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Abstract

Since numerical computation has become very efficient, Model Predictive Control (MPC)
has become more relevant for control tasks, apart from process control, over the last
years. This is the reason why more universities are offering MPC courses to their stu-
dents these days.

The purpose of this thesis was to implement an linear quadratic MPC to an educa-
tional control system in order to use it in an MPC student laboratory. Therefore a
tower crane system was selected. A highly nonlinear mathematical model was derived
by using the Lagrangian approach as well as physical properties of the actuators. In
order to use linear methods, the model was linearized and decoupled into three subsys-
tems. Special attention was paid to discuss advantages and disadvantages of different
Receding Horizon Control (RHC) structures as well as comparing computation times
of different quadratic program solvers. Using a steady state target selector, the RHC
works with deviation variables. Zero Offset control was achieved by introducing an aug-
mented disturbance model to the steady state target selector. Not measurable states as
well as the disturbance are estimated by a time varying Kalman filter. Finally, real time
control was successfully implemented by using the code generation system FORCES Pro.

As a result of this work a laboratory guidance was obtained. This guidance will be
used for student assignments in the MPC course (SSY280) at the Chalmers University
of Technology.
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1
Introduction

T
his chapter provides a general overview of the thesis i.e. what the thesis is about,
which problems are solved and what the goal is. After some basic information
of Model Predictive Control is given in section 1.1, problems to solve are stated
in section 1.3. The purpose and objective of this thesis are discussed in 1.2

and 1.4, respectively. Some limitations of the work are given in section 1.5.

1.1 Background

Model Predictive Control (MPC), developed by engineers, is the only advanced control
technique that is more advanced than standard PID-Control, which have had a signifi-
cant impact to process control, [2]. The first official description of MPC applications was
presented by Richalet in 1976 but engineers at Shell Oil developed their own independent
MPC technology, named DMC, in the early 1970s, with an initial application in 1973 and
an official presentation in 1979, [3]. There are several different theoretical foundations
that underlay MPC like the Hamilton Jacobi Bellman theory (Dynamic Programming)
and the further development of the LQR to the LQG by Kalman, [4]. Nevertheless,
none of these foundations provides the possibility to solve control problems by consider-
ing system constraints, which is the main advantage of MPC. Furthermore it is possible
to apply MPC to multivariable systems. Controlling process units near to their con-
straints increases throughput and efficiency and is thus highly profitable. This main
advantage was ignored by the academic community and they only payed attention years
after the first MPC publications. Then stability was proven under specific conditions
and today MPC is still a big research area.

An MPC solves a finite horizon optimal control problem on-line at each sampling
instant. Only the first optimal control input is applied to the process, the others are
discarded. After that the time horizon is shifted one time step forward and the compu-
tation is done again. This is why MPC is also known as receding horizon control (RHC).
In order to obtain a precise prediction of the system states a good mathematical model
of the process is needed. The optimization is done by minimizing a cost function like in
the finite LQR case but differs by the inclusion of constraints. Since this optimization
problem must be solved at every sample step, the biggest challenge is to make the com-
putation time or rather the time delay of the feedback control as small as possible. This
is also the reason why MPC was only applied to slow processes in its early years when

1



1.2. PURPOSE CHAPTER 1. INTRODUCTION

computers were much slower than today.

1.2 Purpose

In the last years numerical computation has become very efficient and thus MPC be-
came more relevant for systems with a fast dynamic. Furthermore theoretical advances
have led to improved understanding of MPC properties, in particular stability, and the
techniques of MPC have been extended to nonlinear systems, [5]. Because of this fast
progression and the growing relevance, an MPC course was offered by the signals and
systems department of the Chalmers University of Technology three years ago. Part of
this course are two assignments which the students have to study carefully. Unfortu-
nately these two assignments are only simulations carried out with Matlab yet. After
successful completion of this thesis at least the second assignment shall be applied to a
real control system.

1.3 Problem

The problems to solve in this thesis can be split up into four different parts. In the
first part a suitable system to apply MPC must be found. After that a mathematical
model must be derived by using physical properties as well as experimentally identified
parameters in part two. In part three the main problem is solved, namely the MPC
design and implementation with an appropriate optimization algorithm. In the last part
an assignment guidance for the MPC course (SSY280) must be drawn up.

1.4 Objective

The overall objective of this thesis is the creation of an assignment guidance for MPC
course (SSY280). To obtain that, an MPC shall be designed and implemented suc-
cessfully to an educational system, with must also be selected with different criteria.
Advantages and disadvantages of different RHC structures shall be discussed.

1.5 Scope

A linear quadratic MPC will be designed and implemented to a nonlinear system.
Quadratic means that the cost function which has to be optimized is quadratic and
linear means that the model of the system is linear. Thus the nonlinear dynamics of the
systems must be linearized. The thesis will not deal with nonlinear MPC.
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2
Methods

I
n order to solve the problems, stated in section 1.3, and achieve the objectives of the
thesis, stated in section 1.4, different methods will be used. These methods will be
described in chronological order in this chapter. Figure 2.1 outlines the structure
of the thesis and the methods.

System Requirements

Objectives

System

Nonlinear Model Linear Model

Verified Model State Space Model

RHC Structures & Solvers Time Comparison

MPC Structure Real-Time Control

Cost-Utility Analysis

Modeling

Linearization

Verification
Verification

Transformation

Research

Simulations

Control Requirements

Implementation

Model Predictive Control-Course (SSY280) Assignment Guidance

Figure 2.1: Structure of Thesis
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CHAPTER 2. METHODS

The objective of the thesis is to implement an linear quadratic MPC to an educational
control system in order to use it in an MPC student laboratory. Therefore an educational
system must be chosen in the first step. General and specific system requirements shall
be defined in order to score and weight them according to their importance for the
project. Different systems shall be compared in a cost-utility analysis.

The system shall be modeled by using the kinetic and potential energy of the system.
The driving force shall be calculated from physical properties of the motors. Friction of
the system shall be included in additional terms. The obtained, nonlinear model, shall
be linearized in order to apply linear MPC. Both models shall be verified with the real
system.

Special attention shall be paid to discuss advantages and disadvantages of different Re-
ceding Horizon Control (RHC) structures. Different quadratic program solvers shall be
compared regarding computation time of the mentioned RHC structures, in simulations.

An MPC structure, witch controls the system with zero offset in real-time, shall be
implemented.

Finally an assignment guidance for the MPC-Course (SSY280) shall be drawn up.

4



3
System Selection

I
n this chapter a supply market analysis for educational control systems is done. For
this purpose, both general and specific requirements are introduced in section 3.1.
After that a scoring for the requirements is defined as well as a weighting according
to their importance for the project. Finally the possible systems are compared in a

cost–utility analysis and presented in table 3.1 in section 3.2. On basis of that analysis
a decision is made which system to use in section 3.3.

3.1 Requirements

Before a supply market analysis can be done, conditions of the control system must be
set. Since this thesis is done for the MPC course the system must meet different MPC
specific requirements as well as general ones. These requirements are explained in this
section. Furthermore they are scored and weighted for the cost–utility analysis.

3.1.1 General

In order to make the cost-benefit of the system better it should be applicable for other
courses besides the Model Predictive Control course (SSY280). For example for the
Linear Control System Design (SSY285) or Nonlinear and Adaptive Control (ESS076)
course. Since the University of Chalmers owns the Matlab/Simulink license the system
must be executable with it and real time control must be possible. Furthermore the
time limitation of the thesis requires a short delivery time as well as it should be
Plug & Play. Because of the high costs of purchased control systems, the price must
be considered also. Due to insufficient laboratory space the required space of the
system should be as small as possible. According to that it would be nice to have an
expandable system for further projects, to save space. The need of a PCI or PCIe
slot or FIREwire must also be noted since it is not available for any computer. Last
but not least the system should be interesting to awaken the passion of the students.

3.1.2 MPC Course

Additional to the general requirements there are some MPC specific ones. First of
all the system should have at least two outputs i.e. it shall be a SIMO or MIMO
system. A MIMO system would be more appreciated. Since the big advantage of MPC

5



3.1. REQUIREMENTS CHAPTER 3. SYSTEM SELECTION

is the possibility to deal with constrains the system shall have at least one constrained
input as well as one constrained state. Furthermore the students shall practice the
integration of a state observer, which means the system shall have more states then
outputs. Dealing with set point and reference trajectory changes shall also be
possible.

3.1.3 Scoring and Weighting

A scoring for each requirement is defined below. If the requirement is perfectly meet,
six points are given. If it does not met the requirement at all, zero points are given.
The requirements “Executable with Matlab/Simulink” and “Real time control” are not
listed because these are hard ones. All compared systems meet these two requirements.
Furthermore the requirements are weighted according to their importance for the project.

1. Price(e)
Weighting: 10
Scoring: 0-3: 6, 3-6: 5, 6-9: 4, 9-12: 3, 12-15: 2, 15-18: 1, >18: 0

2. Delivery time(Weeks)
Weighting: 9
Scoring: 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, >8: 0

3. SIMO/MIMO
Weighting: 8
Scoring: MIMO: 6, SIMO: 3, SISO: 0

4. Constraints
Weighting: 8
Scoring: Input and Output: 6, Input or Output: 3, No Constraints: 0

5. Set Point
Weighting: 6
Scoring: Is possible: 6, Is not possible: 0

6. Interesting
Weighting: 5
Scoring: Very: 6, Normal: 4, A little: 2, Not: 0

7. Required space
Weighting: 4
Scoring: Part of table: 6, Whole table or floor: 3, Big area on floor: 0

8. Applicable for other courses
Weighting: 3
Scoring: Pendulum up swing: 6, Usable for other course: 4, Not usable: 0
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CHAPTER 3. SYSTEM SELECTION 3.2. COST–UTILITY ANALYSIS

9. PCI, PCIe, FIREwire
Weighting: 2
Scoring: Needs neither: 6, Needs one: 3, Needs both: 0

10. Expandability
Weighting: 1
Scoring: Is expandable: 6, Is not expandable: 0

3.2 Cost–Utility Analysis

In table 3.1, 24 systems are listed, sorted by companies. Educational systems of the
companies Quanser, ECP Systems, Feedback, INTECO, Leypold and Googoltech were
considered. The requirement “Interesting” of a system is evaluated by at least two dif-
ferent persons. Nevertheless it is clear that this requirement is more or less subjective.
The weighted result is used to make a decision for a system in section 3.3.

