

Förbättring av verkningsgraden i ett induktivt laddningsystem genom design av ny växelriktare

Kandidatarbete ENMX02-15-07 ANTON HOLM ADAM HULTIN LARS PETERSSON JOHAN STELIN ANTON THORSLUND CARL TISELL

Institutionen för Energi och miljö Avdelningen för Elteknik CHALMERS TEKNISKA HÖGSKOLA Göteborg, Sverige 2015

Titel: Förbättring av verkningsgraden i ett induktivt laddningssystem genom design av ny växelriktare © Författare: Anton Holm, Adam Hultin, Lars Petersson, Johan Stelin, Anton Thorslund, Carl Tisell Utgiven 2015 Kontaktuppgifter: <u>larpeter@student.chalmers.se</u> Institutionen för Energi & Miljö, Chalmers Göteborg, 2015

Förord

Kandidatarbetet *Trådlös laddning av el-gokart* påbörjades under januari 2015 och kom att avslutas i maj samma år under namnet *Förbättring av verkningsgraden i ett induktiv laddningssystem genom design av ny växelriktare*. Slutprodukten är denna rapport, vilket är resultatet av ett kandidatarbete som utförts på avdelningen Elteknik, institutionen Energi och Miljö på Chalmers Tekniska Högskola. Vi vill passa på att tacka vår handledare Robert Karlsson för hans hjälp och förståelse i både tid och otid. Dessutom skulle gruppen vilja tacka Jimmy Ehnberg som har varit gruppens examinator och bidragit med många goda råd under skrivandet av den här rapporten.

Anton, Adam, Lars, Johan, Anton & Carl, Göteborg 2015

Sammanfattning

Projektet som utförts vid institutionen Energi & Miljö, avdelningen Elteknik, har gått ut på att förbättra ett redan konstruerat trådlöst laddningssystem till en el-gokart. Målet har varit att förbättra verkningsgraden till 85 % då 6 kW matas samt att utveckla ett reglersystem som ska möjliggöra laddning utan övervakning. Arbetsprocessen har bland annat innefattat: mätningar, teoretiska kalkyler på effektförluster samt design av en ny växelriktare. De mer essentiella delarna av växelriktaren har testats på en kopplingsplatta. Sedan har växelriktaren konstruerats och resultatet har utvärderats genom mätningar på systemet.

Resultatet är ett modifierat laddningssystem där verkningsgraden vid lägre effektnivåer har höjts genom design samt konstruktion av en ny växelriktare baserad på kiselkarbid-MOSFETs. Dock kunde verkningsgraden vid 6 kW ej fastställas på grund av ett okänt fel i växelriktaren som omöjliggjorde mätningar på högre effektnivåer. Laddning av batteriet utan mänsklig övervakning har även möjliggjorts genom implementation av ett reglersystem.

Abstract

The purpose of the project which has been carried out at the department of Energy & Environment, division of Electric Power Engineering, has been to improve an already existing wireless charging system for an electric go-kart. The goal has been to improve the efficiency to 85% when 6 kW is fed to the system as well as to develop a control system that will enable charging without human supervision. The work process has consisted of: performing measurements, making theoretical calculations on power losses as well as designing a new power inverter. More essential parts of the power inverter have been tested on a breadboard. Subsequently a power inverter has been constructed and the result has been evaluated by measurements of the system.

The result is a modified charging system where the efficiency for lower power levels has been improved through the construction of a new power inverter based on silicon carbide MOSFETs. However, the efficiency at 6 kW could not be established due to an unknown error in the power inverter which prevented measurements on higher power levels. Charging of the battery without human supervision has been made possible through the implementation of a control system.

Innehållsförteckning

1	Inle	dning	g	10			
	1.1	Bak	grund	10			
	1.2	Syft	e	10			
	1.3	Syst	emet	10			
	1.4	Prob	plemformulering	11			
	1.5	Avg	ränsningar	11			
2	Teo	ri		12			
	2.1	Indu	iktion	12			
	2.2	Trar	nsformator	12			
	2.3	Indu	ktiv laddning	13			
	2.4	Fask	compensering	13			
	2.5	Väx	elriktare	14			
	2.6	Likr	iktare	14			
	2.7	Galv	vanisk isolation	15			
	2.7.	1	Optokopplare	15			
	2.7.	2	DC/DC-omvandlare	16			
	2.8	Trar	nsistorer	16			
	2.8.	1	Bipolär transistor	16			
	2.8.	2	MOSFET	16			
	2.8.	3	Kiselkarbid-MOSFET 1				
	2.8.	4	IGBT	17			
	2.9	Kylı	ning av transistorer	18			
3	Met	od		19			
4	Gen	omfö	brande och konstruktion	20			
	4.1	Mät	ningar	20			
	4.1.	1	Mätning på likriktaren	21			
	4.1.	2	Mätning på ursprungliga växelriktaren	21			
	4.2	Berä	ikningar på växelriktare	22			
	4.3	Kon	struktion av ny växelriktare	23			
	4.3.	1	Styrkrets	24			
	4.3.	2	DC/DC-omvandlare	24			
	4.3.	3	Överströmsskydd	25			
	4.3.	4	Logisk krets	25			
	4.3.	5	Kretskortslayout	25			
	4.4	Kon	struktion av reglersystem	26			

4.4.1		4.1 Komparatorkretsen	
	4.4.	4.2 Trådlös länk	
5	Res	sultat	
	5.1	Systemets prestanda	
	5.2	Förlustanalys för växelriktarna	
	5.3	Reglersystemet	
6	Dis	skussion	
	6.1	Avslutande av projektet	
	6.2	Förbättringar	
	6.2.	2.1 Förbättringar för laddningssystemet	
	6.2.	2.2 Förbättringar för reglersystemet	
	6.3	Val av mätinstrument	
	6.4	Analys av DC/DC-omvandlarens konstruktion	
7	Slu	utsats	
R	eferens	ser	
A	ppendix	ix	

Nomenklatur

Storhet	Beteckning	Enhet
Ström	I	[A]
Spänning	U	[V]
Resistans	R	$[\Omega]$
Effekt	Р	[W]
Induktans	L	[H]
Kapacitans	С	[F]
Frekvens	f	[Hz]
Magnetisk flödestäthet	В	[T]
Vinkelfrekvens	ω	[rad/s]
Energi	E	[J]
Magnetiskt flöde	Φ	[Wb]

Figurförteckning

Figur 1 Schematisk överblick över laddningssystem.	11
Figur 2 Principskiss av transformator	12
Figur 3 Kretsschema för växelriktare av fullbryggsmodell	14
Figur 4 Kretsschema för enfasig helvågsdiodlikriktare	15
Figur 5 En förenklad bild på en optokopplare	16
Figur 6 Principskiss av färdigt reglersystem	27
Figur 7 Verkningsgrad för det gamla och nya systemet	28

Tabellförteckning

0	
Tabell 1 Resultat från mätningar på ursprungliga systemet	
Tabell 2 Sanningstabell för SR-latch	

1 Inledning

Här presenteras projektets bakgrund samt syfte, för att sedan ge en ytterligare introduktion till rapporten redovisas det nuvarande systemet tillsammans med projektets problemformuleringar och avgränsningar.

1.1 Bakgrund

Sedan den industriella revolutionen i slutet av 1800-talet har mänskligheten haft en allt större inverkan på jordens klimat på grund av de utsläpp som vi genererar. Dessa utsläpp kommer framför allt från de fossila bränslen som förbränns i kolkraftverk och inom transportindustrin [1]. Ett högre tryck från samhället att reducera dessa utsläpp har lett till en snabbt ökande efterfrågan på alternativa energikällor. Tack vare den ökande efterfrågan blir elfordon allt mer populära. Med innovativa utvecklingar inom kraftelektroniken samt effektivare och billigare batterier blir elfordon allt mer konkurrenskraftiga gentemot fordon med förbränningsmotorer. Fordon med förbränningsmotorer är däremot fortfarande överlägsna elfordon på till exempel räckvidd och tidåtgång för påfyllning av drivmedel [2].

För att lösa dessa problem undersöks induktiv laddning, även kallat trådlös laddning. Syftet med det är att möjliggöra laddning medan körning pågår och på så sätt minska tiden spenderad stående vid laddningsstationer. Dessutom förbättras användarvänligheten jämfört med traditionell tankning av fordon med förbränningsmotor.

Att överföra energi via induktion är en teknik som har varit känd länge, men det är endast på senare tid som det har gått att överföra högre effekter på detta sätt. Det beror på diverse framsteg inom kraftelektroniken som behövs för att styra den induktiva överföringen [2].

1.2 Syfte

På Chalmers tekniska högskola vid avdelningen för Elteknik pågår sedan år 2010 ett projekt som handlar om induktiv laddning av en el-gokart. Syftet i år var att uppnå en högre verkningsgrad för det induktiva laddningssystemet samtidigt som systemets höga effektöverföring bibehölls. Målet var att nå en verkningsgrad om minst 85 %.

Parallellt med att höja verkningsgraden skulle även ett reglersystem för laddningen utvecklas. Genom att möjliggöra laddning utan övervakning skulle användarvänligheten och säkerheten förbättras.

1.3 Systemet

Vid projektets start fanns det ett induktivt laddningssystem, en el-gokart och ett inkomplett reglersystem från tidigare år som projektet har utgått ifrån. Laddningssystemet, som kan ses nedan i figur 1 bestod av ett DC-aggregat med en maxeffekt på 6 kW som i sin tur matade en växelriktare kopplad till en av två spolar där den induktiva effektöverföringen skedde. Den första spolen agerade sändarspole i systemet och den andra spolen som var monterad på el-gokarten agerade mottagarspole. Dessa spolar låg under laddning tätt intill varandra med ett luftgap på 50 mm. Mottagarspolen var därefter kopplad till en likriktare som sedan gav en likström till batteriet på el-gokarten.

Figur 1 Schematisk överblick över laddningssystem.

Reglersystemet bestod ursprungligen endast av en RF-länk och en konstruerad men ej implementerad krets på mottagarsidan av laddningssystemet. Systemet skulle förhindra överladdning genom att mäta batteriets laddningsnivå och kommunicera med sändarsidan för att automatiskt avbryta laddningen när batteriet är fulladdat.

1.4 Problemformulering

Förbättring av användarvänligheten och systemets verkningsgrad kunde delas upp i ett flertal frågor;

- Hur fungerade det befintliga systemet?
- Var i systemet låg de största förlusterna?
- Hur skulle förlusterna minskas på bästa sätt inom projektets tidsram?

Reglersystem är ett brett begrepp så det gäller att specificera vad man menar när man nämner det och vilken funktionalitet som det förväntas ha. Frågor som ställdes rörande reglersystemet var;

- Hur fungerade det ursprungliga reglersystemet?
- Vad skulle det nya reglersystemet uppfylla för funktion?
- Vad mer kunde ha förbättrats?

1.5 Avgränsningar

Projektet har haft för avsikt att endast behandla själva laddningssystemet på el-gokarten, det vill säga delarna mellan spänningskällan och el-gokartens batteri. Detta innefattade växelriktaren, sändar- och mottagarspolen samt likriktaren. Det nya reglersystemet skulle inte heller balansera de olika cellerna i batteriet då detta ansågs vara för komplicerat och tidskrävande.

