high frequencies.
Furthermore, the infrastructure for VLC is already available. All that needs to be
done is to exchange the already deployed light bulbs with intelligent and efficient
LED bulbs. One interesting application is vehicle-to-vehicle communication, where
they communicate with each other through their head- and/or tail lights. When the
vehicle in front suddenly brakes, it can communicate this to the vehicle behind and
a potential multiple-vehicle accident is avoided.

1.1 Background
This chapter briefly details the background of communication using visible light,
and communication systems in general.

1.1.1 History
The history of wireless communication based on electromagnetic waves dates back
to the Photophone, invented by Alexander Graham Bell in the late 19th century. It
was the first device used to communicate without wires and Bell’s invention used the
light produced by the sun to carry the information [1]. Although this was a great
achievement at the time, the Photophone was never a big hit and had to give way
to other wireless communication systems based on lower frequency waves. During
the 20th century, almost all data sent through the air was carried by waves with
frequencies lower than those of the visible light. However, today light is a common
carrier of data, such as in fiber optical networks. A not so common way to transfer
data is to, just as Bell did, send the information through the air using visible light.
Unlike Bell, we now have more sophisticated technology, like the light-emitting diode
and the transistor, to make this work in a significantly more efficient way.

1



1. Introduction

1.1.2 Physics
Any kind of data can be broken down to single bits of ones and zeros, which in turn
can be represented as a low or high signal. Using a light source this can be achieved
by turning the light on and off, this is called on-off keying (OOK). More advanced
methods exist to increase speed and stability, which are described in Chapter 2.
When producing a light beam, a key aspect is how quickly the light source can
move between the on and off state. This is crucial for the data transfer rate because
it limits the achievable data rates. An LED is ideal for this purpose since it has a
short rise- and fall-time, thus the rate at which it can switch between on and off is
high. The typical rise and fall time for a communication specific LED has is a few
nanoseconds. Since the LED needs a certain time to reach a stable value it limits
the highest possible data transfer rate. The theoretical limit is somewhere below 1
GHz, that is <1 Gbit of data/second using OOK [2].

1.1.3 Visible Light Communication
Light has indeed been used for some time to transfer data. An everyday example is
the infrared (invisible) light in remote controllers, used only to send a short control
signal. When data transfer is the main intention, the transmitting frequency must
be very high, hence visible light will be perceived as a continuous light rather than
an irritating flicker. Data transfer with light, VLC, uses the same principles as the
well established fiber optical technology, but for wireless transmission.

The most obvious property of light is that it can not move through opaque objects
(e.g., walls and floors) thus the communicating devices must be in line-of-sight, or
at least be located in the same room. This property may appeal in a situation
where the flexibility of wireless is needed, but the security of traditional radio wave
communication is insufficient. The distance data can be sent is limited by the
intensity of the light. For short distances through air (e.g., within a building) the
intensity can be approximated as

I = P

4 · π · r2 , (1.1)

where P is the power emitted by the light source and r is the distance to the source
[3]. Possible applications of this technology could be data transfer in environments
sensitive to radio waves, such as airplanes and hospitals. Furthermore, vehicles
could communicate with other vehicles using their head and/or tail lights, aiding
the current development of autonomous vehicles.

1.1.4 Systems Model
In a communication system of this kind, the way the data is handled has to be
structured in a certain way. One way to achieve this is to use the TCP/IP model.
TCP/IP is the most common model for communication systems, such as the Internet.
The model can be described in terms of four levels, where each level describes how
the data is represented in its way from one point to another. In Figure 1.1 [4], the

2



1. Introduction

TCP/IP layers in the case of an Internet connection is shown. The uppermost layer
can, for example, be the Internet browser and the bottom layer, also know as the
physical layer, could be the computer’s Ethernet connection, or in this case, the
VLC connection [5].

Figure 1.1: The layers of the TCP/IP system model, lower levels are closer to the
physical world.

1.1.5 Hardware
The typical hardware used to construct a VLC system includes a wavelength specific
LED and photodiode. The photodiode is doped to enhance its capability to turn
light into a current, usually constructed as a so called P-I-N diode [6]. Besides
the component responsible of generating and capturing the light signals, additional
hardware is needed to filter and interpret these signals. For example, a suitable
band pass filter can be used to filter out incoming signals with frequencies other
than those desired; an optical filter can be a good way to filter out light of other
wavelengths; a lens to focus incoming light can be suitable if the light intensity is
low. In the case of digital data transmissions, a digital signal processor at both ends
of the system is required to process incoming and outgoing data.

1.1.6 Software
A good software implementation is essential to achieve an efficient communication
system. At the transmitting end, the data that will be sent is structured according
to a chosen communication protocol, and at the receiving end the same protocol
must be used to correctly interpret the incoming data. Some form of two-way com-
munication is necessary to guarantee a loss-less transmission, in which the receiving

3



1. Introduction

end performs a check to verify that all data was obtained correctly and then informs
the transmitter whether it has to re-send the data packet or not.

1.2 Purpose and Scope
The purpose of this project is to perform digital, point-to-point, communication
over visible light and to illuminate the area where the transmission is intended. The
transmission must be stable enough to allow for reliable communication and must
be capable of compensating for transmission errors. The distance and rate at which
data can be sent is also parameters that will be taken into account since these limits
its applications. Furthermore, the project must be easily extensible to allow for
further development.

1.3 Task
This section presents the project tasks and required specifications.

1.3.1 Main Task
The main task of this project is to develop and build a pair of devices capable of
sending respectively receiving data over visible light. This can be done using any
light source emitting visible light that is capable of switching quickly. This project
will focus on the use of LEDs for transmission.

In order for the system to be useful, it must be capable of performing a continuous
transfer of a 10 MB file. The transmission speed is interesting for comparison with
other technologies, but speed is not a goal in this project.

1.3.2 Subtasks
The task consists of two major parts. The first part is to design and build a trans-
mitter and a receiver. The second part is to implement software to control these
devices. Figure 1.2 shows a more detailed structure of the task.

1.3.3 Primary Specifications
The system must be able to:

• Send arbitrary data over visible light.
• Receive arbitrary data over visible light.
• Transfer data while producing 450 lumen (equivalent to a 40 W light bulb).
• Send data over at least 1 meter in a brightly lit room.
• Send data in one direction.
• Perform an uninterrupted transfer of 10 MB.

4



1. Introduction

Visible Light Communication System

Hardware

Digital→Light converter

Transm
itter

D
A
-converter

Light→Digital converter

A
D
-converter

Filter
R
eceiver

Computer

Software

InterfaceAlgorithm

Error
handing

Protocoll
U
npackaging

Packaging

Synchronization

Figure 1.2: Task divided into subtasks.

1.3.4 Desired Specifications
The desired specifications, in order of priority are as follows:

1. The device can connect to any computer over Ethernet.
2. The device can manage half-duplex transfer.
3. The device can perform reliable and loss-less data transmission.
4. The device is packed in a case.
5. The device should manage to send data over a distance of 2 meters in a brightly

lit room.
6. The device can manage full-duplex transfer.
7. The device supports light intensity variation during transfer (dimming the

light source).
8. The device can connect to multiple units simultaneously, similar to a WiFi

router.
9. The device should support multiple data steams in parallel (multiplexing).

1.3.5 Challenges
This project includes many challenges. For example:

• Disturbances affecting the transfer. For example luminaries and the sun.
• Variations in transmission distance.
• Detecting and handling errors.
• Hardware limitations such as LED rise time.
• Timing between the transmitter and the receiver.

1.4 End Product
The end product consists of a communication system, with a transmitter and receiver
capable of transferring data using visible light. The device consists of two single

5



1. Introduction

board computers (SBC) with additional hardware for the sender respectively the
receiver. The device can communicate by its own, or can be configured to connect
to other devices over Ethernet, enabling the device to communicate over visible
light. The device simultaneously functions as a luminary, both when idle and when
transmitting, and can be embedded into a light fixture.