Table 3.1: Cost-Utility Analysis of Suitable Control Systems
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Weight: 3 10 4 8 1 2 5 8 8 6

Quanser

01. Linear Inverted Pendulum 6 3 3 6 6 6 2 3 6 6 256

02. Double Inverted Pendulum 6 3 3 6 6 6 4 3 6 6 266

03. Flexible Joint with IP 6 2 3 6 6 6 4 3 6 6 256

04. High Fidelity IP 6 0 3 6 6 6 4 3 6 6 226

05. Rotary Inverted Pendulum 6 4 6 6 6 6 4 3 3 6 254

06. 2 DOF Inverted Pendulum 4 1 6 6 6 6 6 6 6 0 250

07. 2 DOF Ball Balancer 4 1 6 6 6 3 6 6 6 6 280

08. 2 DOF Helicopter 4 2 3 6 0 6 6 6 6 6 278

09. 3 DOF Helicopter 4 0 0 6 0 6 6 6 6 6 246

10. 3 DOF Hover 4 0 3 6 0 6 6 6 6 6 258

11. 3 DOF Crane 4 0 0 6 0 6 6 6 6 6 246
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Table 3.1 Continued

General MPC
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Weight: 3 10 4 8 1 2 5 8 8 6

ECP System

12. Inverted Pendulum 6 2 6 0 0 3 2 3 6 6 186

Feedback
13. Digital Pendulum 6 4 0 0 0 3 2 3 6 6 182

14. Twin Rotor MIMO 4 4 6 0 0 3 6 6 6 6 244

INTECO
15. 3D Crane 4 4 3 4 0 6 6 6 6 6 288

16. Pendulum & Cart Control 6 5 0 4 0 6 2 3 6 6 248

17. Tower Crane 4 4 3 4 0 6 6 6 6 6 288

18. Two Rotor Aerodynamical 4 5 3 4 0 6 6 6 6 6 274

Leypold

19. Invertiertes Pendel 6 0 3 0 0 3 2 3 6 6 154

Googoltech

20. Inverted Pendulum 6 5 3 6 6 3 2 3 6 6 270

21. Circular IP 6 5 3 0 0 3 2 3 6 6 180

22. Planar IP 4 4 3 0 6 3 4 3 6 6 204

23. 3 DOF Helicopter Simulator 4 4 3 6 0 3 6 6 6 6 292

24. Ball and Plate System 4 4 6 0 0 3 6 6 6 6 244

3.3 Decision

As can be seen in table 3.1 the 3 DOF Helicopter Simulator of the company Googoltech
took place one with 292 points followed by the 3D Crane and the Tower Crane of the
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CHAPTER 3. SYSTEM SELECTION 3.3. DECISION

company INTECO with 288 points. Since the company INTECO is located not that
far from Sweden in Poland, and because of its many references, a decision was made
for the Tower Crane. This System can also be used for the Nonlinear Control course
and maybe it is also suitable for the Linear Control course. The system also gives the
possibility to expand the linear MPC course to a nonlinear MPC course in further years.
Related work investigation has shown that it is possible to control the Tower Crane with
a linear model and some modifications. This is important since linear MPC shall be
applied to the system. The Tower Crane, the software and the real-time control module
are described in more detail in chapter 4.
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4
INTECO’s Tower Crane

I
n this chapter first some general information about INTECO is given section 4.1.
After that all different parts of the Tower Crane System, shown in figure 4.1, are
described in detail. Technical information about the real-time control device RT-
DAC/USB2, the RT-CON Professional development toolbox and the Tower Crane

it self, is given in section 4.2.

Figure 4.1: Tower Crane System[1]

4.1 INTECO

In formations about INTECO can be found on their website, [6]. The following quote
about the company itself is taken from there.
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4.2. TECHNICAL INFORMATION CHAPTER 4. INTECO’S TOWER CRANE

“INTECO is an European company founded in 1997 by the researchers and engi-
neers from University of Science and Technology (AGH) in Krakow – Poland. From
the beginning till now our interest and major line of business have been focused on
mechatronic devices for use in control engineering research and education. We have
designed several innovative digitally controlled laboratory plants, all supplied with full
mathematical/simulation models and control hardware and software. INTECO has been
involved more and more in its own solutions of integrated control. We offer real-time
kernels for control applications in MS Windows, rapid prototyping toolboxes for auto-
matic code generation, and control/data acquisition systems. Most of our applications
are controlled via RT-CON – our Windows based real-time software. We perform custom
modifications and custom design to meet special needs like field bus drivers, PLC target
applications or integration with SCADA systems. Our solutions are supported by our
RT-DAC real-time I/O boards. Since January 1999 INTECO is an official MATLAB
partner.”

4.2 Technical Information

Basic information about the INTECO Tower Crane system can be found on their home-
page, [6] and in manual [7]. The following technical descriptions of the different system
parts are taken from their.

Real-Time Data Acquisition and Control

“The RT-DAC/USB2 is a multifunction analog and digital I/O board dedicated to real-
time data acquisition and control in the Windows 95/98/NT/2000/XP environments.
The board contains a Xilinx R© FPGA chip. All boards are built as the OMNI version.
It means the boards can be reconfigured to introduce a new functionality of all inputs
and outputs without any hardware modification. The default configuration of the FPGA
chip accepts signals from incremental encoders and generates PWM outputs, typical for
mechatronic control applications and is equipped with the general purpose digital in-
put/outputs (GPIO), A/D and D/A converters, timers, counters, frequency meters and
chronometers.”[7]

In this work, the analog and digital RT-DAC/USB2 is used. Specifications for the analog
and digital inputs and outputs as well as for the PWM outputs can be found in manual
[7].

Software

“The RT-CON software enables to develop real-time applications directly from Simulink
models. Special extensions for Simulink and Real-Time Workshop help to build real-time
applications for the MS Windows operating systems.”[6]
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Tower Crane

The following picture shows sensors, actuators and the cart, which is refereed later on
as trolley.

Figure 4.2: Tower Crane[1]

“ The Tower Crane is a nonlinear electromechanical system having a complex dynamic
behavior and creating challenging control problems. It is controlled from a PC. Therefore
it is delivered with hardware and software which can be easily mounted and installed in a
laboratory. You obtain the mechanical unit together with the power supply and interface
to the PC and the dedicated digital board configured in the Xilinx R© technology. The
software operates under MS Windows R© using MATLAB R© and RTW toolbox package.

The Tower Crane setup (Fig. 4.2) consists of a payload hanging on a pendulum-like lift
line wound by a motor mounted on a trolley. The payload is lifted and lowered in the z
direction. Both the arm and the trolley are capable of horizontal motion: the trolley in
the radial x direction along the arm and the arm in the rotary direction. The angular
position of the arm is expressed by the θ angle. The payload attached to the end of the
lift line can move freely in three dimensions. The Tower Crane is driven by three DC
motors. There are five measuring encoders measuring five state variables: the trolley
co-ordinates on the polar coordinates plane, the lift line length, and two deviation angles
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4.2. TECHNICAL INFORMATION CHAPTER 4. INTECO’S TOWER CRANE

of the payload. The encoders measure movements with a high resolution equal up to
4096 pulses per rotation (ppr). These encoders together with the specialized mechanical
solution create a unique measurement unit. The deviation of the load is measured with
a high accuracy equal to 0.0015 rad. The power interface amplifies the control signals
which are transmitted from the PC to the DC motors. The PC equipped with the RT-
DAC/USB multipurpose digital I/O board communicates with the power interface. The
whole logic necessary to activate and read the encoder signals and to generate the appro-
priate sequence of pulses of PWM to control the DC motors is configured in the Xilinx R©

chip of the RT-DAC/USB board. All functions of the board are accessed from the Tower
Crane toolbox which operates directly in the MATLAB R©&Simulink R© environment.”[6]

The following list states the key features of the Tower Crane defined by INTECO in
manual [7].

Key Features of Tower Crane:

• Three-dimensional laboratory model of industrial crane.

• A highly nonlinear MIMO system.

• It can be easily installed.

• There are high-resolution sensors – unique 2D angle measuring unit.

• The set-up is fully integrated with MATLAB R©&Simulink R© and operates in real-
time in MS Windows R©.

• Real-time control algorithms can be rapidly prototyped. No C code programming
is required.

• The software includes complete dynamic models.

• User’s Manual contains the library of basic controllers and a number of prepro-
grammed experiments which familiarise the user with the system in a fast way.

• It is ideal for illustrating complex nonlinear control algorithms.
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5
Model

I
NTECO delivers a mathematical model of their system which is stated in manual
[1] and derived in Master Thesis [8]. Unfortunately, the model only considers dy-
namics of the payload itself and neglects dynamics of the trolley and the tower.
Furthermore, the acceleration of the trolley and the tower are used as inputs for

the system. However, voltage supply of the motors is the only variable which can be
manipulated. Therefore, a new mathematical model is derived by using the kinetic and
potential energy in the Lagrange’s equations in order to obtain the equations of motion
in section 5.1. The driving force is calculated from the physical properties of the motors.
Missing parameters of the tower system and the motors are estimated experimentally
by comparing with the real system. The highly nonlinear system is simplified in section
5.2. Both models are compared and verified with the real system. A transformation of
the simplified model into a linear state-space representation as well as a decoupling into
three separate systems is done in section 5.3.

In the following figure the system outputs L, Xw, α, β and θ of the model are shown.
These outputs will be controlled later on. The introduced coordinate system (X,Y,Z)
has its origin in the middle of the tower and is moving with the arm. The X-axis goes
through the point where the payload is mounted to the trolley. This mechanical model
of the INTECO Tower Crane is used further.

Figure 5.1: Tower Crane Model[1]
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5.1. NONLINEAR MODEL CHAPTER 5. MODEL

5.1 Nonlinear Model

A mathematical nonlinear model of the system without cable dynamics is derived by
using the Lagrangian approach in order to obtain the equations of motion. Physical
properties of the motors, electrical as well as mechanical, are used to model the actua-
tors of the system. Viscous friction of the trolley and the arm is included. For simplicity
of the model the cable length is assumed to be constant. Through this assumption it
is possible to include the cable length as a parameter. Cable dynamics are stated later on.

5.1.1 Equations of Motion

The first step in deriving the equations of motion is to construct the trolley and load
position, ~pt and ~pl, in the coordinate system (X,Y,Z). These can be directly derived from
figure 5.1.

~pl = {Xw − L cos(β) sin(α), L sin(β), −L cos(β) cos(α)} (5.1)

~pt = {Xw, 0, 0} (5.2)

In order to derive the Lagrange’s equations, the Lagrangian L = T − V must be
constructed. Therefore the kinetic energy T and the potential energy V are needed. The
whole kinetic energy of the system consists of the kinetic energy of the trolley and the
payload as well as of the rotational energy of the arm. The trolley and the load are
both modeled as point masses and therefore no rotational energy of these parts must be
considered. The potential energy has its lowest value when the load is at its lowest point
and increases for increasing angles α and β.