Verkningsgraden definieras som uteffekten efter likriktaren dividerat med ineffekten från DC-aggregatet. Detta innebär att den effekt som används för att driva fläktar och annan kringutrustning har inte tagits hänsyn till rörande ineffekten i systemet. Mätosäkerheter kommer dessutom inte att inkluderas i mätresultaten.

Det antogs att en synkron likriktare skulle ha mindre förlusteffekter än den nuvarande likriktaren, men en sådan har inte behandlats i det här projektet eftersom det skulle varit ett för stort åtagande.

2 Teori

I detta avsnitt redogörs för den teori som ligger till grund för projektet samt vilken kunskap som har använts för att göra beräkningar och ta beslut rörande laddningssystemets modifikationer. Syftet med kapitlet är att ge läsaren en teoretisk bakgrund att bekanta sig med då rapporten är skriven med kunskap som inte är vedertagen för målgruppen.

2.1 Induktion

Det är känt att då en ström går genom en ledare uppstår ett magnetiskt fält som rör sig i slutna kurvor vinkelrätt mot strömmens riktning runt ledaren [3] [4]. Om en annan ledare befinner sig i fältet kring den strömförande ledaren kan en spänning induceras i den icke strömförande ledaren om den magnetiska flödestätheten varierar med tiden. Detta kan ske antingen genom att det magnetiska fältets styrka varierar eller genom att ledaren befinner sig i rörelse relativt den andra ledaren [5]. Fenomenet är känt som induktion och används i stor utsträckning inom elkraft i bland annat transformatorer, generatorer och andra elektriska maskiner [4].

2.2 Transformator

Principen för en transformator bygger på att överföra energi från en ledare, utan någon typ av kontakt, till en annan ledare med hjälp av induktion. Oftast består en transformator av en metallkärna som två isolerade ledare är lindade kring utan att beröra varandra. I figur 2 nedan illustreras en enkel skiss på en transformator. I metallkärnan flödar det magnetiska flödet, ϕ , som avges från den strömbärande ledaren, och inducerar på så vis en spänning i ledaren på den andra sidan vilket ger upphov till en ström. I en transformator har de två olika sidorna ofta olika spänningsnivåer, vilket är en av de huvudsakliga funktionerna för en transformator, att kunna transformera energi mellan olika spänningsnivåer [6].

Figur 2 Principskiss av transformator

I en ideal transformator beror förhållandet mellan spänningsnivåerna på de två sidorna på antalet varv i de två lindningarna enligt formeln

$$\frac{N_1}{N_2} = \frac{U_1}{U_2}.$$
 (1)

där N_1 och N_2 betecknar antalet varv på primär- respektive sekundärsidan, och U_1 och U_2 betecknar spänningen på primär- respektive sekundärsidan.

Följande formel används för att bestämma den elektromotoriska kraften hos en transformator då insignalen är en sinuskurva

$$E_{rms} = \frac{2\pi NAf\hat{B}}{\sqrt{2}}.$$
⁽²⁾

För andra vågformer används följande approximation,

$$E_{rms} \approx 4NAf\hat{B} \tag{3}$$

(2)

där A är tvärsnittsarean hos transformatorkärnan, f är frekvensen hos signalen, N är antalet lindningsvarv, \hat{B} är toppvärdet hos flödestätheten och E_{rms} är den spänning som ligger över den aktuella sidan.

Kärnan i en transformator kan även bestå av andra material än metall. Orsaken till att metall är mycket vanligt är därför att det har en hög permeabilitet. Permeabiliteten i kärnan påverkar framförallt förlusterna i transformatorn, lägre permeabilitet ger upphov till större förluster. Ett exempel på annat material som används är luft. Då luft används som överföringsmedium är permeabiliteten mycket låg. Därför är det viktigt att ha en hög frekvens och ett kort avstånd att överföra det magnetiska flödet över, annars går för mycket energi förlorad [6]. Det är denna princip som används i induktiv, eller så kallad trådlös laddning.

2.3 Induktiv laddning

Induktiv laddning är en teknik som bygger på transformatorns princip. Istället för järnkärna finns ett luftgap mellan spolarna som överföringsmedium och primär- och sekundärspolarna benämns istället sändar- respektive mottagarspolar. När en ström leds genom sändarspolen skapas ett magnetiskt fält som fångas upp av mottagarspolen. För att inducera en spänning i mottagarspolen krävs dock att magnetfältet varierar med tiden. Därför krävs det att strömmen i sändarspolen är växelström. När växelströmmen varierar ändras magnetfältet och en spänning induceras i mottagarspolen. Hur mycket effekt som överförs beror på ett flertal variabler såsom spolarnas utformning och material, luftgapets storlek, vilken frekvens systemet arbetar i och systemets faskompensering [2].

2.4 Faskompensering

Elektriska komponenter har olika typer av elektrisk karaktär. De kan vara resistiva, induktiva eller kapacitiva. En krets bestående av flera komponenter får därför en elektrisk karaktär som beror på den resulterande karaktären av alla komponenter. Karaktären kan modifieras med faskompensering, vilket innebär att man lägger till komponenter som ändrar kretsens sammanlagda karaktär. Då kretsens dominerande karaktär är induktiv eller kapacitiv förbrukar eller producerar kretsen reaktiv effekt. När en krets förbrukar reaktiv effekt är det önskvärt att tillgodose behovet med kondensatorer som producerar reaktiv effekt. Annars kommer kretsen att dra reaktiv ström från nätet. Genom att faskompensera kommer den reaktiva strömmen som dras från nätet att minska, vilket resulterar i lägre ledningsförluster [6] [7].

Det finns två sätt att faskompensera på: serie- och parallellkompensering. Den senare av dem benämns vanligtvis som shuntkompensering. Parallellkompensering är ofta ett alternativ att föredra då en parallellkoppling inte påverkar spänningen. Då man faskompenserar är det vanligt att man även vill uppnå resonansfrekvens. Resonansfrekvensen bestäms genom ekvationen

$$f = \frac{1}{2\pi\sqrt{LC}} \tag{4}$$

där f är resonansfrekvensen, L är induktansen och C är kapacitansen [2]. Vid resonansfrekvens är det möjligt att observera kretsen utifrån som rent resistiv. Detta då induktiva och kapacitiva effekter tar ut varandra genom att producera respektive förbruka reaktiv effekt [2].

2.5 Växelriktare

Växelriktare används för att omvandla en likspänning till en växelspänning. Det sker genom att transistorer slås på och av. Genom att styra när de olika transistorerna ska slå på och av kan en växelspänning med godtycklig frekvens erhållas. Det finns många olika varianter av växelriktare men två vanliga är helbryggan och halvbryggan. Helbryggan kan ses nedan i figur 3 [8].

Figur 3 Kretsschema för växelriktare av fullbryggsmodell. Batteriet representerar här en likspänningskälla.

I figur 3 är R1 lasten som ska drivas av växelspänningen. När transistorerna Q1 och Q3 leder ligger positiv spänning över R1, och när transistorerna Q2 och Q4 leder ligger negativ spänning över R1. Denna typ av växelriktare ger endast ut en fyrkantspuls, med en positiv och en negativ nivå. I en halvbrygga är det också en fyrkantspuls som levereras, dock endast med en positiv spänning och noll. Konsekvensen av detta är att en helbrygga till skillnad från en halvbrygga kan växla polariteten över lasten. Växelspänningens frekvens ges av den styrsignal som styr när transistorerna leder. Dioderna som sitter parallellt med transistorerna är till för att skydda transistorerna vid en induktiv last. När transistorerna slås av och lasten är induktiv kommer det att fortsätta flyta ström i kretsen, som måste ta vägen någonstans. Den kommer då att gå igenom dioderna istället för att gå igenom transistorerna och förstöra dem [9].

För att minska ripplet som uppstår i växelriktaren parallellkopplas en kondensator C1 med likspänningskällan. Kondensatorn hjälper även kretsen med att generera den reaktiva ström som en eventuell last förbrukar [10].

2.6 Likriktare

En likriktare är en konstruktion som omvandlar växelström till likström. Likriktning kan ske med olika komponenter såsom transistorer, tyristorer eller dioder, men diodlikriktaren är en vanligt förekommande lösning. Den kan konstrueras för både en- och flerfasig växelström [9]. Figur 4 visar ett exempel på en helvågsdiodlikriktare för enfasig växelström.

Figur 4 Kretsschema för enfasig helvågsdiodlikriktare. Över batteriet ligger likspänning.

Eftersom inspänningen är en växelspänning kommer olika dioder att leda vid olika tidpunkter. När inspänningen är positiv kommer dioderna D1 samt D3 att leda. När spänningen blir negativ kommer diod D2 samt D4 att leda. Detta resulterar i att en enbart positiv spänning över batteriet erhålles. För att få bukt med spänningsrippel kopplas en glättningskondensator C1 parallellt med lasten [6] [9].

2.7 Galvanisk isolation

Ett galvaniskt snitt är en extremt högohmig koppling, till exempel ett luftgap, vilket ofta används för att skydda från att höga spänningar i andra delar av en krets ska kunna nå känsliga komponenter och instrument vid eventuella fel. I många applikationer där höga spänningar och energinivåer är inblandade är det ofta ett krav att införa galvanisk isolation. Två vanliga sätt att införa galvanisk isolation är användandet av optokopplare och DC/DC-omvandlare [9].

2.7.1 Optokopplare

En optokopplare används för att optiskt koppla samman två signaler. Detta görs genom användandet av en lysdiod och en fotokänslig komponent (fototransistor, fotodiod etcetera). En förenklad bild på en optokopplare finns i figur 5. När en signal läggs över lysdioden på ena sidan av optokopplaren mellan ben ett och två aktiverar denna den fotokänsliga komponenten på optokopplarens andra sida mellan ben tre och fyra. Därigenom kan man koppla samman två olika spänningsnivåer eller signaler utan en galvanisk koppling. Detta ger en komponent med en genombrottsspänning som är mycket högre än den spänningsnivå som komponenten normalt opererar vid på grund av ett dielektrikum mellan komponenterna [11].

2.7.2 DC/DC-omvandlare

En DC/DC-omvandlare kan ha flera olika funktioner, bland annat att omvandla en DC-spänning till en annan önskvärd spänningsnivå eller att förse en krets med ett galvaniskt snitt. DC/DC-omvandlaren bygger i grunden på en transformator, den likspänning som matas in i omvandlaren växelriktas och överförs från primärsidan till sekundärsidan där spänningen likriktas och förs vidare ut i kretsen [8].

2.8 Transistorer

En transistor är en halvledarkomponent som kan ha många funktioner beroende på vilken typ av transistor det är. En av de vanligaste funktionerna för en transistor är att fungera som en strömbrytare. Hur det fungerar varierar mellan olika typer av transistorer. Det finns två huvudsakliga typer av transistorer: bipolära transistorer och fälteffektstransistorer.

Alla transistorer bygger på liknande principer, där en spänning eller en ström appliceras på en av ingångarna, som sedan styr transistorns funktion. Denna styrning av transistorer åstadkoms ofta genom kretsar som reglerar när transistorerna ska slås av och på [6]. För att styra transistorn krävs det att styrsignalen som appliceras är över en viss spänningsnivå kallad tröskelspänningen.