1.5 Limitations
Limitations of the project scope are set such that as little time as possible will be
spent on activities not concerned with VLC. This includes limitations on the soft-
ware and hardware implementation.

This project will be limited to developing the link layer for transmitting data over
visible light. Existing, open source, code will be used for all other layers. On the
hardware side, the project will be limited to using an SBC with an already working
operating system as development platform. The light used for transmission must be
safe to look at, and must not be annoying to the human eye.

6



2
Methods

The methods chapter presents how the VLC system was developed and implemented.
It includes both a software implementation, from now on referred to as the VLC
driver, and a hardware transmitter-receiver implementation. Firstly, a high level
overview of the developed communication system is presented, after which the hard-
ware and software implementation is presented in turn.

2.1 Overview
This section will briefly present the basics of the communication system used to
transmit data over light. A high-level overview of the communication system im-
plemented in this project can be seen in Figure 2.1, where the devices intended to
communicate can be connected with the SBCs.

SBC Hardware ≈ Hardware SBC

Transmitter Receiver

Figure 2.1: High-level overview of the communication system implemented.

2.1.1 Development platform
During the project a Beaglebone Black (BBB) was used as development platform.
It is a small, inexpensive and relatively powerful single board computer. For a com-
plete description of the development platform, see [7].

The BBB is a single-board computer, which means it can run a variety of Linux
distributions, such as Debian, Ubuntu and Ångström. That means the project can
use the functionality already present in the operating system, such as the network
stack and TCP/IP protocol suite. Furthermore, the operating system makes it easy
to run several execution threads in parallel. These reasons should make development
easy, and is the reason why an SBC was chosen over a micro controller.

7



2. Methods

The BBB in particular was chosen over other SBCs due to its diverse set of features.
For example, the BBB has both a programmable real-time subsystem and an analog-
to-digital subsystem which can be used to synchronize software and read analog
inputs respectively.

2.2 Hardware
The physical layer is the hardware used between the two BBBs, i.e., all the electri-
cal components. The hardware was implemented using LEDs transmitting data via
light to a photodiode which converts it back to an electrical signal so that the BBB
can interpret it as data. To process the electrical signal correctly the transmitter
and receiver have to be designed and optimized for this purpose. All the separate
parts of the hardware are explained in detail in their separate subsections.

A complete component list is available in Appendix A with references to the com-
ponents’ datasheets.

All active components need a power supply to work properly. In this project 5 V
was used due to it being the maximum voltage the BBB can deliver.

2.2.1 Transmitter
The transmitters task is to convert digital data into visible light. An LED was a
suitable component because of its relatively linear relation between current and light
intensity [8]. The general idea was to modulate the light intensity of the LED i.e.,
the intensity of the light corresponds to the symbol transmitted. The BBB ports
are not capable of delivering the right amount of current to make the light intensity
strong and fast enough. To get around this problem a transistor was used as a
switch, which made it possible to switch a larger current faster. In Figure 2.2 the
general design is shown to give an overview of the transmitter.

BBB Switching
transistor LED

Figure 2.2: Transmitter’s general design.

Transistor

The BBB can only convert data into a voltage and therefore a voltage operated
transistor was needed. The Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) was suitable for this application because it operates using a positive
voltage on the gate. The MOSFET can be seen in Figure 2.3.

8



2. Methods

When a voltage is applied to the gate of the transistor, it generates an electrical
field which lowers the internal resistance to increase the current from drain to source.
Due to the high input resistance, the MOSFET can handle high currents with al-
most no current on the gate. This makes it possible for almost any driver to handle
the MOSFET, including the BBB. This means that a BBB can be used to operate
the MOSFET for switching an LED. To increase the current when applying a volt-
age to the gate, an enhancement MOSFET was chosen over a depletion MOSFET,
otherwise the signal would be inverted. The MOSFET also have a low drain-source
resistance which makes it good for switching since it acts like a short circuit when
fully on [9].

The MOSFET used is an N-channel named IRLR3715ZPBF. It is a switching power
transistor and was chosen for the capability of switching high current. With a
capability of switching 49 A at a gate voltage of 10 V at 25°, the transistor makes
no limit for further development with more LEDs. The transistor is also designed
with a ultra low gate resistance, which makes it optimal to use with a driver like
the BBB.

Gate

Drain

Source

Figure 2.3: MOSFET symbol with gate, drain and source.

LED

An LED is a semiconductor that produces light. When electrons enter the semicon-
ductor they bond with holes in the substrate and energy is released in the form of
photons. There are several variables that need to be considered when choosing an
LED and these variables have to be weighted against each other. The maximum
intensity of the LED affects the rise time. A low intensity makes it possible to have
a short rise time and increasing the intensity increases the rise time. The more
intensity an LED generates, the more power it needs and the more heat it produces.
The BBB has a maximum voltage output of 5 V, maximum current output of 1 A
and can send a square wave with the maximum frequency of 50 kHz. To meet these
criteria the CREE MCE4WT-A2-0000-000HE7 was chosen. This is a white LED
made up of four separate LEDs with an intensity of 240 lm each. The LEDs have
a forward voltage from 3.1 V to 3.9V. The LED has its peak wavelength at 450 nm
and 610 nm. Manufacturers of LEDs do not specify switching characteristics in their
datasheets and therefore the diodes had to be tested in order to check its function
with the frequencies that were used. The chosen LED was tested and can perform
well at frequencies over 25 kHz.
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Final Design

The transmitter was designed after the specification of the BBB, in other words
making use of the limited power output. The transmitter was made using three
transistors, as can be seen in Figure 2.4. These three independent transistors are
each controlled using the GPIO ports on the BBB, and thus it is possible to regulate
the three transistors independently. This means that the current through the LED,
and thus the intensity, can be switched in eight steps. Having multiple steps makes
it possible to use different encoding styles, like Pulse Amplitude Modulation (PAM)
or OOK. Flickering can be avoided by having one transistor constantly open and
cycling the other two on and off. This also made it possible to use regular resistors
with a maximum tolerant power rating of 0.25 W. Two ripple capacitors, one large of
100 µF , and one small of 100 nF were used to remove ripple from the power source.
Firstly, a prototype board were built for testing the design of the circuit, and then a
single layer PCB was made using the Eagle CAD software. The prototype and the
PCB can be seen in Appendix B.

BBB

5V
18Ω

18Ω

18
.Ω

18Ω

18Ω

18Ω

18Ω

A
B

C

Figure 2.4: Schematics of the transmitter.

DC characteristics

Electrical components have power ratings that cannot be exceeded without destroy-
ing the component. Therefore this has to be accounted for when using high currents
and voltages. In Table 2.1 the power dissipation was calculated by measuring the
current and voltage through the components, with the LED constantly on. It can
be noted from the table that the resistors are close to their maximum power rating
of 0.25 W. However, since Manchester encoding is used, the resistors will only have
an applied voltage half of the time and thus the average power is lower.
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Table 2.1: The transmitters voltage, current and power dissipation.

Components U[V] I [A] P [W]
Transistor A 2 m 112 m 224 µ
Transistor B 3.2 m 224 m 717 µ
Transistor C 6.8 448 m 3046 µ
Resistors 2.1 112 m 0.224
LED 2.686 784 m 2.1

2.2.2 Receiver
The receiver converts the incoming light into current using a photodiode. A photo-
diode is a semiconductor converting light into an electrical current. This electrical
current needs to be converted into a voltage such that the BBB can process it while
not exceeding the BBB’s restrictions. For a digital signal the BBB cannot receive
a voltage above 3.3 V. Therefore, the electrical circuit between the photodiode and
the BBB needs to process the electrical signal so it can be interpreted correctly.