T =
1

2
m~̇pl · ~̇pl +

1

2
Mt

~̇pt · ~̇pt +
1

2
Joθ̇

2 (5.3)

V = −mgL cos(β) cos(α) (5.4)

The velocities of trolley and payload can be calculated by using ~̇pl and ~̇pt in the
following equation:

~̇p =
d~p

dt
+ ~ωT × ~p (5.5)

Using equation (5.5), where the angular velocity of trolley and load around the tower is
described by ~ωT = {0,0,θ̇}, in (5.3) and (5.4), finally allows to calculate the Lagrange’s
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equations, where the generalized forces are described by ~F = {Fx,0,Fθ,0} regarding the
displacement vector ~q = {Xw,α,θ β}:

d

dt
(
∂L
∂q̇j

)− ∂L
∂qj

= Fj −Bqj q̇j , j = 1,2,3,4 (5.6)

The four nonlinear equations of motion were obtained from (5.6) as follows:

MẌw +m
(
−L cos(Θ)ẏΘ̇ + L cos(Θ) sin(Φ)Θ̇2 + 2L cos(Φ) sin(Θ)Φ̇Θ̇

+ L cos(Θ) sin(Φ)Φ̇2 + Ẍw − L sin(Θ)ÿ + L sin(Θ) sin(Φ)Θ̈− L cos(Θ) cos(Φ)Φ̈
)

−
[(
m+M

)
Xw − Lm cos(Θ) sin(Φ)

]
ẏ2 + Lm cos(Θ)Θ̇ẏ = Fx −BxẊw (5.7)

− 1

2
Lm
[
−2 cos(Θ)

(
−2LΘ̇ sin(Θ)Φ̇ + L cos(Θ)Φ̈ + L sin(Θ) cos(Φ)ÿ

− cos(Φ)Ẍw

)
+ Lẏ

(
sin(2Θ)Φ̇ sin(Φ)− 2Θ̇ cos(2Θ) cos(Φ)

)
− 2Ẋw

(
Θ̇ sin(Θ) cos(Φ) + cos(Θ)Φ̇ sin(Φ)

)]
− Lm

[
−g cos(Θ) sin(Φ)

+ cos(Θ) cos(Φ)ẏ2
(
L cos(Θ) sin(Φ)−Xw

)
− Lẏ

(
Θ̇ cos(Φ) + sin(Θ) cos(Θ)Φ̇ sin(Φ)

)
+ Ẋw

(
Θ̇ sin(Θ) cos(Φ) + cos(Θ)Φ̇ sin(Φ)

)]
= −Bαα̇ (5.8)

2MXwẊwẏ + Jÿ +MX2
wÿ +m

[
−L2Θ̈ sin2(Θ) sin(Φ)− L2Θ̈ cos2(Θ) sin(Φ)

− 2L2Θ̇ sin2(Θ)Φ̇ cos(Φ) + L2 sin(Θ) cos(Θ)Φ̈ cos(Φ)− L2 sin(Θ) cos(Θ)Φ̇2 sin(Φ)

+ L2 cos2(Θ) sin2(Φ)ÿ + L2 sin2(Θ)ÿ − L sin(Θ)Ẍw + LXwΘ̈ cos(Θ)− LXwΘ̇2 sin(Θ)

− 2LXw cos(Θ) sin(Φ)ÿ + Lẏ
(

Θ̇[L sin(2Θ) cos2(Φ) + 2Xw sin(Θ) sin(Φ)]

+ cos(Θ)Φ̇[L cos(Θ) sin(2Φ)− 2Xw cos(Φ)]
)

+ 2Ẋwẏ
(
Xw − L cos(Θ) sin(Φ)

)
+X2

wÿ
]

= Fθ −Bθθ̇ (5.9)

Lm
[
LΘ̈− L sin(Φ)ÿ − L cos(Φ)Φ̇ẏ + sin(Θ) sin(Φ)Ẍw + Ẋw

(
Θ̇ cos(Θ) sin(Φ)

+ sin(Θ)Φ̇ cos(Φ) + cos(Θ)ẏ
)

+Xw

(
cos(Θ)ÿ − Θ̇ sin(Θ)ẏ

)]
− Lm

[
− sin(Θ)

(
g cos(Φ) + L cos(Θ)Φ̇2

)
+ ẏ
(
L cos(2Θ)Φ̇ cos(Φ)−XwΘ̇ sin(Θ)

)
+ sin(Θ)ẏ2

(
L cos(Θ) cos2(Φ) +Xw sin(Φ)

)
+ Ẋw

(
Θ̇ cos(Θ) sin(Φ) + sin(Θ)Φ̇ cos(Φ)

− cos(Θ)ẏ
)]

= −Bββ̇ (5.10)
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5.1.2 Motor Model

The dynamic equation for a permanent magnet dc motor is given by the following equa-
tion. The last term describes the counter-electromotive force which is produced by the
rotation of the armature within the permanent magnet.

Va = Raia + La
ia
dt

+ kgkuω (5.11)

Since the electrical response is much faster than the mechanical response, La can be
assumed zero. The produced torque of a motor is given by the two following equations.

Td = ηkgkmia (5.12)

Td = Te +Bkgω (5.13)

In SI units km and ku must be equal for DC motors. Therefore only km is used in
further equations. Since Te � Bkgω for low speed applications, the second term in
(5.13) was neglected for simplicity. Using (5.12) and (5.13) in (5.11) allows to calculate
the external torque of the motor.

Te =
ηkgkm
Ra

Va −
ηk2

gk
2
m

Ra
ω (5.14)

Equation (5.14) can now be used to calculate the specific forces in X- and θ-direction,
Fx and Fθ. Since the motion of the arm is rotational, Fθ can be calculated directly.

Fθ =
ηθkgθkmθ
Raθ

GaθUθ −
ηθk

2
gθk

2
mθ

Raθ
θ̇ (5.15)

For calculation of Fx, the translational motion of the trolley must be transferred into
a rotatory motion. This is done by using the following relations.

Ẋw = rxω (5.16)

Te = Fxrx (5.17)

Finally Fx can be calculated as follows, where rx is the radius of the deflection pulley.

Fx =
ηxkgxkmx
Raxrx

GaxUx −
ηxk

2
gxk

2
mx

Raxr2
x

Ẋw (5.18)
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5.1.3 Cable Model

Until now the cable length was assumed to be constant in the models for the trolley and
arm subsystem. The model for the cable dynamics was obtained from the authors of
article [9]. The system was modeled as a first order plus integrator system. The equation
of motion for the cable dynamics with constant payload mass can be stated as follows,
where τdL describes the input time delay.

0.02L̈+ L̇ = 0.0108GaCUc(t− τdC) (5.19)

5.1.4 Model Parameters

This section describes how the parameters for the mechanical tower system as well as
for the electrical motor model were obtained. In the case of experimentally estimated
parameters, the measurements can be found in section 5.1.6, where the whole nonlinear
model is verified.

The parameters m and M were obtained from the tower crane manual [1]. Further-
more, Bx, Bα, Bθ, Bβ, ηgx, ηgθ, ηmx, ηmθ, Rax, Raθ, kmx, kmθ, kgx, kgθ were used as
first estimates from paper [9]. The parameters J , rx, Gax, Gaθ and the system input
delays τdx and τdθ were used as first estimates from master thesis [10]. The remaining
parameters, Gac and τdc, were obtained with experiments.

The parameters which have been used as first estimates were improved experimentally
by applying basic test like step responses or just swinging the payload in each direction.

The following table shows all final parameters which were used for the nonlinear model.

Table 5.1: Identified Model Parameters

Expression Value Expression Value Expression Value

M 0.7 ηx 0.36 Rax 25

m 0.32 ηθ 0.24 Raθ 0.5

Bx 14 kmx 0.032 Gaθ 12.05

Bα 0.0055 kmθ 0.0195 Gax 15

Bθ 11 τdx 0.03 GaC 12

Bβ 0.018 τdθ 0.06 J 2.4

kgx 76.84 τdC 0.01

kgθ 275 rx 0.0375
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5.1.5 Real System vs. Nonlinear Model

Figure 5.2 shows the outputs of the model on the right side and the outputs of the
real system on the left side. This difference is caused by the fact, that the model was
derived before the manual of the Tower Crane was obtained from INTECO. Also the
zero position of the trolley differs in the systems, which can not be seen in the figure.
Furthermore the cable in the real system is mounted in such a way that it differs from
the model. This offset was mostly measured by swinging the payload and comparing the
frequency which depends directly on the cable length.

Figure 5.2: Measured Variables at the Laboratory System[1]

In order to control the system later on the measured states must be converted into
the corresponding model values. This can be done by using the following relations.

Table 5.2: Measured Angles - Real System vs. Model

Measured States States in Model

Xw Xw + 0.22

θ θ

L L− 0.15

X α = arcsin(− sin(X)
cos(arcsin(sin(Y ) cos(X))))

Y β = arcsin( sin(Y )
cos(X))

When the system was used the first time it was observed that the angles α and β
are dependent on the angle θ. This could be attributed later to the fact that either the
tower by itself is not 100% straight or the floor is not plane. The next figure shows this
behavior.
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Figure 5.3: Angles for Changing Theta - Unfitted

In order to control the system in an efficient way the measured angles were fitted into
a function depended on the angle θ by using the curve fitting tool from Matlab. This
curve is used together with the other conversions, given above, to calculate the values
which are finally used for controlling the system. The following Figure shows the angles
α and β for changing angle θ after conversion.
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Figure 5.4: Angles for Changing Theta - Fitted

5.1.6 Model Verification

In this subsection the nonlinear model, derived in section 5.1, is verified by comparison
with measurements of the real system. In figure 5.5 and 5.6 swinging the payload in
α- and β-direction without an input signal is shown. With help of these measurements
the viscous friction coefficients as well as the cable length offset were estimated. Step
response measurements for the trolley and arm position as well as for the cable length
are depicted in figures 5.7, 5.8 and 5.9, respectively. These were used to obtain system
delays, amplifier gains, viscous friction coefficients as well as the arm inertia. The third
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signal in each measurement represents the control signal u.
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Figure 5.5: Nonlinear - Swinging - α
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Figure 5.6: Nonlinear - Swinging - β
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Figure 5.7: Nonlinear - Step Response - Xw
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Figure 5.8: Nonlinear - Step Response - θ
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Figure 5.9: Nonlinear - Step Response - L

Furthermore a input test signal was applied to the real system and the model. The
behavior of the trolley, the arm and the cable length is shown in the next three figures,
respectively.

Time [s]
0 5 10 15 20 25 30

X
w

 [m
]

-1

-0.5

0

0.5

1
Test Signal - Xw model

real

Figure 5.10: Nonlinear - Test Signal - Xw
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Figure 5.11: Nonlinear - Test Signal - θ

Mainly two important facts could be observed through this measurements. First of all
the friction for the arm is not equal in both directions. Nevertheless the MPC controller
for the arm works fine as will be stated in later chapters. The more important fact is
that there is a huge stiction in the trolley as well as in the arm movement. This can be
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Figure 5.12: Nonlinear - Test Signal - L

seen especially between 15s and 25s in all three figures. Stiction is here already included
in the Simulink model with Vdx = 0.16, Vdθ = 0.165 and Vdc = 0.16. In order to get a
sufficient control some integrator behavior must be integrated into the control structure.

The following figures are showing the behavior for the angle α and β, receptively.
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Figure 5.13: Nonlinear - Test Signal - α
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Figure 5.14: Nonlinear - Test Signal - β

Except for very small deviations the model matches the real system. What is needed
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to be said is that an additional factor was included to reduce the influence of the arm
movement to the angle α. In first measurements the amplitude of α was higher in the
model than in the real system. That effect was attributed to different mounting of the
cable in the real system than in the model. This is not stated in more detail here because
this factorized term is not used at all in the linear model.

5.2 Simplified Model

Since the derived equations of motion are highly nonlinear and complex some simpli-
fications were done for the purpose of control. Small swing angles were assumed and
the assumption that the rate of change of Xw and θ are the same order of magnitude
as the swing angles α and β and their rates was made. For decoupling and controller
design two terms, marked red in the following equations, were neglected for decoupling
the system [11]. These neglected terms are for example effects from the arm acceleration
to α caused by the Coriolis force. Tests have shown that these terms have a, maybe not
negligible, influence on the dynamics as can be seen later in figures. If in the end the
controlling is insufficient it would be necessary to consider how to include these terms
into the control structure. The simplified model can finally be written as follows without
the red terms.