2.8.1 Bipolär transistor

Bipolär Transistor (så kallad BJT från engelskans Bipolar Junction Transistor) är en strömstyrd transistor med tre anslutningar: bas, kollektor och emitter. Transistorn styrs genom att basen matas med en ström som styr hur mycket ström som kan flyta från kollektor till emitter. Förlusterna är relativt små men omkopplingstiden är något längre än för en MOSFET, från några hundratals nanosekunder upp till mikrosekunder [9]. BJT kan användas som strömförstärkare, den begränsas då av dess långa omkopplingstid men den klarar spänningar upp till 1,5 kV och strömmar om 1 kA [2] [9].

2.8.2 **MOSFET**

MOSFET (från engelskans Metal Oxide Semiconductor Field Effect Transistor) är en spänningsstyrd halvledarbrytare. En MOSFET har tre ingångar: gate, drain och source. Gaten är isolerad från resten av transistorn, ofta genom ett tunt lager kiseldioxid. När en styrsignal appliceras på gaten öppnas en kanal mellan drain och source [13].

Omkopplingstiden för en MOSFET är av storleksordningen några tiotals nanosekunder till några hundratals nanosekunder vilket är väldigt snabbt relativt bipolär transistorn. MOSFETs har en låg inre

resistans och därmed små ledningsförluster. Eftersom omkopplingstiden är så kort blir även omkopplingsförlusterna små [9]. MOSFET används upp till 1 kV och 1 kA. De har särskilt bra prestanda när spänningen är 800 V eller lägre [2].

Generellt kan förlusterna i en MOSFET delas in i ledningsförluster, omkopplingsförluster och spärrförluster. Dock försummas ofta spärrförlusterna. Ledningsförlusterna beror på den inre resistansen i transistorns kanal mellan drain och source, och är alltid angiven i datablad för en transistor. Ledningsförlusterna kan approximeras med formeln

$$P_{cm} = R_{dson} \cdot I_{rms}^2 \tag{5}$$

där P_{cm} är ledningsförlusterna, R_{dson} är den inre resistansen och I_{rms} är rms-värdet av strömmen genom transistorn [14]. Den inre resistansen kan avläsas från transistorns datablad.

Omkopplingsförlusterna beror på att när transistorn växlar mellan att vara stängd och öppen så går en viss mängd energi åt för att stänga eller öppna transistorn. Denna energiförlust är direkt proportionell mot frekvensen som transistorn omkopplas i, och kan approximeras enligt

$$P_{sw} = (E_{on} + E_{off}) \cdot f \tag{6}$$

där P_{sw} är omkopplingsförlusterna, E_{on} är den energi som krävs för att öppna transistorn, E_{off} är den energi som krävs för att stänga transistorn och f är frekvensen [14].

2.8.3 Kiselkarbid-MOSFET

Under 2011 lanserades en ny typ av MOSFET, bestående av materialet kiselkarbid [15]. Kiselkarbid-MOSFET, även kallad SiC-MOSFET fungerar precis som en vanlig MOSFET, men har en karakteristik som är överlägsen vanliga kisel-MOSFETs på många områden, bland annat lägre omkopplingsförluster och lägre inre resistans. Kiselkarbid-MOSFETs pris jämfört med vanliga MOSFETs är dessvärre betydligt högre [16].

2.8.4 IGBT

IGBT (från engelskans Insulated Gate Bipolar Transistor) är en typ av transistor som är spänningsstyrd. Det finns tre terminaler: bas, kollektor och emitter. Styrspänningen appliceras på gaten. Emitter och kollektor motsvaras av drain respektive source hos MOSFET. En IGBT förenar de goda egenskaperna hos en MOSFET och BJT. Det vill säga: En IGBT har snabb omväxlingstid samtidigt som den klarar av höga strömmar [9]. IGBT-tekniken klarar upp till 6,5 kV och 2,4 kA [2]. Dess omväxlingstid ligger kring 1 µs [9].

Förlusterna i en IGBT-transistor kan approximeras med formeln

$$P_l = P_c + P_{sw} + P_b \tag{7}$$

där P_1 är total effektförlust, P_c är ledningsförluster, P_{sw} är omkopplingsförluster och P_b är spärrförluster [17]. Spärrförlusterna försummas ofta i beräkningar. Ledningsförlusterna P_c delas in i förluster i transistorn samt förluster i dioden som sitter kopplad parallellt med transistorn i transistormodulen enligt [17]

$$P_c = P_{ct} + P_{cd}.$$
 (8)

Förlusterna i transistorn kan approximeras enligt

$$P_{ct} = u_{ceo} \cdot I_{cav} + R_c \cdot I_{crms}^2 \tag{9}$$

där P_{ct} är effektförlusterna i transistorn i IGBT:n, u_{ceo} är transistorns tröskelspänning, I_{cav} är medelströmmen genom transistorn, R_c är den inre resistansen i transistorn och I_{crms} är rms-värdet på strömmen genom transistorn [17]. Förlusterna i dioden kan approximeras med formeln

$$P_{cd} = u_{d0} \cdot I_{dav} + r_d \cdot I_{drms}^2 \tag{10}$$

där P_{cd} är effektförlusten i dioden, u_{do} är diodens tröskelspänning, I_{dav} är medelströmmen genom dioden, r_d är diodens inre resistans och I_{drms} är rms-värdet på strömmen genom dioden [17].

Hur strömmen flyter genom transistorn och dess diod beror på den last som transistorn är ansluten till. Dioden som sitter parallellt med transistorn agerar som en skyddsmekanism. Transistorn är känslig mot ström i backriktningen och om lasten transistorn är kopplad till är till exempel rent induktiv kan strömmen vilja flyta i backriktningen. Därav finns dioden som leder i motsatt riktning för att inte ha sönder transistorn, detta ger upphov till diodförlusterna. Om lasten är rent resistiv kommer strömmen att sluta flyta så fort som transistorerna stängs av och inga diodförluster kommer att uppstå, men omkopplingsförlusterna i transistorn kommer att öka. Omkopplingsförlusterna kan även i IGBTs approximeras med ekvation (6) [17].

2.9 Kylning av transistorer

Transistorer är till ytan små komponenter som kan utsättas för höga effekter, vilket leder till att de kan uppnå höga temperaturer. När transistorn blir varm kan både dess egenskaper försämras och den kan få skador som i värsta fall gör transistorn obrukbar [18]. Därför kräver ofta transistorer någon form av kylning. Kylningen kan ske med två olika metoder: passiv kylning och aktiv kylning. Passiv kylning innebär att komponenten kyls utan att energi förbrukas av processen, till exempel genom att värmen fördelas på en så stor yta som möjligt. Detta åstadkoms oftast genom att transistorn monteras på kylflänsar. Därmed ökar arean som kan avge värme till omgivningen och då ökar värmeutstrålningen. Aktiv kylning innebär att energi förbrukas för att kyla komponenten, oftast genom fläktar eller vätskekylning.

Temperaturen inuti en transistor benämns kristalltemperatur och är svår att mäta. För att bestämma den används därför ofta beräkningar som utgår ifrån rumstemperaturen och transistorns termiska resistans enligt

$$T_j = T_a + P \cdot R_{th(j-a)} \tag{12}$$

där T_j är kristalltemperaturen, T_a är rumstemperaturen, P är den utvecklade effekten i transistorn och $R_{th(j-a)}$ är den termiska resistansen mellan halvledarkristall och omgivning [19]. Den termiska resistansen är ett mått för hur lätt transistorn leder värme från sitt inre ut till omgivningen [20]. Den består av en serie termiska resistanser mellan kristallen och transistorns omgivning. En transistor har en fast termisk resistans mellan kristall och kapsel som inte går att modifiera och en termisk resistans mellan kapsel och omgivning. Dessa två värden är ofta angivna i databladet för transistorn. Den termiska resistansen mellan kapsel och omgivning kan dock ändras med aktiv eller passiv kylning för att minska den termiska resistansen och därmed öka den avgivna värmen från transistorn [19].

3 Metod

Följande kapitel återger de metoder som användes under arbetets gång. Metoderna spänner över hur litteraturstudier sett ut till att förklara hur vissa mätningar har utförts. I slutet av rapporten i appendix A finns en instrumentförteckning och i appendix B finns en komponentförteckning för läsarens stöd.

Projektarbetet inleddes med en litteraturstudie parallellt med att det skrevs en planeringsrapport. Därefter påbörjades det praktiska arbetet med projektet. Litteraturstudien pågick sedan kontinuerligt under hela projektets gång. I litteraturstudien studerades både artiklar, facklitteratur samt föregående års projektrapport.

För att säkerställa projektets utgångspunkt inleddes det praktiska arbetet med mätningar av verkningsgraden på det ursprungliga systemet. Mätningarna på det befintliga laddningssystemet bestod av frekvens-, ström-, spännings, vindhastighets- och temperaturmätningar med olika mätinstrument. Även förlusterna i systemets olika steg mättes. Olika mätmetoder fick tillämpas på systemets olika steg, de redovisas i detalj i avsnitt 4.1. Dessa mätningar låg sedan till grund för de teoretiska beräkningar och de åtgärder som sedan utfördes på systemet. För att kunna visa på en förbättring utfördes sedan nya mätningar enligt samma metoder som använts tidigare.

Problemet med reglersystemet löstes till stor del av analys av det ursprungliga systemet och dess beståndsdelars inbördes samverkan. Med hjälp av analysen ledde sedan arbetet fram till ett mer praktiskt arbete där teorier prövades praktiskt på en kopplingsplatta innan reglersystemet konstruerades.

För konstruktion av de elektriska kretsarna har olika datorprogram använts som låter användaren rita upp dessa och sedan transformera dem till en ritning för ett kretskort. Datorprogrammet som har brukats är Designspark från RS Components.

4 Genomförande och konstruktion

Följande kapitel behandlar förändringar som gjorts på systemet. I kapitlet redogörs det varför förändringarna har genomförts som också stöds av mätningar vilka går att finna i appendix C. Instrumentförteckning finns i appendix A. Utöver detta rapporteras också hur ändringar har implementerats.

4.1 Mätningar

De mätningar som utfördes syftade till att undersöka verkningsgraden i det ursprungliga systemet samt att bestämma var de existerande effektförlusterna var lokaliserade. Tiden mellan mätningarna har varierat från dagar till flera veckor, vilket kan ha påverkat resultaten.

Istället för att använda el-gokartens batteri användes en konstgjord last. Konstlasten bestod av 10 stycken parallellkopplade effektmotstånd som i sin tur var parallellkopplade med en elektronisk konstlast. Effektmotstånden och den elektroniska konstlastens totala resistans blev då 0,5 Ω . Om batteriet hade använts istället, skulle det ha behövts laddas ur mellan varje laddning, vilket inte hade varit praktiskt. Om batteriet ändå hade använts hade det sannolikt inte gett samma mätresultat eftersom batteriet inte har samma egenskaper som konstlasten. För upprepbarhetens skull kyldes likriktaren på samma sätt under samtliga mätningar.