The receiver’s electronics need to convert the current to voltage in order to amplify
and filter it. To be able to vary the distance between the transmitter and the
receiver without risking getting a too small signal or a too high signal, an automatic
gain controller (AGC) was designed. This component amplifies or reduces the input
voltage to a selected output voltage. To make sure the signal is digital and stable
before the BBB, a transistor was used as an analog-to-digital converter (ADC). The
general design is shown in Figure 2.5 and the final design is shown in Figure 2.11.

Photodiode
Transimpedance

amplifier
High-pass

filter AGC ADC BBB

Figure 2.5: Receiver’s general design.

Photodiode

As mentioned before, the photodiode is a semiconductor converting light into an
electrical current. Most of the photodiodes on the market are produced for the
purpose of fiber optics. In applications concerning fiber optics, the radiant sensitive
area is small and the rise respectively fall time is short. With increased radiant
sensitive area, the component’s response time will be slower. Without fiber optics
a larger radiant sensitive area allows for more light to be captured by the receiver.
Therefore, the choice of photodiode is limited.

The requirements of the photodiode was a quick response time, a spectral sensi-
tivity in the visible spectrum and a large radiant sensitive area. The size of the
radiant sensitive area is crucial and therefore the photodiode used was a VISHAY
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BPW21R. It has a suitable wavelength peak sensitivity at 565 nm. The spectral
bandwidth is from 420 nm to 675 nm and gives a perfect range for the intended
application. It has a linear light intensity to current ratio and the radiant sensi-
tive area is 7.5 mm2, which was larger than most photodiodes found. It has a rise
and fall time of 3 µs each, which provides a switching frequency of 166 kHz. This
was enough since it is above the capabilities of the rest of the hardware and software.

The photodiode converts all the light hitting the radiant sensitive area into a current
proportional to the intensity of the light, including all other light sources. The sur-
rounding light sources flicker in different frequencies depending on, e.g., the power
grid or internal hardware. These light sources produce noise in the form of electrical
current in the receiver. To maintain a good, stable signal the noise needs to be
removed. Therefore a filter is crucial and the filter implemented is described the
high-pass filter section below.

To amplify the current from the photodiode, a reverse voltage can be applied. But
with a large reverse voltage the reversed leakage current, also know as dark current,
increases and creates unwanted noise. This gives a trade-off. The maximum reverse
voltage of the VISHAY BPW21R is -10 V, but in this application -5 V was used.
This makes it possible to use the power supplies of the BBB and gives a lower dark
current and enough amplification.

Transimpedance amplifier

Instead of using a single resistor to convert current to voltage, a transimpedance
amplifier was used. The transimpedance amplifier is a current-to-voltage converter
and is commonly used with photodiodes [10]. It is suitable because it increases both
gain and speed, which are needed in this application.

A photodiode has an internal capacitance C, and an internal resistance R. Together
they make the time constant τ = RC, and if the resistance is large then the gain can
be large, but the response becomes slow. To increase the speed a smaller resistor is
needed, but then the gain will be low. To avoid this phenomenon, the photodiode
was connected directly to the transimpedance amplifier, making the time-constant
no longer be determined by R or C, and the gain can be determined by the feedback
resistor Rf , seen in Figure 2.6.

The transimpedance amplifier is an operational amplifier (OP) with a feedback re-
sistor. Because the transimpedance amplifier has a closed-loop amplifier, oscillations
can occur if the phase margin is not sufficient. To solve this, phase compensation
can be done with the feedback capacitor Cf , added parallel to the feedback resistor
Rf , seen in Figure 2.6. This capacitor needed to be optimized for the specific circuit
to not overcompensate. Even if a small overcompensation often is preferable, a large
overcompensation would make the signal oscillate again.

The OP chosen for this circuit was UA741CD from TEXAS INSTRUMENTS. It
is a general purpose OP with a bandwidth of 1 MHz. It is a cheap, commonly
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used and is therefore suitable for this project. The feedback resistor was chosen to
470 kΩ to produce a suitable amplification. To find a suitable feedback capacitor
measurements were conducted until oscillation decreased, Cf = 5.6 pF.

−

+

−5V

I

Cf

Rf Cf = 5.6 pF

Rf = 470 kΩ

Vout = Rf · I

Figure 2.6: Transimpedance amplifier.

High-pass filter

To remove unwanted noise from surrounding light sources, e.g., the sun or luminaries,
a high-pass filter was included in the design. A passive first order analog high-pass
filter was used for the simplicity of the design, realized using an RC circuit as
shown in Figure 2.7. A passive instead of an active filter was chosen because both
the transimpedance amplifier and the AGC include gains, and more gain was not
needed.

Vin

C

R

Vout

R = 10 kΩ

C = 100 nF

Figure 2.7: A passive, analog, first order high-pass filter.

The surrounding light sources have a relatively low frequency compared to the fre-
quency used by the transmitter. To avoid distortion of the sent data, the filter was
designed with a relatively low cut-off frequency. Otherwise the square wave would
be distorted and hard to interpret. The chosen values for the resistance was 10 kΩ
and the capacitance was chosen to 100 nF. The 3 dB cut-off frequency is

fc = 1
2πRC = 1

2π · 10 · 103 · 100 · 10−9 = 159 Hz. (2.1)
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The chosen filter gives the transfer function G(s) = s
s+1000 and in Figure 2.8 the

transfer functions is plotted in a Bode diagram. The figure describes the filters
impact on the signal depending on its frequency. When a sinusoidal signal reaches
over 1 kHz the signal is nearly untouched. The carrier frequency used by the system
is 25 kHz and theoretically a square wave includes unlimited frequencies. This means
that the square wave will be affected by the filter and a trade-off where a part of
the square wave will be attenuated in the favor of removing noise.
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Figure 2.8: Transfer function for the high-pass filter.

Automatic gain control

An AGC was used to accommodate for the variations in distance between the trans-
mitter and receiver, without changing the receiving signals amplitude. The AGC
amplifies the varying signal to a defined value based on the gain factor created by
the feedback circuit. In this case the only AGC available was the TL026C and with
a bandwidth of 50 MHz and a peak gain of 38 dB it was suitable for this application.
The circuit design is from the AGC’s datasheet and can be seen in Figure 2.9. The
same values as in the datasheet was used since it provides an adequate amplification.
This could also be done in software, but due to the limited processing power in the
BBB it would slow down the transmission significantly.

Analog-to-digital converter

To make sure it was a digital signal with the right voltage at the input of the BBB,
the AGC’s output was followed by a transistor which acts as an AGC, which can be
seen in Figure 2.10. Firstly a 5 V supply was voltage divided down to 2.5 V, which
was a suitable voltage for the BBB without any risk of breaking it. When the AGC
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Figure 2.9: Schematic of the automatic gain control.

gives a high voltage the transistor is closed and the potential at the BBB is 2.5 V,
a logic one. When the AGC gives a low voltage the transistor is opened and the
BBB will be grounded and sample a logic zero. The diode was used to remove the
negative voltage in the signal from the AGC. This design does not work with the
encoding style PAM and needs to be changed if PAM is intended to be used. The
transistor used was a bipolar NPN BC547A. The value of the resistors was chosen
to 10 kΩ, this minimizes the current and thus the power dissipation.

AGC

5V
10 kΩ

BBB

10 kΩ

Figure 2.10: Voltage division over a transistor acting as an AGC.

Final design

The schematics of the receiver with all parts can be seen in Figure 2.11. The
prototype product of the receiver can be seen in Appendix B, Figure B.4.

2.2.3 Design verification
Tests were conducted to verify the design and see if the right properties were
achieved. These tests were mainly done using an oscilloscope and a function gen-
erator. Sending square waves trough the systems made it easy to look at different
parts of the circuit and see how the signal propagates trough the components. The
final design verification was done using the complete system, transmitter, receiver
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Figure 2.11: The schematics of the receiver.

and software, and the results are shown in chapter 4, Results. The instruments used
can be found in Appendix A.