Simplified model:

0.02L̈+ L̇ = 0.0108GaLUc(t− τdL)

Ẍw + (
ηxk

2
gxk

2
mx

Raxr2
x

+Bx)
1

M
Ẋw +

m

M
gα =

ηxkgxkmx
RaxrxM

GaxUx(t− τdx)

Lα̈+ gα− Ẍw −Bαα̇+Lθ̈β = 0

(1 +
M

J
X2
w)θ̈ + (

ηθk
2
gθk

2
mθ

Raθ
+Bθ)

1

J
θ̇ − m

J
gXwβ =

ηθkgθkmθ
RaθrθJ

GaθUθ(t− τdθ)

Lβ̈ + gβ +Xwθ̈ −Bββ̇−Lθ̈α = 0

(5.20)

The simplified model was verified with the same input test signal as the nonlinear
model. Figures 5.15 to 5.18 are showing the behavior of the simplified model compared
to the real system. The deviation in figure 5.17 is caused by the neglected terms men-
tioned in the paragraph before. But also the angle is not “small” any more, which was
assumed for simplification. The Cable length measurements are not stated again since
nothing changed through the simplifications. The third signal in each measurement rep-
resents the control signal u.
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Figure 5.16: Linear - Test Signal - θ
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Figure 5.17: Linear - Test Signal - α
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Figure 5.18: Linear - Test Signal - β
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5.3 Linear State-Space Representation

In this section the simplified model is converted into a nonlinear state-space represen-
tation in the first step. In the second step, in order to linearize the model as well as
to obtain a better computation time of the MPC algorithm, the nonlinear state-space
representation is decoupled into three linear parts.

5.3.1 Conversion to State-Space Representation

The following state variables were selected for the conversion into a state-space repre-
sentation.

x1 = L x2 = L̇ x3 = Xw x4 = Ẋw x5 = α

x6 = α̇ x7 = θ x8 = θ̇ x9 = β x10 = β̇

Furthermore the following inputs and outputs of the system were defined.

u1 = Uc u2 = Ux u3 = Uθ

y1 = x1 y2 = x3 y3 = x5 y4 = x7 y5 = x9

Using the introduced state variables, inputs and outputs of the system, the simplified
model can be represented as a nonlinear state-space model as shown in (5.21). The input
time delays are also included in this representation.



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10


︸ ︷︷ ︸

ẋ

=



x2

−50x2 + 6.48u1(t− 0.01)

x4

−107.83x4 − 4.48x5 + 20.09u2(t− 0.03)

x6

−107.83
x1

x4 − 14.29
x1

x5 − 0.0055
x1

x6 + 20.09
x1

u2(t− 0.03)

x7

1
1+0.29x23

(−10.37x8 + 1.31x3x9 + 13u3(t− 0.06))

x10

1
x1

(−9.81x9 − 0.018x10 − x3
1+0.29x23

(−10.37x8 + 1.31x3x9 + 13u3(t− 0.06)))


︸ ︷︷ ︸

f(x,u)

(5.21)

Note that the cable dynamics are already linear. The trolley subsystem, row three to
six, is nonlinear in terms of the cable length. The arm subsystem, row seven to ten, is
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nonlinear in terms of the cable length and the trolley position. This structure makes it
possible to decouple the system and use the cable length or rather the cable length and
the trolley position as parameters.

5.3.2 Decoupled State-Space Model

As mentioned before, the nonlinear state-space model can be linearized by splitting the
system into three separate systems and using coupling terms as parameters. The cable
length L is a parameter in the Trolley-Subsystem as well as in the Arm-Subsystem. Fur-
thermore, the trolley position Xw is a parameter in the Arm-Subsystem. Linearizing the
system thus brings the advantage of much less computation time of the MPC since the
decoupled system is much less complex.

For easier notation of the Arm-Subsystem the new varying parameter Φ(Xw), depen-
dent on Xw, is introduced. The three subsystems can be written as shown in (5.22),
(5.23) and (5.24), respectively.

Cable-Subsystem:[
ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋC

=

[
0 1

0 −50

]
︸ ︷︷ ︸

AC

[
x1

x2

]
︸ ︷︷ ︸

xC

+

[
0

6.48

]
︸ ︷︷ ︸

BC

u1

Delay of Input u1: 0.01 s[
y1

]
︸ ︷︷ ︸
ẏC

=
[

1 0

]
︸ ︷︷ ︸

CC

[
x1

x2

] (5.22)

Trolley-Subsystem:
ẋ3

ẋ4

ẋ5

ẋ6


︸ ︷︷ ︸

ẋT

=


0 1 0 0

0 −107.83 −4.48 0

0 0 0 1

0 −107.83
L −14.29

L −0.0055
L


︸ ︷︷ ︸

AT


x3

x4

x5

x6


︸ ︷︷ ︸

xT

+


0

20.09

0
20.09
L


︸ ︷︷ ︸

BT

u1

Delay of Input u1: 0.03 s

[
y2

y3

]
︸ ︷︷ ︸

ẏT

=

[
1 0 0 0

0 0 1 0

]
︸ ︷︷ ︸

CT


x3

x4

x5

x6



(5.23)
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Arm-Subsystem:

Φ(Xw) =
1

1 + 0.29X2
w


ẋ7

ẋ8

ẋ9

ẋ10


︸ ︷︷ ︸

ẋA

=


0 1 0 0

0 −10.37Φ(Xw) 1.31XwΦ(Xw) 0

0 0 0 1

0 10.37XwΦ(Xw)
L

−9.81+1.31X2
wΦ(Xw)

L −0.018
L


︸ ︷︷ ︸

AA


x7

x8

x9

x10


︸ ︷︷ ︸

xA

+


0

13Φ(Xw)

0
−13XwΦ(Xw)

L


︸ ︷︷ ︸

BA

u2

Delay of Input u2: 0.06 s

[
y4

y5

]
︸ ︷︷ ︸

ẏA

=

[
1 0 0 0

0 0 1 0

]
︸ ︷︷ ︸

CA


x7

x8

x9

x10



(5.24)
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6
General MPC

I
n this chapter the general structure of anMPC controller is stated. In section 6.1
different structures of Receding Horizon Control (RHC), their advantages and dis-
advantages are discussed. Furthermore, in section 6.2 an approach for offset free
control is stated. In the last section a time-varying as well as a steady state Kalman

filter, used as an observer, will be introduced.

As outlined in the introduction, the scope of this work is linear quadratic MPC. Linear
models, as derived in the previous chapter, will be assumed. In general these models can
be stated discretized as follows.

x(k + 1) = Ax(k) +Bu(k) (6.1)

y(k) = Cx(k) (6.2)

Furthermore, a quadratic objective and affine constraints on x and u are assumed.
With these assumptions, it is possible to formulate a quadratic programming problem
later on.

6.1 Constrained RHC

The RHC is the centerpiece of the MPC structure. It minimizes a weighted cost function,
subjected to constraints, over a given prediction horizon N . A sequence of optimal
control signals u(k) to u(k + M), where M defines the control horizon, is the result of
the optimization. This notation defines the value of u at the time instants k to k +M ,
respectively and is used further on for control and state variables.

Only the first control signal u(k) is applied to the system, the others are discarded.
After one time step, k is shifted forward, and the procedure is done again. This is done
in order to control x(k) to zero, where x(k) is a column vector with the states in it. This
fashion of generating an optimal sequence of control signals is shown in the Figure 6.1.
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Figure 6.1: MPC - Scheme

There are the following possibilities of constructing the RHC:

1. Prediction & Control Horizon

a) Prediction horizon N is equal to control horizon M.

b) Prediction horizon N is bigger than control horizon M.

2. Optimization Variables

a) All future states and control signals are considered as optimization variables.

b) The future states are expressed a functions of the control signals (condensed
RHC). Only control signals are considered as optimization variables.

Using the previous list, there are four possible combinations of constructing an RHC,
choosing one of the alternatives in each of item 1 and 2 above. Each combination results
in a different computation time of the RHC. The larger the prediction and control horizon
is selected the better the stability behavior of the RHC gets. Assuming an unconstrained
case this can be explained by the fact that an RHC with large N and M = N gets closer
to the infinite horizon LQ case for which stability is guaranteed, [12].

Since this thesis shall be used for a student laboratory, it is important to demonstrate
the advantages and disadvantages of different combinations. The different combinations
will be stated in the following subsections. In chapter 7 exact computation times are
compared.

6.1.1 Control Horizon equal to Prediction Horizon

First of all an RHC, designed with prediction horizon N equal to control horizon M and
future states as well as control signals considered as optimization variables, is discussed.
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This structure gives the best overview about how an RHC in general works. The follow-
ing definition describes the cost function for an RHC designed in this fashion.

Definition 6.1 Cost function (N=M)

VN (x(k : k+N),u(k : k+N−1)) = xT (k+N)Qfx(k+N)+
k+N−1∑
i=k

xT (i)Qx(i)+uT (i)Ru(i)

(6.3)
where N denotes the prediction horizon, n the number of the states in vector x and m
the number of system inputs. Q ∈ Rn×n and R ∈ Rm×m are weights to be chosen. Q is
penalizing the state deviation and R the magnitude of the input. Qf is the final weight
which penalizes the final states.

The optimization problem for the RHC can be stated by using cost function 6.3 as follows.

Definition 6.2 Optimization Problem (N=M)

min
u(k:k+N−1),x(k:k+N)

VN (x(k : k +N),u(k : k +N − 1)) (6.4)

subject to x(k + i) ∈ X , u(k + i) ∈ U , x(k +N) ∈ Xf ⊆ X (6.5)

x(k + i+ 1) = Ax(k + i) +Bu(k + i) for all i ∈ (0,N − 1) (6.6)

The constraint sets X , Xf and U are assumed to be affine.

The optimization problem stated by Definition 6.2 can be rewritten as a quadratic pro-
gramming problem. The constraints (6.5) can be summarized in a inequality constraint.
The system dynamics (6.6) are included as equality constraints. The cost function (6.4)
can be transformed into a quadratic cost function as shown in the following definition.

Definition 6.3 Quadratic Programming Problem (N=M)

min
z

1

2
zTHz (6.7)

subject to Aeqz = beq (6.8)

Aineqz ≤ bineq (6.9)

where the three equations can be written as stated in (6.10), (6.11) and (6.12), respec-
tively. The notation x(k+i)→ x(i) and u(k+i) → u(i) is used to short the equations.
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min
z

1

2



x(1)

x(2)
...

x(N − 1)

x(N)

u(0)

u(1)
...

u(M − 2)

u(M − 1)



T

︸ ︷︷ ︸
zT



Q 0 · · · 0 0 0 0 · · · 0 0

0 Q · · · 0 0 0 0 · · · 0 0
... 0

. . . 0 0 0 0
. . . 0 0

0 0 · · · Q 0 0 0 · · · 0 0

0 0 · · · 0 Qf 0 0 · · · 0 0

0 0 · · · 0 0 R 0 · · · 0 0

0 0 · · · 0 0 0 R · · · 0 0
... 0

. . . 0 0 0 0
. . . 0 0

0 0 · · · 0 0 0 0 · · · R 0

0 0 · · · 0 0 0 0 · · · 0 R


︸ ︷︷ ︸

H



x(1)

x(2)
...

x(N − 1)

x(N)

u(0)

u(1)
...

u(M − 2)

u(M − 1)


︸ ︷︷ ︸

z

(6.10)

Note that x(0) = x(k) is not part of the optimization since it is the actual real measured
state.