Den ursprungliga verkningsgraden bestämdes genom att ström och spänning mättes innan växelriktaren respektive efter likriktaren. Systemet matades med DC-aggregatet Delta Electronika SM 300-20. Inspänningen avlästes från DC-aggregatet och kontrollerades med multimetern Fluke 175. Inströmmen avlästes också från DC-aggregatet samt mättes upp med strömtång. Det avlästa spänningsvärdet stämde bra överrens med multimeterns värde men strömmen som DC-aggregatet angav och det värde som strömtången visade stämde inte överens. Eftersom det inte gick att avgöra vilken metod som var mest noggrann antecknades både strömmen som DC-aggregatet angav och den ström som mättes med strömtång.

Under de första mätserierna sveptes frekvensen för att undersöka dess påverkan på verkningsgraden. Frekvensen mättes med strömtång LeCroy AP011 och genom att övervaka kontinuerligt med oscilloskop kunde resonansfrekvensen hittas. Bästa möjliga verkningsgrad uppnåddes då resonansfrekvens bibehölls genom kontinuerlig justering under en hel laddningscykel. Avståndet mellan sändar- och mottagarspole var 50 mm under dessa mätningar. Samtliga mätningar övervakades med värmekamera för att få en överskådlig bild av var systemets förluster fanns.

Även avståndet mellan sändar- och mottagarspolen sveptes. Avståndet varierades mellan minsta möjliga avstånd om 24 mm upp till 100 mm. Avståndsmätningen visade att verkningsgraden inte förbättrades vid varken längre eller kortare avstånd. Resultatet från avståndssvepningen finns i appendix C.

För att noggrannare kunna bestämma de största effektförlusterna utfördes separata mätningar på likriktaren och växelriktaren. Eftersom förluster i ledningarna försummades återstår bara förluster i spolarna och därför kan skillnaden mellan de totala förlusterna och förlusterna i växel- och likriktaren antas vara förlusterna i sändar- och mottagarspolarna.

Tabell 1 Resultat från mätningar på ursprungliga systemet

Komponent	Förluster (W)
Växelriktarens transistorer	360
Elektrolytkondensatorn	6
Likriktaren	168

Mätningarna visade att de största förlusterna fanns i växelriktaren. Förlusterna vid elektrolytkondensatorns kontaktpunkter var endast 6 W och således försumbara i sammanhanget.

4.1.1 Mätning på likriktaren

Under en laddningscykel mättes temperaturen med en värmekamera varje minut på en bestämd punkt i likriktaren. Under en laddningscykel planade likriktarens temperatur ut vid 43°C. För att kunna översätta temperaturen till en effekt kopplades likriktaren bort från resten av systemet och matades med likström bakifrån, det vill säga från den sida där batteriet egentligen sitter. För att likriktarens dioder inte skulle spärra när den matades från fel håll matades likriktaren med omvänd polaritet. Eftersom matningen inte är växelström kunde ingen spänning induceras på sändarsidan. Strömmen gick endast genom likriktarens dioder innan den gick tillbaka till spänningsaggregatet, alltså brändes all effekt i dioderna. Effekten som matades in i likriktaren justerades sedan långsamt upp tills dess att temperaturen på den bestämda punkten i likriktaren uppnådde samma värde som under en normal laddningscykel. Dock blev kablarna mellan batteriet och likriktaren mycket varma, vilket medförde att spänningsfallet över kablarna fick mätas. Mätningen visade att förlusterna i likriktaren uppgick till 160 W.

4.1.2 Mätning på ursprungliga växelriktaren

Växelriktarens transistorer var placerade på en kylflänsmodell Semikron P3/300. Förlusterna i transistorerna approximerades med följande ekvation:

$$P_{f\ddot{o}rlust} = \frac{(T_{kylfläns} - T_{omgivning})}{R_{thha}}$$
(13)

där $P_{förlust}$ är förlusteffekten i växelriktaren, $T_{kylfläns}$ är kylflänsens temperatur, $T_{omgivning}$ är rumstemperaturen och R_{thha} är en parameter som beror på antalet komponenter som är monterade på kylflänsen samt vindhastigheten genom kylflänsen [21].

Temperaturen uppmättes på ett liknande sätt som för likriktaren, det vill säga en punkt på växelriktarens kylfläns valdes och där mättes sedan temperaturen under en hel laddningscykel med en värmekamera. Rumstemperaturen mättes med termometer till 26 °C och vindhastigheten mättes med en ventimeter. Parametern R_{thha} approximerades ur kylflänsens datablad till 0,06 C/W. Kylflänsens temperatur planade ut vid 47,5 °C.

Vid bestämning av växelriktarens förluster med ekvation (13) användes både mätdata och data från kylflänstillverkaren. Resultatet bör ses som en approximation av förlusterna i transistorerna och användas med försiktighet.

Två punkter som blev mycket varma under de inledande försöken var kontaktpunkterna på växelriktarens kondensator. En liten kylfläns placerades därför på respektive anslutningspunkt på kondensatorn. Eftersom dessa kylflänsar blev mycket varma var det av intresse att ta reda på hur stora effektförlusterna var i dessa kylflänsar. Då kylflänsarna var modifierade kunde inte deras tillhörande databladet användas. Effektförlusterna bestämdes istället genom att kylflänsen skruvades bort från kondensatorn och monterades på en diod istället. Dioden matades sedan med likström tills dess att temperaturen uppnådde

samma nivå som när den var monterad på kondensatorn under normal drift. Den effekt som förlorades i kontaktpunkten blev därmed den effekt som dioden behövde matas med för att få samma temperatur på kylflänsen.

Mätningarna visade att det fanns avsevärda effektförluster i den ursprungliga växelriktaren. Därför togs beslutet att göra beräkningar på effektförlusterna i en ny växelriktardesign.

4.2 Beräkningar på växelriktare

För att undersöka om en ny växelriktare med nya transistorer skulle ha lägre förluster utfördes beräkningar på både den nuvarande växelriktaren samt på den föreslagna designen av en ny växelriktare.

I den ursprungliga växelriktaren satt två stycken IGBT-moduler av modellen Fuji Electric 2MBI100U4A-120-50, där varje modul innehöll två transistorer. För att bestämma de teoretiska förlusterna beräknades först ledningsförlusterna i transistorerna enligt ekvation (9), där I_{cav} och I_{crms} mätts upp till 36,4 A respektive 42,0 A. Enligt IGBT-transistorernas datablad är U_{ceo} 0,80 V och R_c är 1,39 m Ω [22]. Sedan beräknades ledningsförlusterna i dioderna enligt ekvation (10), där I_{dav} mätts upp till 36,4 A och I_{drms} till 42,0 A. Värdena för u_{do} och r_d är hämtade ur datablad för IGBT-transistorn och är 1,20 V samt 0,22 Ω [22]. Därefter användes ekvation (11) för att bestämma omkopplingsförlusterna. Värdena för E_{on} och E_{off} är också hämtade ur datablad för IGBT-transistorerna och frekvensen är avrundad till 23,0 kHz [22]. De totala förlusterna beräknades sedan med ekvation (7) och (8) till totalt cirka 440 W, vilket är något högre än de förluster som uppmättes via kylflänsen.

För den nya föreslagna växelriktaren valdes en kiselkarbid-MOSFET av modellen Cree C2M0025120D ut. Denna valdes framförallt på grund av dess låga inre resistans och låga omkopplingsförluster. De teoretiska förlusterna för en växelriktare med dessa transistorer beräknades med ekvation (5) och (6). I ekvation (5) användes R_{dson} från databladet för den föreslagna nya transistorn, vilket var 25 m Ω , och värdet för I_{rms} hämtades från tidigare mätningar, vilket var 42 A. I ekvation (6) användes även där värden för E_{on} och E_{off} från databladet för den föreslagna nya transistorn, och värden var 1,4 respektive 0,3 mJ [23]. Som värde för frekvensen användes samma frekvens som vid tidigare beräkningar, 23 kHz.

Förlusteffekten för fyra stycken transistorer beräknades till ungefär 160 W. För att minska förlusterna ytterligare föreslogs en konstruktion där var och en av de fyra transistorerna ersätts med två parallellkopplade transistorer för att minska den ström som går genom varje transistor, vilket resulterar i åtta stycken transistorer totalt. En sådan design skulle teoretiskt ha 80 W i förluster. Detta är en markant skillnad mot en design med fyra transistorer, men den kommer till ett högre pris genom fler transistorer och det faktum att styrkretsen för växelriktaren behöver leverera mer energi. Det ökar även komplexiteten i designen vilket ledde till att ytterligare tid fick läggas på att designa och konstruera växelriktaren jämfört med tiden som hade krävts för att designa en växelriktare med fyra transistorer.

Dessa beräkningar är approximationer av förlusterna och ska hanteras kritiskt, men en sådan markant skillnad mellan approximationerna tolkas som en stark indikation på att förlusterna kommer att vara mindre i den nya föreslagna växelriktaren. Att förlusterna är stora i den ursprungliga växelriktaren styrks även av de mätningar på växelriktaren som har gjorts i avsnitt 4.1.

Trots kraftigt minskade effektförluster gjordes bedömningen att transistorerna fortfarande var i behov av kylning. Dessutom konstaterades från transistorernas datablad att prestandan för transistorerna blev bättre med minskad temperatur. Som kylning valdes en kombination av passiv och aktiv kylning med kylflänsar samt en fläkt för att öka kylflänsarnas effektivitet. Detta på grund av att det är en kostnadseffektiv, enkel och säker lösning jämfört med vätskekylning och en mycket effektivare lösning än både kylning med endast fläkt eller bara kylfläns. De valda transistorerna har ursprungligen en termisk resistans från kristall till kapsel på 0,24 °C/W och från kristall till omgivning på 40 °C/W, vilket innebär att med en kontinuerlig

effekt i varje transistor på 10 W och en rumstemperatur på 20 °C skulle transistorerna utan kylflänsar få en kristalltemperatur på cirka 420 °C.

Efter beräkningar på vilken kristalltemperatur som skulle uppnås valdes en kylfläns med en termisk resistans om 3 °C/W där två transistorer monterades på varje kylfläns med en resulterande termisk resistans om 4,5 °C/W per transistor. Till detta krävdes även en kiselduk mellan transistorerna och kylflänsarna som fungerade som isolation och förhindrade att kylflänsarna blev spänningssatta av transistorerna. Kiselduken hade en termisk resistans om 2 °C/W vilket skulle ge en total termisk resistans på 0,24+2+4,5=6,74 °C/W. Denna termiska resistans skulle resultera i en kristalltemperatur på cirka 87 °C. Men eftersom ökad temperatur även leder till något ökad resistans skulle denna temperatur leda till att ytterligare effektförluster utvecklades i varje transistor. En slutgiltig kristalltemperatur skulle därför landa någonstans kring 115 °C. Därför bestämdes det att en fläkt skulle monteras för att öka effektiviteten hos kylflänsarna. En fläkt minskar den termiska resistansen med en faktor tre vid vindhastigheten 10 m/s [24]. Det skulle då innebära att den resulterande termiska resistansen blir 0,24 + 2 + $\frac{4,5}{3}$ = 3,74 °C/W vilket skulle ge en kristalltemperatur på cirka 50 °C. Skulle denna approximation visa sig vara otillräcklig och kristalltemperaturen skulle bli högre kan kiselduken avlägsnas för att få en markant mindre termisk resistans, med nackdelen att kylflänsarna då blir spänningssatta.