2.3 Software
The software implementation of the project consists of the following separate parts:

• Data packaging
• Hardware control
• Transmission synchronization
• Transmission encoding and decoding
• Error handling

Implementation Framework
The VLC driver is implemented as a Linux network module and it has to be taken
into account during all parts of the software implementation.

The reason for choosing to implement it in this way is that it allows any application,
that can be run on a Linux computer, to transmit data over visible light. This is
because the VLC driver will integrate seamlessly with the Linux kernel, and will be
displayed as a network card in the operating system which makes the implementa-
tion much more useful. Furthermore, the existing TCP/IP protocol suite will handle
address resolution and transport protocols.

The downside is some loss in flexibility. The driver has to conform to the specifica-
tions of Linux modules, which means some functionality can not be used. However,
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this is a small problem in comparison to the advantages.

Network Modules
The network module works by providing an interface to the operating system kernel
through a set of specific functions. The kernel can then use those functions to
interchange data with the module. For example, whenever a user wants to send
data to another user, the following steps will take place:

1. The application used by the user will notify the kernel that it wants to send
data, what the data is, and where it should be sent.

2. The kernel will take the data and hand it to the network module.
3. The network module will buffer it and start transmitting it over the channel.
4. The network module on the receiving computer will collect the packet from

the channel, and hand it to the kernel of the receiving computer.
5. If the data is intended for an application, such as a web browser, the data will

be handed to that application.

2.3.1 Design
Transmission in a communication system is performed by encoding the data to be
sent into a sequence of symbols well-suited for transmission. For example, the data
can be viewed as a long sequence of logical ones and zeroes, and transmission is
made by turning the LED on and off to send a one and a zero respectively. How-
ever, to achieve reliable and efficient communication the data has to be packaged in
some way described in Section 2.3.2. This section describes how the software was
designed to send the packets in the VLC driver.

The transmission was made by representing the data as a sequence of bits. Before
the file is sent, the file length1 and the sequence number2 have to be sent. However,
the whole sequence is preceded by a preamble3. The software was designed as finite
state machines (FSM) described bellow.

Transmitter side

After the transmitter is initialized it is set to wait for data. When data is to be
sent the transmission is started by sending a preamble in order to synchronize the
receiver. This is followed by the packet length and the sequence number. Then
the data followed by the checksum is transmitted. In the last state the transmit-
ter is waiting for the receiver side to send a confirmation. If the transmission was
successful the transmitter side returns to wait for data, otherwise the packet is re-
transmitted. This is displayed in Figure 2.12.

1This was needed for the receiver to read the correct number of bits.
2This was needed to put the packets back together to a file at the receiver side.
3A predetermined sequence of ones and zeros that was transmitted before every packet to

wake-up the receiver.
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WD SP

SL

SSSD

Init

WC

SC

da

cn !cn

Meaning
WD Wait for Data
SP Send Preamble
SL Send Length
SS Send Sequence number
SD Send Data
SC Send CRC
WC Wait for Confirmation
cn Confirmation
!cn Confirmation Timeout
da Data

Figure 2.12: FSM chart describing the transmitter software

Receiver side

The receiver is in standby4 until it detects the preamble. When it is detected the
data length and the sequence number is read and then the data transmission begins
followed by the CRC. If the transmission is successful the receiver side sends a
confirmation signal to the transmitter side. This is displayed in Figure 2.13.

WP

RC RLCT

Init

RD RS

pa

dc

!dc

Meaning
WP Wait for Preamble
RL Receive Length
RS Receive Sequence number
RD Receive Data
RC Receive CRC
CT Confirm Transfer
pa preamble
dc Data Correct
!dc Data Corrupted

Figure 2.13: FSM chart describing the receiver software

2.3.2 Packaging
Digital data transmissions works by sending data in packets. For example, when
sending a file between two computers, the file would be split into packets of smaller
size that are transmitted. The receiving side will collect all packets, and once the
transmission is completed, the packets will be combined into the original file again.

4Doing nothing but listen for the preamble.
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If any one packet is corrupted, only that packet will have to be retransmitted instead
of having to retransmit the entire file. This section describes how this packaging is
performed in the VLC driver.

Linux Kernel

Whenever an application wants to send data over the network, it will notify the
Linux Kernel. The transport and the IP-layer of the communication stack is con-
tained in the Kernel and the Kernel will split the data into packets. The Kernel will
then notify the network driver that there are packets ready for transmission and will
hand over the packets to the driver in sequence.

The packets, as they are presented to the driver, contain the following sections that
are used by the VLC driver:

• Data payload
• Data payload length

VLC Driver

Whenever the VLC driver receives a packet from the kernel, the driver will store the
packet in a buffer and will add the following to the packet:

• Preamble
• Sequence number
• Data checksum

The end result is a packet that looks as in Fig. 2.14. Further details on the different
parts of the packet are presented below.

Preamble Length Sequence Data Checksum

32-bits 32-bits 32-bits 0:12 000-bits 32-bits

Figure 2.14: The packet layout.

Preamble

To notify the receiver that a packet is about to be sent that needs to be collected,
the transmitter will send a preamble. The preamble is a predetermined sequence of
bits that the receiver is looking for continuously while not already receiving a packet.

The VLC driver uses a preamble that consists of two square waves with different pe-
riod in sequence, and looks as follows: 00110011001100110011001100111010. Since
the receiver and transmitter might not be synchronized when the preamble is sent,
the preamble is not Manchester encoded.
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Length

The number of bytes contained in the data payload of the packet is sent to inform
the receiver on how long to listen. The receiver will store the payload length and will
collect octets of bits until it has collected the amount of bytes specified by the length.

Sequence

All packets sent are numbered, and the sequence number is transmitted along with
the packet. This handles duplicate transmissions of packets. If, for example, the
acknowledgement is corrupted due to noise, the transmitter will retransmit that
packet despite it being received correctly. Having the sequence number available
means the receiver knows it is a duplicate and can take care of it accordingly.

Data Payload

The actual data intended for the receiver. This data is handed to the VLC driver
from the Linux kernel, and can vary in size between 0 and 12 000 bits [11]. This is
the only part of the packet that is not overhead.

Checksum

The checksum of the packet is sent last and is used in error detection and handling.
See the section on error handling for further details.

2.3.3 Hardware Interface
This section describes how the VLC driver connects to the hardware of the sender
and receiver.

GPIO

General purpose input-output (GPIO) is a method for controlling the physical world
through software. The GPIO is a set of hardware pins present on the BBB. The
GPIO pins can be configured as inputs or outputs and the software can read from
or write to them. For example, reading from a digital GPIO pin configured as input
would return a zero or one depending on if there is a voltage present over the pin
or not. Tests show that the BBB will interpret the value as one if the voltage is
higher then 3 mV and zero otherwise. Writing a one to a GPIO pin configured as an
output will set a voltage of 3.3 V over that pin, and writing a zero will set a voltage
of 0 V.

The GPIO is connected to the CPU of the board, either directly or through some
subsystem present on the board. This means that the capabilities of the GPIO vary
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between processors and boards. The exact specifications of the BBB GPIO can be
found in [7].

Linux GPIO Interface

Linux provides several ways of controlling the GPIO, which vary greatly in perfor-
mance. The simplest form is through a set of files that are linked to the GPIO pins.
Writing and reading to the files translates into reading and writing to the GPIO.
However, this implementation has the additional overhead of opening and closing
files for every read and write.

The more efficient way to interface with the GPIO is through memory. Since the
GPIO is connected to the CPU, the pins are mapped into physical memory addresses
available to the VLC driver. Reading and writing to these memory addresses is
roughly 1000 times faster than writing through files and allows for a maximum
toggle rate of about 2.8 MHz [12]. The only downside is slightly more complex
code. The VLC driver uses this method.