I 0 · · · 0 0 −B 0 · · · 0 0

−A I · · · 0 0 0 −B · · · 0 0
...

. . .
. . . 0 0 0 0

. . . 0 0

0 0
. . . I 0 0 0 · · · −B 0

0 0 · · · −A I 0 0 · · · 0 −B


︸ ︷︷ ︸

Aeq



x(1)

x(2)
...

x(N − 1)

x(N)

u(0)

u(1)
...

u(M − 2)

u(M − 1)


︸ ︷︷ ︸

z

=



A

0
...

0

0

0

0
...

0

0



x(0)

︸ ︷︷ ︸
beq

(6.11)

By ordering the optimization variables in z chronologically, the matrix Aeq becomes
banded, which is desirable for computational reasons, [5]. This is the reason why a
chronological structured z should be implemented, instead of the one presented here.
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

I · · · 0 0 · · · 0
...

. . . 0 0 · · · 0

0 · · · I 0 · · · 0

−I · · · 0 0 · · · 0
...

. . . 0 0 · · · 0

0 · · · −I 0 · · · 0

0 · · · 0 I · · · 0
... · · · 0 0

. . . 0

0 · · · 0 0 · · · I

0 · · · 0 −I · · · 0
... · · · 0 0

. . . 0

0 · · · 0 0 · · · −I


︸ ︷︷ ︸

Aineq



x(1)
...

x(N)

u(0)
...

u(M − 1)


︸ ︷︷ ︸

z

≤



xmax
...

xmax

−xmin
...

−xmin
umax

...

umax

−umin
...

−umin


︸ ︷︷ ︸

bineq

(6.12)

The main disadvantage of an RHC constructed in the mentioned way is its computa-
tion time. This is because all future states as well as control signals are considered as
optimization variables and furthermore, M = N causes the largest number of optimiza-
tion variables. On the other hand the structure is clear to understand and the stability
behavior is better, compared to the case where M < N .

6.1.2 Control Horizon smaller than Prediction Horizon

As mentioned before, there is the possibility to construct the RHC with a smaller control
horizon than prediction horizon. Compared with the previous case, N = M , this RHC
has less computation time, because (N −M) less control variables must be optimized.
The structure of an RHC designed in this manner is discussed further on. The cost
function for that case can be defined as follows.

35



6.1. CONSTRAINED RHC CHAPTER 6. GENERAL MPC

Definition 6.4 Cost function (M<N)

VN (x(k : k +N),u(k : k +M − 1)) = xT (k +N)Qfx(k +N) +
k+N−1∑
i=k

xT (i)Qx(i)

+

k+M−1∑
i=k

uT (i)Ru(i)

(6.13)

where N denotes the prediction horizon, M the control horizon, n the number of the states
in vector x and m the number of system inputs. Q ∈ Rn×n, R ∈ Rm×m are weights to
be chosen. Q is penalizing the state deviation and R the magnitude of the input. Qf is
the final weight which penalizes the final states.

The basic structure of cost function (6.13) is the same as before for the (N = M)
case. The difference is that the sum is splitted up into two sums since M < N . The
optimization problem for this cost function can be stated as follows.

Definition 6.5 Optimization Problem (M<N)

min
u(k:k+M−1),x(k:k+N)

VN (x(k : k +N),u(k : k +M − 1)) (6.14)

subject to x(k + i) ∈ X , u(k + i) ∈ U , x(k +N) ∈ Xf ⊆ X (6.15)

x(k + i+ 1) = Ax(k + i) +Bu(k + i) for all i ∈ (0,N − 1) (6.16)

u(k +M − 1) = u(k +M) = ... = u(k +N − 1) (6.17)

The constraint sets X , Xf and U are assumed to be affine.

Compared to Definition 6.2, Definition 6.5 introduces an additional constraint (6.17)
for the (M < N) case. This constraint “sets” all not optimized control signals to the
value of the last optimized control signal u(k +M − 1).

The optimization problem can be reformulated as a quadratic programming problem
in the same manner as before. Only the structure of the equality constraint, which de-
scribes the system dynamics, is different. This is because of the additional constraint
(6.17). The definition of the quadratic programming problem as well as the new equality
constraint can be found below.
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Definition 6.6 Quadratic Programming Problem (N<M)

min
z

1

2
zTHz (6.18)

subject to Aeqz = beq (6.19)

Aineqz ≤ bineq (6.20)

where the three equations can be written as stated in (6.10), (6.21) and (6.12), respec-
tively. The notation x(k+i)→ x(i) and u(k+i) → u(i) is used to short the equations.


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...

. . .
. . .

...
...

. . .
...

...
...

...
. . .

...
...

0 0
. . . I 0 · · · 0 0 0 0 · · · −B 0

0 0 · · · −A I · · · 0 0 0 0 · · · 0 −B
...

...
...

...
. . .

. . .
...

...
...

...
. . . 0

...

0 0 · · · 0 0
. . . I 0 0 0 · · · 0 −B

0 0 · · · 0 0
... −A I 0 0 · · · 0 −B


︸ ︷︷ ︸

Aeq



x(1)

x(2)
...

x(M − 1)

x(M)
...

x(N − 1)

x(N)

u(0)

u(1)
...

u(M − 2)

u(M − 1)


︸ ︷︷ ︸

z

=



A

0
...

0

0
...

0

0


x(0)

︸ ︷︷ ︸
beq

(6.21)

When designing an RHC with this structure (M < N), a compromise between com-
putation time and stability must be found, since the computation time is less for a small
control horizon but the stability suffers with a lower control horizon. How big the ad-
vantage of computation time is, compared to the (N = M) case, is shown in the next
chapter.

6.1.3 Reduced Optimization Variables

It is possible to reduce the number of optimization variables by using a condensed ver-
sion of the RHC constructions introduced before. The goal is to save computation time
in order to be able to control systems with faster dynamics (small sampling time). The
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definition of the cost function for the condensed RHC can be stated as follows.

Definition 6.7 Cost function (M ≤ N) (Condensed)

VN (x(k),u(k : k+M−1)) = xT (k+N)Qfx(k+N)+
k+N−1∑
i=k

xT (i)Qx(i)+
k+M−1∑
i=k

uT (i)Ru(i)

(6.22)
where N denotes the prediction horizon, M the control horizon, n the number of the states
in vector x and m the number of system inputs. Q ∈ Rn×n, R ∈ Rm×m are weights to
be chosen. Q is penalizing the state deviation and R the magnitude of the input. Qf is
the final weight which penalizes the final states.

VN (x(k),u(k : k +M − 1)) = xT (k)Qx(k) +XT Q̄X + UT R̄U (6.23)

where Q̄ =


Q · · · 0
...

. . .
...

0 · · · Qf

 , R̄ =


R · · · 0
...

. . .
...

0 · · · R

 , X =


x(k)

...

x(k +N)

 and

U =


u(k)

...

u(k +M − 1)



The optimization problem for the condensed RHC structure can be defined as follows.

Definition 6.8 Optimization Problem (M ≤ N) (Condensed)

min
u(k:k+M−1)

VN (x(k),u(k : k +M − 1)) (6.24)

subject to x(k + i) ∈ X , u(k + i) ∈ UN (x(k)) for all i ∈ (0,N − 1) (6.25)

x(k +N) ∈ Xf ⊆ X (6.26)

u(k +M − 1) = u(k +M) = ... = u(k +N − 1) (6.27)

The constraint sets X , Xf and U are assumed to be affine.

Since x(k) is the actual measurement and therefore can not be optimized, the only
considered optimization variables are the M control signals u(k : k + M − 1). Note
that the optimization problem is not subjected to the dynamics of the system (equality
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constraints) anymore. These dynamics are included in the cost function by using a
batched representation of the system dynamics.


x(k + 1)

x(k + 2)
...

x(k +N)


︸ ︷︷ ︸

X

=


A

A2

...

AN


︸ ︷︷ ︸

ψ

x(k) +


B 0 · · · 0

AB B
. . . 0

...
. . .

. . .
...

AN−1B AN−2B · · · B


︸ ︷︷ ︸

Φ


u(k)

u(k + 1)
...

u(k +M − 1)


︸ ︷︷ ︸

U

(6.28)

Using (6.28) in (6.23), the cost function can be rewritten as follows.

VN (x(k),u(k : k+N−1)) = UT (ΦT Q̄Φ + R̄)︸ ︷︷ ︸
H

U+2xT (k)ψT Q̄φ︸ ︷︷ ︸
f

U+x(k)(Q+ψT Q̄ψ)x(k)

(6.29)

Note that the last term is not part of the optimization since x(k) is no optimization
variable. With H and f , obtained from (6.29), the quadratic program problem for the
condensed RHC with M ≤ N can be defined as follows.

Definition 6.9 Quadratic Programming Problem (N<M) (Condensed)

min
z

1

2
UT 2HU + fTU (6.30)

subject to AineqU ≤ bineq (6.31)

where the two equations can be written with the help of (6.29) and (6.32), respectively.
Equation (6.32) uses the following new notation.

Ī =


I · · · 0
...

. . .
...

0 · · · I

 ,−Ī =


−I · · · 0
...

. . .
...

0 · · · −I


Note that the inequality constraints must be recalculated every sampling instant since
they are dependent on x(0), A and B. This is because of the fact, that the state inequality
constraints are included into the input inequality constraints by using (6.28).
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
Ī

−Ī
Φ

−Φ


︸ ︷︷ ︸
Aineq


u(0)

...

u(M − 1)


︸ ︷︷ ︸

U

≤



umax
...

umax

−umin
...

−umin
Xmax − ψx(0)

−Xmin + ψx(0)


︸ ︷︷ ︸

bineq

(6.32)

Using a condensed version of the RHC allows to control systems with fast dynamics
more efficiently. A comparison between all four different constructions of the RHC, us-
ing two different quadratic problem solvers will be given in chapter 7. Furthermore a
code generation solver, which is finally used for controlling the system in real time, is
compared regarding computation time.

6.2 Target & Offset Free Control

Since the system shall be controlled to a steady state target and not to the origin in
general, the RHC works with deviation variables. These deviation variables express the
difference relative to the desired steady state, fulfilling the condition for setpoint track-
ing, given in the following definition.

Proposition 6.1 [5] Steady State Target Problem (p ≤ m)
It must be p ≤ m for the following equation to always have a solution.[

I −A −B
C 0

][
xs

us

]
=

[
0

ysp

]

where xs is the steady state, us the steady state control signal and ysp are the steady state
set points.

Proposition 6.1 only holds if there are more control inputs than outputs to control (p ≤
m). In chapter 5 the decoupled system dynamics for cable, trolley and arm dynamics
are stated. For the trolley and arm dynamics it is obvious that only one input signal
is available for controlling two outputs. There are mainly two possibilities to solve the
steady state target problem for the condition p > m.
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1. Define desired setpoints for both outputs and solve an optimization problem in
order to find the best steady-state target.