Med stöd i dessa beräkningar och den approximation av den ursprungliga växelriktarens effektförluster som gjordes i mätningarna togs beslutet att påbörja designen av en ny växelriktare baserad på kiselkarbid-MOSFETs.

4.3 Konstruktion av ny växelriktare

Det konstaterades tidigt att den nya växelriktaren behövde vara av samma modell som den ursprungliga växelriktaren, det vill säga en fullbrygga. Alternativet hade varit att konstruera en halvbrygga, dock är en sådan bara kapabel att generera en spänningsnivå, till skillnad från helbryggans två nivåer [8]. För att ge lägre förluster baserades designen runt SiC-MOSFET, som enligt beräkningar skulle ge avsevärt mycket mindre förluster än i den ursprungliga växelriktaren. Växelriktaren designades med åtta stycken transistorer, fördelade på fyra stycken parallellkopplade transistorpar så som det beskrevs i avsnitt 4.2. Det medför att lägre strömmar gick igenom varje enskild transistor och därigenom minskade ledningsförlusterna, vilka var de enskilt största källorna till förluster i transistorerna.

De andra stora komponenterna i en fullbryggsdesign är kondensatorerna som är kopplade parallellt med DC-aggregatet. I den ursprungliga växelriktaren användes en stor elektrolytkondensator kombinerad med några små polyesterkondensatorer, men för att både minska förlusterna och volymen beslutades det att istället använda enbart polyesterkondensatorer.

Polyesterkondensatorer klarar mycket högre ström vid samma kapacitans än vad elektrolytkondensatorer gör [10]. I denna applikation var strömbegränsningen den huvudsakliga designfaktorn. Detta medförde att en mycket mindre mängd kapacitans var tillräckligt om polyesterkondensatorer användes. För att dimensionera dessa uppmättes den ström som gick igenom kondensatorn på den ursprungliga växelriktaren. Baserat på mätningen valdes en Cornell Dublier BLC200J701B4B som kondensator. De klarade en ström på 25 A, en spänning på 700 V, hade en kapacitans på 20 μ F och en ekvivalent resistans om 3,9 m Ω . Fem stycken kondensatorer parallellkopplades sedan för att ge goda marginaler för att klara av den ström de kommer att utsättas för i växelriktaren, samtidigt som de kommer att ge en låg total resistans på 0,78 m Ω .

Utöver de grundläggande komponenterna som finns i en växelriktare; transistorer och kondensatorer, krävs även ytterligare komponenter för att sköta styrningen av transistorerna.

4.3.1 Styrkrets

I appendix E visas ett komplett kretsschema över växelriktaren samt dess styrkrets, för en komplett komponentlista med värden för respektive komponent se appendix B1. Den frekvens som växelriktaren ska opereras vid anges av en extern signalgenerator. Signalen förstärks sedan i styrkretsen och spänningsnivåerna ändras till +20 och -5 V, vilka används för att öppna respektive stänga transistorerna. Dessa spänningsnivåer valdes med stöd från databladet för att få låga försluster i transistorerna [23].

För att galvaniskt skilja signalgeneratorn från växelriktaren infördes fyra stycken optokopplare, U4, U6, U8 och U10 i appendix E, som matar vidare signalen med de korrekta spänningsnivåerna till ett steg som förstärker strömmen med hjälp av bipolärtransistorer, Q1-8 i appendix E. Därefter skickas denna signal till MOSFET-transistorerna, där två zenerdioder, ZD1-16 i appendix E, används för att ytterligare säkerställa att styrspänningen aldrig överstiger vad transistorerna klarar av.

Då växelriktaren designades för att klara av att driva en spänning på 300 V var det viktigt att införa flera galvaniska snitt i kretsen. Detta på grund av att det finns komponenter i kretsen som är gjorda för lägre spänningar och därmed behöver skyddas från denna höga spänning vid eventuella fel i kretsen. Växelriktaren är konstruerad med två olika sorters galvaniska snitt: optokopplare samt DC/DC-omvandlare.

4.3.2 DC/DC-omvandlare

DC/DC-omvandlaren som har konstruerats i projektet används för att införa galvaniskt snitt i växelriktaren, samt att försörja övriga styrkretsen med den spänning som används för att styra transistorerna.

I appendix D finns DC/DC-omvandlarens kretsschema. Denna DC/DC-omvandlare använder sig av en enkel timerkrets, en "555:a"i kretsen betecknad U1, vars utsignal oscillerar med en frekvens kring 77,5 kHz. Därefter förstärks denna signal av en MOSFET-driver, U2, innan den kan ledas genom primärspolen L1a, vilket inducerar spänning i sekundärlindningarna L1b och L1c. Då spolarna matas med en växelspänning kommer polariteten på spänningen som induceras i sekundärlindningarna att växla med den ovan nämnda frekvensen. Halva tiden kommer dioderna D5 och D7 att spärra, samtidigt som D6 leder en ström via kondensator C5 som då laddas upp. Andra halvan av periodtiden leds strömmen istället genom D7 och D5 till kondensatorerna C7 och C8. De två kondensatorerna C5 och C8 agerar därmed som spänningsdubblerare, vilket ger möjlighet till ungefär dubbelt så hög spänningsnivå över zenerdiod ZD2 än den som induceras över sekundärlindningen, men med konstant polaritet.

Primärlindningen matades med 15 V vilket skulle medföra att spänningar på ungefär 15 V och 30 V skulle vara möjliga att ta ut på kondensator C7 respektive C8. Dock används ZD1 och ZD2 för att reglera ner spänningarna till 5 V respektive 20 V. Detta görs genom att zenerdiodernas backspänning väljs till det värde på spänningsnivån man vill ha ut. Dessutom ansluts ZD1 med omvänd polaritet sett mot ZD2, vilket resulterar i att de två spänningar som levereras ut från omvandlaren är -5 V och 20 V. En konsekvens som tillkommit av att den oscillatorkrets som implementerats är att en likspänningskomposant kan komma att lägga sig över primärspolen L1a, därav har en kondensator C4 monterats i serie med spolen för att spärra denna. Detta uppstår på grund av att den fyrkantspuls som levereras inte har en pulskvot på 50 %, det vill säga att det är svårt att uppnå en krets som har lika lång tid hög som låg.

Antal varv på primär- och sekundärlindningarna som lindades på ferritkärnan beräknades minst vara 6,6. Därför lindades 7 varv på ferritkärnorna. Detta bestämdes genom att N löstes ut ur ekvation (3), där E_{rms} = 10 V, f = 77,5 kHz, A = 48,9 mm² och \hat{B} = 0,1 T. Värdet på flödestätheten valdes till 0,1 T eftersom en högre magnetisk flödestäthet är oönskad.

Tvärsnittsarean på koppartråden som användes för att linda kring ferritkärnan bestämdes genom att utgå från en önskvärd ström per areaenhet på 5 A/mm², detta för att inte få för stora effektförluster. Då strömmen som skulle flöda genom koppartråden uppskattades till 200 mA ges det att den minsta möjliga arean skulle vara 0,04 mm². Eftersom matningsspänningen till primärlindningen var på en önskvärd nivå sattes förhållandet mellan lindningsvarven på primär- och sekundärsidan till 1:1.

4.3.3 Överströmsskydd

För att ytterligare skydda växelriktaren implementerades ännu ett skyddssteg som arbetades in i designen av växelriktaren. Detta skydd var ett överströmsskydd, vars huvuduppgift är att stänga ner växelriktaren då det går för mycket ström genom någon av transistorerna.

För att åstadkomma detta användes dioder samt optokopplare. En mycket snabb diod kopplad med sin katod mot respektive transistors drain (D27-30 i appendix E1 och E5). Anoden kopplas via en mindre signaldiod till ingången på en optokopplare (U3, U5, U7 och U9 i appendix E1 och E7). Mellan de två dioderna kopplas 20 V in via ett motstånd. Det betyder att så länge spänningsfallet över transistorn är tillräckligt lågt går all ström från motståndet genom den snabba dioden och ner i transistorns drain. Allt eftersom mer ström går genom transistorn ökar dess spänningsfallet för den lysdiod som är kopplad till ingången på optokopplaren börjar den leda och ger därför en "hög" utsignal från optokopplaren vilket indikerar en hög ström genom transistorn. Denna används sedan i en logisk krets för att stänga av växelriktaren.

4.3.4 Logisk krets

Det finns dock två problem med det överströmsskydd som implementerats: Det kommer tro att spänningsfallet över transistorn i avstängt tillstånd är upp emot 300 V, vilket leder till missvisningar. Samt det faktum att systemet kan komma att slå igång igen så fort som växelriktaren stängs ner på grund av att det då slutar gå ström genom växelriktaren.

För att lösa dessa problem implementerades en krets bestående av diverse logiska grindar och en SR-latch. När det gäller problemet med missvisning då transistorn är av så används AND-grindar, där felsignalen från överströmsskyddet kombineras med styrsignalen för transistorn, vilket ser till att felsignalen endast kan skickas vidare om transistorn är påslagen.

Det sista felet löstes genom användningen av en SR-latch, vilket innebär att när en felsignal väl givits måste systemet manuellt återställas med hjälp av en tryckknapp för att kunna sättas igång.

4.3.5 Kretskortslayout

Utifrån det färdiga kretsschemat som visas i appendix D skapades sedan en kretskortslayout som kunde skickas till en kretskortstillverkare för tillverkning. Även här var det väldigt viktigt att tänka på de galvaniska snitten för att bibehålla kretsens säkerhet. Dessutom var det viktigt att tänka på avstånd mellan de kopparbanor och anslutningar som var spänningsatta med 300 V, detta för att säkerställa att ström inte kröp längs med kretskortet. Som standard används avståndet 6 mm vilket, med tumregeln 100 V/mm, skulle klara av en spänning på 600 V och ge god marginal.

För att säkerställa att kortet klarar av att leda de strömmar som växelriktaren kräver så behövs bredare banor ju mer ström som ska gå. Det valdes att en koppartjocklek hos kretskortet på 70 μ m, vilket gav oss en strömkapacitet på 2 A/mm.

Det galvaniska snittet tydliggjordes på kretskortet genom att alla högspända komponenter och banor lades

i mitten av kretskortet, omringat av ett 6 mm brett mellanrum. Utanför detta snitt placerades övriga komponenter som används för styrningen av transistorerna.

4.4 Konstruktion av reglersystem

Reglersystemets uppgift är att signalera, från bilen till laddarens sändarsida, när det ska laddas och inte. Spänningsnivån över batteripolerna mäts och en krets jämför med förinställda spänningsnivåer och avgör ifall det ska laddas eller inte. En trådlös sändare signalerar till laddningssystemets växelriktare att börja ladda.