Reading and Filtering

The BBB has the capabilities of reading both analog and digital values, and this is
done through different sets of GPIO pins. The analog values are represented over
12 bits, which allows for a more precise filtering and gain control to be performed
in the software. Reading digital values severely diminishes these capabilities since
this method only provides a one-bit representation of the input value.

The BBB has several subsystems that work independently of the main CPU and that
cooperate through shared memory. One of these is the touch screen controller and
analog-to-digital subsystem (TCS-ADC-SS), which handles analog reading. This
system contains a micro controller, and to read analog values, it must be pro-
grammed to read analog values continuously and place them in shared memory
where the CPU can access them. There are differences in what functionality is
available to user programs and kernel modules, and existing ways of programming
the TCS-ADC-SS require functionality not available to kernel modules. For this
reason reading analog values in the VLC driver would require a lot of work. Fur-
thermore, the VLC driver would not be able to run on a different board without this
subsystem. However, the pins for digital reading are connected directly to the CPU
and are easy to interface with. For this reason the driver only uses digital GPIO. All
filtering and gain control is instead done in hardware, which has the added benefit
of offloading the CPU of the board.

2.3.4 Synchronization
Communication must be performed in a synchronized manner. For example, the
following functionality is required for reliable communication:
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• The receiver must listen whenever something is being sent to it but should
otherwise ignore incoming noise.

• The receiver must collect bits at the same pace as they are being sent, and
vice versa.

• The receiver should try to read the bit currently being sent at the half-way
point between two bits being sent. That is, if one bit is sent every second, the
receiver should read the bit half a second after the sender has transmitted it.

The problem consists of two parts; software real-time constraints and symbol syn-
chronization, detailed below. The software real-time constraints are met through the
use of the Xenomai kernel extension. The early-late method of symbol synchroniza-
tion was implemented but not used in the final product due to poor performance.
Both are detailed below.

Real-time constraints

To transmit data between two devices they must operate in a synchronized manner.
The receiving device must collect bits at the same pace as they are sent. This puts,
what is called, hard real-time constraints on the application.

This is a problem when using Linux since Linux is not an operating system designed
to handle real-time constraints. Linux will, for example, interrupt a task if another
event occurs, or a certain task might be delayed in favor of some other task. This
is desireable in most cases since the overall performance increases, but if deadlines
which must be met exist, as in this case, it is a problem. Another example of a
system with real-time constraints is the computer handling the ABS breaks in a car.
No-one would want the breaking to be delayed because the computer is busy doing
some other work.

Xenomai

Real-time constraints can, however, be met in Linux by using the Xenomai frame-
work. Xenomai is an open source project with the goal of running real-time applica-
tions on Linux. The core of Linux is the Linux kernel, which manages the computer’s
resources, and decides what task to run and when. Xenomai introduces another ker-
nel into Linux, which always runs before the regular kernel. This separate Xenomai
kernel handles all real-time tasks and runs the regular Linux kernel only when there
is no real-time constrained task waiting. This enables applications with real-time
constraints to run on Linux while not losing the flexibility and functionality that
Linux offers.

The downside of this approach is that the Linux kernel runs more slowly since the
Xenomai kernel takes priority. The upside is that this approach does not depend
on the specific hardware platform used to run the code. Any platform with support
for Xenomai can be used.
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Specialized Hardware

Another way to meet real-time constraints, and the way they are most often han-
dled, is by using specialized hardware for the timing sensitive code. This specialized
hardware would only run the timing sensitive code and can therefore guarantee the
real-time constraints. This could, for example, be a USB WiFi network card that
plugs into a laptop.

The CPU on BBB has a built-in programmable real-time subsystem (PRUSS) which
could be used for this. This is likely a high-performance solution that would work
well once implemented since it frees up the Linux kernel. However, it comes with
the obvious downside of making the code dependent on using this specific CPU. Fur-
thermore, the PRUSS is complicated and implementing this solution would require
a lot of work.

Symbol Synchronisation

Two separate clocks can never be perfectly synchronized. One of the clocks is always
ticking slightly faster than the other. This causes a problem that the two devices
could drift out of sync. This has to be compensated for in some way, either by ad-
justing the clocks whenever they start to drift or by detecting when an error occurs
and asking the sender to retransmit whatever data that was damaged.

The early-late method of synchronization is based on taking several samples per
bit and using this to detect clock drift. In this case three samples per bit was used.
Ideally the three samples is centered on the currently transmitted bit. If the clocks
drift apart, one of the edge samples is taken on either the next or the previous bit.

The system attempts to detect this scenario by calculating the moving average of
each sample value and compare it to the combined average of all three samples.
If the average of one of the edge samples deviates from the combined average, the
system determines that the clocks are drifting apart and will compensate for it by
adjusting its clock. The method is displayed in Figure 2.15.

Since the early-late method collects three samples, and calculates some averages to
detect if one sample point is deviating from the others, the method is significantly
more expensive computationally compared to receiving bits without using early-late.
For this reason this method is not used in the VLC driver. It is cheaper to allow the
clocks to drift apart occasionally, and then compensate for the errors. Early-late is,
however implemented and can be activated in the VLC driver.

2.3.5 Encoding
Data can be represented using various methods of encoding. In a computer every-
thing is represented as ones and zeros. When data is sent through a channel those
ones and zeros must be represented in some physical way. There are many different

23



2. Methods

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1
Drifting Detected

t

b

Figure 2.15: The Early Late symbol synchronization method. The groups of three
samples are separated with the dotted lines. Drifting is detected when one of the
edge samples differ from the other two in its group. When drifting is detected the
dotted lines are marked red in the diagram.

encoding styles. This chapter briefly describes some of them, and the choice made
in this project.

Encoding Styles

This section describes the most commonly used encoding styles that was discussed
during this project.

On-off keying (OOK) is the simplest method to represent data. The logic value
zero correspond to LOW and the logic value one to HIGH. In the VLC case, this
means the LED is turned off to transmit a zero and turned on to transmit a one.

Manchester encoding is a system used in many communication systems in con-
junction with OOK. This method encodes a zero into the sequence 01 and the one
into the sequence 10. This has two clear advantages in a VLC systems. Firstly,
even at high frequencies a long sequence of zeros followed by a long sequence of ones
will be perceived as annoying flicker of the LED. Manchester encoding solves this
by always sending an equal number of ones and zeroes.

Secondly, the AGC of the receiver uses the average value of the input to calculate the
amplification, which is disturbed by long sequences of the same value. For example,
after observing a long sequence of zeros the AGC will increase the amplification and
thus corrupt the signal. Manchester encoding guarantees that such a sequence never
occurs.

The disadvantage of Manchester encoding is that every logical bit is sent using two
physical bits, and as a result the transfer speed is halved compared to OOK without
Manchester encoding. How the bits are encoded is displayed in Figure 2.16, 2.17
and 2.18.

Pulse-amplitude Modulation (PAM) works in almost the same as OOK, but
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Figure 2.16: Manchester encoding.
The boolean sequence representing a
digital one.
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Figure 2.17: Manchester encoding.
The boolean sequence representing a
digital zero.
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Figure 2.18: Manchester encoding. The boolean sequence representing a the
digital sequence 1110.

with more levels of signal amplitude. For example a 4-level PAM has 4 possible
levels, representing the values 0,1,2,3, and encodes two bits of data per level. The
receiver detects the input amplitude and from that infers what data was sent.
Note that OOK is a 2-level PAM, representing the values zero and one, a one bit
value. The transmission rate increases logarithmically with the number of levels.
For digital transmission the number of levels should be a power of two to represent
an integer sequence of bits.

Encoding in this project

The main focus in this project has been reliable communication. Manchester en-
coding was chosen since it was easiest to achieve reliable communication using this
scheme. Manchester encoding is also the slowest and other methods such as PAM
were considered. However, it was not implemented.