2. Select controlled outputs zsp as a subset of the measured outputs so that pz ≤ m.

Later on, the second possibility will be used to calculate the steady state target and
so the discussion goes on with that approach. For detailed information about the first
approach, consult paper [5]. Definition 6.1 can be reformulated for pz ≤ m as follows.

Proposition 6.2 [5] Steady State Target Problem (p > m)
It must be pz ≤ m for the following equation to always have a solution.[

I −A −B
Cz 0

][
xs

us

]
=

[
0

zsp

]

where Cz is the reduced output matrix, in order to fulfill the condition pz ≤ m. zsp are
the steady state set points.

So far a perfect system model and no disturbances were assumed. For offset free con-
trol of the real system, an augmented disturbance model must be introduced. If the
conditions of the following proposition are fulfilled then there is zero offset in the con-
trolled outputs.

Proposition 6.3 [13] Offset Free Control
Assume that the steady state target problem is feasible and that an MPC with the following
augmented model is used:[

x(k + 1)

d(k + 1)

]
=

[
A Bd

0 I

][
x(k)

d(k)

]
+

[
B

0

]
u

y =
[
C Cd

] [ x(k)

d(k)

]

Further assume that nd = pz and that Bd, Cd are chosen such that

rank

[
I −A −Bd
Cz Cd

]
= n+ nd

Assume that the closed loop converges to a steady state with constraints inactive. Then
there is zero offset in the controlled outputs, i.e.

zs = zsp
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Amongst other things, the estimation of the introduced disturbance is discussed fur-
ther on.

6.3 State & Disturbance Estimation

In the previous sections different RHC structures and how to achieve zero offset control
was discussed. Non measurable states as well as the disturbance must be estimated by
an observer using the augmented disturbance model of the systems, introduced in Propo-
sition 6.3. Depending on, if the system dynamics are time variant or time invariant, a
time-varying Kalman filter or a steady state Kalman filter can be implemented. Both
structures will be discussed further on.

6.3.1 Time-Varying Kalman Filter

To simplify the notation all state space system matrices A,B,C and G are assumed to
be disturbance augmented.

Consider the following plant state and measurement equations with additive Gaussian
noise w(k) on the input and v(k) on the output. Note that matrix C is constant.

x(k + 1) = Akx(k) +Bku(k) +Gkw(k) (6.33)

y(k) = Cx(k) + v(k) (6.34)

The time-varying Kalman filter is given by the following recursions, where L is the
Kalman filter innovation gain and P the state estimation error covariance. Furthermore
K is the process noise covariance and S the sensor noise covariance.

• Measurement update:

x̂(k|k) = x̂(k|k − 1) + L(k)[y(k)− Cx̂(k|k − 1)] (6.35)

L(k) = P (k|k − 1)CT [S(k) + CP (k|k − 1)CT ]−1 (6.36)

P (k|k) = (I − L(k)C)P (k|k − 1) (6.37)

• Time update:

x̂(k + 1|k) = Akx̂(k|k) +Bku(k) (6.38)

P (k + 1|k) = AkP (k|k)ATk +GkK(k)GTk (6.39)
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• Assume the following initial conditions:

x(1|0) = 0 (6.40)

P (1|0) = B0KB
T
0 (6.41)

The measurement and time update must be updated each sampling instant k of the
MPC.

6.3.2 Steady State Kalman Filter

A steady state Kalman filter can be designed if the linear system is time-invariant. There-
fore a steady state Kalman filter could be used to estimate the augmented system states
for the cable system. The Kalman filter dynamics are obtained by the particularization
of the general time varying dynamics for the time invariant situation.

Consider the following plant state and measurement equations with additive Gaussian
noise w(k) on the input and v(k) on the output.

x(k + 1) = Ax(k) +Bu(k) +Gw(k) (6.42)

y(k) = Cx(k) + v(k) (6.43)

Assume the following additional assumptions.

• K = KT > 0

• S = ST > 0

• The pair (A,G) is controllable

• The pair (C,A) is observable

If these conditions are fulfilled, the Kalman filter innovation gain L(k) and the pre-
diction error covariance P(k) converge to the solution of the (filtering) algebraic Riccati
equation.[5]

L = PCT [CPCT + S]−1 (6.44)

P = APAT −APCT [CPCT +R]−1CPAT +GKGT (6.45)

Since L and P converge to a steady-state solution, they can be calculated in the
initialization of the controller and must not be calculated at each sampling instant. This
saves computation time of the overall control structure.
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7
Implemented MPC

I
n this chapter, the structure of the implemented MPC will be discussed first in sec-
tion 7.1. It will be shown how the general MPC methods, discussed in the previous
chapter, can be effectively used to control the tower crane. The implementation of
the arm MPC Controller is shown step by step in section 7.2. It is stated which

important methods must be respected when doing this. Furthermore all different possi-
bilities of constructing an RHC will be compared regarding computation time in section
7.3. Also two different quadratic program solvers as well as one code generation solution
are compared. Finally, real time control of the system will be discussed in section 7.4.

7.1 Structure

The tower crane system is controlled by three different MPC controllers. This is possible
since a decoupled system was derived in chapter 5. In Figure 7.1 the global connection
between these three decoupled and MPC controlled systems is shown. In section 6.2
it was discussed that for offset free control, the controlled outputs must be reduced to
at least the number of control inputs. The targets of these controlled output are de-
scribed by zCsp , zTsp and zAsp . As introduced earlier in chapter 5, the system outputs
are described by yC , yT and yA. The cable MPC controller controls the position of the
payload in z-direction. At each sampling instant the actual length of the cable is used
as a parameter by the trolley MPC, which controls the trolley position in x-direction.
Furthermore, the arm MPC controller uses the actual cable length as well as the trolley
position at each sampling instant as parameters. The Arm MPC controller controls the
position of the arm in θ-direction.

Cable MPC

zCsp

Trolley MPC

zTsp

Arm MPC

zAsp

yC yT yA

L L,Xw

Figure 7.1: Global Control Structure
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Figure 7.2 shows a deeper look into the structure of one of these MPC controlled
subsystems shown in Figure 7.1.

RHC Process

Observer

Target Selector

zsp

+

x̂

d̂

+

us
xs

− δx

+

δu u y

x̂,d̂

Figure 7.2: MPC Structure

Receding Horizon Control
The RHC can be seen as center of the MPC structure. Like stated in the previous chap-
ter, future states are predicted by the RHC and a quadratic cost function, subjected to
constraints, is minimized in order to control the states to zero by applying an optimal
control signal. Since the states shall be controlled to a steady state target, the deviation
variable δx must be calculated. The optimal control signal δu is the first part of the
optimal control signal u which shall control δx to zero.

Target Selector
The Target Selector block calculates the steady state target xs and the steady state
target control signal us. The difference of the actual state and steady state target gives
the above mentioned deviation variable δx. The process control signal u is the sum of
δu and us.

In order to fulfill Proposition 6.2, the controlled outputs must be reduced to at least
the number of available control inputs m. In general this is done by weighting the impor-
tance of the outputs and only use the important ones in the target selector calculation as
controlled outputs. The trolley as well as the arm subsystem has two outputs but only
one control input. But in this special case the steady state target of the second output
of each subsystem is always zero. This is caused by the fact that the second outputs are
the angles α and β, which must be zero when the system is in a steady state.
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Offset Free Control
In the previous chapter, Proposition 6.3 was introduced. An MPC, using an augmented
disturbance model, controls the system with zero offset if this proposition is satisfied.
The disturbance model is used in the steady state target calculation as follows.

Definition 7.1 Steady State Target Problem with Disturbance[
I −A −B
Cz 0

][
xs

us

]
=

[
Bdd̂s

zsp − Czd d̂s

]

where d̂s = d̂(k) is an estimate, obtained from the observer each sampling instant k.

For a control system obtained in this way, Proposition 6.3 holds, [13]. Using the dis-
turbance model in the steady state target calculation, presupposes a recalculation of the
steady state every sample instant. This is caused by the fact that the, assumed constant,
disturbance varies in time, more precisely d̂s = d̂(k). However, since the trolley and arm
subsystem are using parameters, which are changing over time, the system matrices A
and B are time variant. Because of that, the steady state target problem must be solved
every sampling instant anyway.

State & Disturbance Estimation
As stated in section 6.3, the disturbance d̂ as well as the unmeasurable states are esti-
mated by three different Kalman filters. For the cable subsystem a steady state Kalman
filter was implemented. Since every time instant the length of the cable and the trolley
position are used as parameters in the trolley and arm subsystem, these models are time
variant. Therefore a time varying Kalman filter was implemented for the trolley and
arm subsystem.

7.2 Implementation

In the previous section the structure of an MPC controller, used for this work, was de-
scribed. The MPC consists of an RHC, a steady state target selector and a Kalman
filter.. It also was stated how the three different MPC controllers are connected in order
to control the whole system in an efficient way. In the sequel, it will be explained how to
implement one of these three MPC controllers, exemplified by the arm MPC controller.
Important methods and requirements, which must be considered when doing this, will
be stated. Furthermore a Simulink-Model is presented in Figure 7.3, where the main
blocks of the following steps are filled with colors. These colors are stated as well behind
each step headline.
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1. Initialization (Magenta & Dark Green)
Note: The continuous system model of the arm must be discretized.

a) Receding Horizon Controller (Condensed, M<N)

• Define prediction horizon N and control horizon M.

• Define the system state initial condition xA(0).

• Define penalizing QA and RA matrices for the cost function.

• Define lower and upper input and output constraints.
Note: The input signal is a PWM signal and no voltage signal.

• Define the sampling time hA of the RHC.
Note: The sampling time must be chosen as an integer divisor of the
system’s time delay. If it would be chosen in another way, the discretized
system matrices would change in dimension and the “kalman” command
could not compute a convergent Kalman estimator. This is caused by the
fact, that A would be not observable through C anymore.

b) Augmented Disturbance Model

• Define BAd and CAd .
Note: The rank condition of proposition 6.3 is only fulfilled if BAd 6=
[0; 0; 0; 0].

c) Steady State Target Selector

• Define the steady state target zAsp .

d) Kalman Filter

• Define the process noise covariance KA and the measurement noise co-
variance SA.
Note: The sensors used in the tower crane system are all digital encoders
and no noise was observed.

• Calculate the initial error covariance PA.

2. Measure/Calculate Actual Outputs (Red)

a) Calculate fitted angles α and β.

b) Convert the measured and fitted system outputs into model values by using
table 5.2.

3. Kalman Filter Measurement Update & Steady State Target Calculation (Green)
Note: The discretized system model must be recalculated every time when either
the cable length or the trolley position have changed.

a) Use the actual cable length as well as the actual trolley position in order
to calculate the Kalman filter measurement update. A new x̂A and d̂A is
obtained.
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b) Solve the steady state target problem, using the updated disturbance d̂A, in
order to obtain the steady state target xAs and the steady state control signal
uAs .

c) Calculate δxA

4. Calculate “Deviation” Input and Output Constraints. (Cyan)
Note: In the initialization, input and output constraints were defined. But since the
RHC deals with deviation variables, the “deviation constraints” must be calculated
at each time instant.

a) Calculate the input constraints for the RHC by using the following equations.

δuAmin = uAmin − uAs (7.1)

δuAmax = uAmax − uAs (7.2)

b) Calculate the output constraints for the RHC by using the following equations.