4.4.1 Komparatorkretsen

Med hjälp av ett kretsschema från föregående år designades en komparatorkrets som vid olika spänningar slår på respektive av laddningssignalen. Komparatorkretsen skapar två spänningsreferenser som den sedan kan jämföra förändringar i batterispänning emot. Två komparatorer jämför dessa två referenser med batterispänning och signalerar när batterispänningen överstiger referensen. Komparatorerna matar i sin tur en SR-latch för att tillämpa hysteres på systemet. En sanningstabell för SR-latchen finns i tabell 2. Även om spänning till exempel skulle understiga en viss spänning kommer inte laddning att startas på grund av SR-latchen. För att laddningen ska upphöra krävs att SR-latchen får ytterligare en signal då spänningen går under den lägsta nivån.

Tabell 2 Sanningstabell för SR-latch

S	R	Q	beslut
0	0	Q	behåll värde
0	1	0	reset
1	0	1	set
1	1	Х	inte tillåtet

Systemet är designat så att när man önskar ladda slås en brytare till för att aktivera komparatorkretsen. Då batterispänningen är under 49,5 V kommer SR-latchen gå hög och laddningssignal skickas. När nivån stiger över 49,5 V går den låg och laddningssignal avbryts. När spänningen sjunker under referens två, 48,8 V, går SR-latchen hög och laddsignal skickas igen. En bild på den färdiga kretsen finns i figur 6.

Figur 6 Principskiss av färdigt reglersystem. Spänningsnivån över batteripolerna jämförs av komparatorkretsen med förinställda spänningsnivåer. Komparatorkretsen spänningssätter sändaren som signalerar till mottagaren att ladda.

4.4.2 Trådlös länk

Komparatorkretsen matar en radiofrekvenssändare (RF-sändare) vilket kan ses i figur 5. Sändare och mottagare kommer från en byggsats för ett RF-system. RF-sändaren utgörs av ett litet kretskort med en resonator som skickar en signal på 433 MHz när en viss brytare sluts på kortet. Kortet kan skicka två signaler som styrs med två brytare och på så sätt styra två olika reläer på RF-mottagaren. Den nuvarande konstruktionen kräver endast att styra ett relä och därför behövs endast en brytare på RF-sändaren att användas. Denna brytare kortsluts därför och skickar på så sätt alltid en signal. Det som bestämmer om sändaren ska skicka en signal eller ej beror på om sändarkretsen får spänningsmatning eller inte, vilket är komparatorkretsens uppgift. Reläet på RF-mottagaren kopplas in i det logiknät som styr ifall växelriktaren ska vara av eller på.

5 Resultat

På grund av tidsbrist kunde inte projektet slutföras fullt ut. Under projektets sista dagar skedde ett okänt fel i kretsen vilket ledde till att två transistorer förstördes under en pågående mätning. I nedanstående stycke presenteras resultaten från de inledande mätningar som hann genomföras innan transistorerna gick sönder.

5.1 Systemets prestanda

För den nya växelriktaren uppmättes två halva mätserier innan transistorerna gick sönder. Den ena mätserien sträckte sig upp till cirka 2730 W och den andra mätserien sträckte sig till cirka 3400 W och mätserierna uppvisade liknande verkningsgrader. Figur 7 visar hur verkningsgraden för en av mätserierna för den nya växelriktaren varierade beroende på inmatad effekt med verkningsgraden beräknad med värden på strömmen från både DC-aggregatet och strömtången. Figuren visar även en liknande mätserie från den gamla växelriktaren på samma sätt. Samtlig mätdata finns i appendix C.

Figur 7 Verkningsgrad för det gamla och nya systemet. Inströmmen har mätts med strömtång samt avlästs från DCaggregat.

Oavsett vilken mätmetod som använts går det klart och tydligt att se i diagrammet att den nya växelriktaren baserad på kiselkarbid-MOSFETs överstiger den tidigare växelriktaren i förhållande till verkningsgrad vid lägre effektnivåer. Skillnaden mellan de båda växelriktarna var cirka 10 procentenheter i verkningsgrad upp till 2730 W under denna mätserie. I den sista mätpunkten med inström avläst från Delta Electronica SM 300-20 då ineffekten var 2730 W var skillnaden i verkningsgrad 12,7 %.

5.2 Förlustanalys för växelriktarna

Efter att verkningsgraden har uppmätts i de båda växelriktarna är det av intresse att veta hur mycket förlusteffekten skiljer sig åt. De inledande mätningarna i den ursprungliga växelriktaren visade att de största förlusterna fanns i dess transistorer. Förlusterna i transistorerna approximerades med (13) och mätningar till 360 W, medan de teoretiska beräkningarna visade på 440 W. Kontaktpunkterna på växelriktarens elektrolytkondensator gav även upphov till förluster om 6 W och var således försumbara.

För den nya växelriktaren hade en teoretisk förlusteffekt beräknats till cirka 80 W i avsnitt 4.2, men det kunde ej verifieras fullt ut med mätningar på grund av den tidigare nämnda tidsbristen.

5.3 Reglersystemet

Komparatorkretsens slutgiltiga storlek blev 85 x 65 mm. Det placerades bredvid batteriet och ansluts till det via en brytare som placerades lättåtkomligt för föraren av gokarten. Komparatorkretsen måste slås på för att laddning ska kunna genomföras. När kretsen är spänningssatt förbrukar den en ström på cirka 70 mA vilket med den ungefärliga batterispänningen 50 V ger en energiförbrukning på approximativt 3,5 W. Det enda sättet att undkomma den förlusten är att slå från brytaren.

Slås komparatorkretsen till kommer systemet påbörja laddning om batterispänningen understiger referens ett. När batterispänningen uppnår referens ett slås laddningen av och påbörjas inte förrän spänningsnivån understiger referens två. Dessa två referenser är ställbara genom att man kan skruva på den potentiometer som hör till respektive referens.

Sändaren som matas av komparatorkretsen monterades vid gokartens ratt och mottagaren placerades i den låda som växelriktaren byggdes in i. Mottagarens antenn monterades inne i lådan och signal erhölls pålitligt så länge sändare och mottagare befann sig inom ett avstånd på 3 m.

6 Diskussion

Nedan diskuteras projektets resultat och beslut tagna under projektets gång. Eventuella fortsättningar och vidareutvecklingar av detta projekt diskuteras också här.

6.1 Avslutande av projektet

Två dagar innan rapporten skulle lämnas in blev konstruktionen och kalibreringen av växelriktarens kretskort klart. Under de inledande mätningarna som följde inträffade ett okänt fel som förstörde två stycken transistorer. Detta satte stopp för fortsatta mätningar på systemet eftersom en bedömning gjordes att det var viktigare att producera en projektrapport innan deadline än att påbörja en felsökning av kortet som skulle kunna dra ut på tiden. De inledande mätningarna visar däremot på en signifikant ökad verkningsgrad kring 85 % vid lägre effekter upp till cirka 3,3 kW enligt DC-aggregatets mätningar. Varken mätningarna eller de teoretiska beräkningarna gav någon indikation på att den uppnådda höga verkningsgraden inte skulle gälla för högre effekter också.

Varför felet inträffade är okänt och det skulle krävas fler tester och mätningar för att säkerställa orsaken men vid projektets slut fanns det tre huvudsakliga teorier: Antingen att kylningen av transistorerna var otillräcklig, att någon av transistorerna hade skadats under monteringen av kretskortet eller att något hände med styrspänningen till transistorerna.

För att avsluta projektet skulle mer tid behövas för att kunna montera nya transistorer på kretskortet och utföra mätningar på relevanta signaler och på värmeutvecklingen på olika ställen på kretskortet.

6.2 Förbättringar

Vi kommer nedan att diskutera förbättringsmöjligheter för både växelriktare och reglersystem. Dessa förbättringsmöjligheter ska ses som rekommendationer för fortsatta studier på systemet.

6.2.1 Förbättringar för laddningssystemet

Om den nya växelriktarens verkningsgrad legat på den nivå mätningarna har indikerat finns de resterande stora effektförlusterna i systemet i likriktaren samt spolarna. För att ytterligare höja systemets verkningsgrad skulle diodlikriktaren kunna ersättas med en synkron likriktare.

Designen av spolarna skulle även kunna undersökas för att utvärdera om det skulle kunna ge en högre verkningsgrad. Sedan skulle även frekvensen systemet arbetar i kunna undersökas. En högre frekvens skulle eventuellt kunna ge en ökad effektöverföring, varpå strömmen skulle kunna minskas för att bibehålla den överförda effekten. Detta skulle minska effektförlusterna som beror på strömmen. Dock skulle den ökade frekvensen både ge upphov till ökade omkopplingsförluster i transistorerna samt ökade förluster i spolarna.

6.2.2 Förbättringar för reglersystemet

Reglersystemets utförande begränsades till att endast kunna förhindra överladdning av systemet, det vill säga att det avslutar laddningen när spänningen överstiger en specificerad nivå. Anledningen till detta var på grund av dess komplexitet samt att arbetet kring reglersystemet nedprioriterades till förmån för konstruktionen av en ny växelriktare.

Framtida förbättringar skulle bland annat kunna vara att övervaka när batterispänningen sjunker under en viss nivå och, om bilen då står vid laddningssystemet, initiera en laddning. Det kräver dock att systemet automatiskt ska slås på med ett visst intervall för att mäta spänningen. Om systemet skulle vara på konstant skulle batteriet på sikt laddas ur då reglersystemet drar ström från batteriet. Vidare skulle en

automatisk avstängning kunna konstrueras som stänger av reglersystemet när laddningen är klar. Nuvarande konstruktion kräver att systemet stängs av för hand med hjälp av en brytare.

6.3 Val av mätinstrument

Under projektet utfördes mätningar för att bestämma verkningsgraden i de båda växelriktarna. Då dessa mätningar gjordes antecknades strömmen som gavs från DC-aggregatet på två sätt. Dels noterades vad DC-aggregatet angav för ström och dessutom kontrollmättes denna ström med en strömtång. Skillnaden mellan den ström som DC-aggregatet angav och mätvärdet från strömtången var som mest 1,5 A. Vilken av dessa metoder som var mest korrekt går ej att fastställa, därför har båda metoderna presenterats i rapporten. Oavsett mätmetod kan en ökning av verkningsgraden konstateras i resultatet.

6.4 Analys av DC/DC-omvandlarens konstruktion

Då DC/DC-omvandlaren utvecklades var inte hela designen av växelriktaren slutförd. Detta innebar att omvandlarens design grundades på teoretiska beräkningar och uppskattningar av vilken ström som skulle levereras. Det här medförde en risk att dess prestanda skulle bli underdimensionerad för kretsen ifråga. I fallet med den nykonstruerade växelriktaren hade zenerdioderna i kretsen blivit dimensionerade till att klara 200 mA. Den strömmen uppskattades ifrån transistorernas totala gate-kapacitans samt frekvens som systemet kommer att styras med [14].

Vad som hade kunnat göras annorlunda är att dimensionera DC/DC-omvandlaren då växelriktaren var klar. Anledningen till att gruppen fortsatte med att designa omvandlaren var eftersom modifikationer till den hade varit enkla att göra. Dessutom hade transformatorns lindningsvarv kunnat dimensioneras till fler varv för att minska den magnetiska flödestäthetens toppvärde.