2.3.6 Error Handling
To achieve stable communication, a communication system must have the ability
to detect and correct errors that occur during transmission. This can be done both
with and without feedback.

Error handling with feedback

Error handling with feedback is achieved through the use of checksums and acknowl-
edgment of correctly received packets. After transmitting a packet, the transmitter
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waits for an acknowledgement before sending the next packet. If the transmitter has
not received an acknowledgment after waiting for a set amount of time, the packet
is retransmitted. This process is repeated until the acknowledgement is received.
This method was implemented in the VLC driver.

Error handling without feedback

Error handling without feedback can be achieved by encoding the data being sent in a
clever way which allows the receiver to calculate how any eventual noise has affected
the transmission, and thus recover the data as it was transmitted. This method has
not been explored in this project, but the curious reader is recommended to look up
the 7-4 Hamming code for a simple example of such a method.

Checksum Algorithms

Checksum Algorithms is a method for error handling with feedback. A checksum is a
many-to-one mapping of an arbitrarily large amount of data into a sum of fixed size,
for example 16 or 32 bits. Prior to sending a packet, the transmitter will calculate
the checksum of the data contained in the packet, and will append the computed
checksum to the end of the packet.

The receiver also computes the checksum over the packet data, and compares it
to the checksum appended to the transmitted packet. If the checksums match,
the receiver sends an acknowledgement to the transmitter. If, on the other hand,
the checksums do not match, there has been an error during transmission and no
acknowledgment is sent. In this case the transmitter retransmits the packet. The
CRC and Adler-32 checksum algorithms are described below.

Checksum Limitations

Checksum limitations have to be considered when relying on them for communi-
cation. Since checksums is a many-to-one mapping, several versions of the same
packet will have the same checksum. As such, the receiver might think a correct
packet has been received when, in fact the packet is corrupted. However, the check-
sum algorithms are designed to minimize the probability of this happening by being
constructed in such a way that a small change in the source data produces large
change in the output checksum.

Cyclic Redundancy Check or CRC is a method to calculate control sums for
files. There are different kinds of CRC. The simplest from of CRC is the parity bit.
This method uses the sum of logical ones and zeros in a sequence and adds a logical
one or zero at the end depending on if the sum is even or odd. The CRC-16, and
CRC-32 algorithms are more sophisticated and compute a parity consisting of 16
and 32 bits, respectively. The drawback of the CRC algorithms is that the whole
data source must be available when starting to compute the checksum which takes
more time. For this reason, the CRC algorithms are not used in the VLC driver.
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Adler-32 is a faster but less reliable method to detect errors than CRC. The main
advantage compared to the CRC is the speed. However, this affects the reliability
negatively and is known to have a weakness with short messages. Furthermore, the
Adler-32 checksum is a rolling checksum that can be calculated incrementally as the
packet is received. This means that the receiver will start calculating the checksum
as soon as it starts receiving data, and that it will be computed instantly when the
transmission is completed. The receiver can then send the acknowledgement without
waiting for the checksum to be computed sometime after packet transmission. For
this reason, this is the algorithm chosen in the VLC driver. Adler-32 is demonstrated
in Appendix C.1.

Differences

Adler-32 differs from the CRC algorithms in how they are implemented. CRC check-
sums are computed by dividing the source data until it has reached the correct size.
Adler-32 is computed by adding together the bytes of the source data.

The probability of a false positive on random errors is 2.3283 · 10−10 for CRC-32,
and the slightly larger 2.3294 · 10−10 for Adler-32. The amount of data needed for
the algorithms to be reliable is 4 kb for CRC-32 and 500 kb for Adler-32 [13].

Since packets can be smaller than 500 kb, the VLC driver should either use another
checksum algorithm, or should concatenate packets to guarantee that they are always
at least 500 kb if it is used in a production system.

Acknowledgment Errors

If a packet is received correctly, but the acknowledgment is corrupted during trans-
mission, the transmitter will retransmit the packet even though it has already been
received. This causes a duplicate packet. The VLC driver handles this case by
including a sequence number in every packet.

Whenever a packet is received, the receiver compares the included sequence number
with the number of the previous packet. If the sequence number is identical, the
receiver sends an acknowledgement to let the transmitter know it has been received
correctly, and then destroys the packet instead of passing it to the kernel.

2.3.7 Channel Model

A communication channel is used to convey information. The communication chan-
nel in this project can be modelled as in Figure 2.19 where X models the transmitter
(encoder) and Y is the receiver (decoder). The possibility of incorrect decoding is of
high importance. This model is based on Manchester encoding described in section
2.3.5. If the crossover possibility is p the channel is characterized by the probabilities
in Equation 2.2.
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0 0

1 1

?X Y

Figure 2.19: Bit level communication channel model based on Manchester encod-
ing.

P (Y = 0|X = 0) = (1− p)2

P (Y =?|X = 0) = 2p(1− p)
P (Y = 1|X = 0) = p2

P (Y = 0|X = 1) = p2

P (Y =?|X = 1) = 2p(1− p)
P (Y = 1|X = 1) = (1− p)2

(2.2)

Encoding for a channel

Data can be encoded to minimize the risk of errors during transmission for a specific
channel. The highest transmission speed that allows for an arbitrarily small error
probability is called the capacity of the channel. The possibilities of these methods of
encoding is not explored in this project, and the curious reader is referred to ”A. El
Gamal and Y.-H. Kim, Network information theory. Cambridge, U.K.: Cambridge
Univ. Press, 2011”.
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3
Results

This chapter presents a summary of the design choices made during the project and
describes the achieved results.

3.1 Hardware

The transmitter and receiver results are described in the sections below. All figures,
except Figure 3.4 and 3.10, are measurements with a signal of 25 kHz, at a distance
of 1.5 meter. Figure 3.1 displays the signal from the BBB when it is propagated
through the transmitter and receiver. This shows the results of the transmitter-
receiver pair. The resulting propagated signal is nearly identical to the transmitted
signal. The difference in duty cycle between the received and the transmitted signal
is due to the capacitance in the circuits.
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Figure 3.1: Example of a signal propagated from the transmitter to the receiver.
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3.1.1 Transmitter

The transmitter receives a signal from the GPIO pins on the BBB, this signal controls
the three transistors which open and close the power supply to the LED.

BBB

The BBB transmits a square wave with enough stability and a fast rise and fall time,
as can be seen from the eye pattern in Figure 3.2. The eye pattern gives insight
to the quality of the signal and the ones and zeros provides a stable signal for the
transistor. The small amount of jitter and the small disturbance on the rising edge
of the square wave does not create any problems. A sequence of the signal can be
seen, as mentioned before, in Figure 3.1.

Figure 3.2: Eye pattern measured at the output of the BBB at the transmitter.

Transistors and LED

As can be seen from Table 2.1, showed earlier in the methods section, the LEDs
receives a total current of 784 mA. This means it is 196 mA for each of the four
LEDs. According to the datasheet, this means that the four LEDs generates a total
intensity of 300 lumen during transmission. This light is enough to illuminate a
small work area. The voltage over the LED can be seen in Figure 3.3 and contains
large ripples from the power supply. Capacitors are used to reduce the ripple, but
does not completely remove it. The transistors work without problems with the
used frequency.

Maximum frequency

The highest frequency the transmitter can operate at is roughly 500 kHz. Above
this frequency, the quality of the square wave becomes very poor, as can be seen in
Figure 3.4.
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Figure 3.3: Signal measured over the LED.
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Figure 3.4: Maximum frequency measured at the output of the transmitter.

3.1.2 Receiver

The receiver converts the incoming light into an electrical signal and feeds it into
the BBB. The receiver filters and performs AGC on the signal prior to feeding it
into the BBB.