δxAmin = xAmin − x̂A + δxA = xAmin − xs (7.3)

δxAmax = xAmax − x̂A + δxA = xAmax − xs (7.4)

5. Solve Quadratic Programming Problem (Yellow)

• By solving the quadratic programming problem with an optimizer a sequence
of optimal deviation control signals δuA are obtained.
Note: Only the first signal is used, the others are discarded.

6. Calculate Control Signal (Light Blue)

• The obtained optimal deviation control signal δuA can be used to calculate
the optimal control signal uA with the following equation.

uA = δuA + uAs (7.5)

7. Kalman Filter Time Update & Apply Control Signal (Orange)

a) Calculate the Kalman filter time update by using the control signal uA.

b) Apply the obtained control signal uA to the system.
Note: Use a saturation (uAmin ,uAmax) before applying the signal to prevent
the system from damage.

Varying System Model
Like mentioned in step three, the system model of the arm dynamics is varying over
time and it must be recalculated and discretized at each sampling instant. But the cal-
culation and discretization is too time consuming to be done at each sampling instant.
Therefore the possible range of the cable length and the trolley position is divided into
100 small parts and the different system models are precalculated and saved in a tensor.
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This tensor in the end has a dimension of 100× 100 and for a specific cable length and
trolley position the right model can be chosen. This tensor is saved in a data memory,
colored dark green in Figure 7.3.

Varying System Model in the RHC
If one would implement the RHC 100% correct, the system dynamics would have to be
varied over the prediction horizon as well. This would mean that the optimal states,
calculated by the cable and trolley RHC, would have to be used to calculate future arm
system matrices in order to use different A and B matrices in the equality constraints
of the arm RHC. Since these calculations would need too much computation time, the
system matrices A and B were assumed constant over the prediction horizon.

Kalman Filter Variables
For the measurement update as well as for the time update of the Kalman filter, vari-
ables need to be saved to be available at the next sampling instant. Therefore two data
storages are needed to save the estimated state x̂ and the error covariance PA. These
data memories are also colored dark green in the following Simulink model.

As mentioned before, Figure 7.3 shows the whole MPC implementation in a Simulink
model. The MPC controllers for cable and trolley were combined in the two subsystems
“Cable MPC” and “Trolley MPC”, respectively. This was just done for displaying the
whole model. The Cable MPC has a slightly different structure since a stationary Kalman
filter was used.
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Figure 7.3: Real-Time-Control Simulink
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7.3 Time Comparison

For demonstration, MPC controllers with different RHC structure were implemented.
Furthermore, different solvers were used to minimize the cost function of the RHC. The
used solvers are Quadprog, ECOS and FORCES Pro. Quadprog is a quadratic problem
solver provided by the Optimization Toolbox in Matlab. ECOS and FORCES Pro are
solvers, provided by the third-party embotech[14]. ECOS is an open-source solver for
solving sparse second-order cone programs. For this purpose the quadratic program-
ming problem is converted first, in order to solve it in a faster way than Quadprog does.
FORCES Pro is a licensed code generation system for generating robust, high perfor-
mance numerical optimization solvers. The next table shows time comparisons between
different RHC structures and those mentioned solvers. The prediction horizon N=50
was the same for all four cases. The control horizon was either set to 50 or 6.

Table 7.1: Time Comparison of MPC Structures and Solvers

MPC Structure Quadprog ECOS FORCES Pro

N=M 100% 30,9% <0,01%

N>M 94,5% 28,4% -

N=M (cond.) 34,9% 10,9% -

N>M (cond.) 26,0% 5,8% -

The largest time needed was set to 100% as a benchmark. All other percentages refer
to this. It can be seen that ECOS is at least three times faster compared to Quadprog.
In the case with a condensed RHC structure and prediction horizon smaller than control
horizon it is nearly five times faster. Choosing different RHC structures can save up
to 80% of the computation time. In the comparison of those three solvers, Forces Pro
is unrivaled. The code generated solver solves the optimal programming problem in
microseconds.

7.4 Real-Time Control

Not just because of the fast computation time of FORCES Pro, it was used for real-time
control of the tower crane. Rather problems arise when trying to use Quadprog or ECOS
for this purpose. The problem is that the Matlab code and the Simulink model must be
compiled into C-Code in order to use it on the RT-DAC/USB2. Quadprog as well as
ECOS are not supported by the C-Code “building” process of Matlab/Simulink. In order
to be able to use either Quadrprog or ECOS, an S-Mex function must be generated. But
this is not straight forward. Since FORCES Pro directly generates C-Code it can be
used for real-time control. Another attractive solution would be to write a quadratic
program solver. This is discussed later on.

52



8
Control Tasks

I
n this chapter position control of the trolley, arm and cable length will be demon-
strated. This is done with and without penalization of the angle in the cost function.
Furthermore, the reaction of the controller to a disturbance will be shown. General
problems of controlling the system are discussed and approaches for solving these

issues are presented. Since in “normal” control tasks the constraints on the outputs are
mostly inactive a “special” control task with active constraints will be discussed. It will
also be shown where the used control structure has its limits.

8.1 Cable, Trolley & Arm Control

Position control of trolley, arm and the cable can either be done by just penalizing the
position or additionally penalizing the angles α and β. The output constraints are set
to its maximum and are never active in the following presented control tasks.

8.1.1 Without Angle Penalization

Figure 8.1 to 8.4 are showing measurements of cable, trolley and arm control. Neither
of them is penalizing the angles α and β. Mainly two problems, in controlling the crane,
can be seen in Figure 8.2.

1. Overshoot of the Arm Position
The position of the arm (θ) overshoots about 0.0165 radian. The arm motor has
much faster dynamics than the other two motors of the system. This problem
was solved by penalizing the control signal higher in the second measurement, see
Figure 8.3.

2. Stiction - Slow Offset Free Control
An examination of the control signal uA shows a problem which was already ad-
dressed in the model chapter, namely the stiction. Although the control signal is
not zero in between the fifth and eight second, the arm does not move. Never-
theless the offset free control, as described in the control structure chapter, works.
The control signal u decreases. Since the arm moves only if the control signal is
bigger than 0.2 or lower than -0.2, the offset free control works slowly.
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In Figure 8.3 it can be seen that it is worth to prevent the arm from overshooting since
the offset free control signal has not to pass the stiction area.
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Figure 8.1: Trolley Control Without Angle Penalization
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Figure 8.2: Arm Control Without Angle Penalization
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Figure 8.3: Arm Control Without Angle Penalization - Improved
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Figure 8.4: Cable Length Control

8.1.2 With Angle Penalization

Figure 8.5 to 8.7 are showing measurements of cable, trolley and arm control with ad-
ditional penalization of the angles α and β. The controller controls the angles α and
β to zero. The first measurements shows mainly one new problem which occurs when
controlling the crane with penalization of the angles. The change of penalty, discussed
in the previous subsection, is implemented in Figure 8.7, but not in the others.

In Figure 8.6 it is not clearly visible but the arm position overshoots like in the first
measurement of the previous section. Nevertheless the offset gets even bigger at around
14 seconds. The arm moves into the wrong direction. This is caused by the fact that
the measured angle β is constant but not zero. Since the angle is constant, the velocity
is zero. This is an unnatural behavior of the system’s model caused by the fact that the
angles depend on the arm position. This problem was already discussed in 5.1.6. Even
though the measured angles are fitted, they are not 100% correct. This results in non-
zero steady state measured angles. To solve this problem the measured and fitted angles
were set to zero if they are in the area between -0.008 and 0.008 radians, which results
in discontinuous angle signals. This approach was implemented and tested successfully,
see Figure 8.7.
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Figure 8.5: Trolley Control with Angle Penalization
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Figure 8.6: Arm Control with Angle Penalization
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Figure 8.7: Arm Control with Angle Penalization - Improved
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Figure 8.8: Cable Length Control

8.1.3 Disturbance Control

Figure 8.9 to 8.11 show the behavior of the controlled system when a disturbance occurs.
The starting points of trolley and arm position are also the setpoints. The task is to
reduce the angles α and β as fast as possible and return to the starting position.

In the first two measurement the control task is successfully accomplished for the
trolley and arm subsystem, respectively. The swinging of the payload was controlled to
zero and the trolley as well as the arm have returned to their starting positions. Only
the slow offset free control, because of the long way through the stiction zone, is clearly
visible.

In measurement 8.10 the disturbance to β is quite huge, but the swing is reduced fast.
However, the disturbance to β in measurement 8.11 is smaller. It can be seen that the
controller has no effect on the swinging behavior. This effect is caused again by the
stiction of the system. The control signal is swinging in order to reduce the angle, but it
is swinging in the area of -0.2 and 0.2, the stiction area. The control signal is not large
enough to move the arm. The RHC, using the linearized model, is expecting the arm to
move.
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Figure 8.9: Disturbance Control Trolley with Angle Penalization
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Figure 8.10: Disturbance Control Arm with Angle Penalization (1)

Time [s]
18 20 22 24 26 28 30 32

S
ig

na
ls

 [r
ad

],[
pw

m
]

0

0.5

1

1.5

2
Theta[rad]
beta[rad]
u

A
[pwm]

Figure 8.11: Disturbance Control Arm with Angle Penalization (2)
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8.1.4 Active Constraints

In the control tasks, presented in the previous subsections, the constraints of cable, trol-
ley and arm position were set to their maximum values and were never active. Only
constraints in the control inputs were active. Furthermore, the constraints of the angles
α and β were set to ±2π, which guarantees that these are not active while controlling
as well. Hence,o an LQR controller could have been used for those control scenarios. In
Figure 8.12, two measurements of the trolley subsystem are placed one above the other.
Neither of them is penalizing α in the cost function. The difference is that in the second
measurement (colored red), the constraints for α were set to ±0.05. As can be seen in
the figure, the controller keeps α successfully smaller than 0.05.
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Figure 8.12: Constraints Active without Angle Penalization - Real

8.1.5 Limitations

Another control scenario of the trolley subsystem was investigated to show that the
active constraints control works properly. The payload should be controlled near to a
wall without hitting it. This was done by controlling the trolley position and recalculating
the maximum allowed angle α at each sampling instant. The controller was not able to
satisfy the constraints on α. The problem by using this approach is that over a prediction
horizon of N = 20 the angle constraint was assumed to be constant. But clearly this is
not true since the trolley keeps moving over the prediction horizon. Putting directly a
constraint on a combination of the trolley position and α is not possible with FORCES
Pro.
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8.2 Payload Position Control

Another approach to control the tower crane system is to control the position of the
payload instead of controlling cable length and trolley and arm position. For testing
purposes, that approach was implemented only for the trolley subsystem. The payload
position z, in x-direction, can be described by the following equation.

z = Xw − L sin(α) (8.1)

Using small angle approximation, the following equation for the payload position can
be stated.

z = czx = Xw − Lα (8.2)

The matrix cz = [1 0 − L 0] is designed to fulfill (8.2). If the steady state position
of the payload is described by zsp, the weighting matrix QT of the cost function can be
obtained in the following way.

(z − zsp)2 = (czx− zsp)2 (8.3)

= (cz(x− xsp))2 (8.4)

= (x− xsp)T cTz cz(x− xsp) (8.5)

= (x− xsp)TQT (x− xsp) (8.6)

Here, any xsp, for which zsp = czxsp, can be used. In particular xsp can be chosen
xsp = xs, where xs is the steady state target with czxs = zsp. The matrix QT = cTz cz,
shown in the following equation, is only positive semidefinite and only deviations in the
final position are penalized.