7 Slutsats

Att höja verkningsgraden i det aktuella laddningssystemet genom konstruktion av en ny växelriktare baserad på kiselkarbid-MOSFETs är möjligt. Det här projektet har även om det misslyckats med att nå sitt primära mål visat att en högre verkningsgrad går att uppnå vid lägre effektnivåer. Utöver detta har även användarvänligheten höjts genom konstruktion av ett nytt reglersystem som avbryter laddningen av batteriet när det är fulladdat.

Referenser

- [1] Världsnaturfonden, "Mänsklig påverkan," Världsnaturfonden, 5 Augusti 2014. [Online]. Tillgänglig: http://www.wwf.se/vrt-arbete/klimat/mnsklig-pverkan/1124268-mnsklig-pverkan-klimat. [Använd 7 Maj 2015].
- [2] A. P. Hu, Wireless/Contactless Power Supply, Auckland: The University of Auckland, 2002.
- [3] T. Eriksson, "Elektromagnetism," Nationalencyklopedin, [Online]. Tillgänglig: http://www.ne.se/uppslagsverk/encyklopedi/1%C3%A5ng/elektromagnetism. [Använd 20 April 2015].
- [4] O. Beckman, "Magnetism," Nationalencyklopedin, [Online]. Tillgänglig: http://www.ne.se/uppslagsverk/encyklopedi/l%C3%A5ng/magnetism. [Använd 17 Februari 2015].
- [5] T. Eriksson, "Induktion," Nationalencyklopedin, [Online]. Tillgänglig: http://www.ne.se/uppslagsverk/encyklopedi/l%C3%A5ng/induktion-(i-fysiken). [Använd 17 Februari 2015].
- [6] Institutionen för Energi och Miljö, Elteknik, Göteborg: Chalmers Tekniska Högskola, 2014.
- [7] B. Stenborg, "Faskompensering," Nationalencyklopedin, [Online]. Tillgänglig: http://www.ne.se/uppslagsverk/encyklopedi/1%C3%A5ng/faskompensering. [Använd 10 Maj 2015].
- [8] M. H. Rashid, Power Electronics Handbook, Pensacola: Elsevier, 2007.
- [9] N. Mohan, T. M. Undeland och W. P. Robbins, Power Electronics, John Wiley & Sons, INC, 2003.
- [10] M. S. a. J. Bond, "Selecting Film Bus Link Capacitors For High Performance Inverter Applications," i *IIIE International Electric Machines and Drives Conference*, Miami, 2009.
- [11] R. M. Marston, "Optocoupler Devices," *Electronics Now*, vol. 63, nr 8, s. 44-54, 1992.
- [12] Inductiveload, Artist, Optoisolator Pinout. [Art]. 2008.
- [13] Fairchild Semiconductor, "Understanding Power MOSFETs," 1999.
- [14] D. Graovac, M. Pürschel och A. Kiep, "MOSFET Power Losses Calculation Using the Data-Sheet Parameters," Infineon Technologies AG, Neubiberg, 2006.
- [15] CREE, "Cree Launches Industry's First Commercial Silicon Coarbide MOSFET," CREE, Durham, 2011.
- [16] D. S. Ljubisa och e. al., "Recent Advances in Silicon Carbide MOSFET Power Devices," *IEEE*, nr 1, s. 401-407, 2010.
- [17] D. Graovac och M. Pürschel, "IGBT Power Losses Calculation Using the Data-Sheet Parameters," Infineon Technologies AG, Neubiberg, 2009.
- [18] E. M. G. Q. Tom A. Eppes, "Power Transistor Heat Sink Design Trade-offs," i COMSOL Conference, Boston, 2011.
- [19] ROHM Semiconductor, "What is a transistor?," ROHM Semiconductor, [Online]. Tillgänglig: http://www.rohm.com/web/eu/tr_what7.
- [20] M. E. Tony Atkins, A Dictionary of Mechanical Engineering, Oxford University Press, 2013.
- [21] SEMIKRON, "Semikron," 17 Mars 2005. [Online]. Tillgänglig: http://shop.semikron.com/out/media/ds/SEMIKRON_DataSheet_Heatsink_KL_285_P3_300_mm_sa wed_brushed_machined_41132240.pdf. [Använd 13 Mars 2015].
- [22] Fuji Electric Device Technology Co., Ltd., "Farnell," [Online]. Tillgänglig: http://www.farnell.com/datasheets/93193.pdf. [Använd 29 Maj 2015].
- [23] CREE, "CREE C2M0025120D," [Online]. Tillgänglig:

http://www.cree.com/~/media/Files/Cree/Power/Data%20Sheets/C2M0025120D.pdf. [Använd 19 Maj 2015].

- [24] Semikron, "www.farnell.com," [Online]. Tillgänglig: http://www.farnell.com/datasheets/12175.pdf.
- [25] Bharat Heavy Electricals Limited, Transformers, India: Mc Graw Hill Education Private Limited, 2003.

Appendix Appendix A – Instrumentförteckning

Namn	Funktion
Delta Elektronika SM 300-20	DC-aggregat
EL302RT Triple Power Supply	DC-aggregat
Powerbox DC Power Supply 6303DS	DC-aggregat
LeCroy 9304CM Quad 200 MHz Oscilloscope	Oscilloskop
Tektronix AFG 3022C	Funktionsgenerator
Wavetek Model 142 HF VCG Generator	Funktionsgenerator
Tektronix TDS 2004B	Oscilloskop
Flir i7	Värmekamera
LeCroy AP032 Differential Probe	Differentialprob
LeCroy AP011 Current Probe	Strömtång
Ventimeter	Ventimeter
Fluke 322 Clamp Meter	Multimeter
Fluke 175	Multimeter
BS1704	Multimeter

	Komponent	Värde	ID		Komponent	Värde	ID
C1	Kondensator	20µF 700V		Q1a	SIC MOSFET		C2M0025120D
C2	Kondensator	20µF 700V		Q1b	SIC MOSFET		C2M0025120D
C3	Kondensator	20µF 700V		Q2a	SIC MOSFET		C2M0025120D
C4	Kondensator	20µF 700V		Q2b	SIC MOSFET		C2M0025120D
C5	Kondensator	20µF 700V		Q3a	SIC MOSFET		C2M0025120D
C6	Kondensator	1,1nF		Q3b	SIC MOSFET		C2M0025120D
C7	Kondensator	1µF		Q4a	SIC MOSFET		C2M0025120D
C8	Kondensator	1,1nF		Q4b	SIC MOSFET		C2M0025120D
C9	Kondensator	0,1µF		Q1	BJT		NTE377
C10	Kondensator	0,1µF		Q2	BJT		NTE378
C11	Kondensator	1µF		Q3	BJT		NTE377
C12	Kondensator	1,1nF		Q4	BJT		NTE378
C13	Kondensator	0,1µF		Q5	BJT		NTE377
C14	Kondensator	1µF		Q6	BJT		NTE378
C15	Kondensator	1,1nF		Q7	BJT		NTE377
C16	Kondensator	0,1µF		Q8	BJT		NTE378
C17	Kondensator	1µF		R1	Resistor	5,6 Ohm	
C18	Kondensator	2,2nF		R2	Resistor	10 kOhm	
C19	Kondensator	0,1µF		R3	Resistor	680 Ohm	
C20	Kondensator	1µF		R4	Resistor	5,6 Ohm	
C21	Kondensator	0,1µF		R5	Resistor	10 kOhm	
C22	Kondensator	2,2nF		R6	Resistor	5,6 Ohm	
C23	Kondensator	0,1µF		R7	Resistor	560 Ohm	
C24	Kondensator	1µF		R8	Resistor	5,6 Ohm	
C25	Kondensator	0,1µF		R9	Resistor	10 kOhm	
C26	Kondensator	1,22nF		R10	Resistor	5,6 Ohm	
C27	Kondensator	1,22nF		R11	Resistor	5,6 Ohm	
C28	Kondensator	1,22nF		R12	Resistor	150 Ohm	
C29	Kondensator	1,22nF		R13	Resistor	5,6 Ohm	
C30	Kondensator	0,33µF		R14	Resistor	10 kOhm	
C31	Kondensator	1µF		R15	Resistor	5,6 Ohm	
C32	Kondensator	1µF		R16	Resistor	220 Ohm	
C33	Kondensator	1µF		R17	Resistor	1,2 kOhm	
C34	Kondensator	1µF		R18	Resistor	100 kOhm 3W	
C35	Kondensator	0,1µF		R19	Resistor	100 kOhm 3W	
C36	Kondensator	2,2nF		R20	Resistor	100 Ohm	
C37	Elektrolytkondensator	4,7μF		R21	Resistor	1,2 kOhm	
C38	Elektrolytkondensator	4,7μF		R22	Resistor	100 kOhm 3W	

Appendix B1 – komponentförteckning Växelriktare

	Komponent	Värde	ID		Komponent	Värde	ID
C39	Elektrolytkondensator	4,7μF		R23	Resistor	100 kOhm 3W	
C40	Elektrolytkondensator	4,7μF		R24	Resistor	100 Ohm	
C41	Elektrolytkondensator	4,7μF		R25	Resistor	1,2 kOhm	
C42	Elektrolytkondensator	4,7μF		R26	Resistor	220 Ohm	
C43	Elektrolytkondensator	4,7μF		R27	Resistor	220 Ohm	
C44	Kondensator	0,1µF		R28	Resistor	100 Ohm	
C45	Kondensator	0,1µF		R29	Resistor	1,2 kOhm	
C46	Kondensator	0,1µF		R30	Resistor	220 Ohm	
C47	Kondensator	0,1µF		R32	Resistor	100 Ohm	
C48	Elektrolytkondensator	4,7μF		R33	Resistor	470 Ohm	
C49	Kondensator	4,7nF		R34	Resistor	3,3 kOhm	
C50	Kondensator	4,7nF		R35	Resistor	470 Ohm	
C51	Kondensator	0,33µF		R36	Resistor	3,3 kOhm	
C52	Kondensator	0,1µF		R37	Resistor	820 Ohm	
C53	Kondensator	0,33µF		R38	Resistor	820 Ohm	
C54	Kondensator	0,1µF		R39	Resistor	820 Ohm	
C55	Elektrolytkondensator	1000µF		R40	Resistor	820 Ohm	
C56	Kondensator	1μF		R41	Resistor	10 kOhm	
C57	Kondensator	0,1µF		R42	Resistor	100 Ohm	
C58	Kondensator	1μF		R43	Resistor	100 Ohm	
C59	Kondensator	0,1µF		R44	Resistor	100 Ohm	
C60	Kondensator	4,7nF		R45	Resistor	10 kOhm	
C61	Kondensator	4,7nF		R46	Resistor	10 kOhm	
D1	Diod		1N4148	R47	Resistor	10 kOhm	
D2	Diod		1N4148	R48	Resistor	10 kOhm	
D3	Diod		1N4148	R53	Resistor	680 Ohm	
D4	Diod		1N4148	R54	Resistor	680 Ohm	
D5	Schottkydiod	30V 1A		R55	Resistor	680 Ohm	
D6	Diod		1N4148	R56	Resistor	680 Ohm	
D7	Diod		1N4148	R57	Resistor	100 Ohm	
D8	Diod		1N4148	R58	Resistor	680 Ohm	
D9	Diod		1N4148	R60	Resistor	680 Ohm	
D10	Diod		1N4148	R62	Resistor	680 Ohm	
D11	Diod		1N4148	R63	Resistor	680 Ohm	
D12	Diod		1N4148	U1	Timerkrets		NE555
D13	Diod		1N4148	U2	MOSFET-driver		TC4425
D14	Diod		1N4148	U3	Optokopplare		FOD3182
D15	Diod		1N4148	U4	Optokopplare		FOD3184
D16	Diod		1N4148	U5	Optokopplare		FOD3182
D17	Diod		1N4148	U6	Optokopplare		FOD3184
D18	Schottkydiod	30V 1A		U7	Optokopplare		FOD3182
D19	Schottkydiod	30V 1A		U8	Optokopplare		FOD3184
D20	Schottkydiod	30V 1A		U9	Optokopplare		FOD3182
D21	Schottkydiod	30V 1A		U10	Optokopplare		FOD3184
D22	Schottkydiod	30V 1A		U11	MOSFET-driver		TC4425
D23	Schottkydiod	30V 1A		U12	Timerkrets		NE555
D24	Schottkydiod	30V 1A		U13	AND-grind		4081