Photodiode and transimpedance amplifier

The photodiode chosen in the project has a large radiant surface area, which in-
creases its sensitivity and allows for transmission over greater distances. This re-
duces the response time of the LED, which results in that the rise and fall time of
the received square wave was increased. The signal is shown in Figure 3.5 and as
can be seen from the figure the intercepted signal is no longer a square wave. The
problem with change in duty cycle can be seen between 60 µs and 120 µs, which
occurs when transmitting a sequence of two ones or two zeros in a row.

High-pass filter

The high-pass filter works as intended and removes the biased voltage noise from
surrounding light sources. The signal is seen in Figure 3.6. Note that it is not the
same sequence as previous figures.
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Figure 3.5: The signal measured at the output of the transimpedance amplifier.
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Figure 3.6: The signal measured at the output of the high-pass filter.

Automatic gain control

The remaining parts of the receiver converts the signal in Figure 3.6 into a square
wave. During normal operation the AGC creates a square wave by amplifying and
dampening the incoming signal such that the average value has a desired amplitude.
The AGC is crucial to the design since it restores the square wave that was trans-
mitted and makes up for the slow response time of the photodiode. The signal after
the AGC can be seen in Figure 3.7.

0 20 40 60 80 100 120 140 160 180 200 220 240 260

−1

0

1

2

time [µs]

A
m
pl
itu

de
[V

]

Figure 3.7: Signal measured at the output of the AGC.
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Analog-to-digital converter

The ADC cleans up the square wave coming from the AGC, as can be seen in
Figure 3.8. The eye pattern of the signal can also be seen in Figure 3.9. In the
transitions, some jitters can be observed but the ones and zeros are stable and gives
plenty of sample time.
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Figure 3.8: Signal measured at the output of the ADC.

Figure 3.9: Eye pattern measured at the output of the ADC.

Maximum frequency

The maximum frequency for the receiver is tested to 80 kHz, where the output signal
is still an undistorted square wave. The output can be seen in figure 3.10.
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Figure 3.10: Maximum frequency measured at the output of the receiver.

3.2 Software
The resulting VLC driver is a software suite consisting of three parts that all run in
parallel:

• Receiver
• Transmitter
• Packet management

The packet management system receives packets from the kernel for transmission
and places them in a buffer that the transmitter will read from. Whenever there is a
packet in the buffer, the transmitter will pick it up and send it over the channel. The
receiver on the other end is always looking for the preamble when it is not currently
receiving a packet. The received packet will be placed in a buffer, from which the
packet handler will pick it up and pass it to the kernel. The kernel handles what to
send, in what order, and most of the data packaging. The VLC driver is functioning
according to the kernel instructions.

3.2.1 Design
The software is implemented as a state machine. Both receiver and transmitter keep
track of its current state, and move to the next state when the current state has
been completed. In some states a decision, such as whether to retransmit a packet
or send the next packet, is taken. The complete state model is shown in Section 2.3.1.

The packet management runs in the background and will wait for packets to be
handed to it from either the kernel or the receiver.

3.2.2 Synchronization
Data must be sent at precise intervals for reliable communication. To achieve this
in the Linux environment, Xenomai is used. Xenomai is an extension to the Linux
kernel which provides real-time functionality. Whenever a bit is to be sent over
the channel, the VLC driver will wait for the next time slot where it is allowed to
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transmit, and will then send it. The same applies for the receiver.

Nothing is done for symbol synchronization. The early-late method is implemented
and has been tested, but it is cheaper to let the clocks drift apart occasionally, and
simply retransmit the packet where the error occurred.

3.2.3 Data Packaging

The Linux kernel does most of the data packaging, but the VLC driver makes some
additions.
The following sections are added:

• Preamble: To signal the receiver that a packet is incoming.
• Data length: To notify the receiver on how long the transmissions is.
• Checksum: For error handling purposes.

3.2.4 Hardware Interface

The VLC driver interfaces with the hardware of the transmitter and receiver through
the GPIO pins present on the board. The data to be sent is written to one of the
GPIO pins and the transmitter takes care of turning on or off the LED according
to what bit is sent.

The VLC driver reads the GPIO pin configured as the input from the receiver.
All gain control and filtering is done in hardware which increases the performance
compared to software filtering.

3.2.5 Encoding

Data is sent using OOK and Manchester encoding. This is a requirement for the
AGC used in this project. If transmissions are performed without Manchester en-
coding, the AGC will be confused by long strings of the same symbol. For example,
a long string of zeroes will cause the AGC to increase its amplification, and it will
start flipping bits. Furthermore, Manchester encoding significantly reduces the per-
ceived flicker of the light source.

Manchester encoding can also be used for synchronization purposes, since a Manch-
ester symbol always has a transient in the middle, which can be detected. However,
this feature is not used in the VLC driver. For the reasons behind this, see Section
2.3.5.

The downside of Manchester encoding is that it effectively halves the rate compared
to system without it, since every logical bit is sent using a 01 or 10 sequence.
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3.2.6 Error Detection and Handling
Error detection is done through the use of checksums. The checksum of the data to
be sent is computed by the transmitter, and sent along with the data. The receiver
will also compute the checksum of the packet upon reception, and compare it to the
checksum sent along with the data. If the checksums are identical, the receiver will
send an acknowledgment to the transmitter, which will then send the next packet.
If the checksums differ, the receiver will not send an acknowledgment, and after a
timeout, the transmitter will resend the packet. This is repeated until the packet
has been successfully received. Specifically, the Adler-32 checksum is used.

The main advantages of the Adler-32 checksum is that it is computationally cheap
and that it is a rolling checksum, which means it can be computed incrementally
over the packet as it is received. For this reason, the receiver will know if the check-
sums match instantly when the packet has been received, and does not have to wait
for it to be computed. This reduces the delay between packet transmission and
acknowledgment, which is important since the transmitter will not send the next
packet until the current packet has been acknowledged.

Errors can still occurr when using checksums. Since a checksum is a many-to-one
mapping several packets will have the same checksum. This is mitigated by how
checksum algorithms are implemented. The algorithm is designed to create large
variations in the checksum from small variations in the input data. This means that,
for another packet to have the same checksum as the one currently being transmitted
it has to be an entirely different packet. In that case the packet is most likely not
even a valid packet, and the error will be detected in the Linux kernel.
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The project has completed its goal of designing and implementing of a VLC system.
There are still many areas of improvement, but the system works!

This final chapter offers some closing discussions regarding the project, compares
the end result with the goals set up at the beginning of the project, and suggests
areas of further work on the implementation. The VLC driver is open source, and
is available on Github [14].

4.1 General Discussion and Limits

Development platform

The project is using a single board computer for development. This platform has
been useful for development and for constructing a prototype. However, this has
proven to lack enough processing power needed for an implementation of a network
interface device.

The advantages of the platform are that it has an ADC subsystem capable of reading
analog values and it has a real-time subsystem for running timing-critical tasks, such
as communication. However, these features are not used in the end product, and
the platform could be exchanged for one with increased processing power, such as
the Raspberry Pi 2.

Channel comparison

Communication over visible light compared to communication over frequencies out-
side the visible spectra looks very promising. The frequency spectrum used is signif-
icantly wider than what is used in radio wave communication systems. For example,
the visible spectra is 10 000 times wider than what is used for WiFi [15] and provides
significantly more freedom and headroom for implementation. As a result VLC is
not nearly as sensitive to bandwidth crunch. For example, if there are more than
three WiFi access points within range of each other, their frequency bands will start
to overlap and they will interfere with each other [16].
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Encoding and modulation

To increase the transmission speed a different encoding style is preferable. Manch-
ester encoding provides a stable signal with an equal amount of ones and zeros
over time which is suitable for the AGC. Without Manchester encoding, for exam-
ple, PAM could be used. To use PAM the transistor used as ADC needs to be
redesigned and instead use a ADC with a larger resolution, so multiple values of
PAM can be detected.