QT =


1 0 −L 0

0 0 0 0

−L 0 −L2 0

0 0 0 0

 (8.7)

Implementing the described penalty approach brought no advantages compared to
the earlier described control method. The problem is that it is not possible to put con-
straints directly on the payload position with FORCES Pro. Only the trolley position
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Xw and the angle α can be penalized. Introducing a new state space model with changed
variables could help. However, using Quadprog or ECOS could bring better results in
simulations since the inequality constraints can be designed with more freedom. But as
mentioned, these solvers are to slow for real time control.

Another idea would be to introduce two new states, namely the payload position x11

and its velocity x12 and a new output y6 .

z = x11 = Xw − Lα = x3 − Lx5 (8.8)

ẋ11 = x12 = ẋ3 − Lẋ5 = x4 − Lx6 (8.9)

ẋ12 = ẋ4 − Lẋ6 = 9.81x5 + 0.0055x6 (8.10)

y6 = x11 (8.11)

The trolley model 5.23 can be rewritten by using (8.9) to (8.11), in the following way.

Trolley-Subsystem:

ẋ3

ẋ4

ẋ5

ẋ6

ẋ11

ẋ12


︸ ︷︷ ︸

ẋT

=



0 1 0 0 0 0

0 −107.83 −4.48 0 0 0

0 0 0 1 0 0

0 −107.83
L −14.29

L −0.0055
L 0 0

0 0 0 0 0 1

0 0 9.81 0.0055 0 0


︸ ︷︷ ︸

AT



x3

x4

x5

x6

x11

x12


︸ ︷︷ ︸

xT

+



0

20.09

0
20.09
L

0

0


︸ ︷︷ ︸

BT

u1

Delay of Input u1: 0.03 s

[
y6

]
︸ ︷︷ ︸
ẏT

=
[

0 0 0 0 1 0

]
︸ ︷︷ ︸

CT



x3

x4

x5

x6

x11

x12


(8.12)

Implementing model 8.12 would give the possibility to put weights on the final payload
position as well as putting constraints to it. Using that approach would be possible by
using FORCES Pro.
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9
Assignment Guidance

I
n this chapter a rough proposal for an assignment guidance in the MPC course
(SSY280) at the Chalmers University of Technology will be presented. Therefore,
the results of the thesis will be reclaimed. Since the assignment guidance must be
adjusted to the progress of the lecture it was decided that the detailed planing for

the assignment must be done by the course/assignment supervisor. The supervisor will
be provided with four fully operational and well commended Matlab/Simulink files.

1. Closed loop simulation with states and control signals as optimization variables.
(N>=M) (Quadprog & ECOS)

2. Closed loop simulation with condensed RHC structure.
(N>=M) (Quadprog & ECOS)

3. Closed loop simulation, using the code generation system FORCES Pro.
(N=M) (Forces Pro)

4. Closed loop real-time control, using the code generation system FORCES Pro.
(N=M) (Forces Pro)

Using this four files, the supervisor can built skeleton code for the course assignments.

9.1 Objectives

The purpose of the assignments is to control the 3D tower crane using MPC. The focus
of the first part of the assignment is to get familiar with the details of a simple MPC
algorithm by actually writing the Matlab code and validate the code by simulating
the crane in closed loop. In the second part the objective is to get some insight and
experience in obtaining zero offset when applying MPC control to a MIMO plant. The
code produced in the first part must be extended. The requirement here is to achieve zero
offset for the controlled outputs in the presence of constant but unknown disturbances. In
the last part the code generation system FORCES Pro is used to control the tower crane
in real-time. Therefore some modifications in the code must be done by the students.
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9.2 Model

The tower crane system must be introduced to the students. They should be provided
with the nonlinear state space representation of the full system. A first task could
be to think about the global control structure, namely dividing the system into three
subsystems in order to be able to use linear MPC techniques. Already at the beginning
or later on the differences of the real system and the model must be discussed in the
guidance. The relations between measured states and model states are important for
controlling the system in real-time.

9.3 Simulations - Part 1

For this part of the assignment, the guidance should refresh MPC control theory from
the lectures.

The students should implement a simple MPC structure with stats and control signals
as optimization variables. They should think about controlled outputs in the steady
state target selector. Namely, that the steady state targets for the angles α and β are
always zero without calculating them. Using stationary and time-varying Kalman filters
must be discussed.

The augmented model should not be used at this point. This gives the possibility to
make the remaining steady state error visible. Why is there a remaining steady state
error?

A comparison regarding computation time of different solvers and the possibility of us-
ing a smaller control horizon than prediction horizon should be done. Which advantages
and disadvantages has a different RHC structure?

Furthermore let the students compare the MPC without constraints with LQ control
techniques. Compare it to the constrained MPC case. How to calculate the constraints?
They must be recalculated every sampling instant.

Overall for this part of the assignment a Matlab/Simulink skeleton of the first simulation
file in the list above is used. The students should implement code for the generation
of the different matrices used in the quadratic optimization. They have to think about
witch matrices can be constructed in the initialization and which have to be recalculated
every sampling instant because of the dependency of x(k) or A and B.

9.4 Simulations - Part 2

For this part of the assignment, the guidance should refresh especially the use of an
augmented disturbance model in the MPC structure. Witch condition/proposition must
be fulfilled to reach zero offset control?

The students should change their code for using the condensed RHC structure. Which
matrices are not needed anymore? Which ones must now be calculated every sampling
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instant? Are their still matrices which can be calculated in the initialization? A time
comparison of the new RHC with different solvers should be done.

How to calculate the constraints? They must be recalculated every sampling instant,
but in another way than with the earlier RHC structure.

The code must be changed for using the augmented disturbance model in the Kalman
filter and the steady state target selector. For which matrices Cd and Bd does the system
reaches zero offset control? Why? Validate it with simulations.

Overall for this part of the assignment a Matlab/Simulink skeleton of the second simu-
lation file in the list above is used.

9.5 Real-Time Control

The students shall simulate the closed loop tower crane system by the use of FORCES
Pro. That is not much work since the code generation software does all the work. No
generation of optimization matrices is required. If the simulation works probably the
fourth file can be used to control the real tower crane in real time.

Overall for this part of the assignment a Matlab/Simulink skeleton of the third and
fourth simulation files in the list above is used. If the simulation works probably the
students can transfer their settings to the real-time control file and tune the weighting
parameters with the real system.
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10
Summary and Conclusion

I
n this chapter a short summary about the thesis, results and conclusions will be
given. Important findings and problems will be stated. Some ideas for further
studies with the Tower Crane system will be given. Furthermore, the work will be
compared to other studies and papers.

First of all it should be mentioned that all objectives of the thesis are fulfilled. Zero
offset control of an educational system, by implementing an MPC structure, was achieved
successfully. Advantages and disadvantages of different RHC structures were discussed.
A time comparison of different solvers and code generation systems, regarding compu-
tation time, was done. The acquired knowledge was used to elaborate a laboratory
guidance for the MPC-course (SSY280) at Chalmers University of Technology. This
guidance shall give the students an impression of how to use an MPC structure for con-
trolling a system.

After a short introduction and a discussion about the used methods, an educational
system was selected successfully, in chapter 3. Table 3.1 shows the cost-utility analysis
which was used to rank systems from different companies. In the end, the third ranked
Tower Crane of the company INTECO was chosen. This was mainly done because of
the company’s location near to Sweden, its references and and the price of the system.
The system was delivered in time and it is made of high quality. All expected system
functions are working properly and the commissioning was quite easy.

A nonlinear model of the system, including actuators and friction terms, was derived
successfully in chapter 5. The kinetic and potential energy of the system was used in
a Lagrangian approach. Actuator terms were evaluated through physical properties.
Some of the actuator parameters could not be obtained from data sheets. Therefore
first estimates were taken from the studies [9] and [10] and were improved by applying
step-response tests. The mathematically obtained nonlinear system model shows the
same structure and parameter dimensions as the practically obtained model in paper
[10].

Amongst other assumptions, small angle approximation was applied to the nonlinear
model, in order to linearize it, in chapter 5. Two remaining, verified as not significant
important, nonlinear coupling terms were neglected. Furthermore, the model was decou-
pled into subsystems, in order to finally get three linear state space representations of
the models. These models are using inputs from the other subsystems as parameters. In
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order to speed up the real-time control, system models, for different input parameters,
were saved in a look-up table. Constructing and discretization of a system model in
Matlab would not be possible in real-time. The nonlinear as well as the linear decoupled
model was verified successfully with step-response tests and applying a triangular input
signal, in chapter 5. Small deviations of the linear model, compared to the real system,
have not influenced the control quality noticeably.

Advantages and disadvantages of different RHC structures were stated in chapter 6.
All structures were used in simulations successfully. Cost-functions, inequality as well as
equality constraints structures were explained in detail. This detailed explanation was
mainly done for the students, to use them as additional lecture notes.

The quadratic program solvers Quadprog and ECOS as well as the code generation
system FORCES Pro were compared regarding computation time of different RHC struc-
tures, in chapter 7. Using different RHC structures and ECOS instead of Quadprog can
speed up the optimization about 94%. Nevertheless, the quadratic program solvers are
still to slow for using them for real-time control. Therefore the code generation system
FORCES Pro was used. Further studies could contain the design of an own quadratic
problem solver. This would open new possibilities for the students in the MPC course.
Not to use a“black box”solver would provide a better understanding of how optimization
code works. Furthermore, it would be possible to construct inequality constraints with
more freedom than it is possible with FORCES Pro. This would solve the problems,
mentioned in section 8.2.

A steady state target selector was used in the MPC structure, described in chapter
7. Thus the RHC works with deviation variables. By introducing an augmented distur-
bance model to the steady state target selector, zero offset control was achieved. Not
measurable states as well as the disturbance were estimated by a time varying Kalman
filter. Different control tasks were stated in chapter 8. Reliable real-time control of the
system was achieved successfully. Further work could investigate the stiction behavior
problem of the the trolley and the arm, mentioned in chapter 8. Some kind of stiction
compensator must be introduced to the system. Maybe it would be just sufficient to
add an offset to the control signal u, unequal zero, if the controlled system part is not
moving, namely the velocity is zero. This would maybe bring the controlled system part
into motion and afterwords the calculated, optimal, control signal could be applied.

Two studies, which have used the same tower crane system from INTECO, were refer-
enced in this work. This thesis differs manly in the educational point of view from them.
Special attention was paid to discuss different RHC structures as well as on explaining
how to implement an MPC practically. Furthermore, Faisal Atlaf derived the system’s
model experimentally, whereas a mathematical approach was used in this thesis. Com-
pared to the studies [9], zero offset control was achieved with methods mentioned earlier.
Nevertheless, [9], focuses more on guaranteed stability of the MPC.

The work with the tower crane was fun. I have learned a lot more about control
theory in general, but especially about MPC control. It was nice to see, how using
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different RHC structures and solvers can make the difference in real-time control. This
shows that computation time is still worth to think about when implementing an MPC
controller. Academical discussions with my supervisor and professor, Bo Egardt, have
always opened new points of view to me.
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