	Komponent	Värde	ID		Komponent	Värde	ID
D25	Diod		1N4148	U14	SR-latch		4043
D26	Diod		1N4148	U15	AND-grind		4082
D27	Diod	600V 1A Snabb		U16	Inverterare		4069
D28	Diod	600V 1A Snabb		U17	AND-grind		4081
D29	Diod	600V 1A Snabb		U18	Spänningsreg.	15V	7815
D30	Diod	600V 1A Snabb		U19	Inverterare		4069
D31	Diod		1N4148	U20	Level-shifter		4504
D32	Diod		1N4148	U21	Spänningsreg.	12V	7812
D33	Diod		1N4148	U22	Spänningsreg.	5V	7805
D34	Diod		1N4004	U23	MOSFET-driver		TC4424
D35	Diod		1N4148	U24	MOSFET-driver		TC4424
D36	Diod		1N4148	ZD1	Zenerdiod	5V	
D37	Diod		1N4148	ZD2	Zenerdiod	20V	
D38	Diod		1N4148	ZD3	Zenerdiod	5V	
L1a,b,c	Spolar		Egna	ZD4	Zenerdiod	20V	
L2a,b,c	Spolar		Egna	ZD5	Zenerdiod	5V	
LED1	LED	5mm Röd		ZD6	Zenerdiod	20V	
LED2	LED	5mm Grön		ZD7	Zenerdiod	5V	
LED3	LED	5mm Grön		ZD8	Zenerdiod	20V	
LED4	LED	5mm Grön		ZD9	Zenerdiod	5V	
LED5	LED	5mm Grön		ZD10	Zenerdiod	20V	
LED6	LED	5mm Grön		ZD11	Zenerdiod	5V	
LED7	LED	5mm Grön		ZD12	Zenerdiod	20V	
LED8	LED	5mm Grön		ZD13	Zenerdiod	5V	
LED9	LED	5mm Röd		ZD14	Zenerdiod	20V	
LED10	LED	5mm Röd		ZD15	Zenerdiod	5V	
LED11	LED	5mm Röd		ZD16	Zenerdiod	20V	
LED12	LED	5mm Röd		ZD17	Zenerdiod	5V	
LED13	LED	5mm Blå		ZD18	Zenerdiod	20V	
LED14	LED	5mm Blå		ZD19	Zenerdiod	5V	
LED15	LED	5mm Gul		ZD20	Zenerdiod	20V	
LED16	LED	5mm Gul		ZD21	Zenerdiod	5V	
LED17	LED	5mm Gul		ZD22	Zenerdiod	20V	
LED18	LED	5mm Gul		ZD23	Zenerdiod	5V	
LED19	LED	5mm Blå		ZD24	Zenerdiod	20V	
LED20	LED	5mm Blå					

Beteckning	Komponent	Värde	ID
U1 & U2	OP-amp		UA741CP
U3 & U4	Komparator		LM311P
U5	SR-latch		CD4043BE
U6	AND-gate		CD4081BE
U7	Spänningsregulator		TS7815
U8 <mark>&</mark> U9	Spänningsreferens		TL431CLP
Q5	Transistor		NTE377
ZD1	Zener-diod	27 V	1N5361
C1-C5	Kondensator	0,33 μF	334 35K 450
VR3 & VR4	Vridmotstånd	50k	67WR50K

Appendix B2 – Komponentförteckning komparatorkrets

Appendix C - mätningar

Mätdata för effektmätning på likriktare, gamla systemet

Inspänning [V]	Inström [A]	Temperatur i likriktare [°C]	Spänning efter kabel [V]
2,1	110	40,5	1,314
2,3	125	43	1,345

Strömmätning över kondensatorn på växelriktaren, gamla systemet

Tid [min]	Spänning [V]	Ström [A]	Frekvens [kHz]	Kondensatorström [A]	Rippelnivå [A]
0	300	19,7	22,5	54	34,3
1	300	19,2	22,47	49,1	29,9
2	300	19,2	22,7	58	38,8
3	300	19	22,7	56	37
4	300	18,7	22,8	56	37,3
5	300	18,5	23	67	48,5
6	300	18,4	23	62	43,6
7	300	18,3	23	62	43,7
8	300	18,1	23,2	67	48,9

Temperaturmätning hos kondensatorkontakter samt växelriktarens kylfläns, gamla systemet

	Indata	Utdata		Kondensatorkontakt 1	Kondensatorkontakt 2	Växelriktarens kylfläns
Tid [min]	Effekt [W]	Effekt [W]	Verkningsgrad [%]	Temp [°C]	Temp [°C]	Temp [°C]
0	5970	4875,68	81,67	26,2	26,4	26
1	5850	4743,2	81,08	31,6	30,2	31,9
2	5760	4704,32	81,67	36	33,5	36,3
3	5730	4521,88	78,92	41	37,7	40
4	5640	4564,8	80,94	50	45,4	44
5	5550	4498,11	81,05	54	47	45
6	5610	4531,44	80,77	55	48	46
7	5490	4408,56	80,30	58,5	50,5	47,3
8	5520	4446,24	80,55	61	52,5	47,5

Temperaturmätning över likriktare, gamla systemet

	Tid [min]	Temperatur [°C]	Förluster [W]	Verkningsgrad [%]
	3	40.9	1313,75	77,54
	4	43.3	1103,75	80,43
	5	42.7	1031,8	80,35
1				

Verkningsgrad, mätdata från DC-aggregat, gamla systemet

Tid [min]	Ström från DC-aggregat[A]	Ineffekt [W]	Uteffekt [W]	Verkningsgrad [%]
0	19,9	5970	4792,2	80,27
1	20	6000	4802	80,03
2	19,8	5940	4762,86	80,18
3	19,3	5790	4656,12	80,42
4	19,1	5730	4588,8	80,08
5	18,9	5670	4522	79,75
6	18,8	5640	4474,4	79,33
7	18,7	5610	4436,74	79,09
8	18,5	5550	4418	79,60

Verkningsgrad ,mätdata från strömtång, gamla systemet

Tid [min]	Ström från DC-aggregat [A]	Ineffekt [W]	Uteffekt [W]	Verkningsgrad [%]
0	21,2	6360	4792,2	75,35
1	21,25	6375	4802	75,33
2	21,3	6390	4762,86	74,54
3	20,1	6030	4656,12	77,22
4	20	6000	4588,8	76,48
5	20	6000	4522	75,37
6	20	6000	4474,4	74,57
7	19,7	5910	4436,74	75,07
8	19,1	5730	4418	77,10

Mätningar på ursprunglig växelriktare Olika avstånd

Ineffekt [W]	Uteffekt [W]	Förluster [W]	Verkningsgrad [%]	Frekvens [kHz]
Mätning med 2,4	cm avstånd			
6211,8	4680	1531,8	75,34	23,7
Mätning med 5 cn	n avstånd			
5970	4656,12	1313,88	77,99	22,25
5250	4000,2	1249,8	76,19	22,8
Mätning med 7,5	cm avstånd			
4834,8	3569	1265,8	73,82	22,3
Mätning med 10 c	m avstånd			
3577,86	2407,2	1170,66	67,28	21,7

Temp. hos kylflänsar på elektrolytkondensator, gamla syst

Spänning [V]	Ström [A]	Temp. [°C]	Effekt [W]
1	1,6	52	2,6
1	2,2	61,6	3,2

Verkningsgrad I, mätdata från DC-aggregat, Nytt system							
Ineffekt (W)	Ström enligt DC-aggregat (A)	Uteffekt (W)	Verkningsgrad (%)	Frekvens (Hz)			
75	3	60,455	80,61	19,9			
325	6,5	268,515	82,62	19,88			
665	9,5	569,43	85,63	19,7			
872	10,9	741	84,98	19,75			
1098	12,2	947,175	86,26	19,89			
1340	13,4	1154,34	86,14	20			
1884	15,7	1635,795	86,83	20,1			
2436	17,4	2145	88,05	20,54			
2730	18,2	2394,24	87,7	20,55			

Verkningsgrad I, mätdata från strömprob, Nytt system						
Ineffekt (W)	Ström från DC-aggregat (I)	Uteffekt (W)	Verkningsgrad (%)	Frekvens (kHz)		
96,25	3,85	60,455	80,61	19,9		
360	7,2	268,515	82,62	19,88		
700	10	569,43	85,63	19,7		
972	12,15	741	84,98	19,75		
1206	13,4	947,175	86,26	19,89		
1445	14,45	1154,34	86,14	20		
2040	17	1635,795	86,83	20,1		
2576	18,4	2145	88,05	20,54		
2880	19,2	2394,24	87,7	20,55		

Verkningsgrad II, Mätdata från DC-aggregat ,Nytt system

Ineffekt (W)	Ström enligt DC-aggregat (A	Uteffekt (W)	Verkningsgrad (%)	Frekvens (Hz)
72.5	2,9	43,2	59,59	20
325	6,5	266,8	82,09	20
750	10	633,68	84,49	20
1330	13,3	1125,75	84,64	20
2025	16,2	1728,7	85,37	20
1237.5	9,9	1037,39	83,83	21,5
1785	11,9	1517,96	85,04	21,5
2485	14,2	2135,25	85,93	21,5
2060	10,3	1740,5	84,49	22,4
2530	11,5	2145	84,78	22,4
3072	12,8	2628	85,55	22,4
3874	14,9	3386,4	87,41	22,5

Ineffekt [W]	Ström från DC-aggregat [I]	Uteffekt [W]	Verkningsgrad [%]	Frekvens [Hz]
82,5	3,3	43,2	52,36%	20
355	7,1	266,8	75,15%	20
810	10,8	633,68	78,23%	20
1400	14	1125,75	80,41%	20
1337,5	10,7	1037,39	77,56%	21,5
1815	12,1	1517,96	83,63%	21,5
2555	14,6	2135,25	83,57%	21,5
2662	12,1	2145	80,58%	22,4
3480	14,5	2628	75,52%	22,5
4420	17	3386,4	76,62%	22,5

Verkningsgrad II, Mätdata från strömprob, Nytt system

Appendix D

Appendix F Kretsschema Komparatorkrets