Hardware Availability

Most communication systems using light either use infrared light, such as remote
controllers, or lasers, as in fiber systems. This means that there are few available
hardware components for implementing a system for VLC. Hopefully this will change
in the future.

Light output

The perceived light strength could be increased in three ways. The first way is to
increase the light output when transmitting a zero. For example, representing a
zero by turning the LED to output 500 lumen. This would increase the perceived
light strength to 550 lumen. However, reducing the difference between zero and one
will increase bit errors since the signals will become more similar. The alternative
would be to increase the current to the LED. This will require cooling of the LED,
because of the increase in power. The more robust solution to increase the per-
ceived light strength is to use a stronger LED. The downside of this approach is an
increased power usage for transmission, and most likely the optimal solution is some
combination of these solutions.

Signal Reception

Since photodiodes for visible light are designed to detect a broad spectrum of wave-
lengths, the receiver is sensitive to surrounding light sources. With a narrower
detection spectrum less noise would enter the receiver circuit.

To increase the used carrier wave, and thus the transmission rate of the system, a
photodiode with short rise and fall time is needed. The currently used photodiode
is not quick enough and is the bottleneck in the hardware. As mentioned before a
big radiant sensitive area entails a slower response time. A possible solution may be
using a photodiode with a smaller radiant sensitive area and direct the light with
an optical lens. The rest of the hardware in the receiver is capable of handling
frequencies up to the order of MHz.

4.2 Conclusions
When comparing the end result with the project goals all the required specifications,
and some of the desired specifications were met. As a reminder, the project goals
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were as follows.

4.2.1 Required Specifications
Here, the end result is compared with the required specifications defined at the
beginning of the project.

Send and receive arbitrary data over visible light

The device is capable of both transmitting and receiving arbitrary data over visible
light, due to being implemented as a Linux network device. The device will receive
arbitrary data from the Linux kernel for transmission, and the contents of that data
does not affect the behaviour of the system.

Transfer data while producing 450 lm

The system uses a high-power LED with an average of 300 lm, which does not meet
the requirements. To increase the intensity a larger external power supply is needed
to support the increased current from another LED.

Send data over at least 1 meter in a brightly lit room

Tests show that the system can easily transfer data over 1 meter in a lit room.

Send data in one direction

The system is capable of transmission in one direction. Due to only having built
one transmitter-receiver pair, the transmissions in the other direction is performed
via a copper wire.

Perform an uninterrupted transfer of 10 MB

The system can perform an arbitrarily long uninterrupted transfer. The system is
built to retransmit a packet until it has arrived successfully, so any interruptions
will be compensated for in the VLC driver.

4.2.2 Desired Specifications
Here, the end result is compared with the desired specifications defined at the be-
ginning of the project.

The device can connect to any computer over Ethernet

The device can connect to any other computer over Ethernet by simply running on a
Linux computer. Linux has the capabilities of easily bridging the Ethernet interface
already present on the board with the VLC network interface.
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The device should manage to send data over a distance of 2 meters in a
brightly lit room

The device can transmit data over a distance of 2 meter in a brightly lit room.

The system can perform half- or full duplex transmissions

The system can perform full duplex transmissions by using a wire for transmission
in one of the directions, and light in the other. This is due to having built only one
transmitter-receiver pair. But there is no reason the wire could not be replaced with
another VLC transmitter-receiver pair. However, this has not been tested.

The device can perform reliable and lossless data transmission

The system will compensate for any packet loss by using checksums to verify the
integrity of the packet, and will retransmit any corrupted packets. Checksums are
not guaranteed to always work, but the risk of having a packet corrupted with an
identical checksum is the very slight 2.3294 ·10−10 for packets of at least 500 kb [13].

The device supports light intensity variation during transfer

Dimming is not supported, but could easily be implemented since no amplitude
modulation is used. Furthermore, the hardware is designed with eight intensity
steps. These are not currently used, but could be controlled either through the
software or through a dial on the transmitter. However, the probability of error will
increase and the distance the system can transmit over will decrease by lowering the
intensity.

The device can connect to multiple units simultaneously

Router functionality is not supported, and most likely significant work is required
to implement it. The data being transmitted must, in that case, be encoded in a
way that does not interfere with other transmissions.

The device should support multiplexing

Multiplexing is not supported either. This could be implemented by stacking several
transmitters and receivers. However, the VLC driver is not designed for this and
performance will be poor. The BBB is already at its limits of processing power
running one channel at 50 kHz.

4.3 Further Work
Further work on the VLC implementation includes increasing the system capacity,
and adding useful features.
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4.3.1 Increasing System Capacity
For increasing the systems capacity, the recommended first step is to switch to a more
powerful development board for running the VLC driver. Especially, the software
will scale very well into a system with four processor cores. This is because, in that
case, the transmitter, receiver, packet management, and operating system can run
on separate cores, significantly reducing the overhead from switching between the
tasks.
The software could also be adapted to run on specialized hardware without an op-
erating system, to further reduce the overhead. However, this requires significantly
more work.
Furthermore, the following areas could be explored to increase capacity:

• Data compression prior to transmission
• Encoding data to reduce retransmissions
• Optimization of the VLC driver

Data Compression

The packets received from the kernel are uncompressed, which is inefficient for trans-
mission. If the VLC driver compressed the packets before transmitting them, every
packet could be sent using fewer bits.

Furthermore, data can be compressed to contain an equal number of ones and zeroes,
which might make Manchester encoding unnecessary.

Data Encoding

The number of packet retransmissions can be reduced by using error handling with-
out feedback. This is done by encoding the data in a way that allows the receiver to
calculate how the noise has affected the transmission. This is a complex area, but
it can potentially allow for significantly more robust transmission.

VLC Driver Optimization

There are several parts of the VLC driver that can be rewritten to increase perfor-
mance. For example, the time needed to move between packets in the packet buffer
could be reduced.

4.3.2 Additional Features
The VLC driver is currently designed to work in a system with two units commu-
nicating, but the system can be adapted to work in larger networks consisting of
many transmitter-receiver pairs communicating simultaneously.
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A
Appendix

Here follows a list of the active components used in the project, also a list of the
instruments used during testes.

A.1 Component list

Component Name and Datasheet
AGC TI TL026CD IC

http://www.farnell.com/datasheets/1835114.pdf
LED CREE MCE4WT-A2-0000-000HE7

http://www.farnell.com/datasheets/1821872.pdf
Operational amplifier TI µA741CD

http://www.farnell.com/datasheets/1834254.pdf
Photodiode VISHAY, BPW21R

http://www.vishay.com/docs/81519/bpw21r.pdf
MOSFET transistor IRLR3715ZPBF

http://www.farnell.com/datasheets/107852.pdf
NPN transistor BC547A

http://www.arduino.cc/documents/datasheets/BC547.pdf

Table A.1: Active components used in the project.

A.2 Instrument list

Instruments Name
Function generator Agilent, 33220A
Oscilloskop RIGOL, DS2072A
Power supply TTI, PL303QMD

Table A.2: Instruments used during tests.
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Appendix

Figure B.1 and B.2 shows the final transmitter. The prototype transmitter is shown
i Figure B.3. The prototype over the transmitter is in Figure B.4.

Figure B.1: Picture of the final transmitter.

Figure B.2: Picture of the final transmitter mounted on the BBB.

III



Figure B.3: Picture of the prototype transmitter.

Figure B.4: Picture of the prototype receiver.
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Appendix

C.1 Adler-32 Demonstration

Start

i = 0, A = 1, B = 0

A = (A + Data[i]) mod 65521

Data[Length]

B = (B + A) mod 65521

i = i + 1

i < Length

Done Adler32(Data) = A||B

yes

no

Figure C.1: Adler-32 sequentially described. Two variables A and B is created
and the data is looped through bytewise. Dependent of the file content A and B
get different values which is concatenated. This represent the Adler-32 checksum of
the file.
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